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CONDITIONED RANDOM WALKS FROM KAC-MOODY ROOT SYSTEMS

CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

Abstract. Random paths are time continuous interpolations of random walks. By using Lit-
telmann path model, we associate to each irreducible highest weight module of a Kac Moody
algebra g a random path W. Under suitable hypotheses, we make explicit the probability of the
event E: “W never exits the Weyl chamber of g”. We then give the law of the random walk
defined by W conditioned by the event E and prove this law can be recovered by applying to
W a path transform of Pitman type. This generalizes the main results of [15] and [10] to Kac
Moody root systems and arbitrary highest weight modules. Our approach here is new and more
algebraic that in [15] and [10]. We indeed fully exploit the symmetry of our construction under
the action of the Weyl group of g which permits to avoid delicate generalizations of the results
of [10] on renewal theory.

1. Introduction

The purpose of the paper is to study conditionings of random walks using algebraic and com-
binatorial tools coming from representation theory of Lie algebras and their infinite-dimensional
generalizations (Kac-Moody algebras). We extend in particular some results previously obtained
in [15], [16], [1], [10] and [11] to random paths in the weight lattice of any Kac-Moody algebra
g. To do this, we consider a fixed g-module V in the category Oint (a convenient generalization
of the category of Lie algebras finite dimensional representations). It decomposes as the direct
sum of its weight spaces, each such space being parametrized by a vector of the weight lattice
of g. The transitions of the random walk associated to V are then the weights of V .

The prototype of the results we obtain appears in the seminal paper [15] by O’Connell where
it is shown that the law of the one-way simple random walk W in Zn conditioned to stay in
the cone C = {(x1, . . . , xn) ∈ Zn | x1 ≥ · · · ≥ xn ≥ 0} and with drift in the interior C̊ of C,
is the same as the law of a Markov chain H obtained by applying to W a generalization of
the Pitman transform. This transform is defined via an insertion procedure on semistandard
tableaux classically used in representation theory of sln(C). The transition matrix of H can
then be expressed in terms of the Weyl characters (Schur functions) of the irreducible sln(C)-
modules. Here the transitions of the random walk W are the vectors of the standard basis of Zn

which correspond to the weights of the defining representation Cn of sln(C). In addition to the
insertion procedure on tableaux and some classical facts about representation theory of sln(C),
the main ingredients of O’Connell’s result are a Theorem of Doob on Martin boundary together
with the asymptotic behavior of tensor product multiplicities associated to the decompositions
of V ⊗ℓ in its irreducible components (which in this case are counted by standard skew tableaux).

We consider in [10] more general random walks W with transitions the weights of a finite-
dimensional irreducible g-module V where g is a Lie algebra. The law ofW is constructed so that
the probabilities of the paths only depend of their lengths and their ends. We then show that the
process H obtained by applying toW a generalization of the Pitman transform introduced in [1]
is a Markov chain. When V is a minuscule representation (i.e. when the weights of V belong to

the same orbit under the action of the Weyl group of g) and W has drift in the interior C̊ of the
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cone C of dominant weights, we prove that H has the same law as W conditioned to never exit
C. Similarly to the result of O’Connell, this common law can be expressed in terms of the Weyl
characters of the simple g-modules. Nevertheless the methods differ from [15] notably because
there was no previously known asymptotic behavior for the relevant tensor multiplicities in the
more general cases we study. In fact, we proceed by establishing a quotient renewal theorem for
general random walks conditioned to stay in a cone. When W is not defined from a minuscule
representation, we also show that the law of W conditioned to never exit C cannot coincide with
that of H.

In [11], we use the renewal theorem of [10] and insertion procedures on tableaux appearing
in the representation theory of the Lie superalgebras gl(m,n) and q(n) to extend the results of
[15] to one way simple random walks conditioned to never exit cones C′ for examples of cones C′

different from C.

In view of the results of [10], it is natural to ask whether the Markov chain H is related to
a suitable conditioning of W in the non minuscule case. Also what can be said about the law
of W conditioned to never exit C ? In the sequel, we will answer both questions (partially for
the second) not only for random walks defined from representations of Lie algebras but, more
generally, for similar random walks with transitions the weights of a highest weight module V (κ)
associated to a Kac-Moody algebra g of rank n.
By using Littelmann path model [13], one can associate to V (κ) a set of piecewise continuous
linear paths B(πκ) in the weight lattice P ⊂ Rn of g such that all the paths in B(πκ) have
the same finite length. These paths (called elementary in the sequel) are regarded as functions
π : [0, 1] → Rn such that π(0) = 0 and π(1) ∈ P . The weights of V (κ) are then the elements
π(1), π ∈ B(πκ). The set B(πκ) has the structure of a colored and oriented graph isomorphic to
the crystal graph of V (κ) as defined by Kashiwara.
We use the crystal graph structure on B(πκ) to endow it as in [10] with a probability density p.
This yields a random variable X defined on B(πκ) with probability distribution p. Let (Xℓ)ℓ≥1

be a sequence of i.i.d. random variables with the same law as X. We then define a continuous
random path W such that W(t) = X1(1) + · · · + Xℓ−1(1) + Xℓ(ℓ − t) for any ℓ ≥ 1 and any
t ∈ [ℓ − 1, ℓ]. The sequence W = (Wℓ)ℓ≥0 defined by Wℓ = W(ℓ) is then a random walk with
transitions the weights of V (κ) as considered in [10]. The main result of the paper is that, when

W has drift in C̊ (i.e. in the interior of the Weyl chamber of g), the law of its conditioning by
the event E = (W(t) ∈ C for any t ≥ 0) can be simply expressed in terms of the Weyl-Kac
characters. So the results of [10] remain true for a conditioning holding on the whole continuous
trajectory (not only on its discrete version at integer time). We also prove that the conditioned
law so obtained coincides with the law of the image of W by some map, called the generalized
Pitman transform. When g is finite-dimensional and κ is minuscule we recover in particular the
main results of [15] and [10]. Indeed in the case, for any ℓ ≥ 0, the set {W(t) | t ∈ [ℓ, ℓ+ 1]} is
just the segment joiningWℓ = W(ℓ) toWℓ+1 = W(ℓ+1). On the representation theory side, our
results also lead to asymptotic behavior of tensor product multiplicities of Kac-Moody highest
weight modules.
Nevertheless our approach differ from that of [10] since we do not use any renewal theorem.
Our strategy is more algebraic: we exploit the symmetry of the representations with respect to
the Weyl group W of g and study simultaneously a family of random paths Ww indexed by the
elements w ∈ W. In particular our proofs are independent of the results of [15] and [10].

The paper is organized as follows. In Section 2, we introduce the notions of random walk
and random path used in the paper. Section 3 recalls the necessary background on Kac-Moody
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algebras and their representations and summarize some important results on Littelmann’s path
model. The random path W and the random walk W associated to V (κ) are introduced in
Section 4 together with the generalized Pitman transform and the Markov chain H. In Section
5, we use a process of symmetrization to define the random paths Ww, w ∈ W from W = W1.
This allows us to give an explicit expression of the harmonic function µ 7→ Pµ(W(t)∈ C for any
t ≥ 0) in Section 6 and prove our main theorem. Its gives the probability that W starting at
µ remains in C. We also extend it to the case of random walks defined from non irreducible
representations of simple Lie algebras. We notably permit us to present in detail the important
example of the random walk to the height closest neighbors which cannot be treated by the
methods of [10] since the corresponding representation does not decompose as a sum of minuscule
representations. Finally Section 7 is devoted to additional results: we give asymptotic behavior
of tensor power multiplicities and also compare the probabilities Pµ(W(t)∈ C for any t ≥ 0) and
Pµ(Wℓ ∈ C for any ℓ ≥ 0).

MSC classification: 05E05, 05E10, 60G50, 60J10, 60J22.

