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Dead-beat functional observers for
discrete-time LPV systems with unknown inputs

Mirko Fiacchinit, Gilles Millerioux®

Abstract— This paper deals with functional observers for used in the literature to define the same concept: dead-beat
discrete-time Linear Parameter Varying (LPV) systems. Moe finjte-time, fast or non-asymptotic.
specifically, dead-beat observers for reconstructing lingr combi- Closely related works can be cited with their discrepancies
nations of the state are proposed. The system inputs are assed . . . .
to be unknown and the observers reduce to functions of the The paper [17] addr_esses the es’nm_atmn ofanonllnearlm_nct
output over a finite number of time-steps. The existence of s Of the state of nonlinear discrete-time systems but thet&épu
observers is proven by resorting to the notion of inverse sysm are supposed to be known. Delayed functional observers for
together with the concepts of maximal robust invariant subpaces  discrete-time systems was one of the issues treated in [25]
and nilpotent semigroups. A constructive approach to derie .4 159] hut the works exclusively deal with linear systems
the explicit equations of the observer is provided. An examie o ) " )
illustrates the efficiency and the computational aspects ofhe Flnlte-tlme. unknown |nput5 functional ob.se.rvers have been
method. proposed in [15] for singular systems. Finite-time state re
construction is also closely related to algebraic obselitysab
Concerning this issue, the reader should refer to [13] [2]

I. INTRODUCTION for continuous nonlinear systems and [16] [11] for linear

Reconstructing the state vector of a system from its acc@ld polynomial discrete-time systems. However, these svork
sible outputs is an important issue in automatic control. gPnsider the problem of full state reconstruction and phrti
various contexts, the inputs of the system may be unknovaiate reconstruction is not addressed. Algebraic obstityab
either because the control is not accessible as in some W&s previously addressed in [24] in the context of optimal
centralized control setups or because the inputs actualhds control as “perfect observability”.
for disturbances and faults, unknown by definition. Fuetlo ~ The approach proposed in this paper for the design of dead-
observers aim at reconstructing a particular (often linedpeat functional observers is based on results of set-tHfeory
function of the state (possibly of the input as well). Theseu control, in particular the concept of invariance. Invaderof
is motivated by several arguments. Determining a particuld Set or a subspace of the state space is related to man
set of states can be especially interesting for diagnoaigt f classical topics in control, such as stability, Lyapunosaty,
detection and isolation prob|ems or for Supervision_ | 1ok ér constrained control. Invariance and set-theoretic methiod
this context, one can focus on a restricted set of statehlagia control appeared at the end of the sixties, see the piorgeerin
Furthermore, partial state reconstruction can be welleguitwork [6], and they raised an increasing interest in the last
to face computational and real-time stringent constraiass decades, see in particular the recent monograph [7] and refe
often required for embedded or |arge_sca|e systems. Ejnaﬂnces therein for an exhaustive overview. The charactanza
functional observers are useful to directly estimate aliaed Of invariant subspaces, strongly related also with the grigs
control without estimating each component of the state.  of controllability and observability, has been treateddp5].

Functional observers for linear systems have been widdf{ore recently, invariant subspaces have been used in [1] for
addressed since the pioneering work [18]. A complete fram&milar purposes in the context of LPV systems.
work providing necessary and sufficient conditions for con- The outline of the paper follows. Section Il is devoted to
vergence and design procedure has been presented in [tf7.problem statement. In Section IlI, a condition basechen t
The books [10] and more recently [30] present a state Bftion of inverse system for the dead-beat linear functiona
the art of the research in this field. Functional observe@®server to exist is given. Two approaches to check the
have been investigated for some classes of nonlinear systé@ndition in a tractable way are presented in Section IV. The
with unknown inputs. For continuous-time systems, loc&Pncepts of invariant subspaces and nilpotent semigrogps a
considerations are used in [19], sliding mode techniques Gged. The computational issues are addressed in Sectiod V an
[20] or LMI-based approaches in [30] taking into account than illustrative example is given in Section VI.

