
HAL Id: hal-00833692
https://hal.science/hal-00833692v1

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer-Assisted Scientific Workflow Design
Nadia Cerezo, Johan Montagnat, Mireille Blay-Fornarino

To cite this version:
Nadia Cerezo, Johan Montagnat, Mireille Blay-Fornarino. Computer-Assisted Scientific Workflow
Design. Journal of Grid Computing, 2013, 11 (3), pp.585-610. �10.1007/s10723-013-9264-5�. �hal-
00833692�

https://hal.science/hal-00833692v1
https://hal.archives-ouvertes.fr

Journal of Grid Computing manuscript No.
(will be inserted by the editor)

Computer-assisted Scientific Workflow Design

Nadia Cerezo · Johan Montagnat ·
Mireille Blay-Fornarino

Received: date / Accepted: date

Abstract Workflows are increasingly adopted to describe large-scale data- and
compute-intensive processes that can take advantage of today’s Distributed Com-
puting Infrastructures. Still, most Scientific Workflow formalisms are notoriously
difficult to fully exploit, as they entangle the description of scientific processes and
their implementation, blurring the lines between what is done and how it is done
as well as between what is and what is not infrastructure-dependent.

This work addresses the problem of data-intensive Scientific Workflow design
by describing scientific experiments at a higher level of abstraction, emphasizing
scientific concepts over technicalities, easing the separation of functional and non-
functional concerns and leveraging domain knowledge.

To achieve this goal, we propose a model-driven approach enhanced with
Knowledge Engineering technologies. The main contributions of this work are a
semantic Scientific Workflow model to capture user goals and a generative pro-
cess assisting the transformation from high-level models to executable workflow
artefacts.

Keywords Scientific Workflow Design · Workflow Modeling · Workflow
Composition · Semantic Workflow

1 Introduction

Simulations, also known as “in-silico” experiments in the field of life sciences,
are scientific experiments partially or entirely carried out via computers. In many
fields, these experiments have become a major component of scientific research.
Many factors contribute to the necessity of automating such experiments, most
notably the volume of data to analyze and the exploratory nature of the analysis,

N. Cerezo · J. Montagnat · M. Blay-Fornarino
Université Nice Sophia Antipolis / CNRS, I3S laboratory, Sophia Antipolis, France
Tel.: +33-492965103
Fax: +33-492965155
E-mail: cerezo@i3s.unice.fr johan@i3s.unice.fr blay@polytech.unice.fr
http://modalis.i3s.unice.fr

http://modalis.i3s.unice.fr

2 Nadia Cerezo et al.

which leads to frequent reuse and repurposing. For years, scientists have chained
the various programs that composed their simulations through scripting. How-
ever Distributed Computing Infrastructures (DCIs) (e.g. service platforms, grids,
clouds) make this hands-on ad-hoc approach very impractical: scientists find they
need to become experts of distributed algorithms and web technologies in order
to use the wealth of available distributed resources.

1.1 Workflows

In the corporate world, the need to automate the use of highly-distributed het-
erogeneous resources was answered by the concept of workflow, formally defined
by the Workflow Management Coalition (WfMC) as “the computerized facilitation
or automation of a business process, in whole or part”. Originally geared towards
the description of business processes, workflows have been increasingly used to
describe scientific experiments, especially those performed on DCIs. Workflows
meant to perform simulations are called Scientific Workflow.

The frontier between Business and Scientific Workflows is rather blurry and
subjective. Nothing prevents a user from using a Business Workflow framework to
model and perform a scientific experiment or a scientific workflow framework to
capture and automate a business process. As detailed in [2] as well as in [3,4], the
differences pertain essentially to priorities and context, notably:

– The need for security and privacy, which is extremely important in a busi-
ness context, is still present but much less prevalent, in the scientific commu-
nity, where peer validation and collaboration are common goals that imply
sharing, reuse and repurposing.

– The need for integrity and reliability is a central aspect of business services
and thus a top priority for Business Workflows, but the exploratory nature of
research makes flexibility a much greater priority for Scientific Workflows.

– Many business contexts require the level of fine-grained control and flexibility
provided by control-driven models (i.e. models relying on control constructs
such as loops and conditionals). However, scientific data is most often the
first-class citizen of a simulation, which makes data-driven models a better
fit for most Scientific Workflows. Moreover, those models can leverage data
parallelism implicitly [5], which is crucial to many data- and compute-intensive
simulations.

– On the one hand, Business Workflow designers often face either a lack of suit-
able candidate services to perform a step in their process or a wealth of func-
tionally close candidates which must be differentiated through considerations
of Quality of Service and cost. On the other hand, Scientific Workflow design-
ers often start modeling their simulations with the main services/programs
already determined and generally find very few viable alternatives, since dif-
ferent candidates for a scientific process step often pertain to substantially
different scientific approaches.

This work focuses on the design of Scientific Workflows. While the method pro-
posed is generative and typical Business Workflow languages could be considered
as targets, it is important to note that several hypotheses underlying this work
derive from typical Scientific Workflow models and frameworks.

Computer-assisted Scientific Workflow Design 3

1.2 Scientific Workflow Models

Most Scientific Workflow models are, at their core, directed graphs whose nodes
are activities (i.e. executable artefacts) and whose edges represent dependencies
between these artefacts (i.e. control and data transfers). That core representation
fits most Scientific Workflow models, see [6,7,8,9,10] for a few examples. There are
other types of Scientific Workflow models, for instance those based on scripting [11]
(graphical and scripting representations are highly similar and two-ways conversion
is conceivable [12]) or petri nets [13].

We will, however, only consider graph-based Scientific Workflow representa-
tions where nodes represent activities and edges represent data or control depen-
dencies, much like other works that consider Scientific Workflows at a computation-
independent level, such as [14] and [15].

Typical graph-based workflow representations can be divided between Directed
Acyclic Graphs (DAGs) (e.g. Taverna [6] and Pegasus [9]) and Directed Cyclic
Graphs (DCGs) (e.g. Kepler [9] and MOTEUR [10]). Cycles are a common way
to model loops, which is why our representation is not limited to DAGs.

1.3 Motivation

Workflow formalisms are appealing to scientists in that they provide means to
formally describe complex experiments involving parallel or distributed processing.
End-users of Scientific Workflows have come to expect a representation that is not
too tightly coupled with an execution infrastructure, that is accessible and eases
the design and implementation of scientific experimental protocols. Yet, despite
laudable efforts to fulfill user wishes, it is widely recognized that most existing
Scientific Workflow formalisms remain complex to use for scientists who are not
experts in distributed algorithms [16,17].

Another important issue is the Separation of Concerns (SoC). Indeed, regard-
less of their scientific field and framework of choice, Scientific Workflow designers,
in order to make executable workflows, will have to clutter their simulations with
countless intermediary steps managing data and/or catering to non-functional con-
cerns (e.g. optimization, reliability and security). This entanglement hinders shar-
ing, reuse and interoperability by blurring the lines between goals and methods
and binding the simulation to a given infrastructure.

One way to answer those problems would be to model simulations at an abstrac-
tion level that is closer to the end-user’s domain(s). This solution is increasingly
appealed for in the field of Scientific Workflows: quoting from [18], “conceptual
workflow modeling can provide a number of benefits to workflow designers by al-
lowing workflows to be developed at a higher level of abstraction (e.g. without having
to worry about implementation details), for workflow discovery... workflow reuse
and interoperability [and] given the complexity of data, control-flow, and dataflow
aspects of most Scientific Workflows, formal conceptual workflow modeling frame-
works that integrate each of these aspects would have the potential to significantly
help users design and implement complex scientific analyses.”

Let us define what “conceptual” means by clarifying the distinction between
Scientific Workflow abstraction levels.

4 Nadia Cerezo et al.

1.4 Abstraction Levels

End$user)

Scien-fic)
Workflow)
Framework)

Compu-ng)
Infrastructure)

1 2 3

Conceptual)
Level)(CIM))

Abstract)
Level)(PIM))

Concrete)
Level)(PDM))

A
B
S
T
R
A
C
T
I
O
N

Fig. 1 Scientific Workflow Abstraction Levels (color online)

Simulations are modeled at three distinct levels of abstraction that align with
those defined in the Model Driven Architecture (MDA), as shown in Figure 1:

– The Concrete Level is that of actual execution by an enactor over a DCI. At
this level, models are tightly-coupled with the infrastructure and are referred
to as Platform-Dependent Model (PDM) in the MDA.

– The Abstract Level is that of most Scientific Workflow models, ready to be
automatically compiled or directly interpreted, but not entirely bound to spe-
cific resources and retaining some flexibility. Models at this level aim to be
independent from computing infrastructures and are referred to as Platform-
Independent Model (PIM) in the MDA. In practice though, frameworks end
up tied to target infrastructures enough to warrant interoperability projects
like SHIWA1.

– The Conceptual Level is the one at which scientists conceive their scientific
experiments in a vocabulary that is familiar to them. Conceptual models are
referred to as Computation-Independent Model (CIM) in the MDA, for they
remain independent from how the system is or will be implemented.

The distinction we make between Abstract and Concrete is nothing new [19].
But, as of yet, there is no consensus on the name of the highest level of abstrac-
tion: what we call Conceptual is even called “Abstract” in some works [14]. The
distinction between CIM and PIM is much clearer in the MDA than it is in the

1 SHIWA Platform: http://www.shiwa-workflow.eu/

http://www.shiwa-workflow.eu/

Computer-assisted Scientific Workflow Design 5

field of Scientific Workflows, but few works have touched upon the transition from
one to the other [20].

1.5 Contribution

The present work extends the preliminary work described in [21] and addresses
the problem of Scientific Workflow design. Instead of building an entire scientific
workflow framework, from design to enactment, our approach is to formalize sim-
ulations at a higher level of abstraction, upstream from already plentiful Scientific
Workflow models, then transform those high-level models into low-level workflows,
readily executable by existing systems. In that, we fit the gap described in [16] as
the need for distinct “dimensions of abstraction [that] are experiment-critical ver-
sus non-experiment-critical representations, where the former refers to scientific
issues and the latter is more concerned with operational matters.”

Our model-driven approach relies on Knowledge Engineering technologies to
handle domain-specific information and automate the generative process as much
as possible. The use of semantic metadata attached to scientific computing pro-
cesses guides the semi-automated transformation process and enhances accessibil-
ity by emphasizing scientific goals over technical issues.