2. Random paths

2.1. Background on Markov chains. Consider a probability space (Ω,F ,P) and a countable
set M . A sequence Y = (Yℓ)ℓ≥0 of random variables defined on Ω with values in M is a Markov
chain when

P(Yℓ+1 = µℓ+1 | Yℓ = µℓ, . . . , Y0 = µ0) = P(Yℓ+1 = µℓ+1 | Yℓ = µℓ)

for any any ℓ ≥ 0 and any µ0, . . . , µℓ, µℓ+1 ∈ M . The Markov chains considered in the sequel
will also be assumed time homogeneous, that is P(Yℓ+1 = λ | Yℓ = µ) = P(Yℓ = λ | Yℓ−1 = µ)
for any ℓ ≥ 1 and µ, λ ∈ M . For all µ, λ in M , the transition probability from µ to λ is then
defined by

Π(µ, λ) = P(Yℓ+1 = λ | Yℓ = µ)

and we refer to Π as the transition matrix of the Markov chain Y . The distribution of Y0 is
called the initial distribution of the chain Y .

In the following, we will assume that M is a subset of the euclidean space Rn for some
n ≥ 1 and that the initial distribution of the Markov chain Y = (Yℓ)ℓ≥0 has full support, i.e.
P(Y0 = λ) > 0 for any λ ∈ M . In [10], we have considered a nonempty set C ⊂ M and an
event E ∈ T such that P(E | Y0 = λ) > 0 for all λ ∈ C and P(E | Y0 = λ) = 0 for all λ /∈ C;
this implied that P(E) > 0, we could thus define the conditional probability Q relative to this
event: Q(·) := P(·|E). For example, we considered the event E := (Yℓ ∈ C for any ℓ ≥ 0). In the
present work we will study more general situations, this involves to introduce some generalities
about continuous time Markov processes.

A continuous time Markov process Y = (Y(t))t≥0 on (Ω,F ,P) with values in Rn is a family of
random variables defined on (Ω,F ,P) such that, for any integer k ≥ 1, any 0 ≤ t1 < · · · < tk+1

and any Borel subsets B1, · · · , Bk+1 of Rn, one gets

P(Y(tk+1) ∈ Bk+1 | Y (t1) ∈ B1, Y (t2) ∈ B2, · · · , Y (tk) ∈ Bk) = P(Y (tk+1) ∈ Bk+1 | Y (tk) ∈ Bk).

This is the Markov property, that we will use very often. In the following, we shall need a more
general version of this property which is a consequence of the above. One can indeed show that
for any T ≥ 0 and any Borel sets A ⊂ (Rn)⊗[0,T ], B ⊂ Rn and C ⊂ (Rn)⊗[T,+∞[, one gets

P((Y(t))t≥T ∈ C | (Y(t))0≤t≤T ∈ A,Y(T ) ∈ B) = P((Y(t))t≥T ∈ C | Y(T ) ∈ B).

In the sequel, we will assume the two following conditions.
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(1) For any integer ℓ ≥ 0, one gets

(1) Yℓ := Y(ℓ) ∈M P−almost surely

It readily follows that the sequence Y = (Yℓ)ℓ≥0 is a M -valued Markov chain.
(2) For any 0 ≤ s ≤ t and any Borel subsets A,B ∈ Rn

(2) P(Y(t+ 1) ∈ B | Y(s + 1) ∈ A) = P(Y(t) ∈ B | Y(s) ∈ A).

Combining this condition with the Markov property, one checks that for any T ≥ 1 and
x ∈ Rn, the conditional distribution of the process (Y(t + 1))t≥T with respect to the
event (Y(T + 1) = x) is equal to the one of (Y(t))t≥T with respect to (Y(T ) = x).

In the following, we will assume that the initial distribution of the Markov process (Y(t))t≥0

has full support, i.e. P(Y(0) = λ) > 0 for any λ ∈ M . We will also consider a nonempty
set C ⊂ Rn and will assume that the probability of the event E := (Y(t) ∈ C for any t ≥ 0)
is positive; the conditional probability Q relative to E is thus well defined. The following
proposition can be deduced from our hypotheses and the Markov property of Y . We postpone
its proof to the appendix.

Proposition 2.1. Let (Y(t))t≥0 be a continuous time Markov process with values in Rn satisfying
conditions (1) and (2) and C ⊂ Rn such that the event E := (Y(t) ∈ C for any t ≥ 0) has positive
probability measure. Then, under the probability Q(·) = P(·|E), the sequence (Yℓ)ℓ≥0 is still a
Markov chain with values in C ∩M and transition probabilities given by

(3) ∀µ, λ ∈ C ∩M Q(Yℓ+1 = λ | Yℓ = µ) = ΠE(µ, λ)
P(E | Y0 = λ)

P(E | Y0 = µ)

where ΠE(µ, λ) = P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ + 1] | Yℓ = µ). We will denote by Y E this
Markov chain

To simplify the notations we will denote by C the set C ∩M as soon as we will consider the
Markov chain (Yℓ)ℓ≥0 and ΠE = (Π(µ, λ))µ,λ∈C the “restriction” of the transition matrix Π to
the event E where

ΠE(µ, λ) = P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ+ 1] | Yℓ = µ).

So ΠE(µ, λ) gives the probability of the transition from µ to λ when Y(t) remains in C for
t ∈ [ℓ, ℓ+ 1].

A substochastic matrix on the countable set M is a map Π : M × M → [0, 1] such that
∑

y∈M Π(x, y) ≤ 1 for any x ∈ M. If Π,Π′ are substochastic matrices on M , we define their

product Π×Π′ as the substochastic matrix given by the ordinary product of matrices:

Π×Π′(x, y) =
∑

z∈M

Π(x, z)Π′(z, y).

A function h : M → R is harmonic for the substochastic transition matrix Π when we have
∑

y∈M Π(x, y)h(y) = h(x) for any x ∈ M . Consider a (strictly) positive harmonic function h.

We can then define the Doob transform of Π by h (also called the h-transform of Π) setting

Πh(x, y) =
h(y)

h(x)
Π(x, y).

We then have
∑

y∈M Πh(x, y) = 1 for any x ∈M. Thus Πh is stochastic and can be interpreted
as the transition matrix for a certain Markov chain.



CONDITIONED RANDOM WALKS FROM KAC-MOODY ROOT SYSTEMS 5

An example is given in formula (3): the state space is now C, the substochastic matrix is
ΠE and the harmonic function is hE(µ) := P(E | Y0 = µ); the transition matrix ΠE

hE
is the

transition matrix of the Markov chain Y E.

2.2. Elementary random paths. Consider a Z-lattice P with finite rank d. Set PR = P ⊗ZR

so that P can be regarded as a Z-lattice of rank d in Rd. An elementary path is a piecewise
continuous linear map π : [0, 1] → PR such that π(0) = 0. Two paths π1 and π2 are considered
as identical if there exists a piecewise, surjective continuous and nondecreasing map u : [0, 1] →
[0, 1] such that π2 = π1 ◦ u.

The set F of continuous functions from [0, 1] to PR is equipped with the norm ‖·‖∞ of
uniform convergence : for any π ∈ F , on has ‖π‖∞ := supt∈[0,1] ‖π(t)‖2 where ‖·‖2 denotes

the euclidean norm on Rd. Let B be a countable set of paths with the same norm and fix
a probability distribution p = (pπ)π∈B on B such that pπ > 0 for any π ∈ B. Let X be a
random variable defined on a probability space (Ω,F ,P) and with distribution p (in other words
P(X = π) = pπ for any π ∈ B). Since the paths in B have the same norm, the variable X
admits a moment of order 1 : namely E(‖X‖) < +∞, the series of functions

∑

π pππ thus
converges uniformly on [0, 1] and the function

m := E(X) =
∑

π∈B

pππ

is continuous on [0, 1].
The concatenation π1 ∗ π2 of two elementary paths π1 and π2 is defined by

π1 ∗ π2(t) =
{

π1(2t) for t ∈ [0, 12 ],
π1(1) + π2(2t− 1) for t ∈ [12 , 1].

In the sequel, C is a closed convex cone in PR with interior C̊ and we set P+ = C ∩ P .