Lipschitz nature of the nonlinearities. The scarce constiten Notation N is the set of natural_numbers. Givene N

of nonlinear discrete-time systems with unknown inputs md,enoteNn = {xeN:1<x<n} andN, = NyuU{0}. Denote
tivates the present work. In this paper we propose a dead-baih X! thei-th entry of the vectok, with X, the realization
delayed functional observer for discrete-time LPV systen® the time-dependent vectarat timek. Denote withlm the
with unknown inputs. Let us notice that different terms arglentity matrix of dimensiorm and with Op.q the matrix in

RP*4 whose entries are zero. Denote wRhthe i-th element

* GIPSA-lab, Grenoble Campus, 11 rue des Mathématiques,
BP 46, 38402 Saint Martin  d'Héres Cedex, France® of a set of matrices. We assume the convention md? -
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Il. PROBLEM STATEMENT

Consider the discrete-time Linear Parameter Varying (LP

system obeying
{ X1 = A(B) X+ B(6k) U,
Yk = C(6k)x + D(6k) U,

wherex, € R" is the state vectonyy € R™ is the control input
assumed to be unknowmy € RP is the output vector. The
matricesA € R™", Be R™™M C e RP*" andD € RP*™ depend
on the parameter vecté € RS belonging to a known se®g,
possibly unbounded.

We are interested in the following issue.

Problem 1: Given G € R%*", provide a condition for the
existence of a parameter-dependent functiprandts,t; € Z
such that

1)

GXk = f9 (yk+t17 cee ayk+t2)a

for everyx, € R" and every possible realization of the param-

eter G € Qp.
As defined in [28], the quantityGx, is called a rankd

Proposition 1: If there exists an integar> 0 fulfilling for

\%very possible realization of the paramefRe Qg

B(6k)

rmkwwmarmkwaﬂmamM[D@J

| @
then the system

Rirr+1 = Po(Bekrr ) Rirr + Qo (Bekerr )Yicksrs 3

with

Pe(ek:k+r) = A(ek) iQ(ekZlH»l’)ﬁ(ekikJrf)v
Qo (Bcisr) = B(B)IMT (Biekerr),

is an inverse system for (1).

Proof: Definee, = X« — Rx.r as the state reconstruction error.
Analogously to [27], it can be shown that, from (1) and (3)
and provided that (2) is satisfied, the dynamics of the error
reads

(4)

(5)

Hence, ifeg = 0, that isx; = Xg, thene, = 0 and soxg,r = X«
for everyk > 0, which is in accordance with Definition 1m

&+1 = Po(Ocksr )&,

linear functional. The functiorfy acts as a dead-beat delayed

linear functional observer for reconstructing this fuopgl.

Having in mind the different applications mentioned in the

introduction, it is noteworthy to point out that this protvies

IIl. DIRECT APPROACH

The following result yields to characterize a solution to

rather general. Indeed, every linear combination of theestdroblem 1.

can be selected by properly choosi@gand then partial and
full state reconstruction can be addressed.

The proposed approach to solve Problem 1 rests on the
notion of inverse system of (1) which is detailed in the

following definition.

Definition 1: An inverse system for (1) is a system fo

which, when driven by a sequence of outputof (1), the
trajectory of its state vectog toincides with the trajectory of

Xk (possibly up to a delay > 0 referred to as inherent delay,
by analogy with the term used in [26] for linear systems)
whenever both state vectors share the same initialization. _

Define &' (6kk+i) = C(6) if i =0 and

C(6k)
C(B+1)A(6)

ﬁ(ek:k+i) = . : y
C(9k+i):D(l)A(9k+l)

if i >0,

the vectors

T
yk:k+i = [ yI? y-li—+1a LR yLi } T7
Brcri = [ 6 B0 0 6L ]

and the matrix = [Im Opem(r_1)]- Define alsoM(Bksi) in
the following recursive way