Conceptual)Level) Abstract)Level)Transforma-on)

Conversion)Mapping)

Intermediate)Representa-on)

Fig. 2 Transformation Process (color online)

The transformation from a Conceptual to an Abstract workflow involves two
steps as illustrated in Figure 2. The first step, Mapping, is the computer-assisted
transformation from a simulation modeled at the Conceptual Level into an In-
termediate Representation that contains both conceptual and abstract elements,
allowing us to maintain traceability between the two representations. The Con-
version step is then needed to transform the workflow from the Intermediate
Representation to a target Abstract Workflow language, so that execution can be

6 Nadia Cerezo et al.

delegated to an existing scientific workflow framework. We built a working proto-
type for the Conversion step that transforms Intermediate Representations into
GWENDIA [5] workflows. The focus of this paper, however, is the Mapping step.

Most examples presented in this paper come from the Virtual Imaging Platform
(VIP) project [22], whose goal is the integration of multiple modalities and organ
models into a cohesive medical image simulation platform.

1.6 Outline

The Conceptual Workflow Meta-model is shown in Unified Modeling Lan-
guage2 (UML) on Figure 3. It is divided in three parts: Semantic, Conceptual and
Abstract. The following Section 2 describes the Semantic part, and details which
related technologies we use in our approach as well as why and how we use them.
Section 3 describes the Conceptual part, meant for high-level simulation modeling.
Section 4 describes the Abstract part, which defines the low-level elements needed
for implementation. Those elements are either provided by the user or retrieved
from the Knowledge Base during the Mapping transformation step described in
Section 5. Section 6 illustrates the Transformation process on a real use case. Sec-
tion 7 addresses the specific issues of “cold-start problem” and “meta-data-based
discovery”. Related works are discussed in Section 8 and we conclude this paper
with perspectives in Section 9.

2 Semantics

One issue with Abstract Workflow representations, regarding simulation modeling,
is that they assume a rather close relationship between the description of a scien-
tific process and its implementation. There is a one-to-one mapping from opera-
tions in the process modeled in the Abstract Workflow by processing nodes (called
Activities in ASKALON [23], Actors in Kepler [9], Processors in MOTEUR [10],
Tasks in Pegasus [7], Services in Taverna [24], Units/Tools in Triana [25] and so on)
to executable artefacts (e.g. services, executable binaries, grid jobs, sub-workflows).
Because those processing nodes are black boxes, there is still some flexibility in
that a single node or a pre-defined construct, such as a Taverna “Layer” [26], may
hide a complex sub-workflow, but there is purposely little structural flexibility.

Abstract Workflows are not only bound to a specific set of executable arte-
facts and a specific target execution infrastructure, they also indiscriminately mix
domain concerns (i.e. high-level concepts pertaining to user scientific domain(s)),
technical concerns (i.e. functional in that they are needed to actually enact the
workflow, but not directly relevant to the modeled scientific experiment) and non-
functional concerns (e.g. Quality of Service considerations). There is simply no
difference between a major scientific algorithm, a small format conversion step
and a logging operation: all steps are treated equally, which makes it harder to
distinguish goals from methods and thus lowers legibility.

The Conceptual Workflow Model addresses the shortcomings previously
mentioned by separating elements into two abstraction layers: a high-level one

2 UML: http://www.omg.org/spec/UML/Current

http://www.omg.org/spec/UML/Current

Computer-assisted Scientific Workflow Design 7

Se
m
an
&c
	

Ab
st
ra
ct
	

Co
nc
ep

tu
al
	

Co
nc
ep

tu
al
	

W
or
kfl
ow

	

Co
nc
ep

tu
al
	

Li
nk
	

El
em

en
t	

Co
nc
ep

tu
al
	

El
em

en
t	

Co
nc
ep

tu
al
	

O
ut
pu

t	
Co

nc
ep

tu
al
	

In
pu

t	
Co

nc
ep

tu
al
	

Fu
nc
&o

n	 so
ur
ce
	

ta
rg
et
	

*	
*	

1	
1	

Fr
ag
m
en

t	
*	 *	

1	 1	

pa
@
er
n	

bl
ue

pr
in
t	

Ab
st
ra
ct
	

El
em

en
t	

Da
ta
	 L
in
k	

In
pu

t	 P
or
t	

O
rd
er
	 L
in
k	

Po
rt
	

Ac
&v
ity

	
O
ut
pu

t	 P
or
t	

1.
.*
	

*	
*	

so
ur
ce
	

ta
rg
et
	

so
ur
ce
	

ta
rg
et
	

1	
1	

1	

1	

*	
*	

An
no

ta
&o

n	
	

+i
sR
eq

ui
re
m
en

t	
+t
yp
e	

Fu
nc
&o

n	
Da

ta
se
t	

Co
nc
er
n	

*	
*	

*	
*	

*	 *	
*	

Fig. 3 Conceptual Workflow Meta-model

8 Nadia Cerezo et al.

where there are only functional considerations that pertain to the user domain(s)
and a low-level one where nodes are bound to artefacts, much like in Abstract
Workflow formalisms. The two levels are integrated into one model so as to provide
a coherent and complete view of a simulation, without losing sight of the underlying
scientific process.

To capture the scientific process itself and assist the user in implementing it
implies handling knowledge and know-how from multiple domains, in a computer-
legible and yet accessible way. Semantic Web technologies and tools were created
precisely to address such problems of knowledge representation production [27].

2.1 Standards

At the basis of the Semantic Web is the notion of resource, i.e. a concept iden-
tified by a Uniform Resource Identifier (URI). Resources are described and con-
nected through subject predicate object triples, i.e. assertions that the re-
source subject has the property predicate with the literal or resource object

as value. Triples can be stored in dedicated repositories called “triple stores” or
used to annotate the resources themselves or their models. The recommendation
of the World Wide Web Consortium (W3C)3 to define triples is the Resource De-
scription Framework (RDF). A set of RDF triples de facto constitutes a graph,
possibly made of several disjoint components, and is commonly referred to as a
“knowledge graph”.

SPARQL Protocol and RDF Query Language (SPARQL) is the standard se-
mantic query language used to manipulate knowledge graphs in four main ways,
all based on pattern matching:

– SELECT queries return all matches for a given graph pattern.
– CONSTRUCT queries return one new knowledge graph, specified by a given tem-

plate, for each match found with a given graph pattern.
– ASK queries check whether there is at least one match for a given graph pattern.
– DESCRIBE queries return a description (made of various available information,

depending on the query processor) of each match found for a given graph
pattern.

Vocabularies and hierarchies of resource classes can be defined with RDF
Schema (RDFS) or more expressive languages such as the Web Ontology Lan-
guage (OWL). Semantic representations are meant to formalize knowledge in a
computer-legible way, so that it can be collected into repositories where it can
be queried and inferred upon to deduce new knowledge from asserted facts. More
expressive ontology languages make inference engines more powerful, with the
drawbacks of increased computational time and lower decidability.

Semantic Web technologies fit in our approach in two ways. First, they enable
Conceptual Workflow modeling by helping capture domain knowledge. Second,
the SPARQL language eases Conceptual Workflow transformations through graph
pattern matching and graph construction. In our work:

3 W3C: http://www.w3.org/

http://www.w3.org/

Computer-assisted Scientific Workflow Design 9

– the Conceptual Workflow Model itself is described in an RDFS-based COncep-
tual WORKflow (COWORK) ontology4, so that Conceptual Workflows can be
treated like knowledge graphs and queried as such;

– external ontologies (in any RDF-compatible language) are used to annotate
the elements of Conceptual Workflows with the domain-specific functions they
implement, the data types and contents they manipulate and non-functional
criteria they fulfill, as detailed in Section 2.2; and

– SPARQL is used to combine components with workflows as detailed in Section
5.2 and to retrieve those components, as detailed in Section 5.3.

All created or imported elements are stored and retrieved from a repository
that is called the Knowledge Base.

2.2 Annotations

Most elements of the Conceptual Workflow Model (detailed in Sections 3 and 4)
can be annotated with types defined in external domain ontologies, as shown on
the Semantic part of Figure 3.

An Annotation is defined by three things in the Conceptual Workflow Model:

– its Type, i.e. its class in an external ontology;
– its Role:

either Requirement if it is a goal to achieve or a criterion to satisfy
or Specification if it is an achieved goal or a satisfied criterion; and

– its Meaning:
either Function if it is a domain method or objective (e.g. fourier

transformation, standard deviation calculation and regional cerebral

blood volume estimation),
or Concern if it is a non-functional criterion (e.g. SplitAndMerge, Log

and SecureConnection)
or Dataset if it characterizes data (e.g. PET simulated image, regional

cerebral blood flow dataset and displacement field dataset).

At the Conceptual Level, which is implementation-independent, Conceptual
Workflows are annotated only with Requirements, since they do not yet achieve
any goals or fulfill any criteria. During the Mapping transformation step (detailed
in Section 5), Requirements are progressively transformed into Specifications,
as they are fulfilled.

Type)

Type)

Requirement:)

Specifica-on:)

Fig. 4 Graphical Convention - Semantic elements (color online)

4 COWORK ontology: http://www.i3s.unice.fr/~cerezo/cowork/latest/cowork.rdfs

http://www.i3s.unice.fr/~cerezo/cowork/latest/cowork.rdfs

10 Nadia Cerezo et al.

Figure 4 shows the graphical convention for Annotations. Both Type and
Role are displayed explicitly, but the Meaning is inferred through the Type.

3 Conceptual Elements

Conceptual)
Input)

Conceptual)
Func-on)

Conceptual)
Output)

Conceptual)Link)

Conceptual)Link)

Parent)Workflow)

Sub$Workflow)

Fig. 5 Graphical Convention - Conceptual elements (color online)

The Conceptual part of the Conceptual Workflow Meta-model, shown on Fig-
ure 3, pertains to simulation modeling at the highest level of abstraction, with
no information at all about implementation. Figure 5 illustrates the graphical
convention for all Conceptual elements of the Conceptual Workflow Model.

3.1 Nested Directed Cyclic Graphs

Conceptual Workflows are modeled through nested directed cyclic graphs whose
vertices represent operations to be performed and edges represent dependencies
between operations. Because Conceptual Workflows are meant to be iteratively
transformed into Abstract Workflows that can be enacted on a DCI, the Concep-
tual Workflow Model also features Abstract Elements that are described later in
Section 4.

