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Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micromechanisms are correct, effective equivalent surface energy (i.e surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a

Introduction

At the microscopic scale, brittle fracture of low-alloyed steel is usually interpreted as an intra-granular cleavage [START_REF] Zener | Fracturing of Metals, 29 th National Metal Congress and Exposition[END_REF]. Criteria and micro-mechanisms of fracture are still discussed, but a certain consensus can be established about the essential role of plasticity (i.e. of the dislocations movements) and about the required presence of micro-defects to cause cleavage fracture. An historical review of these aspects can be found in [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF].

At the macroscopic scale, local approach [START_REF] Beremin | A local criterion for cleavage fracture of a nuclear pressure vessel steel[END_REF], and global approach [START_REF] Wallin | Statistical model for carbide induced brittle fracture in steels[END_REF] to fracture both rely on an interpretation of the micromechanisms of fracture consequences on the macroscopic fracture behaviour, with good results [START_REF] Mudry | A local approach to cleavage fracture[END_REF][START_REF] Wallin | The scatter in K-results[END_REF], but also with some limitations concerning the transferability of the fitted material parameters for different temperatures and/or geometries.

Concerning the local approach, these limitations can be considered as inherent to the fitting procedures (sampling or statistical methodology issues) and to the weaknesses of some of the Beremin's hypothesis [START_REF] Bordet | A new statistical local criterion for cleavage fracture in steel. Part I : model presentation[END_REF]. However, a general trend has appeared in the last decades that consists in an empirical enrichment of the local approach fracture criterion originally proposed by the Beremin work-group [START_REF] Bordet | A new statistical local criterion for cleavage fracture in steel. Part II : application to an offshore structural steel[END_REF][START_REF] Kroon | A probabilistic model for cleavage fracture with a length scale -Parameter estimation and predictions of growing crack experiments[END_REF][START_REF] Margolin | Prometey local approach to brittle fracture: Development and application[END_REF].

French RPV steel 16MND5, and other similar steels widely used in the nuclear industry, are considered to have a brittle fracture which is governed by a Weibull law :

P f = 1 -exp - σ w σ u m (1) 
, where m represents the statistical scatter, and σ u represents the mean stress needed for fracture, σ w being the Weibull stress [START_REF] Beremin | A local criterion for cleavage fracture of a nuclear pressure vessel steel[END_REF] representing an average of the first principal stress over the plastically activated zone.

Another threshold parameter (σ min w ) is sometimes introduced to improve the experimental fitting results, so that equation 1 becomes :

P f = 1 -exp - σ w -σ min w σ u m , when σ w ≤ σ min w (2) 
, like found in [START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF][START_REF] Gao | An investigation of the loading rate dependance of the Weibull stress parameters[END_REF] but the best results are obtained considering a temperature dependence of the Weibull parameters that has been widely observed and taken into account in recent work [START_REF] Gao | A probabilistic model for prediction of cleavage fracture in the ductile to brittle transition region and the effect of temperature on models parameters[END_REF][START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF][START_REF] Tanguy | Ductile to brittle transition of an A508 steel characterized by Charpy impact test -Part I : experimental results[END_REF], and considering damage mechanisms [START_REF] Tanguy | Ductile to brittle transition of an A508 steel characterized by Charpy impact test -Part I : modelling of the Charpy transition curve[END_REF].

But the precise description of the physical mechanisms leading to this temperature dependence is still to be understood. Lin already captured the complexity of the topic twenty years ago [START_REF] Lin | Stochastic modelling of the independent roles of particle size and grain size in transgranular cleavage fracture[END_REF]: each phenomenon involved in brittle fracture is somehow governed by temperature. Therefore, a macroscopic observation of the temperature dependence does not guaranty a correct interpretation of the way temperature influences brittle fracture parameters at the micromechanical scale, because cross effects can be difficult to distinguish.

Back to the micromechanisms of brittle fracture of steels, three steps are generally considered. The initiation of a micro-defect is the first step generally related to a second-phase particle failure and/or to plasticity mechanisms. Its propagation to the contigous lattice is then considered as the second step, which is sometimes followed by the last step, consisting in the microstructural barriers crossing. These steps are not critical all at the same time, depending on material characteristics, and on thermomechanical loading.

This leads to the actual questioning about the influence of temperature on fracture stress statistical scatter. In the context of low-alloyed steel brittle fracture where propagation of a micro-crack is generally considered as the critical event for fracture, Wallin proposed to explain this temperature dependence [START_REF] Wallin | Statistical model for carbide induced brittle fracture in steels[END_REF] by the fact that the effective ferritic lattice toughness at a temperature different from 0K, is composed of two terms : the Surface Energy (SE), which is the athermal part related to lattice brittle toughness, and a plasticity related component, which represents the plastic work needed for mechanisms opposed to crack propagation, like plastic blunting at the crack tip. The plasticity related work component being expressed as proportional to the Peierls-Nabarro driving force.

To the authors knowledge, although this idea seems quite seducing due to its micromechanical origin, it is still discussed, and it hasn't been experimentally proven due to the inherent difficulty of its observation. On the other hand, other parameters were used in the brittle fracture macroscopic models : plastic correction first proposed in the Beremin work group approach [START_REF] Beremin | A local criterion for cleavage fracture of a nuclear pressure vessel steel[END_REF], was used again in the last WST model development [START_REF] Wallin | New developments of the Wallin, Saario, Törrönen cleavage fracture model[END_REF], and the introduction of a dependence to the yield stress, proposed by Bordet [START_REF] Bordet | A new statistical local criterion for cleavage fracture in steel. Part I : model presentation[END_REF], can be seen as an indirect way to take this temperature dependence of fracture into account.

Methodologies were also thoroughly developed during the last decade that allow to investigate the microstructural heterogeneities effects on the local heterogeneities of the mechanical fields during plastic straining [START_REF] Berveiller | Modeling of the plastic behavior of inhomogeneous media[END_REF]. These methodologies allow a better micromechanical representation of materials behaviour but also usually lead to a better description of the behaviour at the macroscopic scale. Moreover they can also provide really accurate information on the mechanical fields repartition: between metallurgical phases in case of composite materials representation or between the crystallographic orientations of a polycrystalline material. The recent availability of large performance computing also enabled explicit microstructure morphology representation [START_REF] Cailletaud | Some elements of microstructural mechanics[END_REF] allowing to go further than the Mean Field (MF) models about intra-phase fields repartition description. These methods allowed a more precise local phenomena representation : grain boundaries and neighboring effects and the induced local stress repartition can be fairly well described, which can be considered as essential when realistic defect repartition representation are to be confronted deterministically to stress heterogeneities at the microscopic scale. These approaches already proved their relevance for comprehension of different phenomena, like damage of austenitic steels [START_REF] Bugat | Comportement et endommagement des aciers austéno-ferritiques vieillis : une approche micromécanique[END_REF] or intergranular damage modelling [START_REF] Diard | Evaluation of finite element based analysis of 3D multicristalline aggregates plasticity -Application to crystal plasticity model identification and the study of stress and strain fields near grain boundaries[END_REF] of zirconium alloys.