D(6k) Opxmi(i-1)
9k:k+i )B(ek) M (9k+l:k+i) ’

with M(6x) = D(6k). The following proposition is a straight-

M(Bck+i)= o

Proposition 2: If there exists a positiveK € N and
Po(Bkrik+14+r) With | € Nk are such that

K
GIEL P9(9k+l:k+l+r) =0, (6)

r - ) .
for all By ik14r € QY for everyl € Nk, thenGRg k41 is

a function of the outputgy,; and the parameter§; with

RS NK+r-
Proof: From (3) we have

K
Xk+K+r+1:| |_|0 Po ( Bt kel )Xk+r+Q6 ( Bk Kokt K1 ) Yk K ekt K1

K-1 K
+ let |I_| 1P9(9k+t:k+t+r)Q9(9k+l:k+l+r)yk+lzk+l+r7
=0t=I+
and then, whenever (6) holdSRy k. r+1 does not depend on
the initial statexc,, and reads

Gtk +r+1 = GQo (Gt Kokt Kotr ) Vit K kK 41
K-1 K

+G IzOt |I_|+1P6(9k+t:k+t+r)Q6(9k+l:k+l+r)Yk+l:k+l+r- )
[ |

From the definition of inverse system, condition (6) implies
the following result. _

Proposition 3: If K andPg (6 :k+1+r) With | € Nk are such
that (6) holds therGX, kr+j = GXk+j forall j > 0.

Proof: From (5) and (6), we have thaGe. k.1 =
GMK.oPo(Bkiikiir)e = O for all & € R", which implies
GRiiK+r+j = GXepkj forall j > 0. [ |

The following proposition is a direct consequence of Propo-

forward extension of the result given in [27] for switchedition 2, in particular considering the equation (7), andger

systems.

sition 3.



Proposition 4: If K andPg (6. :kt1+r) With | € Nk are such Finally, based on Propositions 3 and a suitable shift, we get

that (6) holds then Problem 1 is solved with given by (10) which completes the proof and shows thainvolves the
Gx = Gficrr = GQo (B 1ir—1)Yi1hkir_1 outputyyy (and the parametef,) for —-K—-1<1<r-—1.
K-1 K ' ' L

+G |Zo t7||_|+lp9(9k+t—K—l:k+t+r—K—l) The point is that checking condition (9) can be computa-

Q0 (B K k1K) Vil KK 1 tionally unaffordable since it requires to test the prodofct
' ' ’ many sequences &f(px), whose number can be exponential

and the integers fulfill; = —K —1 andt =r —1. in K. In the following, two approaches are presented to obtain
In the remaining part of the paper we provide an approach{ ~iable conditions for (9) to hold.
check whether the condition (6) is fulfilled and to reformala

Proposition 4 accordingly. First, notice that the paraioetr
dependence of the matrices in (3) and (4) with respect to IV. | NVARIANT SET-BASED APPROACH
Bkir € Q[;rl is not linear in general. However, given the set
Qg, there always exists a functiop such thatPy depends  The concept of invariant subspaces is recalled here, see the
linearly on the parametesy defined asox = p(6kck+r). CoN-  monograph [5] for details.
sider for instancep determined by the functions @k. j, with  pefinition 2 (Invariant subspace)Given the matrixA €
j € Ny, appearing in the entries & (6ck:r). A setQp CRY Rrnxn 5 gupspace’ C R" is an invariant ifA¥ C ¥. Given
such thatpx € Qp if By € Q5™ can always be determinedihe set of matrices\(p) C R"™", defined byA : RI — RN
as well. To simplify the notation, we define for p € Qp, a subspace/ C R" is a robust invariant if
P(p) = Po(Bicer). QA = Qo(Becsr). S=Yicker- ARV S, for al p € Q. Given a subspace ¢ K, the
maximal invariant (resp. robust invariant) subspace éoath
Following the considerations above(px) can be expressedin ¢ is given by the sum of all invariant (resp. robust invariant)
as a subspaces contained #i.
P(px) = ZPlpiE'), (8) In other words,? is an invariant (resp. robust invariant)
i= subspace if every state trajectory generated by theAr(agsp.
for all px € Q, and with Q, subset ofRY and Proposition 4 A(p)) starting inside it, remains confined within it. The set
is reformulated as follows. of invariant (resp. robust invariant) subspaces containeg
Theorem 1:There exists a solution to Problem 1 with= admits a supremum. We recall here a property of the invariant
—K -1 andt, =r —1 if there is a positivik € N andR, for subspaces, see [5].