A vertex in a Conceptual Workflow may itself contain nodes and edges. The
nested workflow is then relatively called a Sub-workflow and the workflow that
contains it is called the Parent workflow. Because Sub-workflows can in turn
contain Sub-workflows, the relationship is transitive. Where it is necessary to dis-
tinguish between direct ancestor/descendants (where the relationship is defined
directly) and indirect ancestors/descendants (where the relationship is derived by
transitivity), the direct ancestor is called the immediate Parent Workflow.
That nesting is needed to model simulations at multiple abstraction levels in an
integrated way.

Computer-assisted Scientific Workflow Design 11

3.2 Conceptual Workflow Types

There are three distinct types of Conceptual Workflows:

– Conceptual Functions represent simulations or steps in the simulation mod-
eled by their Parent Workflow;

– Conceptual Inputs represent data fed as input to the scientific experiment
modeled by their Parent Workflow and

– Conceptual Outputs represent data produced by the scientific experiment
modeled by their Parent Workflow.

Only Conceptual Functions can contain Sub-workflows; the meta-model (Fig-
ure 3) thus exhibits a “Composite Pattern” [28] with Conceptual Workflows as
“Components”, Conceptual Functions as quotComposites and Conceptual Input-
s/Outputs as quotLeaves.

All types of Conceptual Workflows can embed Abstract Elements and be anno-
tated, but the Meaning (defined in Section 2.2) is restricted by type: Conceptual
Functions can only bear Functions and Concerns, whereas Conceptual Input-
s/Outputs can only bear Datasets.

3.3 Conceptual Links

An edge that connects two Conceptual Workflows is a Conceptual Link. A
Conceptual Link cannot be annotated and it models a dependency between its
source and target. It represents either:

– a data transfer, i.e. the target uses data produced by the source;
– a precedence order, i.e. the source must be done before the target;
– a causal link, i.e. the target must run only if the source has terminated or
– a combination of all of the above.

If the source and target have the same immediate Parent Workflow, then the
source cannot be a Conceptual Output and the target cannot be a Conceptual In-
put, by definition. That restriction becomes somewhat complex if multiple nesting
levels are involved: a Conceptual Input (resp. Output) can be seen and used as an
entry (resp. exit) point of a Sub-workflow, as illustrated on Figure 6.

The restriction can be expressed thusly: if the source (resp. target) of a Con-
ceptual Link is a Conceptual Output (resp. Input), then the immediate Parent
Workflow of the source is neither the immediate Parent Workflow of the target,
nor one of its Sub-workflows.

4 Abstract Elements

The end goal of Conceptual Workflow design is to produce an executable workflow
and delegate it to an existing Abstract Workflow framework, but there are many
targets to choose from (e.g. Taverna’s Scufl [24], Kepler’s MoML [9], MOTEUR’s
GWENDIA [5], Askalon’s AGWL [23], Pegasus’ DAX [7]) and each has its own
advantages, its own target infrastructures and its own user base.

12 Nadia Cerezo et al.

Forbidden)

Sub$Workflows)

Parent)Workflow)

Legend:))

Fig. 6 Conceptual Link Restriction (color online)

As shown on Figure 2, the Transformation process is divided in two steps to
avoid building an entirely separate process for each target language. The Con-
ceptual Workflow is first populated with Abstract Elements, during the Mapping
phase, and actual language conversion is postponed as much as possible.

The Abstract part of the Conceptual Workflow Meta-model shown on Figure 3
pertains to those Abstract Elements. Figure 7 illustrates the graphical convention
for all Abstract elements of the Conceptual Workflow Model.

4.1 Activities

An Activity represents an “atomic” task (a black box from the viewpoint of the
Conceptual Workflow that embeds it), e.g. a web service, a grid job or an exe-
cutable artefact. Like Conceptual Functions, Activities can only bear Functions
and Concerns. An Activity has an Input Port for each of its arguments and an
Output Port for each of its products; it must have at least one Port. Ports can
only bear Datasets.

Some arguments may not be explicit in the artefact’s description. For instance,
a web service might take a folder path as input and import files that are in that
folder: those files are also arguments of the Activity, but they are implicit. The
notion of Implicit Ports is meant to clarify those implicit relations and expose
the related knowledge.

Computer-assisted Scientific Workflow Design 13

Legend:)
))))))))))))))))Explicit)Port)
))))))))))))))))Implicit)Port)
))))))))))))))))Data)Link)
))))))))))))))))Order)Link)
))))))))))))))))Filter)

Input)

Output)

then) else)

Output)Ac-vity)

Ac-vity)

Fig. 7 Graphical Convention - Abstract elements (color online)

Implicit Ports are not automatically detected. If the Activity has such an im-
plicit dependency, but is created without the corresponding Implicit Port and the
end-user (who embeds the Activity in his or her Conceptual Workflow) does not
know of it, then in all likelihood the resulting workflow will fail. Implicit Ports are
a tool that can be used to make required knowledge explicit.

4.2 Activity Types

In addition to regular Activities, there are specific ones defined in the Conceptual
Workflow Model:

– Inputs are Activities with at least one Output Port and no Input Port;
– Outputs are Activities with at least one Input Port and no Output Port and
– Filters are special Activities implementing conditional constructs: they have

a Guard (i.e. a logical condition), one Input Port and two Output Ports then
and else. Whenever a piece of data d is transferred to a Filter, the associated
Guard is evaluated and d is passed along the then branch if the Guard is True,
along the else branch otherwise.

In practice, Inputs and Outputs are most often data constants or references
to files, but they may also be typical activities (such as web services) that either
only produce or only consume data.

4.3 Links

At the Abstract Level, there are two types of Links:

14 Nadia Cerezo et al.

– a Data Link represents a data transfer from an Output Port to an Input Port
and

– an Order Link represents a precedence constraint between two Activities, i.e.
the target Activity cannot start before the source Activity has completed.

Neither Data Links nor Order Links can bear Annotations.

5 Mapping

The Mapping transformation step introduced in this work is computer-assisted
and iterative. Its objective is to transform all Requirements of a Conceptual
Workflow into Specifications, by embedding Abstract Elements or inserting Sub-
workflows that fulfill those Requirements, and compose these elements to form a
functional Intermediate Representation.

The Activities and Sub-workflows used to fulfill the Requirements of Concep-
tual Workflows are either provided by the user or retrieved from the Knowledge
Base where they are stored as Fragments.

Other approaches like the “semantic framework” [29] extending WINGS [30],
work under the assumption that encapsulation and substitution are the only mech-
anisms needed to combine Scientific Workflows, using fixed templates and one-to-
one mapping from the yet-undetermined steps in those templates to activities in
the catalog. We believe that this assumption works in many cases, especially sci-
entific areas where most simulations are data processing pipelines, but that it will
not hold in the more general case and cannot tackle SoC.

A common way to tackle SoC is to use “aspects” [31]. It has even been sug-
gested specifically for simulations [32]. However, one of the assumptions of Aspect-
Oriented Programming (AOP) is that aspects are completely decoupled from func-
tional processes: aspects are designed and maintained separately from one another
and from core processes and weaving happens as late and as automatically as
possible. While that makes a lot of sense in a business context, where different as-
pects are often entrusted to different experts who develop concurrently, Scientific
Workflows are often designed and maintained by one scientist.

Another option is the use of “process fragments” [33,34], that can be extracted
from a functional process or created from scratch and are woven into a base pro-
cess through model transformation at any time during design. Instead of different
people working concurrently on modules, the assumption of people reusing parts
of other users’ workflows and integrating them into their own seems a closer match
to the context of Scientific Workflows. Therefore we opted for the somewhat less
constrained notion of “fragments” over “aspects”.

Fragments are meant to be (i) woven into Conceptual Workflows (ii) retrieved
from the Knowledge Base in order to meet Requirements. The formal definition of
Fragments is introduced in Section 5.1, their weaving process in Section 5.2 and
their retrieval is detailed in Section 5.3. After weaving Fragments, the resulting
workflows must be fully composed and Section 5.4 details that process.

5.1 Fragments

A Fragment is composed of two distinct Conceptual Workflows:

Computer-assisted Scientific Workflow Design 15

– the Pattern describes where the Fragment must be woven;
– the Blueprint describes what must be woven and
– their combination specifies what must be left untouched, deleted, generated or

preserved in the base workflow into which the Fragment is woven, as detailed
in Table 1. Note: A preserved element is not necessarily untouched: in some
cases it will be modified (e.g. a link could be switched to a different target)
but it will never be deleted.

Table 1 Pattern/Blueprint combinations

Pattern Blueprint Resulting Graph
Untouched

! Deleted

! Generated

! ! Preserved

Fragments and Conceptual Workflows are modeled as knowledge graphs, based
on the COWORK ontology. This representation allows the use of sophisticated
SPARQL queries to match Fragments with Requirements and to weave them into
Conceptual Workflows. Indeed, SPARQL’s powerful pattern matching and graph
constructing features can be leveraged to:

– retrieve Fragments from the Knowledge Base that match specific Requirements;
– look for patterns in a base Conceptual Workflow to identify where Fragments

should be woven; and
– construct the graphs resulting from weaving Fragments into base Conceptual

Workflows.

Although any graph manipulation mechanism would likely work, we use SPARQL
because the transformation from a Fragment to a SPARQL CONSTRUCT query is very
straightforward, as detailed in Section 5.2.

When an Activity, provided by the user or retrieved from the Knowledge Base,
fulfills all the Requirements of a Conceptual Workflow, embedding the Activity
inside the Conceptual Workflow is enough to map it. The Weaving process is
trivial in that case: the Activity is inserted into the Conceptual Workflow and the
Requirements become Specifications. However, there are much more complex cases
where SPARQL advanced graph manipulation capabilities are warranted, notably
to weave cross-cutting concerns.

5.2 Weaving

When the Weaving mechanism for a given Fragment is a simple substitution, the
Pattern is an empty Conceptual Workflow with Requirements and/or Specifica-
tions. Activities stored into the Knowledge Base are thus stored into Fragments
with trivial Patterns: empty Conceptual Workflow bearing the same Specifications
as the Activity.

Figure 8 is an example of such a Fragment, where the Activity sorteo single

is taken from Sorteo, the PET simulator seminally included in the VIP project.

16 Nadia Cerezo et al.

PATTERN) BLUEPRINT)

sorteo_singles)

Fig. 8 Typical Activity Fragment (color online)

Substitution is sufficient in many cases, but more complex mechanisms are
sometimes required, especially with non-functional concerns which are often cross-
cutting. For instance, SplitAndMerge is a Concern meaning the workflow should
exploit data parallelism and leverage multiple available computing resources by
splitting data, distributing it for processing and then merging the results. It is
non-functional since it pertains to computation time rather than the simulation
itself.