2.3. Random paths. Let B be a set of elementary paths and (Xℓ)ℓ≥1 a sequence of i.i.d.
random variables with law X where X is the random variable with values in B introduced in
2.2. We define the random process W as follows: for any ℓ ∈ Z>0 and t ∈ [ℓ, ℓ+ 1]

W(t) := X1(1) +X2(1) + · · ·+Xℓ−1(1) +Xℓ(t− ℓ).

The sequence of random variables W = (Wℓ)ℓ≥0 := (W(ℓ))ℓ≥0 is a random walk with set of
increments I := {π(1) | π ∈ B}.

For any ℓ ≥ 1, let ψℓ be the map defined by

∀µ ∈ C ψℓ(µ) = Pµ(W(t) ∈ C for any t ∈ [0, ℓ])

so that ψℓ(µ) is the probability that W starting at µ remains in C for any t ∈ [0, ℓ]. As ℓ→ +∞,
the sequence of functions (ψℓ)ℓ≥0 converges to the function ψ defined by

∀µ ∈ C ψ(µ) = Pµ(W(t) ∈ C for any t ≥ 0).

Proposition 2.2. Assume there exists a path π ∈ B such that Imπ ⊂ C̊. For any µ ∈ C, we
then have ψ(µ) > 0 when m(1) ∈ C̊ and ψ(µ) = 0 otherwise.

Proof. Observe that ψ(µ) = Pµ(W(t) ∈ C for any t ≥ 0) ≤ Pµ(Wℓ ∈ C for any ℓ ≥ 0). By a
straightforward application of the strong law of large numbers (see [10] for more details), we

have Pµ(Wℓ ∈ C for any ℓ ≥ 0) = 0 when m(1) /∈ C̊. Thus ψ(µ) = 0 when m(1) /∈ C̊. Since B

contains a path π0 such that Imπ0 ⊂ C̊, we have, setting ν = π0(1) ∈ C̊
∀k ≥ 1 Pµ(W(k) = kν,W(t) ∈ C for any t ∈ [0, k]) > 0.
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Let r > 0 be such that B(m(1), r) is included in C. For any integer ℓ ≥ 1 we thus have

Bℓ := Bℓ(ℓm(1), ℓr) ⊂ C and since all the paths in B have the same norm and m(1) ∈ C̊, one
gets, for k large enough

(

W(k) = kν,W(t) ∈ C for any t ≥ k
)

⇐⇒
(

W(k) = kν,W(ℓ) ∈ Bℓ for any ℓ ≥ k
)

and so, by the strong law of large numbers

P

(

W(k) = kν,W(t) ∈ C for any t ≥ k
)

≥ P

(

W(k) = kν,W(ℓ) ∈ Bℓ for any ℓ ≥ k
)

> 0.

Consequently, by the Markov property

ψ(µ) ≥ Pµ

(

W(k) = kν,W(t) ∈ C for any t ∈ [0, k]
)

× Pkν

(

W(t) ∈ C for any t ≥ k
)

> 0.

�

3. Representations of symmetrizable Kac-Moody algebras

3.1. Symmetrizable Kac-Moody algebras. Let A = (ai,j) be a n × n generalized Cartan
matrix of rank r. This means that the entries ai,j ∈ Z satisfy the following conditions

(1) ai,j ∈ Z for i, j ∈ {1, . . . , n},
(2) ai,i = 2 for i ∈ {1, . . . , n},
(3) ai,j = 0 if and only if aj,i = 0 for i, j ∈ {1, . . . , n}.
We will also assume that A is indecomposable: given subsets I and J of {1, . . . , n}, there

exists (i, j) ∈ I × J such that ai,j 6= 0. We refer to [6] for the classification of indecomposable
generalized Cartan matrices. Recall there exist only three kinds of such matrices: when all the
principal minors of A are positive, A is of finite type and corresponds to the Cartan matrix of a
simple Lie algebra over C; when all the proper principal minors of A are positive and det(A) = 0
the matrix A is said of affine type; otherwise A is of indefinite type. For technical reasons, from
now on, we will restrict ourselves to symmetrizable generalized Cartan matrices i.e. we will
assume there exists a diagonal matrix D with entries in Z>0 such that DA is symmetric.

The root and weight lattices associated to a generalized symmetrizable Cartan matrix are
defined by mimic the construction for the Lie algebras. Let P∨ be a free abelian group of rank
2n − r with Z-basis {h1, . . . , hn} ∪ {d1, . . . , dn−r}. Set h := P∨ ⊗Z C and hR := P∨ ⊗Z R. The
weight lattice P is then defined by

P := {γ ∈ h∗ | γ(P∨) ⊂ Z}.
Set Π∨ := {h1, . . . , hn}. One can then choose a set Π := {α1, . . . , αn} of linearly independent
vectors in P ⊂ h∗ such that αi(hj) = ai,j for i, j ∈ {1, . . . , n} and αi(dj) ∈ {0, 1} for i ∈
{1, . . . , n− r}. The elements of Π are the simple roots. The free abelian group Q :=

⊕n
i=1 Zαi is

the root lattice. The quintuple (A,Π,Π∨, P, P∨) is called a generalized Cartan datum associated
to the matrix A. For any i = 1, . . . , n, we also define the fundamental weight ωi ∈ P by
ωi(hj) = δi,j for j ∈ {1, . . . , n} and ωi(dj) = 0 for j ∈ {1, . . . , n− r}.

For any i = 1, . . . , n, we define the simple reflection si on h∗ by

(4) si(γ) = γ − hi(γ)αi for any γ ∈ P .

The Weyl group W is the subgroup of GL(h∗) generated by the reflections si. Each element
w ∈ W admits a reduced expression w = si1 · · · sir . One can prove that r is independent of the
reduced expression considered so the signature ε(w) = (−1)r is well-defined.
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Definition 3.1. The Kac-Moody algebra g associated to the quintuple (A,Π,Π∨, P, P∨) is the
C-algebra generated by the elements ei, fi, i = 1, . . . , n and h ∈ P together with the relations

(1) [h, h′] = 0 for any h, h′ ∈ P ,
(2) [h, ei] = αi(h)ei for any i = 1, . . . , n and h ∈ P ,
(3) [h, fi] = −αi(h)fi for any i = 1, . . . , n and h ∈ P ,
(4) [ei, fj] = δi,jhi for any i, i = 1, . . . , n,
(5) ad(ei)

1−ai,j (ej) = 0 for any i, j = 1, . . . , n such that i 6= j,
(6) ad(fi)

1−ai,j (fj) = 0 for any i, j = 1, . . . , n such that i 6= j,
where ad(a) ∈ Endg is defined by ad(a)(b) = [a, b] := ab− ba for any a, b ∈ g.

Denote by g+ and g− the subalgebras of g generated by the ei’s and the fi’s, respectively. We
have the triangular decomposition g = g+ ⊕ h⊕ g− and h is called the Cartan subalgebra of g.
For any α ∈ Q, set

gα := {x ∈ g | [h, x] = α(h)x for any h ∈ h}.
The algebra g then decomposes on the form

g =
⊕

α∈Q

gα

where dim gα is finite for any α ∈ Q. The roots of g are the nonzero elements α ∈ Q such that
gα 6= {0}. We denote by R the set of roots of g. Set Q+ :=

⊕n
i=1 Z≥0αi, R+ := R ∩ Q+ and

R− = R ∩ (−Q+). Then one can prove that R = R+ ∪ R− and R− = −R+ as for the finite
dimensional Lie algebras. For any γ =

∑n
i=1 aiαi ∈ Q+, we set

ht(γ) :=

n
∑

i=1

ai.

We have the decomposition

g =
⊕

α∈R+

gα ⊕ h⊕
⊕

α∈R−

gα.

For any α ∈ R+, we set dim gα = mα the multiplicity of the root α in g. The set R+ is infinite as
soon as A is not of finite type; the multiplicity mα may be greater than 1 but is always bounded
as follows (see [6] § 1.3):

(5) mα ≤ nht(α) for any α ∈ R+.

When A is not of finite type, the Weyl group W is also infinite and there exist roots α ∈ R which
do not belong to any orbit Wαi, i = 1, . . . , n of a simple root; these roots are called imaginary
roots in contrast to real roots which belong to the orbit of a simple root αi.

