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In this paper, the specific effect of additional constraints on the stability of undamped non-conservative
elastic systems is studied. The stability of constrained elastic system is compared to the stability of the
unconstrained system, through the incorporation of Lagrange multipliers. It is theoretically shown that
the second-order work criterion, dealing with the symmetric part of the stiffness matrix corresponds to an
optimization criterion with respect to the kinematics constraints. More specifically, the vanishing of the
second-order work criterion corresponds to the critical kinematics constraint, which can be interpreted
as an instability direction when the material stability analysis is considered (typically in the field of
soil mechanics). The approach is illustrated for a two-degrees-of-freedom generalised Ziegler’s column
subjected to different constraints. We show that a particular kinematics constraint can stabilize or
destabilize a non-conservative system. However, for all kinematics constraints, there necessarily exists a
constraint which destabilizes the non-conservative system. The constraint associated to the lowest critical
load is associated with the second-order criterion. Excluding flutter instabilities, the second-order work
criterion is not only a lower bound of the stability boundary of the free system, but also the boundary of

the stability domain, for all mixed perturbations based on proportional kinematics conditions.

1. Stability of constrained linear systems

Stability of elastic structures is a branch of engineering that has
been well developed since the 1960s, especially in the presence
of non-conservative loading [1,2]. Most of the published studies
in this area have focused on circulatory loadings (see recently
the flutter phenomenon in arch instabilities [3]). In this paper,
we theoretically investigate the influence of additional kinematics
constraints on the stability of non-conservative elastic systems.
The additional constraints could be suggested for instance to
stabilize the system in structural mechanics. Specifically, we
are interested by the optimal buckling load with respect to
some constraints on the kinematics parameters (minimization
and maximization). A lot of work has been devoted to the
optimization of elastic structures (see for instance [4,5] or more
recently [6]). However, it seems that the non-conservative stability
problem under general kinematics constraints still merits some
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complementary investigations. Such kinematics constraints could
be also typically met in soil mechanics, where isochoric conditions
for instance are usual. We show that the second-order work
criterion, dealing with the symmetric part of the stiffness matrix,
is strongly related to the stability boundary of the constrained
system. All instabilities considered in this paper are divergence
instabilities. Extension of such a procedure to stability theory in
the general case (including flutter instabilities—loss of stability in
which the structure is oscillating at the critical load) is a more
difficult task.

Equations of motion of the free undamped linear system can be
written as:

Mi+Kx=0 (1)

where the matrix K is generally a non-symmetric matrix (in
the case of non-conservative elastic systems). The matrix K(p)
generally depends on a loading factor denoted by p. Matrix M is
assumed to be a positive definite matrix. x is the perturbation
of dimension n. For the undamped system, the stability criteria
are greatly simplified. In a conservative system, the matrix K is
symmetric. Stability (in the sense of Lyapunov) of the equilibrium
can be investigated by means of the Lagrange-Dirichlet criterion.



The positive definitiveness of the stiffness matrix K is easily
checked from Sylvester's criterion [7]. The loss of positive
definiteness is reached when the determinant of one of the
submatrices of Sylvester’s criterion vanishes. In the general
case (conservative or non-conservative systems), the stability
domain can be checked from application of Routh-Hurwitz criteria
(see for instance [3]). In case of divergence instabilities, the
boundary between stability and instability is generally given by the
singularity condition (see for instance [4] or [8]):

det (K) = 0. (2)

For conservative systems, the stability criterion is given by the
vanishing of the determinant of the stiffness matrix. Considering
the stiffness matrix K or its symmetric part K° is equivalent for con-

servative systems (det (K) = det (KS)>. For non-conservative

elastic systems, the static criterion (det (K) = O) also holds in
cases of divergence instabilities. For this g/pe of instability, the
second-order work criterion (det (KS> = 0) constitutes a lower
bound of the stability boundary of the undamped system [9].

det (g) —0 (3)

where K5 is the symmetric part of K. This criterion is sometimes
called the second-order work criterion, with reference to the

second-order differential energy [10]:

Vox, SXTK8x = 8xTK® 6x > 0= det (KS) > 0. (4)

The boundary of such a criterion leads to the determinant of
the vanishing of the symmetric part of the matrix K according to
Eq. (3).