PATTERN) BLUEPRINT)

?cf)

?cl1)

?cl2)

Split)

?cl1)

?cf)

Merge)

?cl2)

Legend:)Newly)created)elements)

Fig. 9 Split and Merge Fragment (color online)

Because data parallelism is application-dependent, if we want to describe how
to fulfill this Concern in general, we can only do so at the highest level of ab-
straction: any Abstract Element we would use would restrict the Fragment to a
few applications at best. At a purely Conceptual Level, there is no way to fulfill
the SplitAndMerge Concern more straightforwardly than by weaving a Split step
before the target Conceptual Function and a Merge step after it. Figure 9 shows
an example Fragment that describes the SplitAndMerge concern.

Computer-assisted Scientific Workflow Design 17

This is obviously a cross-cutting concern: the structure of the base workflow
itself must be altered to accommodate the non-functional property. There is no
way to fulfill it by inserting just one node anywhere. Still, in this case, one might
think we could still use encapsulation through layers. However, the “layer” itself
might be a Sub-workflow. In fact, out of 4 simulators included at launch in the VIP
project, 3 require full-fledged Sub-workflows to fulfill SplitAndMerge and one uses
an Activity that already fulfills the Concern. Layering does not seem appropriate
in any of those 4 cases. Weaving thus requires more sophisticated mechanisms than
encapsulation and substitution.

The first Weaving step is to translate the Fragment we want to weave into
a SPARQL CONSTRUCT query. Elements present in the Pattern become “variables”,
easily recognizable by the question mark preceding their name. Elements that
appear in the Blueprint become “blank nodes”, declared with an underscore and
colon before a placeholder identifier that will only hold for one match. Because
they are created without a fixed identifier, different matches will produce different
elements. The Pattern itself becomes the WHERE part of the query and the Blueprint
becomes the CONSTRUCT part. Listing 1 presents a simplified version (omitting all
type declarations) of the SPARQL CONSTRUCT query obtained by transforming the
aforementioned Split and Merge Fragment.

Listing 1 Spint and Merge query

1 CONSTRUCT {
?cl1 cowork:hasConceptualTarget _:Split .

3 _:l1 cowork:hasConceptualSource _:Split .
_:l1 cowork:hasConceptualTarget ?cf .

5 _:l2 cowork:hasConceptualSource ?cf .
_:l2 cowork:hasConceptualTarget _:Merge .

7 ?cl2 cowork:hasConceptualSource _:Merge .
}

9 WHERE {
?cl1 cowork:hasConceptualTarget ?cf .

11 ?cl2 cowork:hasConceptualSource ?cf .
}

The second step is to run the SPARQL CONSTRUCT query, merge the resulting
knowledge graphs with that of the base workflow and then automatically fix con-
flicts such as links with multiple targets or sources.

Now let us consider the simple workflow shown on Figure 10, with two Concep-
tual Inputs Object Model and Simulation Parameters, one Conceptual Output
Sinogram (i.e. the output of a PET scan) and a simple chain of two Conceptual
Functions Generate Singles then Generate Emissions. This workflow is one way
to describe Sorteo as a Conceptual Workflow.

The Pattern part of the Split and Merge Fragment matches this workflow
in three places: twice on Generate Singles because it is bound to two distinct
Conceptual Inputs and once on Generate Emissions. The result of the SPARQL
query, shown on Figure 11(a), is not directly satisfying, as it creates too many
Split and Merge steps around Generate Singles. It is expected behavior, since
the pattern is indeed matched twice there, but it is not the desired result (i.e. only
one Split step before and only one Merge step after Generate Singles).

To achieve the desired result requires merging the extra Conceptual Functions.
In order to do that, an automated tool is available that takes two Conceptual

18 Nadia Cerezo et al.

Generate)
Singles)

Generate)
Emissions)

Object)
Model)

Simula-on)
Parameters)

Sinogram)

Fig. 10 Weaving Split and Merge - Base Workflow (color online)

Generate)
Singles)

Generate)
Emissions)

Object)
Model)

Simula-on)
Parameters)

Sinogram)

Split3)

Merge3)

Split1) Split2)

Merge1) Merge2)

(a) Query Result

Generate)
Singles)

Generate)
Emissions)

Object)
Model)

Simula-on)
Parameters)

Sinogram)

Split1)

Merge1)

Split3)

Merge3)

(b) Final Result

Fig. 11 Weaving Split and Merge (color online)

Workflows of the same type (with no embedded Abstract Elements) and merges
them into one. On our running example it produces the desired result shown on
Figure 11(b).

Computer-assisted Scientific Workflow Design 19

5.3 Discovery and Selection

When a user designs a Conceptual Workflow, chances are he or she has a few
specific Activities (e.g. web services, legacy applications) or even Sub-workflows
that he or she wants to use, but it is unlikely that those will be enough to perform
all the Functions and fulfill all the Concerns of the Conceptual Workflow.

The other Activities and Sub-workflows the user needs might already be in
the Knowledge Base. An assistance is needed to help the user find the Fragments
needed to build an executable Scientific Workflow.

Our approach to assist the user in discovering and selecting Fragments to weave
into his or her Conceptual Workflow consists of two steps:

1. Matching: for each Requirement, find and score all Fragments whose Specifi-
cations match, as detailed in Section 5.3.1.

2. Sorting: based on the nature of the Conceptual Workflow, the number and
nature of annotations it bears and the combined scores of each candidate,
sort candidates so as to prioritize the most likely relevant, as detailed in Sec-
tion 5.3.2.

Once the candidates are found and sorted, they are presented to the user who may
select the candidate(s) he or she wants to weave into the Conceptual Workflow. It
is during Weaving that Requirements are transformed into Specifications.

5.3.1 Matching

Matching a Conceptual Workflow means matching all of its Requirements. There
are three distinct ways to do that: (1) query the Knowledge Base for Fragments
matching all Requirements simultaneously, (2) query the Knowledge Base for Frag-
ments matching every possible combination of Requirements and then getting rid
of the redundancies (a Fragment matching two Requirements will also match them
separately) or (3) query the Knowledge Base for each Requirement separately and
merge redundant results while sorting them. We did not opt for (1), because par-
tial matches are desirable and we chose (3) over (2) because it puts less load on
the Knowledge Base and thus seems a more scalable solution.

We consider three types of matches, ordered by decreasing quality:

– Exact match applies when both annotations are of the same type,
– Narrower match applies when the Specification’s type is a subtype of the

Requirement’s and
– Broader match applies when the Specifications’s type is a supertype of the

Requirement’s.

To illustrate those matches, let us consider the small excerpt of the Virtual
Imaging Platform5 (VIP) ontology shown on Figure 12. This excerpt defines a
taxonomy of the registration image alignment procedure. The VIP ontology itself is
written in OWL and is based on the foundational ontology DOLCE [35] (interested
readers please refer to [36] for more details).

If the Requirement we are trying to match is rigid-registration, then:

– Fragments specified as rigid-registration would be exact matches,

5 VIP: http://www.creatis.insa-lyon.fr/vip/

http://www.creatis.insa-lyon.fr/vip/

20 Nadia Cerezo et al.

registra-on)

affine$
registra-on)

affinenonrigid$
registra-on)

mono$modality$
affinenonrigid$
registra-on)

mul-$modality$
affinenonrigid$
registra-on)

rigid$registra-on)

mono$modality$
rigid$registra-on)

mul-$modality$
rigid$registra-on)

non$affine$
registra-on)

mono$modality$
non$affine$
registra-on)

mul-$modality$
non$affine$
registra-on)

normaliza-on)

registra-on$
with$distor-on$

correc-on)

rdfs:subClassOf)

narrower)

broader)

Legend:)

Fig. 12 VIP Ontology - Registration Processes Taxonomy

– Fragments specified as mono-modality-rigid-registration or as
multi-modality-rigid-registration would be narrower matches and

– Fragments specified as affine-registration would be broader matches.

The case for narrower matches seems pretty straightforward, at first glance: a
rigid registration process matches regardless of whether it is mono or multi modal-
ity. Indeed, the definition of rdfs:subClassOf - the property that links subtypes
to supertypes in RDFS and all ontology languages built upon it such as OWL
- makes finding narrower matches easy: “A rdfs:subClassOf B” means that all
instances of B are also instances of A, hereby ensuring that narrower matches
will be found as long as inferences were made. For instance, if we assert that
:Socrates rdf:type :Man and :Man rdfs:subClassOf :Mortal, run the infer-
ence engine, then look for instances of the Class :Mortal, we find :Socrates.

Broader matches may be less relevant. They are deemed moderately worthy
(their quality is lower than that of the other matches) for two reasons: (1) the
user might over-specify, e.g. look for a rigid registration algorithm where an affine
but non-rigid one would do just fine, and (2) there might be valuable insight in
workflows that are too broad for the work at hand.

To avoid burdening the user with all levels of supertypes (ultimately, the type
owl:Thing from which all Classes are derived can always be reached, thus re-
trieving the entire Knowledge Base), only level 1 broader matches are considered:
candidates whose type is the direct supertype of the Requirement’s.

Listing 2 Match(R) Query

SELECT ?f
2 WHERE {

Computer-assisted Scientific Workflow Design 21

?f rdf:type cowork:Fragment .
4 ?f cowork:hasBlueprint ?b .

{ ?b cowork:hasSpecification ?s . }
6 UNION

{ ?b cowork:contains ?cw .
8 ?cw cowork:hasSpecification ?s . }

{ ?s rdf:type R . }
10 UNION

{ ?s rdf:type ?t .
12 R rdfs:subClassOf ?t . }

}

Listing 2 is the SPARQL query template we can use to find all candidate
Fragments for a given Requirement of type R.

5.3.2 Sorting

The way we sort candidates depends partly on the type of Conceptual Workflow
considered. The Sorting process has the following goals:

– prioritize match quality, i.e. prioritize exact matches over narrower matches
and both of them over broader matches;

– penalize partial matches, i.e. candidates matching fewer Requirements must
come after candidates matching more of them;

– penalize extra inputs/outputs/functions, depending on the type of Con-
ceptual Workflow considered, i.e. make sure that Fragments that would intro-
duce new inputs/outputs or unnecessary Functions when they are woven come
after Fragments that do not; and

– prioritize Functions over Concerns, i.e. favor Fragments that fulfill Func-
tions over those that fulfill Concerns, since it makes more sense to first ensure
functionality and then cater to non-functional properties than the other way
around.