i € Ng, are such that Property 1 ( [5]): Given a linear transformatioA : R" —
K R", a subspace” C R" with matrix basisT € R"*9 is invariant
G rLF’lk =0, (9) if and only if there exists a matriX € R9%9 such that
k=
for all .7 = [io, ...,ik]T € N§™*. The functionfy satisfies AT =TX. (11)

Gx = GRer = G Q(pr1) Vi Clearly the kernel ofA, denotedker(A), is an invariant
XkKil Kt K pk_’l Vit subspace. Indeed, T is the basis matrix oker(A), it follows
+G5S 3 M jpémeflﬁQ(Pkfjfz) Yi—j—2- (10) that AT = 0, and then (11) holds merely posing = 0.

1=0 genjtti=K= Alternatively seen, ifx € ker(A) then Ax= 0 € ker(A), and
Proof: By definition we have henceker(A) is invariant.
GRri1=G ZN PéiO)F’lof(kJrr +GQ(P)Vks Definition 3: GivenP(px) as in (8), define
lo€Ng
1 . _ q
Cletri2=G 3 2|I'|0P|£|+')|R|>A<k+r + GQ(Pk+1)Ykt1 2 =(ker(R").
JeNgl= i=1

+G 3 'Ry QoK) %, N
ﬂgN%l o Qo) Moreover, denote wittM € R"<9 a basis matrix of#.
Notice that the definition of”? above involves the transpose
of the matrices? for all i € Nj.

K .
o _ (INp ¢ 3
CRerrikir =6 5 M Pt Pifesr +CQPK) Vi Proposition 5: The setZ as in Definition 3 is an invariant

S eNK+11=0 _ .
K—1 K ) _ subspace for the LPV system given By 1 = Pr(px)z with
+Gy 3 N Py P QlAkik—1-j) Ykik—1-j>
e Prip) = 3 AVRT =P(agT 12)
where .# = [ig, ...,iy]" € chﬁl for all k € Nk. If for every P i;pk ' Px
# € N§+1 condition (9) holds, then Proof: SinceM is a basis matrix of#, thenP™M = 0 for
. _ all i € Ng, which implies thatPr(px)M = 0. From Property
GXk“T(’fil - GQ(p:?LK) Ytk 1, 2 is invariant for the system whose dynamics is given by
+Gy Y pIE'J'r)I R, Q(okik-1-j) Ykik-1—j- (12) if and only if there existX such thatPr(px)M = MX,
1=0 genjtI=K-] that holds posing = 0. [ |



A. Kernel-based approach Proof: By construction] is a basis of the invariant subspace
A sufficient condition for Theorem 1 to hold, then for that is contamed irker(G) then GT = 0. Hence, for all

Problem 1 to admit a solution, follows. I =lio, ...,ik]" € NKH we have
Proposition 6: Consider the system (3), the sét and the K FT |5
matrix M as in Definition 3. IfG € R9" is such that the G[] R, =G |'| T [O B }T !
columns of G™ are in 2, i.e. there isX € R%9 such that k:KO = <
G =XMT, then there exists a solution to Problem 1 with=0. = k|‘|OG[T, 7] |:Oh><g B } T [deg, GT |‘| P.k} T-1=0.
= k