Previous work [START_REF] Pesci | Etude micromécanique et caractérisation expérimentale du comportement et de l'endomagement de l'acier de cuve 16MND5 à basses températures[END_REF][START_REF] Mathieu | Plastic heterogeneities characterisation in 16MND5 RPV steel by X-Ray diffraction, comparison with finite-element approach[END_REF] emphasized experimentally those stress heterogeneities inside the 16MND5 during plastic straining at different low temperatures. A complex multiscale modelling was set up in order to reproduce those heterogeneities at the scale of an Elementary Volume (EV) [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF], and efforts were made to compute fracture probability based on a micromechanical criterion [START_REF] Mathieu | Multi-scale modelling of cleavage fracture at low temperatures : influence of heterogeneities at the granular scale[END_REF][START_REF] Mathieu | Computation of brittle fracture local probability of a RPV bainitic steel based on realistic microstructure representation[END_REF] applied at the microscale of this multiscale modelling. Thus, this micromechanical tool allowed to study separately several parameters variation effect on the computed fracture probability of an EV.

This allowed recently to demonstrate that the first principal stress may not be the best governing stress parameter for local fracture criterion, as the local stress triaxiality state also appears to be an important parameter when considering the crystallographic event of cleavage [START_REF] Mathieu | Micromechanical modeling of brittle fracture of french RPV steel. a comprehensive study of the triaxiality effect[END_REF]. The explanation given in this paper is that for a given first principal stress inside an EV, a higher stress triaxiality induces a different statistical repartition of stresses on cleavage planes likely to change the probability that a "large enough" defect meets a "loaded enough" zone of the material. It was thus showed that stress triaxiality has an obvious effect on Weibull parameter m, so that an increase in stress triaxiality also increases the identified m value.

the present work will use this micromechanical tool and its precise description of stresses repartition in 16MND5 french RPV during plastic straining to discuss the temperature effect on the Weibull parameters describing the fracture of an EV. Low temperature (-150 • C;-60 • C) will be used as it is a convenient way to study the steel within its brittle behaviour domain.

2 Multiscale modelling of material behaviour Two main metallurgical sources for mechanical heterogeneities were highlighted in a previous experimental work on this material. One may want to consult experimental specific results and characterization overview in [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. In short, these effects were separated and named as a "composite" one and a "polycrystalline" one.

The composite effect is related to the hardening effect of carbides (the role of carbides in fracture being discussed later). This effect is well known : as a harder phase, carbides will support a lot more stress than the ferritic matrix, and this matrix will need to accommodate strain.

The polycrystalline effect is also quite usual in structural steels, and is related to difference of lattice orientation between ferrite lath packets : this will induce different apparent behaviours of lath packets according to their orientation. The so-called "lath packet" microstructure results from the material thermal process. Figure 1.b exhibits this lath packet morphology.

During in-situ tensile testing at -150 • C, mean stress in ferritic matrix determined by use of X-ray diffraction methods was found to be 150 MPa lower than the applied stress [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF] (composite effect). Inside the ferritic matrix, differences in residual stresses between misoriented ferrite lath packets can reach 100 MPa (first order polycrystalline effect). Surface relief observations inside SEM during straining also indicates that there are high heterogeneities inside lath packets, particularly near interfaces, due to strain accommodation between differently oriented lath packets. All these results highlight a complex stress repartition at the microscopic scale that the modelling part of this work will have to take into account.

Strategy

Different scales will be represented in the modelling part of this work. The smallest scale involved will use a micromechanical representation of the elastoplastic behaviour of the ferritic phase, based on crystallographic gliding systems. At a higher scale, a MF model will be involved in the composite effect representation. The resulting behaviour, representing both ferrite and carbides will then be implemented in FE multicrystalline aggregate that stands for representing the polycrystalline effect of the lath packets.

These aspects are represented in figure 2. One can observe that a specific attention is paid to the relation between real microstructural heterogeneities and modelling features. The following sections aim to describe precisely each of those modelling steps. 

Ferrite single crystal behaviour

Since no loading rate effect is to be taken into account in this study, modelling of ferrite behaviour will use an elastoplastic formulation. Thus, ferrite elastoplastic strain ε ∼ will be classically expressed as the sum of a plastic strain ε ∼ p and of an elastic one ε

∼ e : ε ∼ = ε ∼ e + ε ∼ p . (3) 
One should notice that this equation and all the following until equation 9 refer to the ferritic behaviour. They are thus expressed in the local lattice crystallographic frame. The elastic part follows the generalized Hooke's law within small deformation assumption :

σ ∼ = C ∼ ∼ : ε ∼ e , (4) 
where C ∼ ∼ represent the isotropic elastic moduli tensor, which can easily be deduced from classical elastic constants E and ν. Plastic gliding in ferrite's iron BCC lattice is considered to be possible on two crystallographic slip systems families, <111>{110} and <111>{112}. Cubic symmetry of the the lattice thus enables 24 gliding systems, so that the plastic strain rate tensor ε ∼ p will be the sum of the shear strain rates γg over all the activated slip systems g :

ε ∼ p = 24 g=1 γ g R ∼ g , (5) 
with R ∼ g representing a geometrical projection tensor, depending of the normal to the slip system n - g and of its direction of gliding m - g :

R ∼ g = 1/2(m - g ⊗ n - g + n - g ⊗ m - g ). ( 6 
)
One can find an illustration of n - g and m - g vectors in the figure 2. The shear strain rates γg of a slip system g depends on the difference between the actual Resolved Shear Stress (RSS) τ g and the actual critical RSS τ g c :

γg = |τ g |-τ g c K n • sign(τ g ), with sign(a) =      a/|a| for a = 0, a for a = 0, (7) 
so that τ g c represents the actual limit for plastic gliding triggering. The RSS τ g being the projection of the stress tensor σ ∼ on the considered slip system g:

τ g = R ∼ g : σ ∼ , (8) 
and the critical RSS evolving in accordance with :

τ g c = τ g c 0 + Q g 24 h=1 h gh • (1 -e -b g .γ h cum ). ( 9 
)
This last equation describes the hardening of the ferritic matrix. It is inspired from the micromechanical isotropic hardening proposed in [START_REF] Mandel | Une généralisation de la théorie de la plasticité de W.T. Koiter[END_REF]. The phenomenological expression of hardening with an exponential term, allowing hardening saturation, was first proposed in [START_REF] Méric | Single crystal modelling for Structural Calculations : Part 2 -F.E. Implementation[END_REF]. τ g c 0 is the initial critical RSS on the considered system g, which can be seen as the limit for micro-plasticity triggering for the considered system. Q g and b g are parameters of the isotropic hardening formulation and h gh is the hardening matrix, describing the interactions between slip systems (i.e. relative hardening effect of the system h on the system g). One should notice that this formulation is considered as elastoviscoplastic, but a choice of great value for parameters K and n (respectively 12 and 5) annihilates any viscous effect, leading to a quasi-elastoplastic behaviour within standard strain rates considered in this work( ε ∈ [10 -6 ; 1]) [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF].

Ferrite-carbide composite representation

Previous work on micromechanical modelling of this material highlighted difficulties of classical MF models to take the hardening effect of carbides into account for realistic volume fraction. Maximum carbide volume fraction can be simply estimated around 2% in the material due to its chemical composition [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. Those estimates where recently experimentally confirmed [START_REF] Petry | Techniques expérimentales et mesures de champs[END_REF]. However, much higher carbide volume fraction had to be considered in other work [START_REF] Pesci | Etude micromécanique et caractérisation expérimentale du comportement et de l'endomagement de l'acier de cuve 16MND5 à basses températures[END_REF] by means of the Mori-Tanaka [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] approach.