The root system associated to a matrix A of finite type is well known (see for instance
[2]) and are classified in four infinite series (An, Bn, Cn and Dn) and five exceptional systems
(E6, E7, E8, F4, G2). In contrast, few is known on the root system associated to a matrix of
indefinite type. In the intermediate case of the affine matrices, there also exists a finite classifi-
cation which makes appear seven infinite series and seven exceptional systems. The root system
can be described as follows. First, the rows and columns of A can be ordered such that the
submatrix A◦ of size (n − 1) × (n − 1) obtained by deleting the row and column indexed by n
in A is the Cartan matrix of a finite root system R◦. The kernel of A has dimension 1; more
precisely, there exists a unique n-tuple (a1, . . . , an) of positive relatively prime integers such that
At(a1, . . . , an) = 0 and the vector δ =

∑n
i=1 aiαi then belongs to R. The sets of real roots, of

imaginary roots, of positive real roots and positive imaginary roots can be completely described
in terms of roots in R◦ and δ. We refer to [6] p. 83 for a complete exposition and only recall the
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following facts we need in the sequel. In particular, we do not need the complete description of
the sets Rre

+ which strongly depends on the affine root system considered. We have

Rre
+ ⊂ {α+ kδ | α ∈ R◦, k ∈ Z>0}∪R◦

+

except for the affine root system A
(2)
2n in which case

Rre
+ ⊂ {α+ kδ | α ∈ R◦, k ∈ Z>0} ∪ {1

2
(α+ (2k − 1)δ | α ∈ R◦, k ∈ Z>0}∪R◦

+.

We also have in all affine cases

(6) Rim
+ = {kδ | k ∈ Z>0} and R+ = Rre

+ ∪Rim
+ .

The multiplicities of the positive roots verify (see [6] Corollary 8.3).

(7) mα = 1 for α ∈ Rre
+ and mα ≤ n for α ∈ Rim

+ .

3.2. The category Oint of g-modules. Let g be a symmetrizable Kac-Moody algebra. We
now introduce a category of g-modules whose properties naturally extend those of the finite-
dimensional representations of simple Lie algebras.

Definition 3.2. The category Oint is the category of g-modules M satisfying the following
properties:

(1) The module M decomposes in weight subspaces on the form

M =
⊕

γ∈P

Mγ where Mγ := {v ∈M | h(v) = γ(h)v for any h ∈ h}.

(2) For any i = 1, . . . , n, the actions of ei and fi are locally nilpotent i.e. for any v ∈ M ,
there exists integers p and q such that epi · v = f qi · v = 0.

For any γ ∈ P , let eγ be the generator of the group algebra C[P ] associated to γ. By definition,

we have eγeγ
′

= eγ+γ′

for any γ, γ′ ∈ P and the group W acts on C[P ] as follows: w(eγ) = ew(γ)

for any w ∈ W and any γ ∈ P .
The irreducible modules in the category Oint are the irreducible highest weight modules, they

are parametrized by the integral cone of dominant weights P+ of g defined by

P+ := {λ ∈ P | λ(hi) ≥ 0 for any i = 1, . . . , n}.

The irreducible highest weight module V (λ) of weight λ ∈ P+ decomposes as V (λ) =
⊕

γ∈P V (λ)γ ;

observe that dimV (λ) is infinite when g is not of finite type, nevertheless the weight space
V (λ)γ is always finite-dimensional and we set Kλ,γ := dim(V (λ)γ). Furthermore, we have
dimV (λ)λ = 1 and ei(v) = 0 for any i = 1, . . . , n and v ∈ V (λ)λ; the elements of V (λ)λ thus
coincide up to a multiplication by a scalar and are called the highest weight vectors.

The character sλ of V (λ) is defined by sλ :=
∑

γ∈P Kλ,γe
γ ; it is invariant under the action of

the Weyl group W since Kλ,γ = Kλ,w(γ) for any w ∈ W. Observe that the orbit W · γ intersects
P+ exactly once when Kλ,γ > 0.

From now on, we fix a weight ρ ∈ P such that ρ(hi) = 1 for any i = 1, . . . , n; we have the
Kac-Weyl character formula :

Theorem 3.3. For any λ ∈ P+, we have sλ =

∑

w∈W ε(w)ew(λ+ρ)−ρ

∏

α∈R+
(1− e−α)mα

.
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The category Oint is stable under the tensor product of g-modules. Moreover, every module
M ∈ Oint decomposes has a direct sum of irreducible modules. Given λ(1), . . . , λ(k) a sequence
of dominant weights, consider the module M := V (λ(1))⊗ · · · ⊗ V (λ(r)). Then dimMγ is finite
for any γ ∈ P , the character of M can be defined by char(M) :=

∑

γ∈P dimMγe
γ and we have

char(M) = sλ(1) · · · sλ(r).

Each irreducible component of M appears finitely many times in this decomposition, in other
words there exist nonnegative integers mM,λ such that

M ≃
⊕

λ∈P+

V (λ)⊕mM,λ or equivalently char(M) :=
∑

λ∈P+

mM,λsλ.

Consider κ, µ ∈ P+ and ℓ ∈ Z≥0. We set

(8) V (µ)⊗ V (κ)⊗ℓ =
∑

λ∈P+

V (λ)
⊕fκ,ℓ

λ/µ and mλ
µ,κ = fκ,1λ/µ.

In the sequel, we will fix κ ∈ P+ and write fκ,ℓλ/µ = f ℓλ/µ for short. Observe that in the previous

decomposition all but a finite number of coefficients fκλ/µ are equal to 0.

3.3. Littelmann path model. The aim of this paragraph is to give a brief overview of the
path model developed by Littelmann and its connections with Kashiwara crystal basis theory.
We refer to [12], [13], [14] and [7] for examples and a detailed exposition. Let g be a sym-
metrizable Kac-Moody algebra associated to the quintuple (A,Π,Π∨, P, P∨) where A is a n×n
symmetrizable generalized Cartan matrix with rank r. In the following, it will be convenient to
fix a nondegenerate symmetric bilinear form 〈·, ·〉 on h∗R invariant under W. For any root α, we
set α∨ = α

〈α,α〉 . We have seen that P is a Z-lattice with rank d = 2n− r. We define the notion of

elementary piecewise linear paths in PR := P ⊗Z R as we did in § 2.2. Let P be the set of such
elementary paths having only rational turning points (i.e. whose inflexion points have rational
coordinates) and ending in P i.e. such that π(1) ∈ P . The Weyl group W acts on P as follows:
for any w ∈ W and η ∈ P, the path w[η] is defined by

(9) ∀t ∈ [0, 1] w[η](t) = w(η(t))

and the weight wt(η) of η is defined by wt(η) = η(1).

We now define operators ẽi and f̃i, i = 1, . . . , n, acting on P ∪ {0}. If η = 0, we set ẽi(η) =

f̃i(η) = 0; when η ∈ P, we need to decompose η into a union of finitely many subpaths and
reflect some of these subpaths by sαi according to the behavior of the map

hη :

{

[0, 1] → R

t 7→ 〈η(t), α∨
i 〉.

Let mη for the minimum of the function hη. Since hη(0) = 0, we have mη ≤ 0.

If mη > −1, then ẽi(η) = 0. If mη ≤ −1, set t1 := inf{t ∈ [0, 1] | hη(t) = mη} and let
t0 ∈ [0, t1] be maximal such that mη ≤ hη(t) ≤ mη + 1 for any t ∈ [t0, t1] (see figure 1). Choose

r ≥ 1 and t0 = t(0) < t(1) < · · · < t(r) = t1 satisfying the following conditions: for 1 ≤ a ≤ r
(1) either hη(t

(a−1) = hη(t
(a)) and hη(t) ≥ hη(t

(a)) on [t(a−1), t(a)],

(2) or hη is strictly decreasing on [t(a−1), t(a)] and hη(t) ≥ hη(t
(a−1)) on [0, t(a−1)].