Proof: From the definition of2?, if the rows of G are in
2 thenGR =0, for alli € Ng. Thus condition (9), sufficient Thus condition (9) is satisfied for alt' = [io, ..., ik]T € Nk,
for solving Problem 1, holds witk = 0. B which is sufficient for the existence of a solution to Problem
The result in Proposition 6 is implicity based on theFinally, the expression ofg is obtained by following along
fact that &2 is an invariant for the system (3) as proved ithe same lines as in the proof of Theorem 1. [ ]
Proposition 5. On the other hand, this condition requires th The functionfgy stands for the expected dead-beat delayed
the state of (3) reaches the invariant subspace in one st@sar functional observer written in terms Bfpx) andQ(px)-
i.e. GXry1 = 0. This is obviously restrictive but provides arrinally, we are in position for giving a tractable approaoh f
interesting insight on the problem and a clue on its possitd@ecking (14). To this end, let us recall the concept of népb

alternative solution. semigroups.
Definition 5 (Semigroup)A semigroups is a set together
B. Invariance-based approach with an associative internal law.

The definition introduced below is central for what follows. It is. said to be f|n|t¢ if it has a f|n|t.e _number of elemgnts.
Definition 4: Given the system (3) wittP(p) as in (8) If . is a set of matrices, the associative internal law is the

denote: with% the maximal robust invariant subspace fofnatrix multiplication and there exists an absorbing elemen
{p} . € R™" contained inker(G); with g the dimension which is the null matrix. In such a case, we can define a
| 1

of ¢; with T € R™Y its basis matrix and with ¢ R"h 5 Nilpotent semigroup of matrices. _
matrix such thafl — [T T] € R™" is nonsingular. Definition 6 (Nilpotent semigroup)A semigroup . of
Based on the results presented in [5], the dynamics gpptrices with the multiplication law is said to be nilpotent

the robust invariant subspace and on its complement can'b&nY Product involving a finite numbdre N of its elements
characterized as follows. (possibly the same element) is always equal to the null matri

Proposition 7: Given the system (3) wittP(py) as in (8), The smallest integaris call_ed the class of ninotengy af”
consider? and T as in Definition 4. Ther# is invariant _ 1Nen, the relation (14) in Theorem 2 means tRawith

for P(py) and there exisP(py) € R9%9, P(py) € R9M and i € Nq generate a nilpotent semigroup of classK +1. As a
B(p) € R, linear inp and such that: direct consequence, the following computation-orientsiitt

follows.

P(o) =T [ P(px) Ié(Pk) ] T-1 (13) Corollary 1: If B, for all i € Ng, as defined in Proposition 7,
Onxg  P(o) ’ generate a nilpotent semigroup of clasthen Problem 1 is
for every px € Q. solved withK =t — 1. The explicit functionfg is given by

Proof: First notice that, by definition of invariant subspace$10) witht; = —t andt, =r — 1.

if ¢ is a robust invariant fo{ R}, then it is invariant for ~ Remark 1:The class of nilpotencyis smaller than or equal
every singleR. This implies that there exid® € R9%9, P ¢ toh, that is the dimension of the subspace complementary to

R9%N B ¢ RPN sych that ¢ in R". Then, the bigger the dimension®f the smaller such
_ BB . a bound, in general. Moreover, notice that for lower values o
R=[TT] [ o ! 8 ] TT] ", d, number of rows of, the dimension o can be higher and
hxg Hl then the dimension of matric&sis smaller. This is reasonable,

for all i € Ng, beingT a basis of¢. Then (13) holds by posing as the smaller is the partial state to be estimated through th
inverse system, the smaller is the invariant subspace, achwh