In cases of flutter instability, no theorem guarantees the lower
bound status of the second-order work criterion [11]. In other
words, only flutter instabilities can potentially precede the second-
order work criterion.

We would like to investigate the properties of such a dynamical
system in the presence of an additional kinematics constraint,
given by the holonomic constraint:

a'x=0. (5)

This constraint does not affect the trivial equilibrium position
X = 0. The reader can be reported to the recent work of
Roithmayr and Hodges [12] for the rigorous introduction of non-
holonomic constraints. Non-smooth constraints associated with
some kinematic inequalities are treated by Godoy and Mirasso [ 13].
The Lagrange multiplier A can be introduced for the constrained
system as:

MX+Kx+ie=0 (6)

The new dynamical constrained system can be characterized by
a system of dimension n + 1:

i ) v o
J+K(@)y=0 WithM(g):<§ 6)

o-(5 3) = 1=

Assuming that no flutter instabilities prevail in this constrained
system, the loss of stability is given by the singularity condition
dealing with the matrix of dimension n + 1:

det ( () =0. (8)

Therefore, the stability criterion of the constrained system is
naturally affected by the choice of the given structural parameter «.

I

(7)

[1=

According to the implicit function theorem, the stability crite-
rion given by Eq. (8) locally gives the buckling load as a function of
the kinematics parameters parameterized by the vector o:

K(p) «a

0 =p=p(a). (9)

The stability problems considered in the paper are based on a
linearly dependence of the stiffness matrix on the buckling load
(see for instance [14]).

2. The optimization problem

We are interested by the optimization problem of investigating
the optimal buckling load with respect to the kinematics
parameters parameterized by the vector «. Note that the
optimization of Ziegler's column with respect to the minimal
volume of the structure has been studied by Gajewski and
Zyczkowski [4]. We also mention the works of Pantelides [15]
on the minimization of buckling load of conservative discrete
systems with uncertainty in the spring stiffnesses. Liu et al. [16]
optimizes the intermediate support to maximize the buckling load
of continuous columns with conservative loading.

In the problem investigated in the paper, we are searching
the optimal parameter o with respect to the buckling load
(minimization or maximization problem). The applications of such
a question can be found for instance in soil mechanics, where
the loading test is composed of active loading with kinematics
constraints and the critical kinematics parameters are searched
for. The kinematics constraints can be associated to the concept of
mixed perturbation (see for instance [17-19] or [20]) where some
kinematics parameters are imposed during the loading process.
In soil mechanics, the failure phenomenon is intimately related
to the loading (or control) parameters, applied to the boundary
of the geomaterial specimen considered [18]. To exemplify, the
case of the isochoric biaxial test can be commented. In this test, a
deviatoric stress rate is imposed whereas the “volume” is assigned
to remain constant. One control parameter is expressed with
stress components, the second one with strain components. Such
a loading process can be viewed as a mixed control program,
with additional kinematics constraints. Therefore, the study of the
effect of additional constraints on the stability boundary of general
structures may find applications also in the field of soil mechanics.

This mechanical problem is finally related to what can be
called an optimization or an antioptimization problem (see for
instance [6]).

Therefore, we are looking for the critical parameter a* such as:

ap
a/— =0. (10)
o

We show in this paper that this critical constraint is associated
with the so-called second-order work, or the vanishing of the
determinant of the symmetric part of the matrix K (see Eq. (3)).

The reasoning is based on the decomposition formulae:

g o K_l _K_]g ; g 11
o« o) \o" 1 ) \dk —d'Ke (1)

ifé is invertible. Using Eq. (11), the determinant of the matrix of
the constrained problem g (o) leads to simplified result:

det (g (g)) = — det K det (ng’lg) =—a'K 'adet K

if det K # 0. (12)



Eq. (12) can be also found directly from Schur complementary
formulae. The buckling load p is a function of the parameter «,
via the implicit function defined by Eq. (9). The minimization of p
with respect to @ can then be computed directly from the implicit
function via:

ap 0 9 det (g (@))
b da

Such a derivative can be analytically achieved from the expan-
sion of the stability criterion detailed in Eq. (12):

d det (g (g)) d [grg_lg]