We set t(−1) = 0 and t(r+1) = 1 and, for 0 ≤ a ≤ r + 1, we denote by ηa the elementary path
defined by

∀u ∈ [0, 1] ηa(u) = η(t(a−1) + u(t(a) − t(a−1)))− η(t(a−1)).
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0 1

t t t’ t’110 0

m

m+1

α

η1

η 2

η

Figure 1. Paths η, η1 = ẽi(η) and η2 = f̃i(η)

Observe that ηa is the elementary path whose image translated by η(t(a−1)) coincides with the
restriction of η on [t(a−1), t(a)]; the path η decomposes as follows

η = η0 ∗ η1 ∗ · · · ∗ ηr ∗ ηr+1.

For 1 ≤ a ≤ r+1, we also set η′a = ηa in case (1) and η′a = sαi(ηa) in case (2). For i ∈ {1, · · · , n},
we set

ẽi(η) =

{

0 if hη(1) < mη + 1,
η0 ∗ η′1 ∗ · · · ∗ η′r ∗ ηr+1 otherwise.

To define the f̃i, we first propose another decomposition of the path η. If hη(1) < mη + 1,

then f̃i(η) = 0. Otherwise (hη(1) ≥ mη + 1), set t′0 := sup{t ∈ [0, 1] | hη(t′0) = mη} and let
t′1 ∈ [t′0, 1] be minimal such that hη(t) ≥ mη + 1 for t ∈ [t′1, 1] (see figure 1). Choose r ≥ 1 and

t′0 = t(0) < t(1) < · · · < t(r) = t′1 satisfying the following conditions: for 1 ≤ a ≤ r

(3) either hη(t
(a−1) = hη(t

(a)) and hη(t) ≥ hη(t
(a−1)) on [t(a−1), t(a)],

(4) or hη is strictly increasing on [t(a−1), t(a)] and hη(t) ≥ hη(t
(a)) on [t(a), 1].

We set t(−1) = 0 and t(r+1) = 1 and, for 0 ≤ a ≤ r + 1, we denote by ηa the elementary path
defined by

∀u ∈ [0, 1] ηa(u) = η(t(a−1) + u(t(a) − t(a−1)))− η(t(a−1)).

As above, the path η decomposes as η = η0 ∗ η1 ∗ · · · ∗ ηr ∗ ηr+1; for 1 ≤ a ≤ r + 1, we thus set
η′a = ηa in case (3) and η′a = sαi(ηa) in case (4) and the operator f̃i, 1 ≤ i ≤ n, is defined by

f̃i(η) =

{

0 if hη(1) < mη + 1,
η0 ∗ η′1 ∗ · · · ∗ η′r ∗ ηr+1 otherwise.
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Remarks: 1. Observe that the paths η, ẽi(η) and f̃i(η) have the same length.
2. When ẽi(η) is computed, the segments of η which are replaced by their symmetric under sαi

correspond to intervals where hη is strictly decreasing. This implies that hη(t) ≤ hẽi(η)(t) for
any t ∈ [0, 1]. Similarly, we have hη(t) ≥ hf̃i(η)(t) for any t ∈ [0, 1].

The operators ẽi and f̃i satisfy the following properties :

Proposition 3.4.

(1) Assume ẽi(η) 6= 0; then ẽi(η)(1) = η(1) + αi and f̃i(ẽi(η)) = η.

(2) Assume f̃i(η) 6= 0; then f̃i(η)(1) = η(1) − αi and ẽi(f̃i(η)) = η.
(3) A path η ∈ P satisfies ẽi(η) = 0 for any i = 1, . . . , n if and only if Im η + ρ is contained

in C̊.
We may endow P with the structure of a Kashiwara crystal: this means that P has the

structure of a colored oriented graph by drawing an arrow η
i→ η′ between the two paths η, η′

of P as soon as f̃i(η) = η′ (or equivalently η = ẽi(η
′)). For any η ∈ P, we denote by B(η) the

connected component of η i.e. the subgraph of P obtained by applying operators ẽi and f̃i,
i = 1, . . . , n to η.

For any path η ∈ P and i = 1, . . . , n, set εi(η) = max{k ∈ Z≥0 | ẽki (η) = 0} and ϕi(η) =

max{k ∈ Z≥0 | f̃ki (η) = 0}; one easily checks that εi(η) and ϕi(η) are finite.

We now introduce the following notations
• PminZ is the set of integral paths, that is paths η such that mη = mint∈[0,1]{〈η(t), α∨

i 〉}
belongs to Z for any i = 1, . . . , n.

• C is the cone in h∗R defined by C = {x ∈ h∗R | x(hi) ≥ 0}.
• C̊ is the interior of C; it is defined by C̊ = {x ∈ h∗R | x(hi) > 0}.

One gets the

Proposition 3.5. Let η and π two paths in PminZ. Then

(1) the concatenation π ∗ η belongs to PminZ,
(2) for any i = 1, . . . , n we have

(10) ẽi(η ∗ π) =
{

η ∗ ẽi(π) if εi(π) > ϕi(η)
ẽi(η) ∗ π otherwise,

and f̃i(η ∗ π) =
{

f̃i(η) ∗ π if ϕi(η) > εi(π)

η ∗ f̃i(π) otherwise.

In particular, ẽi(η∗π) = 0 if and only if ẽi(η) = 0 and εi(π) ≤ ϕi(η) for any i = 1, . . . , n.
(3) ẽi(η) = 0 for any i = 1, . . . , n if and only if Im η is contained in C.
The following theorem summarizes crucial results of Littelmann (see [12], [13] and [14]).

Theorem 3.6. Consider λ, µ and κ dominant weights and choose arbitrarily elementary paths
ηλ, ηµ and ηκ in P such that Im ηλ ⊂ C, Im ηµ ⊂ C and Im ηκ ⊂ C and joining respectively 0 to
λ, 0 to µ and 0 to κ.

(1) We have B(ηλ) := {f̃i1 · · · f̃ikηλ | k ∈ N and 1 ≤ i1, · · · , ik ≤ n} \ {0}.
In particular wt(η)− wt(ηλ) ∈ Q+ for any η ∈ B(ηλ).

(2) The graph B(ηλ) is contained in PminZ.
(3) If η′λ is another elementary path from 0 to λ such that Im η′λ is contained in C, then B(ηλ)

and B(η′λ) are isomorphic as oriented graphs i.e. there exists a bijection θ : B(ηλ) →
B(η′λ) which commutes with the action of the operators ẽi and f̃i, i = 1, . . . , n.
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(4) The crystal B(ηλ) is isomorphic to the Kashiwara crystal graph B(λ) associated to the
Uq(g)-module of highest weight λ.

(5) We have

(11) sλ =
∑

η∈B(ηλ)

eη(1).

(6) For any i = 1, . . . , n and any b ∈ B(ηλ), let si(b) be the unique path in B(ηλ) such that

ϕi(si(b)) = εi(b) and εi(si(b)) = ϕi(b)

(in other words, si acts on each i-chain Ci as the symmetry with respect to the center of
Ci). The actions of the si’s extend to an action of W on P which stabilizes B(ηλ). In
particular, for any w ∈ W and any b ∈ B(ηλ), we have w(b) ∈ B(ηλ) and wt(w(b)) =
w(wt(b)).1

(7) For any b ∈ B(ηλ) we have wt(b) =
∑n

i=1(ϕi(b)− εi(b))ωi.
(8) Given any integer ℓ ≥ 0, set

(12)

B(ηµ) ∗B(ηκ)
∗ℓ = {π = η ∗ η1 ∗ · · · ∗ ηℓ ∈ P | η ∈ B(ηµ) and ηk ∈ B(ηκ) for any k = 1, . . . , ℓ}.

The graph B(ηµ) ∗B(ηκ)
∗ℓ is contained in PminZ.

(9) The multiplicity mλ
µ,κ defined in (8) is equal to the number of paths of the form µ ∗ η

with η ∈ B(ηκ) contained in C.
(10) The multiplicity f ℓλ/µ defined in (8) is equal to cardinality of the set

Hℓ
λ/µ := {π ∈ B(ηµ) ∗B(ηκ)

∗ℓ | ẽi(π) = 0 for any i = 1, . . . , n and π(1) = λ}.
Each path π = η ∗ η1 ∗ · · · ∗ ηℓ ∈ Hℓ

λ/µ verifies Imπ ⊂ C and η = ηµ.