P(p) =31 Roy Plo) =31, Bo) Po) =3, R0l)  the state projection must converge to 0 in finite time.
for all px € Qp. Thus¥ is invariant forP(py), from (11). ®
Based on Proposition 7, the following theorem, considered V. COMPUTATIONAL ISSUES

as the central theorem of the paper, can be stated as af, yhig section, we first give some insights on the compu-
alternative to Theorem 1. , tational procedures for obtaining the maximal robust irarar
Theorem 2:There exists a solution to Problem 1 with= ¢ \psnace and the matricés with i € Nq of Proposition 7

—K-landz=r—1ifthere is a positivek € N andR, for i qived in Theorem 2. Then some considerations on the
i € Ng, are such that condition for the matriceB with i Ngq to generate a nilpotent

K . semigroup, as stated in Corollary 1, are provided.

|_LP|k =0, (14)  According to Definition 2, a subspack is invariant for a

k= linear system if its image through the linear transfornrai®
forall .# = ip, ...,ik]" € Né*l. The functionfg reads as (10). contained in¥". Well established results on how to generate



invariant subspaces have been presented in literatureinseeessible time-varying parametéy. Such a problem has been
particular [5]. Interestingly for our purpose, the algbnit for investigated in [9] and called “exact LPV description”. # i
computing invariant subspaces for LPV systems are directipteworthy to stress that LPV systems permit to model a
obtained from those concerning linear systems, see [1], [Blide class of nonlinear systems. Indeed, it is sufficient, fo
Every robust invariant subspace (then also the maximal one3tance, that the nonlinear dynamical and output funstion
contained in¥ for {A; }?:1 is a robust invariant subspace als@espectively denoted andh, are differentiable and such that
for A(Qp) = {A(p) = S, AipD : p € Qp} for all Q, CRY, £(0,0) =0 andh(0,0) = 0 for having equivalence between
as proved in Proposition 7. Givew C R™", every robust the two models, see [8]. In case that the parameter is not
invariant for anyA(Qp) such thate’ C A(Qp) is invariant accessible, the LPV model can be considered as a Linear
also for.e7. Clearly, the smaller is the sé{(Q,) containing Difference Inclusion (LDI) system. When the input is assdme
</, the closer are the sets of invariant subspacesAfél,) to be unknown as it holds here, the problem is the search for
and for.«Z. The following algorithm provides a robust invariang suitable functiorgx which can be expressed in terms of the
subspace contained iff for every.er C R™" whose elements output over a finite number of time-steps. In general, sévera
are linear combinations of the matricAswith i € Ng. such functions may exist and a possible approach is to resort
Algorithm 1: Given the subspacg C R" and the set of ma- a functional observer, as illustrated in the following exdéen
trices {A}iL; C R™M, the maximal robust invariant subspace Consider the controlled nonlinear system given by
for {A}{L, contained in¥ is _#, provided by:

1 1 2
So=7 Xgl _ _4)<(1(‘>) - )52> @,
e - = 32+ 2 1 X 1
— NN ALA  k=0,..n—1 (15 X1 k ) 17)
Hi1=Jo ieNqu Sk X9 = —20
Remark 2:1t can be proved that the same sequence of Vi = xf(l),
ﬁg?;?;fes/k with k=0....,nis generated by the following whereuy € R is the control supposed to be unknown. First,
1 we choosef = xl((l). The system can be rewritten as (1) with
karl:fkﬁﬂAf Jk k=0,...,n—1. 416 5
ieN -
Remark 3:Notice that, with a slight abuse of notation, the\(6)= |36« 26« 1|, B(6)=|1|, C(6)=[1 0 0], D(6) =0.
meaning of the symboAi’l does not denote the inverse of -2 0 0 1

matrix A;, but it is the operator that associates to a subsp
its inverse image. That is, given the subspagg C R" one

1o, n. a i -
haveA™ fi = {x€R": Axe 7}, which is defined also for " i3 ccessible from the output.
singular and nilpotent matrices.