A particular aspect of carbides repartition was evidenced in the studied material that may explain this difference. Apart from bigger carbides like those observed near the former austenitic joints [START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF], smaller carbides like those observed in figure 1 were found gathered in carbide clusters, which is illustrated in figure 2. This is believed to be the explanation why Mori-Tanaka approach, can't report the stress difference experimentally observed. Theses small carbides in clusters are small and close enough to increase hardening comparatively to bigger ones by a Orowan hardening effect for the same volume fraction. Mori-Tanaka approach, which implicitely supposes that inclusions are regularly diluted in the matrix, can't report such effect.

In order to take those carbide clusters effect into account correctly with a realistic volume fraction, another MF model will be used. Since classical models were found inefficient, it was chosen to consider clusters (which means close to each other carbides plus ferrite embedded) as the hard phase and to use a model with ability to increase phenomenologically the interphase hardening. The so-called "β model" [START_REF] Cailletaud | Utilisation de modèles polycristallins pour le calcul par éléments finis[END_REF] was chosen. This model allows to consider the behaviour of a Representative Volume Element (RVE ; i.e. the relation between global stress and strain, S ∼ RV E and E ∼ RV E ) as a function of its phases behaviours (relation between each phase n stress and strain, σ ∼ n and ε ∼ n ). One should notice that, in this paper, the name RVE indicates a volume related to mechanical behaviour estimation considerations, and is to be distinguished from the Elementary Volume EV, which is related to local approach to fracture.

Like most of the MF models, β model is based on the Hill-Mandel lemma, which allows to express the stress and strain states inside a RVE as the average of stresses and strains of every phases n in this RVE : and

     E ∼ =< ε ∼ > RV E =< ε ∼ n > RV E , S ∼ =< S ∼ > RV E =< σ ∼ n > RV E . (10) 
The operation < a > V stands for the average of a over the domain V . In our case, the two considered phases will be the ferritic matrix, and the carbide clusters. One should notice that the carbide clusters phase will be considered as elastic. For any phase n the localization rule of the β model will be expressed as following:

σ ∼ n = S ∼ + 2µ(1 -β)(B ∼ -β ∼ n ), (11) 
with β depending on the inclusion's morphology represented (see section 3), and β ∼ n being a tensorial value representing the hardening of the phase n, which evolves according to :

β ∼ n = ε ∼ n p -D n εn,Mises p ( β ∼ n -δ n ε ∼ n p ) . (12) 
ε M ises represents the von Mises equivalent strain which differs somehow from its stress counterpart :

or

     ε M ises = 2 3 ε ∼ : ε ∼ for strain, σ M ises = 3 2 σ ∼ : σ ∼ for stress. ( 13 
)
D n and δ n are adjustable coefficients of the β model. They have to be tuned on FE computations that use the morphology that one wants to represent. This will be discussed further in section 3. B ∼ represents the average of β ∼ n over the RVE :

B ∼ = β ∼ n RV E , (14) 
Since carbide clusters behaviour is considered as elastic, no interphase hardening is associated to them: D = δ = 0.

Multicrystalline scale transition

The presented MF model is then implemented at each Integration Point (IP) on a regularly meshed 3D aggregate, using the Euler angles convention to represent the BCC lattice orientation inside each lath packet. A specificity of the FE code ZeBuLoN [START_REF] Besson | Large scale object-oriented finite element code design[END_REF] will be used: its ability to attribute a different behaviour to each IP of an element will make lath packets representation easier. An example of aggregate is presented in figure 3. It is composed of 200 grains (groups of IP), and will be used for fracture modelling (section 4), in opposition to the aggregate of figure 2, which will be used for behaviour calibration. Algorithms for grain microstructure generation were first proposed in [START_REF] Gilbert | Random subdivision of space into crystals[END_REF] and were introduced in ZeBuLoN FE code and generalized to 3D microstructure [START_REF] Decker | Simulation 3D de matériaux aléatoires polycristallins[END_REF][START_REF] Barbe | Etude numérique de la plasticité d'aggrégats polycristallins[END_REF]. 3 Calibration and validation of plasticity modelling

Modelling choices

Ferrite and carbide clusters behaviours

Classical values are attributed to ferrite elasticity coefficients : The Young modulus E will be of 210000 MPa and the Poisson ratio ν will have a value of 0.3. Since carbide clusters are supposed to be elastic, they will share the same elasticity coefficients : carbides coefficients being quite close to ferrite's ones [START_REF] Umemoto | Production of bulk cementite and its characterization[END_REF].

Parameters of elastoviscoplastic behaviour, in equation 7, are chosen as to annihilates the viscous effect [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. Their values are respectively K =5 and n =12.

The interaction matrix h gh has been inspired from previous work about ferritic steels [START_REF] Schmitt | Micromechanical modelling of the elastoplastic behavior of polycrystals containing precipitates -Application to hypo and hyper eutectoid steels[END_REF][START_REF] Hoc | Polycrystal modelling of IF-Ti steel under complex loading path[END_REF]. No possibility were found when this work was done to adjust those parameters on sub-scale simulations in ferrite. Thus, it was chosen to rely on usual knowledge about hardening mechanisms in ferrite [START_REF] Taoka | Slip systems and their critical shear stress in 3% silicon iron[END_REF][START_REF] Keh | Yielding, plastic flow and dislocation substructure in iron single crystals[END_REF]. Two gliding system families were considered : <111>{110} and <111>{112}, they will be named respectively F 110 and F 112 in the following. Four different coefficients where introduced in the interaction matrix (24 2 components) with this repartition :

• h 1 : interactions of families F 110 with F 112 , and F 110 with itself, with systems sharing neither the gliding plane nor the direction; • h 2 : interactions of families F 110 with F 112 , and F 110 with itself, with systems sharing either the gliding plane or the direction; • h 3 :interactions of family F 112 with itself, with systems sharing neither the gliding plane nor the direction.; • h 4 :interactions of family F 112 with itself, with systems sharing either the gliding plane or the direction.

h i values where chosen as to support gliding on the family F 110 compared to the F 112 family, which is known to be more difficult to activate, and will thus be hardened more easily so that h 3 and h 4 are greater than h 1 and h 2 . Also they are chosen in order to differentiate strong interaction between co-planar or co-linear systems (i.e. respectively systems sharing the same gliding plane or the same gliding direction), so that h 2 and h 4 are chosen greater respectively than h 1 and h 3 . This leads to the following values:

h 1 =1., h 2 =1.15, h 3 =1.2, h 4 =1.4.
That leaves only three parameters left to be calibrated for ferritic phase be-haviour : Q, b and τ g c .

Composite representation

SEM observation [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF] showed that carbide clusters and the ferrite embedded act globally as a bigger and harder entity (surface relief shows that the plastic flow lines do not cross the cluster, but circumvent it). So that in figures 2 and 4, the whole mixture inside the cyan lines can be considered as the hard phase. This figure also illustrates that carbides clusters did not show neither any preferential shape nor any preferential orientation in case of elongated clusters. Clusters will thus be considered as spherical inclusions. One should notice that the area observed in figure 4.a is quite rich in clusters for an illustration purpose.