Remarks:

1. Combining assertion (2) of Proposition 3.4 together with assertions (1) and (5) of the
Theorem 3.6, one may check that the function e−λsλ is in fact a polynomial in the variables
Ti = e−αi , namely

(13) sλ = eλSλ(T1, . . . , Tn)

where Sλ ∈ C[X1, . . . ,Xn]. Observe also that the quantity S∞ :=
∏

α∈R+

1
(1−e−α)mα is a formal

power series in the variables T1, . . . , Tn. M. Kashiwara proved (see for instance [5] § 20.7) that
the crystal B(λ) admits a projective limit B(∞) when λ tends to infinity and that

char(B(∞)) =
∑

b∈B(∞)

ewt(b) = S∞.

Now, since B(λ) can be embedded in B(∞) up to a translation by the weights by λ, we have

(14) Sλ(T1, . . . , Tn) ≤ S∞(T1, . . . , Tn);

in other words S∞(T1, . . . , Tn) = Sλ(T1, . . . , Tn) +
∑

µ∈Q+
aµT

µ where the coefficients aµ are
nonnegative integers.

2. Using assertion (1) of Theorem 3.6, we obtain mλ
µ,δ 6= 0 only if µ+ δ − λ ∈ Q+. Similarly,

when f δ,ℓλ/µ 6= 0 one necessarily has µ+ ℓδ − λ ∈ Q+.

3. A minuscule weight is a dominant weight κ ∈ P+ such that the weights of V (κ) are exactly
those of the orbit W · κ. In this case, if we take ηκ : t 7→ tκ, the crystal B(ηκ) contains only the
paths η : t 7→ tw(κ). In particular, these paths are lines.

1This action should not be confused with that defined in (9) which does not stabilizes B(ηλ) in general.



CONDITIONED RANDOM WALKS FROM KAC-MOODY ROOT SYSTEMS 13

4. Given any path ηλ such that Im ηλ ⊂ C, the set of paths B(ηλ) is in general difficult
to describe (even in the finite type cases). Nevertheless, for the classical types or type G2

and a particular choice of ηλ, the sets B(ηλ) can be made explicit by using generalizations of
semistandard tableaux (see for example [9] and the references therein).

4. Random paths and symmetrizable Kac-Moody algebras

4.1. Probability distribution on elementary paths. Consider κ ∈ P+ and a path πκ ∈
P from 0 to κ such that Imπκ is contained in C. Let B(πκ) be the connected component
of P containing πκ. We now endow B(πκ) with a probability distribution pκ, which will be
characterized by the datum of a n-tuple τ = (τ1, . . . , τn) ∈ Rn

>0 (each τi can be regarded
as attached to the positive simple root αi). For any u = u1α1 + · · · + unαn ∈ Q, we set
τu = τu1

1 · · · τun
n . Let π ∈ B(πκ): by assertion (1) of Theorem 3.6, one gets

π(1) = wt(π) = κ−
n
∑

i=1

ui(π)αi

where ui(π) ∈ N for any i = 1, . . . , n. We have Sκ(τ) := Sκ(τ1, . . . , τn) =
∑

π∈B(πκ)
τκ−wt(π).

Proposition 4.1. For any κ ∈ P+,

(1) if A is of finite type then 0 < Sκ(τ) <∞ for any τ ∈ Rn
>0,

(2) if A is of affine type then 0 < Sκ(τ) <∞ for any τ ∈]0, 1[n,
(3) if A is of indefinite type then 0 < Sκ(τ) <∞ for any τ ∈]0, 1n [n.

Proof. The inequality Sκ(τ) > 0 is immediate since τi > 0 for any i = 1, . . . , n.
When A is of finite type, the crystal B(πκ) is finite, so that Sκ(τ) <∞. When A is not of finite
type, we have by (14)

Sκ(τ) ≤ S∞(τ) =
∏

α∈R+

1

(1− τα)mα

and it suffices to prove that S∞(τ) is finite.

• Assume first that A is of affine type different from A
(2)
2n . By (6) and (7), we have

∏

α∈R+

1

(1− τα)mα
≤





∏

α∈R◦
+

1

1− τα





(

+∞
∏

k=1

1

(1− τkδ)n

)

∏

α∈R◦

(

+∞
∏

k=1

1

1− τα+krδ

)

since 0 < τα < 1 for any α ∈ R+ and R◦ is finite. We have to prove that the infinite products
in the above expression are finite. Let τ0 = max(τi, i = 1, . . . , n). Since ht(δ) ≥ n, we have
τ δ ≤ τn0 ; moreover α+ krδ ∈ Q+ for any k ≥ 1 and α ∈ R◦. We therefore get

+∞
∏

k=1

1

(1− τkδ)n
≤
(

+∞
∏

k=1

1

1− τkn0

)n

< +∞

since the series
∑+∞

k=1 ln(1− τkn0 ) converges for τn0 ∈]0, 1[. Similarly, since τ rn0 ∈]0, 1[ one gets

+∞
∏

k=1

1

1− τα+krδ
≤

+∞
∏

k=1

1

1− τατkrn0

< +∞.

The case A
(2)
2n is obtained by the same arguments.
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• Secondly, assume that A is of indefinite type. By (5), we have Sκ(τ) ≤
∏

α∈R+

(

1

1− τα

)nht(α)

.

Moreover, since 0 < τβ < 1 for any β ∈ Q+ and R+ ⊂ Q+, we have also

Sκ(τ) ≤
∏

β∈Q+
β 6=0

1

(1− τβ)n
ht(β)

=
+∞
∏

k=1

∏

β∈Q+

ht(β)=k

1

(1− τβ)nk

with
∏

β∈Q+

ht(β)=k

1

(1− τβ)nk
≤

∏

β∈Q+

ht(β)=k

1

(1− τ
ht(β)
0 )nk

≤
(

1

1− τk0

)(k+1)nnk

since card({β ∈ Q+ | ht(β) = k}) ≤ (k + 1)n. We thus get

Sκ(τ) ≤
+∞
∏

k=1

1

(1− τk0 )
nk(k+1)n

< +∞

using the fact that the series
∑+∞

k=1 n
k(k + 1)n ln(1− τk0 ) converges for τ0 ∈]0, 1n [. �

From now on, we write T for the set of n-tuples τ = (τ1, · · · , τn) ∈ Rn
>0 such that

• τi ∈]0, 1[ for 1 ≤ i ≤ n when A is of finite or affine type,
• τi ∈]0, 1n [ for 1 ≤ i ≤ n when A is of indefinite type.

Corollary 4.2. For any µ ∈ P+ and w ∈ W, the weight µ + ρ − w(µ + ρ) belongs to Q+;
moreover, for τ ∈ T , one gets

∣

∣

∣

∣

∣

∑

w∈W

ε(w)τµ+ρ−w(µ+ρ)

∣

∣

∣

∣

∣

≤
∑

w∈W

τµ+ρ−w(µ+ρ) < +∞.

Proof. By the Weyl-Kac character formula, one gets

e−µsµ =

∑

w∈W ε(w)ew(µ+ρ)−ρ−µ

∏

α∈R+
(1− e−α)mα

.

Since e−µsµ and
∏

α∈R+
(1−e−α)mα are polynomial in e−β with β ∈ Q+, we have µ+ρ−w(µ+ρ) ∈

Q+ for any w ∈ W. Now observe that µ + ρ belongs to P+ and is the dominant weight of
V (µ + ρ), each w(µ + ρ) is thus also a weight of V (µ + ρ). Therefore, the coefficients of the

decomposition of sµ+ρ−
∑

w∈W ew(µ+ρ) on the basis {eβ | β ∈ P} are nonnegative; in other words
∑

w∈W

ew(µ+ρ) ≤ sµ+ρ which readily implies that
∑

w∈W ew(µ+ρ)−µ−ρ ≤ e−µ−ρsµ+ρ. By specializing

e−αi = τi, one gets
∑

w∈W τµ+ρ−w(µ+ρ) ≤ Sµ+ρ(τ) < +∞.
�

Definition 4.3. We define the probability distribution p on B(πκ)setting pπ =
τκ−wt(π)

Sκ(τ)
.