= —det K
Jo. =

=0. (13)

da
15 S
= —2detK (K™') a=0=detk*=0. (14)

Note that det K # 0 was specifically assumed at the beginning
of the reasoning. Eq. (14) is based on the remarkable property:

s det K°
det (g”) == (15)

(det é)z

Therefore, the optimization process of the buckling load with
respect to the kinematic constraints leads to the second-order
work criterion given by Eq. (3), assuming that only the divergence
instabilities are studied. In other words, when considering
the minimization problem, the second-order work criterion is
associated with the lower bound of the critical load of all the
constrained systems. The critical constraint o* (related to a critical
instability direction at the material scale when studying material
instabilities) has some particular features that we will investigate.

(k") e =0 (16)

This critical kinematics constraint, destabilizing the system,
can then be interpreted in term of preferentially instability
direction (at the material scale, for instance in soil mechanics). In
soil mechanics, assuming a material point problem, the tangent
stiffness matrix corresponds to the constitutive relation. The
critical kinematics constraint appearing in Eq. (16) corresponds
to the instability direction at the material scale for mixed loading
parameters (see [18]).

Eq. (12) is based on the invertibility condition of the stiffness
matrix of the unconstrained system (det K = 0). The stability
problem of the constrained system in the particular case where the
stiffness matrix is not invertible (det K = 0), i.e. at the stability
boundary of the free system can be investigated from the buckling
mode of the free system:

det K =0= 3" # 0/K.x" = 0. (17)
The static equations of the constrained system expressed by

Eq. (6) are also valid for the divergence instability:

Kx+ix=0 and x".@ =0. (18)

It is clear in this particular case that the free buckling mode is
solution of the constrained system with A = 0. i.e. a null Lagrange
multiplier:

x=x* A=0 and xT.a=0. (19)

Such a particular case only concerns the intersection of the
stability boundary of the free system det K=0 with the one of
the constrained system det g (@) =0.

3. Some implications for conservative and non-conservative
systems

3.1. Conservative systems

For conservative systems, the stability criterion is given
by the vanishing of the determinant of the stiffness matrix

(det (g) = det (g) = 0). The optimization of the buckling load
associated with the kinematically constrained system leads to the
same criterion, namely (det (§ ) = det (g) = 0) for a specific

constraint a*. As show by Eq. (19), this critical constraint o* is
compatible with the buckling mode x* of the free system in this
case:

o T x* =0. (20)

Considering the minimization problem, the first buckling mode
of the free system has to be considered for the critical constraint.
Therefore, the minimization of the constrained system can be
obtained from the shape of the fundamental buckling mode of the
free system, which is an intuitive idea.

In the presence of conservative systems, these results mean that
a constraint necessarily stabilizes the free system (see also [2] for
a general discussion of this theorem; see also [21]). Eventually,
the critical constraint (associated with the minimization problem)
does not affect the stability of the constrained system. This also
means that the stability domain of the unconstrained system is
included in the one of the constrained systems in the conservative
case.

Note that this property even in case of conservative systems
is no more guaranteed if the equilibrium position depends on the
loading range. We keep in mind that in some cases an increase in
stiffness in a structure may also decrease the buckling load, even
for conservative systems ([22-25] or [26]). Considering now the
maximization problem, the critical constraint is obtained from the
highest buckling mode.

3.2. Non-conservative systems

For non-conservative elastic systems (without constraints),
the static criterion also holds in cases of divergence instabilities

<det (K ) = 0). For this type of instability, the second-order work

criterion ( det gs = 0) constitutes a lower bound of the stability

boundary [9]. In cases of flutter instability, no theorem guarantees
the lower bound status of the second-order work criterion. In other
words, only flutter instabilities can precede the second-order work
criterion.