Figure 4.b illustrates the chosen morphology representation mesh. This mesh will be used to calibrate values of δ and D parameters for the model. Volume fraction of clusters was estimated to 3% thanks to microscopy observations, and was further found adequate to describe the stress difference between the ferritic phase and the bainitic one.

This modelling choice implies that a distinction is made in this work between the biggest carbide population that plays a role in fracture, and carbide clusters that are mainly considered to participate in composite effect. Distinction between the two populations is implicit (i.e. no size limit is established in this modelling for a carbide to play one role or the other), and this will be discussed further in section 4.

Since a spherical morphology has been chosen for inclusions, β can be simply expressed thanks to isotropic elasticity of both phases and to the spherical morphology previously considered for clusters:

β = 2(4 -5ν) 15(1 -ν) . (15) 
β model calibration was made on a single arbitrary chosen ferrite orientation (18 • ,12 • ,82 • ). Results of further calibration were not found to be influenced by this choice.

Multicrystalline aggregate

Multicrystalline aggregate presented in figure 2 was used for this part of the work : it comprises 1000 lath packets which was found adequate for macroscopic behaviour calibration. No macroscopic crystallographic texture was found in the material so that it was chosen to attribute orientations randomly. One should notice that random sampling of Euler angles to obtain an isotropic texture can not be done directly, but has to follow the following repartitions :

and 

            
Since lath packets are considered as morphologically isotropic, and have an approximate size of 20µm, aggregate size used in the calibration procedure an be estimated approximately to 200x200x200µm 3 .

Calibration procedure

The calibration procedure of the modelling will be an iterative process since multiple scale computations have to be done. One can find a detailed explanation about the calibration procedure in [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. The main aspects of calibration are the following : (i) Ferrite plasticity needs only 3 parameters to be identified, and they will be chosen as temperature dependent, and (ii) δ and D parameters of the β model were not found sensitive to ferrite behaviour change in the considered temperature range so that they will not be temperature dependent.

Calibrated parameter are presented in table 1. Table 1 Result of the calibration procedure.

Results and experimental validation

Temperature dependence of the behaviour

Results of calibration process in terms of simulated macroscopic response of the aggregate at different temperature can be found in figure 5. Experimental tensile tests results show a sudden onset of yielding, followed by an apparently quasi-plastic plateau. In fact, lots of instabilities also appear during this plateau which are due to plastic phenomena (Lüders bands). This phenomenon, which is increased with lower testing temperatures, has been removed from the experimental tensile curves. This is a classical problem for the definition of the beginning of the tensile curve with mechanical formulations used in this work: they cannot report neither the instabilities neither the quasi-static plateau. Nevertheless, it does not prevent a good agreement between experiments and simulation for strain levels relevant for fracture simulation. It should be emphasized that this good agreement at the macroscopic scale is thought by authors to be the result of modelling choices, since only 5 parameters were calibrated during the whole process. This can be considered as fully satisfying only if the process allows a good description of ferrite local stress states, which will be checked in sub-section 3.3.3.

Composite effect description

The β model parameters have been calibrated at -150 • C for one ferrite orientation during tensile straining on the representative morphology presented in figure 4. It is worth noting that validity of the calibrated parameters for different loadings (pure shear, and bi-axial straining) have been checked. Results indicated an overall good agreement between composite FE modellings and β model and an excellent agreement about ferrite stress and strain state description [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF].

One can find on figure 6.a the calibration results, represented by the comparison between β model and FE composite model per phase stress repartition. This calibration allowed to reproduce quite well the average stress repartition in the ferritic phase. Figure 6.b presents the average repartition of stress between carbide clusters phase and ferrite phase in the bainite aggregate once the calibrated β model is introduced as behaviour law at each IP. The difference in stress between the macroscopic stress level and the ferrite stress is comparable with the one experimentally determined by X-Ray diffraction thanks to the sin 2 ψ method. The experimental methodology is fully detailed in [START_REF] Mathieu | Computation of brittle fracture local probability of a RPV bainitic steel based on realistic microstructure representation[END_REF] and results are indicated in figure 6.c. It is worth noting that stress determination in ferrite by sin 2 ψ method implies an incertitude which can reach ±20 MPa at the end of tensile test.

Stress in carbide clusters is not fully represented in figures, because of their stress scales. It can reach values as high as 4900 MPa in both FE composite model and β model. This was not found critical: fracture modelling will mainly rely on ferrite stress state description.

Polycrystalline effect

Figure 7 represents the stress repartition inside the aggregate during tensile straining at -150 • C. Some average lath packets behaviour is highlighted in figure 7.a to emphasize polycrystalline related heterogeneities. Simulated stress in ferrite matrix is also reported for these packets in this figure. One can notice that the difference in loading between ferrite and bainite (represented by red dots for a macroscopic strain of 12% in the aggregate) is related to the average behaviour of packets. Those that are submitted to the higher stress for a given macroscopic strain (1,2) are also those that undergo less deformation (i.e. less plastic deformation because of a stronger hardening), so that difference in stress between bainite and ferrite is also lower. This means that the joint effect of polycrystalline and composite hardening in ferrite have to be taken into account to capture stress repartition in ferrite correctly. packets are not homogeneous. It was chosen to show these fields inside the aggregate and not only at the aggregate surface since boundary conditions are known to induce some disturbance at the surface [START_REF] Barbe | Intergranular and intragranular behavior of polycrystalline aggregates. Part 2 : Results[END_REF]. Figure 7.c shows preferential plasticity path common for such computations and also experimentally observed at the lath packets scale during in situ tensile testing. Figure 7.c allows to see that higher stress states in ferrite at the IP scale are present in highly loaded packets near the misoriented boundaries, where biggest carbides are found [START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF]. This last modelling feature can be easily explained as plastic accommodation mainly occurs at grain boundaries. This is considered to be the main advantage of FE aggregate computations over MF modellings for a precise description of local micromechanical ferrite stress state.

Experimental validation of inter-granular stress repartition is offered in addition with X-ray diffraction stress determination by sin 2 ψ method. It was fully exposed in [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF][START_REF] Mathieu | Micromechanical modeling of brittle fracture of french RPV steel. a comprehensive study of the triaxiality effect[END_REF]. This experimental work highlighted undulations of sin 2 ψ curves used for stress determination in ferrite after unloading during interrupted tensile testing at -150 • C. This can be attributed to a quite heterogeneous residual stress state inside the differently oriented packets of ferrite. A post-processing was developed to simulate X-ray diffraction measurements on surfaces of FE aggregates submitted to unloading after tensile straining until 10% deformation. Figure 8 summarizes this work: this quite good agreement validates the modelling at the inter-granular scale although it was calibrated only at the macroscopic behaviour scale. 

Discussion about multiscale modelling and prospects

The proposed multiscale approach that was setup in this part of the work is considered to have some advantages for further micromechanical fracture modelling work on bainitic steel. Although quite complex and allowing a detailed micromechanical description of ferrite micromechanical stress state, it does not require numerous adjustable parameters. Stress heterogeneities were also validated inside ferrite at the inter-granular scale, and between ferrite and bainite at the macroscopic scale without further calibration.