Remark: By Assertion 3 of Theorem 3.6, for π′κ another elementary path from 0 to κ such that
Imπ′κ is contained in C, there exists an isomorphism Θ between the crystals B(πκ) and B(π′κ)
and one gets pπ = pΘ(π) for any π ∈ B(πκ). Therefore, the probability distributions we use on
the graph B(πκ) are invariant by crystal isomorphisms.



CONDITIONED RANDOM WALKS FROM KAC-MOODY ROOT SYSTEMS 15

Let X a random variable with values in B(πκ) and probability distribution p; as a direct
consequence of Proposition 4.1, we get the

Corollary 4.4. The variable X admits a moment of order 1. Moreover the series of functions

m =
∑

π∈B(πκ)

pbπ

converges uniformly on [0, 1].

Proof. Since the operators f̃i and ẽi, 1 ≤ i ≤ n, preserve the length of the paths, all the paths
π in B(πκ) have the same length Lκ; consequently, for any t ∈ [0, 1], we have ‖π(t)‖2 ≤ Lκ with
∑

π∈B(πκ)
pbLκ = Lk < +∞. This proves that the series m converges uniformly on [0, 1]. �

4.2. Random paths of arbitrary length. We now extend the notion of elementary random
paths. Assume that π1, . . . , πℓ a family of elementary paths; the path π1 ⊗ · · · ⊗ πℓ of length ℓ
is defined by: for all k ∈ {1, . . . , ℓ− 1} and t ∈ [k, k + 1]

(15) π1 ⊗ · · · ⊗ πℓ(t) = π1(1) + · · ·+ πk(1) + πk+1(t− k).

Let B⊗ℓ(πκ) be the set of paths of the form b = π1 ⊗ · · · ⊗ πℓ where π1, . . . , πℓ are elementary
paths in B(πκ); there exists a bijection ∆ between B⊗ℓ(πκ) and the set B∗ℓ(πκ) of paths in P
obtained by concatenations of ℓ paths of B(πκ):

(16) ∆ :

{

B⊗ℓ(πκ) −→ B∗ℓ(πκ)
π1 ⊗ · · · ⊗ πℓ 7−→ π1 ∗ · · · ∗ πℓ

.

In fact π1⊗· · ·⊗πℓ and π1 ∗ · · · ∗πℓ coincide up to a reparametrization and we define the weight
of b = π1 ⊗ · · · ⊗ πℓ setting

wt(b) := wt(π1) + · · ·+wt(πℓ) = π1(1) + · · ·+ πℓ(1).

We now endow B⊗ℓ(πκ) with the product probability measure p⊗ℓ defined by

(17) p⊗ℓ(π1 ⊗ · · · ⊗ πℓ) = p(π1) · · · p(πℓ) =
τ ℓκ−(π1(1)+···πℓ(1))

Sκ(τ)ℓ
=
τ ℓκ−wt(b)

Sκ(τ)ℓ
.

In particular, for any b, b′ in B⊗ℓ(πκ) such that wt(b) = wt(b′), one gets

p⊗l(b) = p⊗l(b′).

Write Πℓ : B
⊗ℓ(πκ) → B⊗ℓ−1(πκ) the projection defined by Πℓ(π1⊗· · ·⊗πℓ−1⊗πℓ) = π1⊗· · ·⊗

πℓ−1; the sequence (B
⊗ℓ(πκ),Πℓ, p

⊗ℓ)ℓ≥1 is a projective system of probability spaces. We denote
by (B⊗N(πκ), p

⊗N) its injective limit; the elements of B⊗N(πκ) are infinite sequences b = (πℓ)ℓ≥1

and by a slight abuse of notation, we will also write Πℓ(b) = π1 ⊗ · · · ⊗ πℓ.
Now let X = (Xℓ)ℓ≥1 a sequence of i.i.d. random variables with values in B(πκ) and proba-

bility distribution p; the random path W on (B⊗N(πκ), p
⊗N) are thus defined by

W(t) := Πℓ(X)(t) = X1 ⊗X2 ⊗ · · · ⊗Xℓ−1 ⊗Xℓ(t) for t ∈ [ℓ− 1, ℓ].

By (15), the path W coincides with the one defined in § 2.3.

Proposition 4.5.

(1) For any β, η ∈ P , one gets

P(Wℓ+1 = β |Wℓ = η) = Kκ,β−η,
τκ+η−β

Sκ(τ)
.
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(2) Consider λ, µ ∈ P+ we have

P(Wℓ = λ,W0 = µ,W(t) ∈ C for any t ∈ [0, ℓ]) = f ℓλ/µ
τ ℓκ+µ−λ

Sκ(τ)ℓ
.

In particular

P(Wℓ+1 = λ,Wℓ = µ,W(t) ∈ C for any t ∈ [ℓ, ℓ+ 1]) = mλ
µ,κ

τκ+µ−λ

Sκ(τ)
.

Proof. 1. We have

P(Wℓ+1 = β | Wℓ = η) =
∑

π∈B(bπ)β−η

pπ

where B(bπ)β−η is the set of paths in B(bπ) of weight β − η. We conclude noticing that all the

paths in B(bπ)β−η have the same probability τκ+η−β

Sκ(τ)
and card(B(bπ)β−η) = Kκ,β−η.

2. By Assertion 7 of Theorem 3.6, we know that the number of paths in B(πµ) ∗ B∗ℓ(πκ)

starting at µ, ending at λ and remaining in C is equal to f ℓλ/µ. Since the map ∆ defined in (16) is

a bijection, the integer f ℓλ/µ is also equal to the number of paths in B(πµ)⊗B⊗ℓ(πκ) starting at

µ, ending at λ and remaining in C. Moreover, each such path has the form b = bµ⊗ b1 ⊗ · · · ⊗ bℓ

where b1 ⊗ · · · ⊗ bℓ ∈ B⊗ℓ(πκ) has weight λ− µ. Therefore we have pb =
τℓκ+µ−λ

Sκ(τ)ℓ
. �

4.3. The generalized Pitman transform. By Assertion 8 of Theorem 3.6, we know that
B⊗ℓ(πκ) is contained in PminZ. Therefore, if we consider a path b ∈ B⊗ℓ(πκ), its connected
component B(b) is contained in PminZ. Now, if η ∈ B(b) is such that ẽi(η) = 0 for any i =
1, . . . , n, we should have Im η ⊂ C by Assertion 3 of Proposition 3.5; Assertion 1 of Theorem 3.6
thus implies that η is the unique path in B(b) = B(η) such that ẽi(η) = 0 for any i = 1, . . . , n.
This permits to define the generalized Pitman transform on B⊗ℓ(πκ) as the map P which
associates to any b ∈ B⊗ℓ(πκ) the unique path P(b) ∈ B(b) such that ẽi(η) = 0 for any
i = 1, . . . , n. By definition, we have ImP(b) ⊂ C and P(b)(ℓ) ∈ P+.

Let W be the random path of § 4.2. We define the random process H setting

(18) H(t) = P(Πℓ(W))(t) for any t ∈ [ℓ− 1, ℓ].

For any ℓ ≥ 1, we set Hℓ := H(ℓ); one gets the

Theorem 4.6. The random sequence H := (Hℓ)ℓ≥1 is a Markov chain with transition matrix

(19) Π(µ, λ) =
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ

where λ, µ ∈ P+.