Algorithm 1 Discovering and sorting candidates for a Conceptual Input

1: function match(ci : ConceptualInput)
2: weightedMatches : Dictionary(Fragment, F loat)
3: for all r ∈ req(ci) do . ∀r requirement of ci
4: for all m ∈ match(r) do . Fetch all candidates for r
5: w ← maxs∈spec(m)(score(r, s)) . Compute best matching score
6: if m ∈ keys(weightedMatches) then
7: weightedMatches[m]← weightedMatches[m] + w . Update weight
8: else
9: weightedMatches[m]← w . Add new key and initial weight

10: end if
11: end for
12: end for
13: for all (m,w) ∈ weightedMatches do
14: weightedMatches[m]← weightedMatches[m]/|req(ci)| . Penalize partial matches

15: weightedMatches[m]← weightedMatches[m]
|inputs(m)|+1

. Penalize inputs

16: end for
17: return sort(weightedMatches) . Sort by decreasing weight
18: end function

22 Nadia Cerezo et al.

Algorithm 1 details how the system sorts candidates for Conceptual Inputs
and uses the following sub-functions:

– req(e : Element) returns the set of Requirements e is annotated with;
– spec(e : Element) returns the set of Specifications e is annotated with;
– match(r : Requirement) uses the SPARQL query detailed in Listing 2 to fetch

all candidates matching the Requirement r;
– score(r : Requirement, s : Specification) affects a score to the pair of an-

notations based on the relationship between them, so that score(exact) >
score(narrower) > score(broader) and score(other) = 0; and

– inputs(f : Fragment) returns the set of Conceptual Inputs and unattached
Input Ports contained in the Fragment f .

The algorithm to sort candidates for Conceptual Outputs is almost identical to
Algorithm 1, but it penalizes outputs instead of inputs.

Algorithm 2 Finding candidates for a Conceptual Function

1: function match(cf : ConceptualFunction)
2: if ∃c→ cf then . At least one sub-workflow
3: weightedMatches : Dictionary(ConceptualWorkflow,

Dictionary(Fragment, F loat))
4: for all c→ cf do . Recursive propagation
5: weightedMatches[c]← MATCH(c)
6: end for
7: else
8: weightedMatches : Dictionary(Element, F loat)
9: for all r ∈ req(cf) do . ∀r requirement of cf

10: for all m ∈ match(r) do . Fetch all candidates for r
11: if rinstanceofFunction then . r is a Function
12: w′ ← KF ∗ w . Prioritize Functions over Concerns
13: else . r is a Concern
14: w′ ← w
15: end if
16: if m ∈ keys(weightedMatches) then
17: weightedMatches[m]← weightedMatches[m] + w′ . Update weight
18: else
19: weightedMatches[m]← w′ . Adding new key and initial weight
20: end if
21: end for
22: end for
23: for all (m,w) ∈ weightedMatches do

24: weightedMatches[m]← weightedMatches[m]
KF ∗|req(cf)∩ΩF |+|req(cf)∩ΩC |

. Penalize partials

25: weightedMatches[m]← weightedMatches[m]
1+|spec(m)\req(cf)| . Penalize extra Functions

26: end for
27: end if
28: return sort(weightedMatches) . Sort by decreasing weight
29: end function

Algorithm 2 details how the system sorts candidates for Conceptual Func-
tions and uses the sub-functions req, spec and match(r : Requirement) described
previously, but also the constant KF which is a factor characterizing how much
Functions should be prioritized over Concerns.

Computer-assisted Scientific Workflow Design 23

Once all found candidates are sorted, they can be presented as an ordered list
the user can freely browse to pick his or her choice of Fragment to weave into the
base workflow.

5.4 Composition

When all Requirements are fulfilled the resulting workflow is still likely to be in-
complete: the Activities and Sub-workflows woven into the base Conceptual Work-
flow must be composed. This is the level where most technical issues have to be
dealt with, most notably conversion problems.

Indeed, only domain and non-functional issues have been catered to, purposely
leaving out technicalities so as to emphasize the scientific experiment over its
implementation. However, to transform the Conceptual Workflow into a full exe-
cutable Abstract Workflow requires tackling all technical issues.

This process cannot be fully automated for two reasons: (1) this would assume
that all annotations are perfectly accurate and (2) even if they were, they would
be likely to provide non-exhaustive knowledge and know-how. There is most often
a gap between the physical layer where the workflow enactor handles file formats,
error codes and transfer protocols and the semantic layer where annotations de-
scribe high-level goals and methods. Theoretically, one could hope to fill this gap
to reach complete automation by extending both layers, e.g. adding meta-data to
the physical files and extending ontologies with technical notions as they arise. In
practice, however, there is a trade-off between the scope of the system, in terms of
domains and types of workflows supported, and the level of automation that can
be provided.

Projects like [37] assist the user very thoroughly through the creation of work-
flows, but are restricted to curated application domains (data mining pipelines in
the case of [37]). Ultimately, user input is needed to sort out non-modeled require-
ments and fill in uncaptured knowledge and know-how. Nonetheless, user workflow
design can be assisted in all cases where file formats (and other technical informa-
tion available) and ontologies provide enough information to detect and/or solve
technical issues, by suggesting links and converters.

Assistance to composition is divided in three distinct and complementary parts:
Link Suggestion, Mismatch Detection and Converter Suggestion.

5.4.1 Link Suggestion

When a Port is not bound to any Data Link, it is unattached. The end goal of
Link Suggestion is to attach all Input Ports.

Unattached Output Ports are not a problem in and of themselves: there might
well be by-products of an Activity that are irrelevant to the simulation consid-
ered. Unattached Input Ports, however, induce unreachable parts in the workflow.
Indeed, if no data is ever directed to an Activity, then it will never be fired. The
algorithm thus examines all unattached Input Ports in the Conceptual Workflow
and suggests Data Links between them and Output Ports already present in the
workflow.

Only links that preserve the order defined by Conceptual Links are suggested. If
a link from an Activity inside a Conceptual Workflow s to one inside a Conceptual

24 Nadia Cerezo et al.

Workflow t is suggested, then either s = t or there is a path (made of Conceptual
Links) from s to t.

Using the same score function introduced in Section 5.3.2, the system can
compare the Specifications of an unattached Input Port with those of all preced-
ing Output Ports. The main difference with sorting candidate Fragments is that
partial matches are not just penalized, they are skipped entirely. Indeed, multi-
ple Requirements on a same Conceptual Workflow might be fulfilled by different
Fragments woven together, but multiple Specifications on an Input Port must be
fulfilled all at the same time.

5.4.2 Mismatch Detection

A mismatch characterizes a Data Link whose source and target are incompatible
at either the physical level (e.g. the source is a list and the target is a string), the
semantic level (e.g. the source is a BMP-format and the target is a JPEG-format) or
both at the same time. Note that narrower matches are compatible. For instance,
if an Output Port specified by PET-image-storage-SOP-class is connected to an
Input Port specified by DICOM-SOP-class, since the former is a subclass of the
latter, there is no mismatch.

5.4.3 Converter Suggestion

When a mismatch is detected at the physical level, the user is warned and pro-
vided with a modest collection of converters meant to tackle the most common
mismatches, such as List2String and String2Integer.

When a mismatch is detected at the semantic level, the system looks for an
appropriate converter in the Knowledge Base. The search for a converter is similar
to the Discovery and Selection process described in Section 5.3, but all three types
of annotations need to be considered simultaneously: the aim is to match input
and output Datasets while penalizing Functions and Concerns that are unrelated
to conversion so as to avoid converters that would alter data.

There is also a difference in scoring: the exact > narrower > broader hierarchy
still stands for the target type of the converter, but broaderMatches are better than
narrowerMatches when it comes to the source type.

As with matches in Section 5.3, potential converters are found in the Knowl-
edge Base via SPARQL queries, but in this case more than one query is needed,
for the optimal number of conversion steps is unknown. Listing 3 is a template for
a simple conversion with no intermediary step, whereas Listing 4 is a template for
a conversion with one intermediary step. Such query templates can be generated
automatically up to an arbitrary number of intermediary steps, but each intermedi-
ary type gone through increases the likelihood of data loss or alteration. Therefore
the system looks for converter chains of length up to an arbitrary threshold and
penalizes longer chains.

Listing 3 Convert X → Y Query

1 SELECT ?f
WHERE {

3 ?f rdf:type cowork:Fragment .
?f cowork:hasBlueprint ?b .

Computer-assisted Scientific Workflow Design 25

5 ?b cowork:contains ?ci .
?ci rdf:type cowork:ConceptualInput .

7 ?ci cowork:hasSpecification ?si .
{ ?si rdf:type X . }

9 UNION
{ ?si rdf:type ?ti .

11 X rdfs:subClassOf ?ti . }
?b cowork:contains ?co .

13 ?co rdf:type cowork:ConceptualOutput .
?co cowork:hasSpecification ?so .

15 { ?so rdf:type Y . }
UNION

17 { ?so rdf:type ?to .
Y rdfs:subClassOf ?to . }

19 }

Listing 4 Convert X →?→ Y Query

1 SELECT ?f1, ?f2
WHERE {

3 ?f1 rdf:type cowork:Fragment .
?f1 cowork:hasBlueprint ?b1 .

5 ?b1 cowork:contains ?ci1 .
?ci1 rdf:type cowork:ConceptualInput .

7 ?ci1 cowork:hasSpecification ?si1 .
{ ?si1 rdf:type X . }

9 UNION
{ ?si1 rdf:type ?ti1 . }

11 X rdfs:subClassOf ?ti1 .}
?b1 cowork:contains ?co1 .

13 ?co1 rdf:type cowork:ConceptualOutput .
?co1 cowork:hasSpecification ?so1 .

15 ?so1 rdf:type ?to1 .
?f2 rdf:type cowork:Fragment .

17 ?f2 cowork:hasBlueprint ?b2 .
?b2 cowork:contains ?ci2 .

19 ?ci2 rdf:type cowork:ConceptualInput .
?ci2 cowork:hasSpecification ?si2 .

21 ?si2 rdf:type ti2 .
{ ?to1 rdfs:subClassOf ?ti2 . }

23 UNION
{ ?ti2 rdfs:subClassOf ?to1 . }

25 ?b2 cowork:contains ?co2 .
?co2 rdf:type cowork:ConceptualOutput .