It is worth noting that recent research works, mainly conducted within the PERFECT project, improved and sometimes gave confirmation of the validity of some modelling choices on different specific aspects of stress heterogeneities description inside 16MND5 steel:

• Micromechanical ferrite behaviour description can be based on lower scale description. It is the case in Libert's work [START_REF] Libert | Etudes expérimentales et numérique de l'effet des mécanismesde plasticité sur la rupture fragile dans les aciers faiblement alliés[END_REF], its approach taking dislocations densities on gliding systems n as the lower scale internal variable (a contrario, the present work uses gliding on a slip system). This allows to take into account easily the change of dislocations interactions mechanisms with temperature, which leads to a finest description of hardening mechanisms for different temperatures.

• Recent work about dislocation dynamics [START_REF] Queyreau | Slip systems interactions in α-iron determined by dislocation dynamics simulations[END_REF] gave precise information about interactions between gliding systems, making more precise calibration of the interaction between systems in micromechanical modellings possible (i.e. the h gh matrix of this work could be based on such simulations). • An isotropic texture was used in the present work, on both morphological and crystallographic point of views. However, it is well known that lath packets relative orientation follow local misorientation rules due to ferrite variants growing during austenite to ferrite transformation [START_REF] Kelly | Crystallography of lath martensite in steels[END_REF]. Recent efforts [START_REF] Osipov | Génération et calcul de microstructures bainitiques, approche locale intra-granulaire de la rupture[END_REF] permitted to enlarge greatly simulated domains and thus to improve the precision of their morphological description: lath packet morphology and local misorientations between lath packets were taken into account in large-scale computations, and several studies of their influence on the stress repartition inside aggregates were made. Results indicate that these relative crystallographic orientations influence the stress repartition whereas the packet morphology (in opposition to the grain morphology) does not play such an important role. • Experimental work conducted in this work relies on inter-granular stress heterogeneities description, but new techniques arises, like Kossel microdiffraction that could allow to investigate intra-granular stresses at the micron scale [START_REF] Pesci | A crystallographic approach of brittle fracture in the 16MND5 bainitic steel. In situ X-Ray diffraction and scanning electron microscope measurements at low temperatures[END_REF].

4 Modelling of brittle fracture

Critical mechanisms for cleavage fracture

In order to establish an efficient cleavage criterion at the microscopic scale, one has to determine which one(s) of the three steps (initiation, propagation, crossing of microstructural barriers) have to be considered as the critical one(s), and what mechanism(s) can be considered to govern it(them).

Cleavage initiation

Different micromechanisms have been proposed in the past for initiation of a microcrack in low-alloyed steels. Zener [START_REF] Zener | Fracturing of Metals, 29 th National Metal Congress and Exposition[END_REF] and Stroh [START_REF] Stroh | The formation of cracks as a result of plastic flow[END_REF] were the first to associate cleavage and dislocations pile-ups at interfaces (grain-grain, particlematrix). Cottrell [START_REF] Cottrell | Theory of Brittle Fracture in Steel and Similar Metals[END_REF] proposed a similar mechanism, where interaction between dislocations can create initiation, and Friedel [START_REF] Friedel | Dislocations[END_REF] observed initiation triggered by twins. Carbide cracking initiation at grain boundaries was proposed by Smith [START_REF] Smith | The nucleation and growth of cleavage microcracks in mild-steels[END_REF]. Whatever mechanism is considered, one can notice that it is always initiated by plastic activity.

Different fractographic studies where conducted on the studied material. Carbides are generally shown to be the initiation sites in such steels [START_REF] Odette | Cleavage fracture and irradiation embrittlement of fusion reactor alloys : mechanisms, multiscale models, toughness measurements and implications to structural integrity assessment[END_REF][START_REF] Im | Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels[END_REF], but they can't always be clearly identified at the initiation of "cleavage rivers" [START_REF] Tanguy | Modélisation de l'essai charpy par l'approche locale de la rupture. application au cas de l'acier 16mnd5 dans le domaine de transition[END_REF]. On the other hand, other second phase hard particles can be found [START_REF] Echeverria | Cleavage micromechanisms on microalloyed steels. Evolution with temperature of some critical parameters[END_REF].

Ortner [START_REF] Ortner | Characterisation of Euro A Reference steel for application of EOH model of brittle fracture[END_REF] reports that if a second phase particle can not always be found at the supposed initiation site, those particles may have been expelled. Chemical analysis sometimes confirms this hypothesis by showing residual traces of particle presence.

Carbide cracking will thus be considered as the initiation mechanism. Since every work reports influence of plastic deformation, a triggering value will be considered for initiation.

Cleavage propagation to contiguous matrix

In the work of Im et al. [START_REF] Im | Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels[END_REF], it is also shown that cracks appearing for smallest carbides belonging to clusters in bulk material were not propagated but blunted by ferrite plasticity.

This last point justifies that the distinction between biggest carbides and small ones has to be made in this work. A Griffith-like [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] propagation criterion σ p will thus be used for propagation of a "penny-shaped" defect of radius r d , based on the initial defect size (i.e. carbide size) in ferrite :

σ p = πEγ R 2(1 -ν 2 )r d , (17) 
where γ R represents the Effective Surface Energy (ESE) which is the surface energy of the lattice at 0K plus the energy involved in other dissipative mechanisms, depending on the phenomenon (i.e. blunting or dislocation emission at the crack tip for crack propagation, or getting over misoriented boundaries for microstructural barriers crossing).

This criterion is widely used for brittle propagation modelling. It will explicitly prevent the propagation of smallest cracked carbides. On the other hand, it is worth noting that if the smaller carbides clusters can thus appear completely uncorrelated from fracture, the way they are taken into account in the behaviour modelling (composite effect) will influence the microscopic stress state in ferrite, and thus propagation.

Microstructural barriers crossing

Once a crack has been propagated to the surrounding ferrite inside a lath packet, it has to cross packet boundaries, which can be seen as a grain boundary. This event was not considered as a critical one in this work for two reasons.

Few experimental proofs of such microscopical scale cleavage arrest exists in 16MND5 steel. When they do [START_REF] Nohava | Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel[END_REF], it is not clear whether they were propagated before principal cleavage and then stopped. Another plausible hypothesis being that they resulted from the high stresses concentrations in the vicinity of the main cleavage crack tip.

From a theoretical and modelling point of view, barrier crossing could be seen as another Griffith like mechanism. In this case it would be easy to consider two propagation stress:

• The "propagation" stress would be associated to ferrite lattice ESE, and carbide sizes. • The "barrier crossing" stress would be associated to misoriented lattice interface ESE crossing, and to lath packets sizes.

Lots of estimations can be found for ESE of propagation inside bainitic steels and ferrite [START_REF] Wallin | Statistical model for carbide induced brittle fracture in steels[END_REF][START_REF] Hahn | The influence of microstructure on brittle fracture toughness[END_REF][START_REF] Im | Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels[END_REF][START_REF] Ortner | Characterisation of Euro A Reference steel for application of EOH model of brittle fracture[END_REF], but also for ferrite lattice misorientation crossing [START_REF] Hahn | The influence of microstructure on brittle fracture toughness[END_REF][START_REF] Zhang | Cleavage fracture in bainitic and martensitic microstructures[END_REF]. The associated carbides sizes and lath packets inside 16MND5 microstructure have been thoroughly characterized, allowing to represent plausible critical stresses for both mechanisms in figure 9. The figure indicates that stress required for carbide crack propagation is globally higher than the one required to cross barriers. However, this figure shows that the stress domains are quite close one to each other. The domains where represented in the same 3D plot (with different scales) for comparison purpose.