Effects of additional constraints for non-conservative systems
are no more intuitive. We focus here on the minimization
problem with respect to the kinematics parameters. As the second-

order work criterion (det (K 5) = O) constitutes a lower bound

of the stability boundary (det (§> = 0), this means that for

non-conservative systems, there exists necessarily a kinematics
constraint o which destabilizes the constrained system. Therefore,
a specific kinematics constraint can stabilize or destabilize a non-
conservative system (we will give some specific examples in this
paper). However, for all kinematics constraints, there necessarily
exists a constraint which destabilizes the non-conservative
system. The constraint a* associated to the lowest critical load is
obtained from the second-order work criterion. Excluding flutter
instabilities, the second-order work criterion is not only a lower
bound of the stability boundary of the free system, but also the
boundary of the stability domain, for all mixed perturbations based
on proportional kinematics conditions.



Fig. 1. Ziegler's model under partial follower load-free system.
4. A structural example—Ziegler’s column

The Ziegler column, loaded by a partial follower load [27,8]
can be considered as an interesting structural system, because
instability by divergence and instability by flutter may both appear,
depending on the structural parameters. This undamped structural
system is sometimes called a generalised Ziegler column. It is a
pinned column with a sub-tangential or super-tangential buckling
load F (sub-tangential for y < 1, super-tangential for y > 1).
This is a two-degrees-of-freedom system with a state vector x’ =
(01, 6,), where 6; is the rotation in each spring (see Fig. 1). The
equilibrium position is given by (6;, 8;) = (0, 0). The stiffness of
each spring is denoted by k.

The elastic potential V of this system can be written as:

1o 1 2
V = —kO; + =k (0, — 61)°. (21)
2 2
The virtual work of external forces is given by:
SW = Fcos (y6,) du — F sin (y6,) v
with
(22)

u=2l—1cosf; —lcosH,
v =1Isin6; + Isinb,.

This variation can be also presented in the condensed form:
SW = FHsin (6, — y6,) 8§01 + Flsin (6, — y6,) §6,. (23)

Clearly, this system is a conservative system only when y = 0.
The stiffness matrix Kis obtained from the linearized equations
around the equilibrium position (84, 6;) = (0, 0):

8V —sW = x"K"sx withx = (gh) . (24)
= p)
The stiffness matrix is then written as (see also [8]):
_ (2k—H —k 4 Fly
’—( —k k—Fl(l—y)) or
_(2-p vp—1 o H
§_I<<_1 1—(1—y)p> w1thp_l—< (25)

p is the loading parameter and y is the parameter that
characterises the orientation of the follower load (see Fig. 1).y = 0
corresponds to the conservative case and y = 1 to the academic
case of Ziegler's column. The mass matrix is given for instance

by [8]:
31
(1)

The dynamics stability of this non-conservative system is
treated by Hermann and Bungay [27], including flutter instabilities.

M = mP

(26)

4

free system - flutter boundary

free system - divergence boundary

second-order work criterion

3
9

0 0.25 0.75 v 1

Fig. 2. Comparison of the instability load of the free system and the constraint
system.

The flutter load is calculated as [27]:

S—yj:\/(S—y)z—M(l—}-(l—y)z)
P= 2[1+ (-] '

The “static” criterion can be applied to characterise the
instability boundary by divergence of the free system (Eq. (2)):

(27)

det(g):O@(l—y)pz—i‘}p(l—y)—i-lzo. (28)

The linearized constraints studied in the paper are written for

the structural model considered in this part as:
01191 =+ Ot292 =0. (29)

The instability boundary of the constrained system necessarily
arises by divergence (single-degree-of-freedom system), leading to
the instability load, obtained from Eq. (8):
of + 20010 + 203

a?(1—y) +yajon+ ol

det (R (2)) =0 & p(ar,ap) = (30)
For instance, a particular case is the constrained system that has
one spring with infinite stiffness (6; — 6, = 0):

_
2(1-p)

In Fig. 2, the divergence boundary of the free system is plotted,
and compared to the instability boundary of the constrained
system.