; i _ 2,1 (2)
Remark 4:Algorithm 1, either implementing the iteration AItIernatlyerl, chpﬁsmgﬁk = 3% +2¢7, the system (17)
(15) or (16), is based, substantially, on the computatiothef results as in (1) wit

aé?early, the problem of exact LPV description of (17) is
trivially solved by such a functiorf since 6 = xl((l) = Yk

intersection between subspaces and of the inverse image of —-410 0

a subspace. We provide hereafter a sketch of the procedurg6)=| 6 0 1|, B(6)=|1|, C(6)=[1 0 0], D(6) =0.
Consider two subspacets C R" and % C R", whose basis -200 1

matrices ar& € R"™V andU € R"™Y. The subspac# NA~ 1% (18)

is given by the vectors € R" that can be expressed as a linedlow, we must check whethé, is accessible from the output.
combination of the columns &f and their image througA To this end, we search for a dead-beat linear functional
as a linear combination of those bf. Then, in practicexc Observer to estimaté, if it exists. The quantityGx, with
¥ NA~1% if there existy € RV andze RY such thak=Vyand G = [3,2,0] is the rank-1 linear functional to be estimated.
Ax= Uz that means such th&/y=Uz Hence,” NA-1% It turns out that (2) is fulfilled withr = 2. Hence, the related
can be obtained by computing the kernel[a¥, U]. inverse system (3) is characterized (see (4)) by the paeamet
As for the computational aspects regarding the nilpotenégpendent matrix
property, involved in Corollary 1, we must recall the Lekits 4 1 0
theorem (Theorem_ 2.1.7 stated in [23]). _ _ Po(Bhcks2) = _16 4 0 |,
Theorem 3 (Levitsky’s theoremfiny semigroup of nilpo- _14-6, 4 -1
tent matrices can be triangularized.
Thus, all the matrices of a same nilpotent semigroup c#tat is affine in6 € R. Here, the functionp such that the
be triangularized by means of a common change of basis. TRatrix Py (6kk+2) depends linearly on a paramefgris merely
triangularization can be performed for example with theoalg Pk = P(6kk+2) = [1, & . The matrice?, as in (8), are

rithm given in [14] and it leads to a substantial reductiotheaf 4 1 0 0 0 O
computational complexity, see [21] or a detailed invesitya Pb=| -16 4 0 BP=| 0 00
in [22]. -14 4 -1 -1 0 0

VI. ILLUSTRATIVE EXAMPLE Consider Problem 1 witls = [3, 2, 0], whose kernel basis

The example is devoted to the problem of rewriting & given by the vector§-2/3,1,0]" and[0,0,1]". To check
nonlinear discrete-time systems as an LPV system with aghether Theorem 2 is fulfilled, we compute the matriégs



as explained in Section V. Algorithm 1 generates a sequerncg
of subspaces# and provides the maximal robust invariant
subspace 7, in ker(G), whose basis i§ = [0,0,1]". Con- [16]
sidering the canonical basis matffx we obtain the matrices
P as defined in Proposition 7

ﬁl:|: -4 1], FA’zz[ [18]

-16 4
Corollary 1 is fulfilled sinceP, and P> are both nilpotent [19]
(necessary condition) and generate a nilpotent semigratip w
class of nilpotencyt = 2. Hence, Problem 1 is solved with[2]
K =1 and the explicit solution reads

(17]
00
00

. [21]
G = CX¢y2 = 11yk + 2yk 1.
As the expression (19) does not dependignit is a dead-beat
delayed linear functional observer suitable to providexace [22]
LPV description of (17), replacingy by 11yx + 2yk. 1 in (18).

(19)

[23]
VIlI. CONCLUSIONS [24]

An approach for designing a dead-beat functional observer
with unknown inputs for discrete-time LPV systems has bee[\g]
presented. Existence conditions have been derived. They ar
based on the notion of inverse system, invariant subspackes a
nilpotent semigroups. The proof is constructive and anieipl [26]
formulation of the observer is provided. The results coneer
large class of problems in control, including set-membigrsh27]
analysis or worst-case robust design.
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