It is worth noticing that ESE estimations, especially for boundary crossing, are to be considered with high cautiousness. In fact those values are usually deduced from an inverse calibration process based on a Griffith criterion [START_REF] Zhang | Cleavage fracture in bainitic and martensitic microstructures[END_REF]. This means that they are related to identification procedure that rely on a macroscopic stress state estimation, and an a priori mechanism estimation, although it is not always clear whether one or the other mechanisms was really identified as responsible for fracture. So that they may not be relevant for micromechanical considerations.

In case of finer bainitic microstructure, like those obtained after welding of low-alloyed steels, average laths packet size can become quite smaller than for 16MND5 steel, and one may have to take microstructural barriers crossing into account to correctly predict cleavage [START_REF] Lambert-Perlade | Rupture par clivage de microstructures d'aciers bainitiques obtenues en conditions de soudage[END_REF]. In the case of 16MND5 steel, it is the propagation step that will be considered as critical.

Cleavage modelling assumptions and methodology

The hypothesis about cleavage used in this work are based on Beremin's workgroup assumptions, and adapted to previously discussed critical mechanisms. They give a framework for a local approach to fracture applied at the micromechanical scale to 16MND5 steel. In the following, those hypothesis are enunciated in relation to equations used to apply a deterministic fracture criterion on aggregate computations.

Initiation

Carbides are the initiation sites for micro-cracks. The initiation will be triggered by a criterion on plastic equivalent strain at each IP i:

ε equ p,i ≥ ε mini p . ( 18 
)

Effective crystallographic cleavage stress

Once a defect is initiated, propagation in the surrounding ferritic matrix is a "Griffith-like" process. Cleavage in iron BCC lattice occurs mainly by separation of crystallographic planes of the <001> family, three local stresses acting on cleavage planes will thus be computed according to local lattice orientation (Euler angles). Only the maximum value of the three computed can be considered as the effective one for cleavage:

σ M ax c,i = max(n p • σ ∼ f er • n p ) i with p ∈ [100; 010; 001]. (19) 
This allow to compute a value of the effective crystallographic cleavage stress σ M ax c,i at each IP i of the aggregate.

Triaxial stress state loading on the aggregate

Previous work highlighted that cleavage initiation of steels involves high local stress values, that cannot be accessed using uni-axial loading on RVE [START_REF] Mathieu | Multi-scale modelling of cleavage fracture at low temperatures : influence of heterogeneities at the granular scale[END_REF]. Thus a triaxial stress state was applied to the computed aggregate. This was obtained by increasing the hydrostatic part of the stress tensor S ∼ . Loadings are thus controlled by macroscopic stresses tensor applied on the aggregate and stress triaxiality will be represented by χ :

χ = 1 + 2α 3(1 -α) with S 2 = S 3 = αS 1 . (20) 
It is worth noticing that S ∼ diagonal components can also be taken as its principal values in this setting (Σ I = S 1 ), and that the stress triaxiality remains a constant during loading of the aggregate. This was considerate as quite important to separate mechanical effects (triaxiality) from thermal effect: during experiments on cracked or notched specimen at different temperatures, the change in material behaviour makes this separation difficult. This is to be considered as an advantage of the present approach: except with such numerical tools, it is quite difficult to consider loadings at a constant stress triaxiality.

Boundary conditions perturbations at the surface were cautiously avoided [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. This was done by performing aggregate simulations on a larger volume than needed, and extracting only the central part of interest V 0 . The volume V 0 was chosen consistent in size with the Beremin local approach EV generally used for bainitic steels (50 × 50 × 50µm 3 ). The aggregate meshing used will be the one represented in figure 3. Figure 10 shows the repartition of maximum cleavage stress σ M ax c and of the equivalent plastic strain ε M ises p in ferrite for the EV V 0 , extracted from this aggregate which is loaded with a triaxial stress state.

Carbide population and Griffith stress for propagation

An approximated statistical repartition function based on experimental carbide size distribution (given in figure 11.a) will be considered in this work. It was provided by Ortner et al. [START_REF] Ortner | Characterisation of Euro A Reference steel for application of EOH model of brittle fracture[END_REF] and was extracted from German Euro "A" steel study. This steel is similar to french 16MND5 material :

p(r ≥ r 0 ) = 1 -exp -( r 0 3.6 • 10 -8 ) -2.7 , (21) 
It is worth noting that experimental work provided in [START_REF] Lee | Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[END_REF] gives a similar experimental carbide repartition for an A508 Cl.3 steel, although approximated statistical repartition differs [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. Statistical repartition from Ortner comes with As already mentioned, the carbide population is divided into a population of small carbides gathered in clusters that was taken into account during the behaviour modelling, but also into a population of bigger lonely carbides eligible for plastic crack initiation. Thus this global carbide size distribution can be directly used to reproduce random sampling of carbide sizes at each IP, the distinction between the two populations roles being a natural process.

Inside the EV the repartition can be used to attribute an average number of carbides n at each IP of 0.603, knowing its size V 0 , its number of IP (18 × 18 × 18 elements with 27 IP),

A truncated Gaussian distribution of integers (average n, with standard deviation ω n = 4, truncated below 0) is used to attribute a carbide number n i at each integration point i. One can observe such a distribution in figure 11.b. Randomly attributed sizes r n,i are then attributed to these n i carbides using the repartition given in equation 21.

The propagation stresses σ p n,i are then deduced at IP i according to the Griffith's criterion (equation 17) and the randomly attributed carbide size. The biggest carbide sizes obtained by random realization using equation 21 can reach non realistic values. It was thus chosen to introduce a threshold to eliminates those values. This threshold value was chosen in accordance to the biggest carbides observed (r max =1µm) in the material [START_REF] Ortner | Factor affecting the shape of the ductile-to-brittle transition[END_REF][START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF]. The propagation stress σ p n,i will thus be chosen as an arbitrary unreachable "nonpropagation" stress value σ N P for carbides sizes upon r max , with respect to this hypothesis :

σ p n,i =      πEγprop 2(1-ν 2 )r n,i if r n,i ≤ r max σ N P if r n,i > r max . (22) 
γ prop represents the ESE of the ferrite lattice. The Griffith critical stress σ grif at an IP i will be the smallest value of σ p n,i , and will be taken equal to σ N P when no carbide was attributed, as described in the following equation :

σ grif i =      min(σ p n,i ) if n i > 0, σ N P if n i = 0. (23) 
Such a repartition of critical stress σ grif i inside the RVE is represented in figure 11.c.

Fracture event, and link with local approach

Microstructural barriers are not considered as relevant during 16MND5 brittle fracture, so that the propagation of a previously initiated micro-crack is a "weakest link type event". This means that global fracture of the EV is considered to happen once both the initiation and the propagation steps are satisfied at any IP i : and

     ε equ p,i ≥ ε mini p σ max c,i ≥ σ grif i (24) 
Fulfillment of the propagation step 24 can be seen as the moment where, at any IP, plastic activity reaches the threshold value, and one of the value illustrated in figure 10.a reaches the associated value in figure 11.c. A linear interpolation was used to compute the time and the first principal stress at failure between simulated time steps.