It is observed that there is a region y € [1/2; 3/4] where
the system with an infinite stiffness for one spring, leading to
61 = 6,, has a lower instability load than the initial one, even
in the divergence transition area y € [1/2;5/9]. For this non-
conservative system, an increase in stiffness may destabilize the
system, even if only divergence instabilities are considered. This
is typically a particular feature of the non-conservative nature of
the system. Indeed, in case of conservative systems, an increase
of stiffness generally leads to an increase of the buckling load
(or the natural vibrations—see Rayleigh’s theorem [26]). Note that
this property even in case of conservative systems is no more
guaranteed if the equilibrium position depends on the loading
range. We keep in mind that in some cases an increase in stiffness
in a structure may also decrease the buckling load, even for
conservative systems ([22-25] or [26]).

h—0,=0=0=—=1=p= (31)



In other words, a particular kinematics constraint can stabilize
or destabilize a non-conservative system (we give some specific
examples in this paper). The second-order work criterion (Eq. (3))
leads to the lower bound of the parameterized instability load:

2
det(£5)20©(1—y—%)p2—3p(1—y)+1:0. (32)

It is easy checked in Fig. 2 that the particular constrained
system by Eq. (31) leads to a stability boundary which is tangent
to the second-order criterion (Eq. (32)) for a critical parameter
y. This is the geometrical interpretation that the second-order
work criterion corresponds to the intersection of all stability
domains parameterized by the kinematics constraint (when
stability prevails by divergence).

Application of Eq. (13) to this two-degree-of-freedom system
leads to the coupled system:

Kin Kz o Kii Kiz o
—_— Kz] Kzz o = 0 and — Kz] Kzz | = 0. (33)
36(] o (0% 0 3(12 o (0% 0

It is easy to develop these two systems in a linear system of two
equations with two unknowns (a1, a2):

{— (K12 + Ka1) a2 + 2Ky = 0 (34)

2]{]]0{2 — (K]z + Kz]) o = 0.

Obviously, Eq. (3) is found again from Eq. (34), and more
specifically the second-order work criterion for a two-dimensional
system:

Kiz 4 K21 \?
Ki1Kzy — <%> =0 det (K°) =0, (35)

For the present problem, the critical parameter o* is then
computed from Eq. (34) as:

Ol% + 2017 + 205%

af (1—y) +yajon + a3

a yp—2 .
=" withp (o, )=
“ 202-p) p (a1, @)

. (36)

Eq. (36) can be expressed in a single equation dealing with the
kinematics constraints:
205 [2 = p (o, )] = a1 [y p (a1, a2) — 2]. (37)

This is equivalent to the second-order polynomial equation for
the critical set of parameters (the third-order terms are vanishing):

2
2(;/—1)(:;) +2(1—2y)Z—j+(2—3y)=0 (38)

whose solution is given for the minimization problem by:

* o2y -1 2y -1 -2y —-2)2-3
(g)z y=14V@y -1’ -Qr=9Q@=31) _ 4
o 2()/_])
The other solution leads to the maximization problem:
L y—1-VRy—-1%2-Qy-2)2-3
(g)z y=1-V@y -1’ -Qr=2Q=31 _ o
o1 2y - 1)

The critical parameter a* depends on the non-conservative
structural parameter y for this problem. Introduction of this
critical parameter in Eq. (30) necessarily leads to the second-order
work criterion (Eq. (32)).

This result shows the strong link between the concept of critical
kinematics constraint and the direction of loading in the space of
incremental strain, leading to the vanishing of the second-order
criterion.

Fig. 3. Ziegler's model under partial follower load-free system with kinematics
constraint; case a > 0.

762

Fig. 4. Ziegler's model under partial follower load-free system with kinematics
constraint; case a < 0.

5. Physical meaning of additional constraints

We show now how a kinematic constraint can be introduced
in the studied problem. Let us consider that the point P
(parameterized by the distance a from the second spring) to move
along a vertical axis (see for instance [28]). Figs. 3 and 4 show two
basic examples of such a constraint. The constraint on the lateral
displacement of point P can be expressed by:

Isin6; +asin6, =0 (41)
leading to the constrained linearized kinematics equation:
. [0 a
01191 + a262 =0 with— = 7 (42)
o1

Fig. 3 shows an example with a positive value for a (a > 0),
whereas Fig. 4 shows an example with a negative value for
a(a < 0). Typically, for sufficiently small values of the non-
conservative parameter y, Fig. 3 typically corresponds to the max-
imization problem whereas Fig. 4 corresponds to the minimization
problem. This is for instance the case of the conservative problem
(y =0):