27 ?co2 cowork:hasSpecification ?so2 .
{ ?so2 rdf:type Y . }

29 UNION
{ ?so2 rdf:type ?to2 .

31 Y rdfs:subClassOf ?to2 . }
}

Algorithm 3 details how to find and sort potential converters (i.e. list of Frag-
ments) from a list of source types to a list of target types and uses the following
sub-functions:

– convert(source : Specification, target : Specification) generates queries sim-
ilar to those shown on Listing 3 and Listing 4 and returns a list of potential
converters.

26 Nadia Cerezo et al.

Algorithm 3 Finding converters

1: function convert(S : List(Specification), T : List(Specification))
2: weightedConverters : Dictionary(List(Fragment), F loat)
3: for all s ∈ S do . For all source types
4: for all t ∈ T do . For all target types
5: for all f ∈ convert(s, t) do . Find s→ t converters
6: w : Float← score(s, f, t) . Compute base score
7: w ← w

|f | . Penalize chain length

8: w ← w
|nonConvert(f)| . Penalize non-conversion Functions and Concerns

9: if f ∈ keys(weightedConverters) then
10: weightedConverters[f]← weightedConverters[f] + w . Update weight
11: else
12: weightedConverters[f]← w . Add new key and initial weight
13: end if
14: end for
15: end for
16: end for
17: return sort(weightedConverters) . Sort by decreasing weight
18: end function

– score(source : Specification, conv : List(Fragment), target : Specification)
is detailed by Algorithm 4 and it itself uses:
– subscore(source : Specification, target : Specification), which compares

source and target types semantically and scores the conversion so that
exact > broader > narrower.

– nonConvert(converter : List(Fragment)) returns the total number of Func-
tions and Concerns unrelated to conversion among the specifications of Frag-
ments that compose the Conversion chain.

Algorithm 4 Scoring converters

1: function score(s : Specification, f : List(Fragment), t : Specification)
2: score : Float← 1
3: score← score ∗maxit∈inputTypes(f [first])(subscore(s, it))
4: for all i ∈ (0..|f | - 2) do
5: score← score ∗maxot∈outputTypes(f [i]),it∈inputTypes(f [i+1])(subscore(ot, it))
6: end for
7: score← score ∗maxot∈outputTypes(f [last])(subscore(it, t))
8: return score
9: end function

6 Use Case

To illustrate the modeling and mapping of Conceptual Workflows, let us take a
closer look at Sorteo, the PET simulator, one of the simulators included in the
Virtual Imaging Platform.

All four simulators seminally included in the Virtual Imaging Platform fit the
same high-level Conceptual Workflow, shown on Figure 13, with slightly different
Requirements for the main Conceptual Function: medical-image-simulation in

Computer-assisted Scientific Workflow Design 27

Simulate)
Medical)
Imaging)
Procedure)

Object)
Model)

Simula-on)
Parameters)

Synthe-c)Medical)
Image)

:SplitAndMerge)

vip:PET$Simula-on)

Fig. 13 VIP Simulator Core Template (color online)

general and PET-simulation in the case of Sorteo. No matter the simulator, it
always bears the SplitAndMerge Requirement.

PATTERN) BLUEPRINT)

?cf)

vip:PET$Simula-on) ?cf)

Generate)Singles)

Generate)Emissions)

vip:PET$Simula-on)

Legend:)Newly)created)elements)

Fig. 14 Sorteo Use Case - PET Fragment (color online)

Matching the main Function highlights a modeling issue: the way Sorteo simu-
lates PET is by first generating single photons, then generating the corresponding
emissions. The two steps simulate PET only when combined, which means the cor-
responding Activities will not be annotated with PET-simulation. This is where
purely conceptual Fragments can be useful: the Fragment shown on Figure 14 is
a computer-legible assertion that combining those two steps amounts to simulat-
ing a PET procedure. Weaving it in the template and then erasing the left-over
Conceptual Function (Simulate Medical Imaging Procedure) results in the base
workflow (Figure 10) used as example in Section 5.1 to illustrate the Weaving of

28 Nadia Cerezo et al.

the SplitAndMerge Fragment (Figure 9). The result of that Weaving is shown on
Figure 11(b).

Generate)
Singles)

Generate)
Emissions)

Split1)

Merge1)

Split2)

Merge2)

fantome_v) text_protocol)

sinogram)

(a) Input/Output provided

sinogram)

sorteo_singles)

sorteo_emission)

generateJobs)

Merge1)sorteo_single_end)

Merge2)sorteo_emission_end)

fantome_v) text_protocol)

(b) Conceptual Functions Mapped

Fig. 15 Sorteo Use Case - Discovery and Weaving (color online)

After the user has provided input and output files (i.e. fantome v for the Object
Model, text protocol for the Simulation Parameters and sinogram for the final
output), the workflow becomes the one shown on Figure 15(a).

Matching Split1 and Split2 finds the same Activity generateJobs in both
cases. The user may keep both instances (in which case the execution will be dupli-
cated as well), but here there is only one instance needed, therefore the user erases
the Split2 Conceptual Function. There is no need to insert additional Conceptual
Links, since that relationship is transitive. The composition will consider the Out-
put Port of generateJobs to bind unattached ports in all Conceptual Functions
after it, even if there is no direct Conceptual Link between, for instance, Split1
and Generate Emissions. Figure 15(b) shows the workflow after all Conceptual
Functions have been matched.

Figure 16(a) shows the links chosen by the user among links the system can
suggest based on semantic types, links created by the user and the following mis-
matches:

– The link between fantome v and sorteo singles is a mismatch, because the
latter requires a combination of an object model and simulation parameters:
the Activity CompileProtocol must be inserted to produce that combination.

– Even though the link between sorteo emission end and sinogram is sug-
gested, since both ports share the annotation PET-sinogram, there is a format
mismatch (LMF versus raw).
That format problem should be detected and the appropriate converter (here
the Activity LMF2RAWSINO) suggested, provided the Activities are appropriately
annotated and the converter is featured in the Knowledge Base.

Computer-assisted Scientific Workflow Design 29

sorteo_emission)Merge1)sorteo_single_end)

sinogram)

text_protocol)

fantome_v)

sorteo_singles)

generateJobs)

Merge2)sorteo_emission_end)
Mismatch)

Suggested)Link)

(a) Suggested Links and Mismatches

sinogram)

text_protocol)

generateJobs)CompileProtocol)

sorteo_emission)Merge1)sorteo_single_end)

sorteo_singles)

Merge2)sorteo_emission_end)

fantome_v) parse_text_protocol)

LMF2RAWSINO)

(b) Converters Added and Composed

Fig. 16 Sorteo Use Case - Composition (color online)

– The mismatch between text protocol and generateJobs is the hardest to
detect: the latter only needs one number (i.e. the number of jobs to generate)
and that number must be extracted from the protocol, which can be done with
a simple script like the Activity parse text protocol.
In most cases, technical details like this will fall in the gap between the physical
and semantic layers and go undetected. Users would then have to come up with
a fix without computer-assistance, much like they do with existing Abstract
scientific workflow frameworks.

Figure 16(b) shows the result of inserting the needed converters and adding links
from text protocol to CompileProtocol and from the latter to LMF2RAWSINO.

After Matching, Weaving and Composition, there are 6 unattached ports left
in the workflow. All of them expect the path to the folder where all the simulation
files are put in and retrieved from. There is a convention on the VIP platform as
to how this folder name should be constructed: by appending the current date to
a simulation name, through the Activity appendDate.

To insert this Sub-workflow and bind it in the 6 places where it is needed
would make the workflow extremely hard to read. We thus introduce the following
graphical convention: hexagons with the same name represent the same instance of
a Sub-workflow, so that it may be bound in multiple places in a workflow without
cluttering it with edges. The Sub-workflow DN/Directory Name on Figure 17 is
duplicated only graphically.

There are no Requirements and no unattached ports left and the Conceptual
Workflow is now mapped. There is nothing more we can do inside the Conceptual
Workflow Model. What is left to do is to automatically convert this workflow into a
target Abstract Workflow language. If we target GWENDIA [5], we obtain the ex-
ecutable workflow shown on Figure 18, which is a screenshot of the MOTEUR [10]
client.

30 Nadia Cerezo et al.

sinogram)

text_protocol)

generateJobs)CompileProtocol)

sorteo_emission)Merge1)sorteo_single_end)

sorteo_singles)

Merge2)sorteo_emission_end)

fantome_v) parse_text_protocol)

LMF2RAWSINO)

DN)

DN)

DN)

DN)

DN)

DN)

appendDate)

Directory)Name)

Simula-onName)

Fig. 17 Sorteo Use Case - Intermediary Representation (color online)

7 Discussion

The Mapping process described here assumes that a Knowledge Base containing
Fragments is available. That base is queried with SPARQL to find Fragments
matching Requirements and those are woven into the Conceptual Workflow whose
transformation is ongoing. Admittedly, such a setup suffers from what is commonly
referred to as the “cold-start problem”: if there are no relevant Fragments in the
Knowledge Base, then the system will provide very little assistance to the user.

While it is certainly a limitation in our knowledge-based approach, it is not a
flaw per se: the situation is not better with existing Abstract Workflows frame-
works, which cannot assist design even in common cases that have been seen
countless times before. It should also be noted that our system allows a progres-
sive enrichment of the Knowledge Base, as users contribute new workflows and
elements.

Concerning discovery and selection, there are two main types of approaches to
this problem depending on whether one relies on meta-data or on semantic data.

– In the former case, user-provided information is leveraged, such as workflow
descriptions, workflow keywords, user associations (e.g. scientists A and B work
in the same team), and content correlations (e.g. users who access workflow A
tend to access workflow B). Based on such meta-data, queryable repositories,
social platforms and recommendation engines can help users find content that
is relevant to their queries, their profile or their history. The myExperiment
project [38] is a great example of such meta-data-based sharing platforms.

Computer-assisted Scientific Workflow Design 31

Fig. 18 Sorteo Use Case - GWENDIA Abstract Workflow (color online)

– In the latter case, semantic data is built right into the workflow model and
this information is used to suggest candidates whose semantic data at least
partially matches the needs.

We adopted the latter approach, not only to leverage semantic annotations
that are an integral part of our model, but also because our aim is to assist the
user during the transformation process which is workflow-centered and not user-
centered like meta-data-based systems.