The random realization of carbides repartition can then be computed X times, and for each computation x, a different first principal stress Σ I to fracture is computed: heterogeneous stress repartition in the aggregate remains the same each time, but the difference in carbide sampling induces a different place and time for equation 24 to be fulfilled. This would not have been the case without the micromechanical stress heterogeneities representation.

Relation with Beremin's approach

This leads to X values of first principal stress to fracture. They were sorted in increasing order (i.e. x = 1 for the smallest Σ I value). A cumulative probability of fracture can then be plotted as a function of Σ I stress to fracture using the estimator P f = (x -0.5)/X.

A first computation was made to evaluate the process. It was chosen to attribute "usual" values found about pure cleavage fracture in literature to the different parameters [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. The shapes of the curve, presented in figure 12, recalls the Beremin's failure cumulative probability evolution shape, and fits quite well with the Weibull equation. Gnuplot free software was eventually used to calibrate m and σ u parameters to fit equation 1 with the plotted cumulative probability, assuming a Weibull distribution shape. This cumulative probability was obtained with the same loading S ∼ on the different EV. One can remark that plasticity was triggered for every deterministic fracture realization. Therefore, the obtained cumulative probability of fracture is equivalent to the cumulative probability that one would obtain by considering a macroscopic structure composed of X EV identical to this one, assuming that (i) they are globally loaded with S ∼ stress state, and (ii) their carbide population can be described by equation 21. Thus, the whole process is similar to the use of Beremin's approach considering this virtual macroscopic volume composed of X EV, with σ w =Σ I .

It is one of the remarkable originality of this whole approach: considering carbides realistic repartition has already been done in other works [START_REF] Lee | Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[END_REF][START_REF] Tanguy | Comment on Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[END_REF], but one also has to consider the stress spatial repartition, not only at the macroscopic structure scale (structural, crack or notch effect), but also at the micromechanical scale inside an EV. This allowed to point out the fact that stress triaxiality on the EV influences the stress heterogeneities so that the probability of fracture of the EV is modified [START_REF] Mathieu | Micromechanical modeling of brittle fracture of french RPV steel. a comprehensive study of the triaxiality effect[END_REF]. Next section is an attempt to apply a similar scheme to the temperature effect.

5 Temperature dependence of Weibull parameters 5.1 Necessity of a temperature dependent value of γ prop X=100 was found to be a good compromise between computation time and precise identification of m and σ u parameters.

A stress triaxiality χ=2 will be used for the study of temperature dependence, since it is a value commonly observed at the initiation site of cleavage at low temperatures [START_REF] Tanguy | Modélisation de l'essai charpy par l'approche locale de la rupture. application au cas de l'acier 16mnd5 dans le domaine de transition[END_REF]. It is worth noting that a study of the dependence of Weibull parameters to initiation criterion ε mini p was conducted for two triaxialities (χ=1.75 and χ=3), and no dependence was found for ε mini p ∈ [10 -6 : 10 -3 ], at -150 • C [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF]. At higher temperature, plastic activity at the time of failure will increase, so that initiation criterion won't be considered as critical in this work. Anyway, high local stress levels needed for propagation step only happens at IP where lots of plasticity occurred, so that initiation criterion is always fulfilled.

Values of γ prop in a large range are reported in literature. As a first approach, a value of 10 J.m -2 will be used, since it is an intermediary value between recently proposed values for 16MND5 and similar steels [START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF][START_REF] Im | Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels[END_REF][START_REF] Ortner | Characterisation of Euro A Reference steel for application of EOH model of brittle fracture[END_REF]. r max c and ε mini p will keep the same value than in the previous section. Figure 13 shows the results of the approach when considering these values. This result does not indicate any important dependence of Weibull parameters with temperature but does not appear satisfactory considering efforts done in other works to take this dependence into account. In order to interpret this result at the micro-scale, one should examine figure 14, which indicates the statistical repartition of the effective cleavage stress σ M ax c inside the EV for a macroscopic loading (i.e. Σ I value) comparable to the determined σ u value for each temperature, which, in our case corresponds to the mean value to fracture. This explains clearly this previous result: although material behaviour evolves with temperature, the micromechanical stress repartition that will drive cleavage propagation does not change drastically with temperature for a constant value of ESE γ prop . This may be explained in our case by the fact that the identified behaviour reveals hardening slopes quite similar for those different temperatures. Moreover, the considered constant value for γ prop implies that propagation stress σ grif inside the EV remains statistically identical at the different considered temperatures.

Application of the Wallin hypothesis on γ prop

In order to capture the temperature dependence of the Weibull parameters, γ prop will be considered as temperature dependent, all the other parameters and hypothesis remaining the same as in the previous section. Wallin et al. Wallin assumption about temperature dependence implies that the ESE increases with temperature. The calibrated values of Wallin's work are not consistent with values reported for 16MND5 steel, since the studied steel grade was not the same. A calibration will thus be done, but the choice was made to rely on existing values of ESE in literature rather than doing an inverse calibration on fracture experiments, to preserve the deductive aspect of the present analysis. 

T being expressed in degree Celsius. The calibrated γ prop (T ) is presented in figure 15.a, with other values found in literature. Figure 15.b shows fracture computations made using this temperature dependence, and fitted Weibull parameters are presented in figure 15.c. One should remark that computation made for a temperature of -60 • C is incomplete : aggregate computations were interrupted because of a hardware failure reason, however it was chosen to use these results anyway, which implies results obtained for this temperature should be considered with caution. In this case where ESE is considered as influenced by temperature, one can easily remark the dependence on temperature of the fitted Weibull parameters.

Increase of temperature has an obvious effect on σ u parameter: since equation 26 expresses an increase of ESE, it also induces an increase in toughness of the material, which results globally in an increase of the mean stress to fracture in the EV. On the other hand, the effect on m Weibull parameter is less intuitive. Again, it can be understood by observing the statistical repartition of the effective cleavage stress σ M ax c inside the EV for value of loading Σ I close to the mean calibrated σ u value. This is done in figure 16. The figure illustrates the fact that the increase in material toughness induced by temperature implies that more plasticity has to take place so that the tail of the σ M ax c distribution "raises" the σ grif distribution. In the same time, σ M ax c distribution is enlarged so that the number of IP candidate to fulfill both fracture criteria increases too.

This result indicates that a simple temperature dependence of γ prop allows to capture a temperature dependence of Weibull parameters. One could even go further: it was shown in [START_REF] Mathieu | Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : Prise en compte des hétérogénéités microstructurales[END_REF] that such a γ prop dependence applied only to the aggregate computation at -150 • C gives approximately the same dependence on Weibull parameters, which can be seen as a logical result when considering results presented in figure 14. This can be interpreted as the fact that if a temperature dependence is to be phenomenologically introduced in Weibull parameters for use in local approach, its physical interpretation may rely on lattice toughness evolution better than on macroscopic behaviour parameters evolution like the yield stress.