(O”)* 1=V5 68

%1/ min 2
and
* 1 5
<%> _ Vs 1.618. (43)
®1 / max 2

Note of course that these values are the exact ones of the
buckling modes of the free system (without additional constraints).
This optimization process is clearly shown in Fig. 5 for the
conservative case. The second-order work criterion corresponds
to the minimization and the maximization problem. Fig. 5 shows
that the stability boundary of the constrained system is above the
one of the free system, and is tangent to the boundary of the free



(98]

det(K%)= 0

T

det(K%)=0

free system

H 0o I I L
T T T U T T T

15 4 2
o

Fig. 5. Effect of an additional constraint on the buckling load; conservative system

y =0.
3
p
det(K*)=0
det(K*)=0 5|
free system

1
e t

0.5+

1 1 —t © — 1 1
-2 -1.5 -1 -0.5 0 0.5 1 15 o 2

o

Fig. 6. Effect of an additional constraint on the buckling load; non-conservative
system y = 0.5.

system at the critical point corresponding to the minimization
problem (see Eq. (43) for the conservative system). It has to
be outlined that an additional constraint cannot destabilize the
system for the conservative problem (see also Fig. 5). This property
is not true for the non-conservative problem, where an additional
constraint can destabilize the structural system (see Fig. 6). There
is clearly a destabilizing zone around the critical point (associated
to the second-order work criterion) where the boundary of the
constrained system is below the one of the free system. Finally, the
location of the optimum values of the kinematics constraints are
shown in Fig. 7.

6. Conclusions

For conservative systems, the stability criterion is given
by the vanishing of the determinant of the stiffness matrix

(det (ﬁ ) = det (g S ) = 0). For non-conservative elastic systems,

y increasing

I I I 0o
T T T U T T

-2 -1.5 -1 -0.5 0 0.5 1

o)

Fig. 7. Effect of an additional constraint on the buckling load; parametric study;
y € {0;0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.75}.

the static criterion also holds in cases of divergence instabilities
(det <§ ) = 0). For this type of instability, the second-order work

criterion (det (K5 ) = 0) constitutes a lower bound of the stability

boundary [9]. In cases of flutter instability, no theorem guarantees
the lower bound status of the second-order work criterion. In other
words, only flutter instabilities can precede the second-order work
criterion.

We question in this paper the meaning of the second-order
work criterion for the dynamics system under kinematics con-
straints. It is shown that the second-order work criterion corre-
sponds to the intersection of all stability domains parameterized
by the kinematics constraint (when stability prevails by diver-
gence). More specifically, the vanishing of the second-order work
criterion corresponds to the critical kinematics constraint, which
can be interpreted as an instability direction when the material
stability analysis is considered. The second-order work criterion

(det (g S ) = 0) is related to the minimization of the buckling load

with respect to the kinematics constraints, but also to the maxi-
mization of the buckling load.

As a consequence, a particular kinematics constraint can
stabilize or destabilize a non-conservative system (we give some
specific examples in this paper). However, for all kinematics
constraints, there necessarily exists a constraint which destabilizes
the non-conservative system. The constraint associated to the
lowest critical load is associated with the second-order criterion.
In the case of a conservative system, this means that a constraint
necessarily stabilizes the free system (see also [2]). Note that
this property even in case of conservative systems is no more
guaranteed if the equilibrium position depends on the loading
range. We keep in mind that in some cases an increase in stiffness
in a structure may also decrease the buckling load, even for
conservative systems ([22-25] or [26]). This phenomenon was also
observed in non-conservative systems controlled by the flutter
phenomenon [29].

Excluding flutter instabilities, the second-order work criterion
is not only a lower bound of the stability boundary of the free
system, but also the boundary of the stability domain, for all mixed
perturbations based on proportional kinematics conditions. The
conclusions of this paper, and in particular the stability boundary
of such non-conservative systems maybe strongly affected by



infinitesimal damping (see for instance [1,5] or [30]). Furthermore,
infinitesimal damping may also exhibit periodic attractors (flutter
instability) for a load smaller than that of static instability
(divergence instability) [31].
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