32 Nadia Cerezo et al.

8 Related Works

The myGrid6 team, which developed and maintains myExperiment [38] as well as
Taverna [24], did work on automated annotation of services [39] and used semantic
annotations to improve service discovery [40] and metadata management [41]. This
latter work is “investigating potential uses of metadata, e.g., discovering workflow
entities and guiding their composition”. Bechhofer et al [42] also advocate for
“semantically rich aggregations of resources, that possess some scientific intent
or support some research objective”. In [43], Missier et al present the notion of
Functional Units, which are fairly close to Conceptual Workflows but significantly
different in intent: Functional Units are high-level service descriptions and, ac-
cordingly, they support polymorphism (generic services that can perform multiple
functions) and invocation patterns (e.g. three distinct operations needed to use a
given service), but are restricted to one service. The Conceptual Workflow Model
is more akin to what Missier et al. call an “ideal Taverna workflow” and the Trans-
formation Process means to assist the user in converting that “ideal” workflow into
an actual executable workflow. Their discussion about eliciting Functional Units
(i.e. deriving service annotations from existing workflows) is definitely worth con-
sideration as a tentative solution to the Knowledge Base cold start problem and
whether Functional Units can be leveraged as-is or converted for use with Con-
ceptual Workflows is worth investigating.

The team behind the WINGS [30] framework (itself based on Pegasus [7]),
tackles problematics very similar to ours. Gil et al. [29] describe a framework built
on top of WINGS to automatically transform user queries into Scientific Work-
flows. Garijo and Gil [14] describe an approach to publishing “abstract workflows”
(i.e. workflow templates with undetermined Activities) and “executable workflows”
(i.e. what we call Abstract Workflows) as Open Linked Data through an extension
of the Open Provenance Model7 (OPM). Hauder et al [37], focus their framework
on the state of the art in data mining pipelines and show convincing results on
automated composition of Scientific Workflows and increased accessibility. In all
three cases, they use Semantic Web technologies and multiple abstraction levels to
ease reuse, improve accessibility and provide computer-assisted workflow design.

The major difference between our approach and that of WINGS is that our
proposal is top-down, from the highest level of abstraction of scientific experiments
and domains to the level of executable Scientific Workflows, whereas the WINGS
framework is bottom-up, from working Scientific Workflows to more flexible and
accessible templates. It might be a consequence of this bottom-up perspective that
their workflow templates have a rigid structure, assuming a one-to-one mapping
between “abstract” and “concrete” components. While this assumption does not
hold in general, it does hold very well in fields like data mining for which the
framework is tailored. There is clearly a trade-off between structural flexibility
and maximum achievable automation.

The Kepler Project [9] has always considered SoC a top priority, going as
far as isolating the Model of Computation (i.e. the exact same workflow can be
executed in entirely different ways depending on which “Director” is selected,
for instance in sequence or in parallel). Both [44] and [45] introduce templates

6 myGrid: http://www.mygrid.org.uk/
7 OPM: http://openprovenance.org/

http://www.mygrid.org.uk/
http://openprovenance.org/

Computer-assisted Scientific Workflow Design 33

meant to enhance reuse by shielding the user from technicalities. Neither work
emphasizes the scientific experiment: the former discusses the use of reasoning to
automate “wiring” (i.e. composition) and the latter the use of semantic types to
automate discovery. Kepler Workflow templates comparable to that of WINGS
were introduced in [46] with the added notion of context-awareness.

In [47], Sonntag et al. present compelling reasons for a workflow system to
provide the user with different views depending on the current phase in the work-
flow lifecycle. Most of the views they propose deal with execution/monitoring and
are thus unrelated to this work, but the views they call “Aggregation of Complex
Workflow Logic” and “Phases in Simulation Workflows” are definitely relevant
for Scientific Workflow modeling. We argue that both can be achieved through
Conceptual Workflow nesting: the user can easily aggregate parts of a workflow
into a sub-workflow and high-level Conceptual Functions can model simulation
phases. There is also the rather interesting case of the “Data Flow Visualization”
view, which needs only exist as a view in a control-driven model, and not in a
data-driven or a hybrid one like Conceptual Workflows.

9 Conclusion and Future Works

This work introduces a high-level Scientific Workflow model, called Conceptual
Workflow, that aims at capturing scientific experiments inside the user domain(s).
A semi-automatic Transformation Process leveraging Model Driven Engineering
(MDE) and Knowledge Engineering techniques is proposed to generate executable
workflows. The Mapping part of the transformation process is computer-assisted,
using the domain knowledge formally captured.

The Conceptual Workflow model is itself fully represented as a knowledge
graph and the Transformation Process takes advantage of that by leveraging the
advanced pattern matching and graph construction capabilities of SPARQL in or-
der to (1) automate the weaving of graph Fragments into the Conceptual Workflow
during its transformation; and (2) ease the identification of partial matches to help
the user fully exploit the knowledge database at hand.

We are now focusing on the development and testing of a user interface to
design and map Conceptual Workflows as well as converters to other languages
besides GWENDIA [5], notably the SHIWA interoperability project’s language:
the Interoperable Workflow Intermediate Representation (IWIR) [48].

We are investigating how we can feed back annotations from Conceptual Work-
flows to the Knowledge Base automatically, i.e. deduce annotations for Activities
from the Conceptual Workflows they are embedded into, as well as how to detect
and deal with inconsistencies in the annotations and/or ontologies.

Acknowledgements This work was funded by the French National Agency for Research
under grant ANR-09-COSI-03 VIP and the European RI ER-Flow project under contract
number 312579.

34 Nadia Cerezo et al.

Glossary

Abstract Level: Intermediary level of abstraction between the Conceptual Level
and the Concrete Level. Most scientific workflow frameworks handle Scientific
Workflows at that level. It aligns with the level of PIMs in the MDA.

Business process: Structured set of tasks meant to achieve a business goal such
as providing a service or making a product.

CIM: (Computation-Independent Model) Class of models defined by the
MDA and based on the abstraction level: computation-independent models
are so high-level as to not be tied to a specific implementation method or
infrastructure. They are designed to be easy for domain experts to understand,
design and manipulate. However, they must be transformed into lower-level
models to be used in practice.

Conceptual Level: Level of abstraction at which simulations are conceived by
scientists, in their own domain(s). It aligns with the level of CIMs in the MDA.

Concrete Level: Level of abstraction at which Scientific Workflows are enacted.
It aligns with the level of PDMs in the MDA.

Enactor: Program deploying Scientific Workflows on DCIs and managing their
execution.

MDA: (Model Driven Architecture) MDE approach launched by the Object
Management Group which, among many things, classifies software models into
three abstraction levels: PDM, PIM and CIM.
→ http://www.omg.org/mda/

MDE: (Model Driven Engineering) Approach to software development that
focuses on the creation and management of high-level domain models on which
development is based, in order to leverage domain experts’ knowledge and ease
communication between system designers.

OWL: (Web Ontology Language) Language defined and maintained by the
W3C to formally define RDF-based ontologies.
→ http://www.w3.org/TR/owl-overview/

PDM: (Platform-Dependent Model) Class of models defined by the MDA
and based on the level of abstraction: platform-dependent models are tightly-
coupled with the infrastructure they run on and, as a result, are difficult to
reuse.

PIM: (Platform-Independent Model) Class of models defined by the MDA
and based on the abstraction level: platform-independent models are loosely-
coupled with the infrastructure they run on, but algorithmically defined and
thus somewhat inflexible.

RDF: (Resource Description Framework) According to the W3C, “a stan-
dard model for data interchange on the web”. It is most notably used as a basis
for most Semantic Web technologies.
→ http://www.w3.org/TR/rdf-primer/

RDFS: (RDF Schema) W3C recommendation specifying how to use RDF to
define vocabularies.
→ http://www.w3.org/TR/rdf-schema/

Scientific Workflow: A workflow meant to formalize and/or enact a simulation.
Scientific workflow framework: Workflow framework designed to handle sim-

ulations and dedicated to one or multiple Scientific Workflow model(s).

http://www.omg.org/mda/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/

Computer-assisted Scientific Workflow Design 35

Semantic annotation: In general, any annotation that defines a semantic con-
cept or links part of a document with a semantic concept defined elsewhere.

Simulation: Scientific experiment carried out entirely or partially via computers.
SoC: (Separation of Concerns) Software design principle of ensuring that

loosely-related aspects of a system are developed separately and/or easily un-
tangled. For instance, decoupling log handling from the program whose activity
is logged respects the principle, whereas indiscriminately mixing both aspects
does not.

SPARQL: (SPARQL Protocol and RDF Query Language) Standard de-
fined by the W3C to query and manipulate knowledge graphs.
See also RDF.
→ http://www.w3.org/TR/rdf-sparql-query/

WfMC: (Workflow Management Coalition) According to their website, “a
global organization of adopters, developers, consultants, analysts, as well as
university and research groups engaged in workflow and [Business Process Man-
agement]”.
→ http://www.wfmc.org/

Workflow: According to the WfMC: “the computerized facilitation or automation
of a business process, in whole or part”.

Workflow framework: Set of tools to enable the use of workflows, most notably
their creation, edition, enactment, deployment and monitoring.

References

1. Ian Taylor, Ewa Deelman, Dennis Gannon, and Matthew Shields. Workflows for e-Science.
Springer-Verlag, 2007.

2. Roger Barga and Dennis Gannon. Scientific versus Business Workflows. In Workflows for
e-Science [1], chapter 2, pages 9–16.

3. Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael
Reiter. Conventional Workflow Technology for Scientific Simulation. In Guide to e-Science,
pages 323–352. Springer London, 2011.

4. Mirko Sonntag, Dimka Karastoyanova, and Frank Leymann. The Missing Features of
Workflow Systems for Scientific Computations. In Proceedings of the 3rd Grid Workflow
Workshop(GWW), pages 209–216, Paderborn, Germany, 2010. Gesellschaft für Informatik.

5. Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari, and Mireille
Blay-Fornarino. A data-driven workflow language for grids based on array programming
principles. In Workshop on Workflows in Support of Large-Scale Science(WORKS’09),
pages 1–10, Portland, USA, November 2009. ACM.

6. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Green-
wood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna:
A tool for the composition and enactment of bioinformatics workflows. Bioinformatics
journal, 17(20):3045–3054, 2004.

7. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, K. Vahi, G. Bruce Berriman, John Good, Anastasia Laity, Joseph C. Ja-
cob, and Daniel S. Katz. Pegasus: a Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Scientific Programming Journal, 13(3):219–237, 2005.

8. Péter Kacsuk and Gergely Sipos. Multi-Grid, Multi-User Workflows in the P-GRADE
Grid Portal. Journal of Grid Computing (JOGC), 3(3-4):221 – 238, September 2005.