Discussion

Hausild calibrated m and σ u parameters with temperature experimentally for the same material [START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF], in a different temperature range ([-90 • C;-30 • C]). This inverse identification was made around the Ductile-Brittle Transition (DBT), taking into account the damage mechanisms. A comparison between these results and the results of the present work is made in figure 17. Other work presented similar results in the DBT [START_REF] Bernauer | Modification of the Beremin model for cleavage fracture in the transition region of a ferritic steel[END_REF]. Evolutions of m and σ u determined in the present work do not rely on any calibration on experimental work. So the agreement between m values is quite notable. On the other hand, it is clear that σ u evolution estimated in this work does not fit with Hausild results, but at least, tendency is quite well respected (increase with temperature). Another remarkable point is that the agreement of this approach, which only considers brittle fracture of the EV, is obtained with an experimental fitting approach that consider damage mechanisms in the DBT. This may indicate that cleavage mechanisms considered and modeled in the present work remains valid in the DBT.

Another recently published work by Gao et al. investigates the loading rate effect on Weibull parameters [START_REF] Gao | An investigation of the loading rate dependance of the Weibull stress parameters[END_REF]. It indicates that σ u decreases, and that m remains constant. Results are not directly comparable to the present work, since a threshold value on Weibull stress σ w-min was used in their work, but they confirm that changes in σ u in cases of temperature and strain rate evolution are of different nature: m is affected in one case and not in the other one, although apparent changes in macroscopic yield stress are comparable. It is a clear evidence that macroscopic yield stress is not the only relevant parameter to describes those effects.

Conclusion

A micromechanical representation of plasticity has been set up in this paper, involving different scale representation. These scales were considered as appropriate since comparison to experimental characterization using X-ray diffraction after tensile straining at -150 • C shows that it intrinsically reproduces stress heterogeneities inside the ferritic matrix between different crystallographic orientations. This effect, captured without further calibration, has the advantage to allow access to intra-granular heterogeneities.

Based on this representation, micromechanical fracture criteria were used to compute time to fracture of an EV loaded with triaxial stress state at different low-temperatures, with realistic defects distributions, and for a volume consistent with the local approach. A cumulative probability of fracture for the EV was then computed, which demonstrates that the effect of temperature on Weibull parameters m and σ u is to be linked with the evolution of the ESE γ prop . Considering an evolution of ESE with temperature, experimentally fitted Weibull parameters evolution is reproduced, quite correctly for m, and with some limitations for σ u , the tendency being correct. This is attributed to the deductive aspect of the approach that did not include inverse calibration in the fracture part. The defect distribution description and the ESE calibration were pointed out as the potential ways of improvement.

It is thought that modifying Beremin by transferring the effect of temperature identified in this work and the effect of stress triaxiality identified in previous one [START_REF] Mathieu | Micromechanical modeling of brittle fracture of french RPV steel. a comprehensive study of the triaxiality effect[END_REF] to the EV fracture probability may improve results of local approach to fracture with different geometries tested at different temperature, while relying on micromechanical considerations.
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 11 Fig. 1. Cross observation of the same sample zone by different electronic microscopy techniques. a) SEM, b) EBSD observation of the lath packets, c) Field emission gun SEM observation. d) Color legend for EBSD (indicated orientations of crystallites is relative to the horizontal axis of this paper, misorientations between contiguous domains highers than 10 • are highlighted in black).
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 2 Fig. 2. Representation of the material multiscale modelling strategy, with schematic links to the microstructures features, and representation of the scale transitions.
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 3 Fig. 3. A grain microstructure generated using FE code ZeBuLoN. Elements are cubic with quadratic shape functions. They include 27 IP. IP are represented as plain subdivisions of the element in this figure and the following.
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 4 Fig. 4. Representation of carbide clusters : a) Plasticity flow lines circumventing clusters (indicated by arrows) and approximation of the clusters morphology, and b) representative mesh used for the calibration of δ and D parameters.
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 5 Fig. 5. Global simulated macroscopic response for different temperatures, compared with experimental results.

Figures 7 .Fig. 6 .Fig. 7 .

 767 Figures 7.c and 7.d present the additional second order polycrystalline effect captured by FE aggregate computations. The mechanical fields inside ferritic

  volume t e n s i l e d i r e c t i o n post-treated

Fig. 8 .

 8 Fig. 8. Comparison between undulations of sin 2 ψ curves experimentally obtained and simulated on aggregates [26].

Fig. 9 .

 9 Fig.9. 3D surfaces representing the possible critical stresses for propagating a penny-shape crack in case of lath packet boundaries crossing and of carbide crack propagation to contiguous ferritic lattice. Two views are presented for readability purpose.

Fig. 10 .

 10 Fig. 10. Repartition of a) effective crystallographic cleavage stress and b) equivalent plastic strain in ferrite during triaxial loading on the aggregate. T=-150 • C, χ=3, Σ 1 =2200 MPa a precise carbide volume counting (N = 7.6 ± 2.4 • 10 17 m -3 ), which lacks in the other work.

Fig. 11

 11 Fig. 11. a) Experimental repartition of carbides sizes represented with one deterministic realization based on equation 21. b) Repartition of carbides in EV and c) resulting Griffith stress repartition

Fig. 12 .=10 - 5 .

 125 Fig. 12. Example of cumulative fracture probability of the EV obtained for : χ=2, T=-150 • C, r max c =1µm, γ prop =12J.m -2 , ε mini p =10 -5 . Result are fitted with equation 1.

- 2 Fig. 13 .

 213 Fig. 13. Results of simulation of cumulative fracture of the EV for a constant value of γ prop . a) Computation results and b) fitted Weibull parameters.

- 2 Fig. 14 .

 214 Fig. 14. Probability of the effective cleavage stress σ M ax c inside the EV for value of Σ I comparable to the identified σ u (1750 MPa) for triaxial loading at different temperatures.

γ

  (OK) prop , which represents the surface energy at 0K has been widely estimated by different approaches, a recent estimation of 2.15 J.m -2 [65] will be used. Values of ESE reported in literature in the studied temperature range ([-150 • C:-60 • C]) where found between 7 J.m -2 [56] and 12.4 J.m -2[START_REF] Im | Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels[END_REF]. These values will be chosen respectively as the ESE value for -150 • C and -60 • C. Gnuplot fitting module was used to fit A and B parameters according to these hypothesis. This leads to the following equation : γ prop (T ) = 2.15 + 1.53.e (0.009.(T +273.15)) ,

Fig. 15 .

 15 Fig. 15. Dependence of γ prop to temperature. a) Comparison of dependence used in this work with values found in literature.b) Computation results of simulation of fracture of the EV for this γ prop (T ) value depending on temperature with respect to equation 26. c) Fitted Weibull parameters.

Fig. 16 .

 16 Fig. 16. Probability of the effective cleavage stress σ M ax c inside the EV for value of Σ I comparable to the identified σ u for triaxial loading at different temperatures.

Fig. 17 .

 17 Fig.[START_REF] Wallin | New developments of the Wallin, Saario, Törrönen cleavage fracture model[END_REF]. Comparison of the Weibull parameters a) m and b) σ u determined by the present micromechanical approach with Weibull parameters obtained in Hausild[START_REF] Hausild | Transition ductile-fragile dans un acier faiblement allié[END_REF], and calibrated on experimental results in the DBT.
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