9. Bertram Ludäscher, Ikay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Workflow Management and
the Kepler System. Concurrency and Computation: Practice & Experience (CCPE),
18(10):1039 – 1065, August 2006.

10. Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and
efficient workflow deployement of data-intensive applications on grids with MOTEUR.

http://www.w3.org/TR/rdf-sparql-query/
http://www.wfmc.org/

36 Nadia Cerezo et al.

International Journal of High Performance Computing Applications (IJHPCA) Special
issue on Special Issue on Workflows Systems in Grid Environments, 22(3):347–360, Au-
gust 2008.

11. Yong Zhao, Mihael Hategan, B. Clifford, Ian Foster, Gregor von Laszewski, I. Raicu,
T. Stef-Praun, and M. Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel Computation.
In IEEE International Workshop on Scientific Workflows, Salt-Lake City, Utah, USA,
July 2007.

12. Ketan Maheshwari and Johan Montagnat. Scientific workflows development using both
visual-programming and scripted representations. In International Workshop on Scientific
Workflows(SWF’10), Miami, Florida, USA, July 2010. IEEE.

13. Zhijie Guan, Francisco Hernández, Purushotham Bangalore, Jeff Gray, Anthony Skjellum,
Vijay Velusamy, and Yin Liu. Grid-Flow: a Grid-enabled scientific workflow system with a
Petri-net-based interface. Concurrency and Computation: Practice & Experience (CCPE),
18(10):1115–1140, 2006.

14. Daniel Garijo and Yolanda Gil. A new approach for publishing workflows: abstractions,
standards, and linked data. In Proceedings of the 6th workshop on Workflows in support
of large-scale science(WORKS), pages 47–56, New York, NY, USA, 2011. ACM.

15. Chunhyeok Lim, Shiyong Lu, A. Chebotko, and F. Fotouhi. Prospective and Retrospec-
tive Provenance Collection in Scientific Workflow Environments. In IEEE International
Conference on Services Computing(SCC), pages 449–456, July 2010.

16. Yolanda Gil, Ewa Deelman, M.H. Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gan-
non, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. Examining the Challenges
of Scientific Workflows. Computer, 40:24–32, 2007.

17. T.M McPhillips, S. Bowers, Daniel Zinn, and Bertram Ludäscher. Scientific workflow
design for mere mortals. Future Generation Computer Systems (FGCS), 25(5):541–551,
2009.

18. S. Bowers. Scientific Workflow, Provenance, and Data Modeling Challenges and Ap-
proaches. Journal on Data Semantics, 1(1):19–30, 2012.

19. Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid comput-
ing. ACM SIGMOD records (SIGMOD), 34(3):44–49, September 2005.

20. Yashwant Singh and Manu Sood. The Impact of the Computational Independent Model
for Enterprise Information System Development. International Journal of Computer Ap-
plications, 11(8):24–28, 2010.

21. Nadia Cerezo and Johan Montagnat. Scientific Workflow Reuse through Conceptual Work-
flows. In 6th Workshop on Workflows in Support of Large-Scale Science(WORKS’11),
Seattle, WA, USA, November 2011. ACM.

22. Adrien Marion, Germain Forestier, Hervé Liebgott, Carole Lartizien, Hugues Benoit-
Cattin, Sorina Camarasu-Pop, Tristan Glatard, Rafael Ferreira Da Silva, Patrick Clarysse,
Sébastien Valette, Bernard Gibaud, Patrick Hugonnard, Joachim Tabary, and Denis Fri-
boulet. Multi-modality image simulation of biological models within VIP. In 24th In-
ternational Symposium on Computer-Based Medical Systems(CBMS), pages 1–6, Bristol,
UK, June 2011.

23. Thomas Fahringer, Radu Prodan, Rubing Duan, Francesco Nerieri, Stefan Podlipnig,
Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon, and Marek Wieczorek.
ASKALON: A Grid Application Development and Computing Environment. In Proceed-
ings of the 6th IEEE/ACM International Workshop on Grid Computing(GRID), pages
122–131, Washington, DC, USA, 2005. IEEE Computer Society.

24. Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Matthew R. Pocock,
Peter Li, and Tom Oinn. Taverna: a tool for building and running workflows of services.
Nuclear Instruments and Methods in Physics Research A, 34(Web Server issue):729–732,
July 2006.

25. Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. The Triana Workflow
Environment: Architecture and Applications. In Workflows for e-Science [1], chapter 20,
pages 320–339.

26. Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic, Ian Dun-
lop, Alan Williams, Tom Oinn, and Carole Goble. Taverna, reloaded. In SSDBM 2010,
Heidelberg, Germany, June 2010.

27. Antoon Goderis, Ulrike Sattler, Phillip Lord, and Carole Goble. Seven Bottlenecks to
Workflow Reuse and Repurposing. In The Semantic Web ? ISWC 2005(LNCS), pages
323–337. Springer, Heidelberg, Germany, 2005.

Computer-assisted Scientific Workflow Design 37

28. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Abstraction and Reuse of Object-Oriented Design. Medical Image Analysis (MedIA),
707:406–431, 1993.

29. Yolanda Gil, P.A. Gonzales-Calero, Jhie Kim, J. Moody, and V. Ratnakar. A semantic
framework for automatic generation of computational workflows using distributed data
and component catalogues. Journal of Experimental & Theoretical Artificial Intelligence,
23(4):389–467, 2011.

30. Yolanda Gil, V. Ratnakar, Kim Jihie, J. Moody, Ewa Deelman, P.A. Gonzales-Calero,
and P. Groth. Wings: Intelligent Workflow-Based Design of Computational Experiments.
IEEE Intelligent System, 26(1):62–72, January 2011.

31. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, volume 1241, pages 220–242, 1997.

32. Tudor B. Ionescu, Andreas Piater, Walter Scheuermann, and Eckart Laurien. An Aspect-
Oriented Approach for the Development of Complex Simulation Software. Journal of
Object Technology (ETH Zurich), 9(1):161–181, January 2010.

33. David Schumm, Dimka Karastoyanova, Oliver Kopp, Frank Leymann, Mirko Sonntag, and
Steve Strauch. Process fragment libraries for easier and faster development of process-
based applications. Journal of Systems Integration, 2(1):39–55, 2011.

34. David Schumm, Dimitrios Dentsas, Michael Hahn, Dimka Karastoyanova, Frank Leymann,
and Mirko Sonntag. Web Service Composition Reuse through Shared Process Fragment
Libraries. In Web Engineering(ICWE), volume 7387 of LNCS, pages 498–501, Berlin,
Germany, 2012. Springer Berlin Heidelberg.

35. Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc Schnei-
der. Sweetening Ontologies with DOLCE. In Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web(LNCS), pages 166–181. Springer Berlin
Heidelberg, 2002.

36. Germain Forestier and Bernard Gibaud. Semantic models in VIP. Technical report,
INSERM, Rennes, France, November 2010.

37. Matheus Hauder, Yolanda Gil, Yan Liu, Ricky Sethi, and Hyunjoon Jo. Making data
analysis expertise broadly accessible through workflows. In Proceedings of the 6th workshop
on Workflows in support of large-scale science(WORKS), pages 77–86, New York, NY,
USA, 2011. ACM.

38. D. De Roure, Carole Goble, and Robert Stevens. The Design and Realisation of the
myExperiment Virtual Research Environment for Social Sharing of Workflows. Future
Generation Computer Systems (FGCS), 2008.

39. Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton, Robert Stevens, and Carole
Goble. Automatic annotation of Web services based on workflow definitions. ACM Trans.
Web, 2(2), May 2008.

40. Katy Wolstencroft, Pinar Alper, Duncan Hull, Chris Wroe, Phillip Lord, Robert Stevens,
and Carole Goble. The myGrid Ontology: Bioinformatics Service Discovery. International
Journal of Bioinformatics Research and Applications (IJBRA), 2007.

41. Khalid Belhajjame, Katy Wolstencroft, O. Corcho, Tom Oinn, F. Tanoh, A. William,
and Carole Goble. Metadata Management in the Taverna Workflow System. In Cluster
Computing and the Grid, 2008. 8th IEEE International Symposium on(CCGRID), pages
651–656, May 2008.

42. Sean Bechhofer, David de Roure, Matthew Gamble, Carole Goble, and Iain Buchan. Re-
search Objects: Towards Exchange and Reuse of Digital Knowledge. The Future of the
Web for Collaborative Science (FWCS), April 2010.

43. Paolo Missier, Katy Wolstencroft, F. Tanoh, Sean Bechhofer, Khalid Belhajjame, S. Pet-
tifer, and Carole Goble. Functional Units: Abstractions for Web Service Annotations. In
6th World Congress on Services(SERVICES), pages 306–313, July 2010.

44. Ikay Altintas, Adam Birnbaum, Kim Baldridge, Wibke Sudholt, M. Miller, Celine Amor-
eira, Yohann Potier, and Bertram Ludäscher. A Framework for the Design and Reuse of
Grid Workflows. In Scientific Applications of Grid Computing(LNCS), pages 295–299.
Springer, 2005.

45. S. Bowers, Bertram Ludäscher, A.H.H. Ngu, and T. Critchlow. Enabling Scientific Work-
flow Reuse through Structured Composition of Dataflow and Control-Flow. In IEEE
Workshop on Workflow and Data Flow for Scientific Applications(SciFlow), Atlanta,
USA, April 2006.

38 Nadia Cerezo et al.

46. George Chin, Chandrika Sivaramakrishnan, T. Critchlow, Karen Schuchardt, and A.H.H.
Ngu. Scientist-Centered Workflow Abstractions via Generic Actors, Workflow Templates,
and Context-Awareness for Groundwater Modeling and Analysis. In IEEE World Congress
on Services(SERVICES), pages 176–183, July 2011.

47. Mirko Sonntag, Katharina Görlach, Dimka Karastoyanova, Frank Leymann, Polina Malets,
and David Schumm. Views on Scientific Workflows. In Perspectives in Business Infor-
matics Research(LNBIP), pages 321–335. Springer Berlin Heidelberg, 2011.

48. Kassian Plankensteiner, Johan Montagnat, and Radu Prodan. IWIR: A Language En-
abling Portability Across Grid Workflow Systems. In Workshop on Workflows in Support
of Large-Scale Science(WORKS’11), Seattle, USA, November 2011.

	Introduction
	Semantics
	Conceptual Elements
	Abstract Elements
	Mapping
	Use Case
	Discussion
	Related Works
	Conclusion and Future Works