Proof. Consider µ = µ(ℓ), µ(ℓ−1), . . . , µ(1) a sequence of elements in P+. Let S(µ(1), . . . µ(ℓ), λ)
be the set of paths bh ∈ B⊗ℓ(πκ) remaining in C and such that bh(k) = µ(k), k = 1, . . . , ℓ and

b(ℓ+1) = λ. Consider b = b1 ⊗ · · · ⊗ bℓ ⊗ bℓ+1 ∈ B⊗ℓ+1(πκ). We have P(b1 ⊗ · · · ⊗ bk)(k) = µ(k)

for any k = 1, . . . , ℓ and P(b)(ℓ + 1) = λ if and only if P(b) ∈ S(µ(1), . . . µ(ℓ), λ). Moreover, by

(17), for any bh ∈ S(µ(1), . . . µ(ℓ), λ), we have P(b ∈ B(bh)) =
∑

b∈B(bh)

pb =
∑

b∈B(bh)

τ (ℓ+1)κ−wt(b)

Sκ(τ)ℓ+1
;

combining (11) and (13), one obtains P(b ∈ B(bh)) =
τ (ℓ+1)κ−λSλ(τ)

Sκ(τ)ℓ+1
, which only depends on λ.
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This gives

P(Hℓ+1 = λ,Hk = µ(k),∀k = 1, . . . , ℓ) =
∑

bh∈S(µ(1),...µ(ℓ),λ)

∑

b∈B(bh)

pb

= card(S(µ(1), . . . µ(ℓ), λ))τ
(ℓ+1)κ−λSλ(τ)

Sκ(τ)ℓ+1
.

By assertion 9 of Theorem 3.6 and an easy induction, we have also

card(S(µ(1), . . . µ(ℓ), λ)) =
ℓ−1
∏

k=1

mµ(k+1)

µ(k),κ
×mλ

µ,κ.

We thus get

P(Hℓ+1 = λ,Hk = µ(k),∀k = 1, . . . , ℓ) =

ℓ−1
∏

k=1

mµ(k+1)

µ(k),κ
×mλ

µ,κ

τ (ℓ+1)κ−λSλ(τ)

Sκ(τ)ℓ+1
.

Similarly

P(Hk = µ(k),∀k = 1, . . . , ℓ) =
ℓ−1
∏

k=1

mµ(k+1)

µ(k),κ

τ ℓκ−µSλ(τ)

Sκ(τ)ℓ
,

this readily implies

P(Hℓ+1 = λ | Hk = µ(k),∀k = 1, . . . , ℓ) =
P(Hℓ+1 = λ,Hk = µ(k),∀k = 1, . . . , ℓ)

P(Hk = µ(k),∀k = 1, . . . , ℓ)

=
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ.

�

5. Symmetrization

In § 4.1, we have chosen a probability distribution p on a crystal B(πκ) where κ ∈ P+ and
πκ is an elementary path from 0 to κ remaining in the cone C. This distribution depends on
τ ∈ Rn

>0 and Proposition 4.1 gives a sufficient condition to ensure that Sκ(τ) is finite. Since
the characters of the highest weight representations are symmetric under the action of the Weyl
group, it is possible to define, starting from the distribution p and for each w in the Weyl group
W of g, a probability distribution pw which reflects this symmetry.

5.1. Twisted probability distribution. Recall τ = (τ1, . . . , τn) ∈ T is fixed. Given any
w ∈ W, we want to define a probability distribution on B(κ) for each w ∈ W. Recall that
w(αi) is a (real) root of g for any w ∈ W and any simple root αi; this root is neither simple or
even positive in general. By general properties of the root systems, we know that w(αi) can be
decomposed as follows

w(αi) =







αk1 + · · ·+ αkr

or
−(αk1 + · · ·+ αkr)

where αk1 , . . . , αkr are simple roots depending on w. Let us define the n-tuple τw = (τw1 , . . . , τ
w
n ) ∈

Rn
>0 setting

τwi =

{ ∏r
s=1 τks if w(αi) = αk1 + · · · + αkr ,

∏r
s=1 τ

−1
ks

if w(αi) = −(αk1 + · · ·+ αkr),
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that is

(20) τwi = τw(αi).

More generally for any ū = u1α1 + · · ·+ unαn ∈ Q, we have

(τw)ū = (τw1 )u1 · · · (τwn )un = τw(ū).

Observe also that τw /∈ T in general; indeed we have the following

Lemma 5.1. τ(w) ∈ T if and only if w = 1.

Proof. It suffices to show that for any w ∈ W \ {Id} distinct from the identity, there is at least
a simple root αi such that w(αi) = −(αk1 + · · · + αkr) ∈ −Q+. Indeed, we will have in that
case τwi = 1

τk1 ···τkr
> 1 since τ(w) ∈ T . Consider w ∈ W \ {Id} such that w(αi) ∈ Q+ for any

i = 1, . . . , ℓ. Let us decompose w as a reduced word w = si1 · · · sit ; by lemma 3.11 in [6], we
must have w(αit) ∈ −Q+, hence a contradiction. This means that w = 1. �

Consider κ ∈ P+. Recall that we have by definition sκ = eκSκ(T1, . . . , Tn) where Ti = e−αi .

Since sκ is symmetric under W, we have sκ = ew(κ)Sκ(T
w
1 , . . . , T

w
n ) with Tw

i = e−w(αi) for any
i = 1, . . . , n. Therefore

Sκ(T
w
1 , . . . , T

w
n ) = eκ−w(κ)Sκ(T1, . . . , Tn) for any w ∈ W.

Since κ−w(κ) belongs to Q+, we can specialize each Ti in τi. Then T
w
i is specialized in τwi and

we get

(21) Sκ(τ
w) = τw(κ)−κSκ(τ),

in particular, it is finite.

Definition 5.2. For any w ∈ W and any integer ℓ ≥ 1, let pw be the probability distribution on
B(πκ)

⊗ℓ defined by: for any b ∈ B(πκ)
⊗ℓ

pwb :=
(τw)ℓκ−wt(b)

Sκ(τw)ℓ
=
τ ℓw(κ)−wt(w(b))

Sκ(τw)ℓ

where w(b) is the image of b under the action of W (see Assertion 6 of Theorem 3.6). In
particular, p1 = p coincides with the probability distribution (17).

The following lemma states that the probabilities pw and p coincide up to the permutation of
the elements in B(πκ)

⊗ℓ given by the action of w described in Assertion 6 of Theorem 3.6.

Lemma 5.3. For any w ∈ W and any b ∈ B(πκ)
⊗ℓ, we have pwb = pw(b), where w(b) is the

image of b under the action of W (see Assertion 6 of Theorem 3.6).

Proof. Recall that wt(w(b)) = w(wt(b)); therefore pw(b) =
τ ℓκ−wt(w(b))

Sκ(τ)ℓ
. On the other hand, by

(21) we have pwb :=
τ ℓw(κ)−wt(w(b))

Sκ(τw)ℓ
=

τ ℓw(κ)−wt(w(b))

τ ℓw(κ)−ℓκSκ(τ)ℓ
and the equality pwb = pw(b) follows. �
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5.2. Twisted random paths. Let w ∈ W and denote by Xw the random variable defined on
(B(πκ), p

w) with law given by:

P(Xw = π) = pwπ = pw(π) for all π ∈ B(πκ).

Set mw := E(Xw) and m := m1.

Proposition 5.4. Assume τ ∈ T . One gets

(1) m(1) ∈ C̊,
(2) mw = w−1(m),

(3) mw(1) ∈ C̊ if and only if w is equal to the identity.

Proof. 1. By definition of C̊, we have to prove that hi(m(1)) > 0 for any i = 1, . . . , n. Recall
that m =

∑

π∈B(πκ)
pππ; observe that the quantity

ci = hi(m(1)) =
∑

π∈B(πκ)

pπhi(π(1))

is well defined since
∑

π∈B(πκ)
pπ‖π(1)‖2 < +∞. We can decompose the crystal B(πκ) in its

i-chains, that is the sub-crystal obtained by deleting all the arrows j 6= i. When g is not of
finite type, the lengths of these i-chains are all finite but not bounded. The contribution to ci

of any i-chain C : a0
i→ a1

i→ · · · i→ ak of length k is equal to ci(C) =

k
∑

j=0

paihi(wt(aj)). Since

ẽi(a0) = 0 and f̃k+1
i (a0) = 0, we obtain hi(wt(a0)) = k. By definition of the distribution p and

Proposition 3.4, we have the relation paj = τ ji pa0 . Finally, we get

ci(C) = pa0

k
∑

j=0

τ ji (k − 2j) = pa0

⌊k/2⌋
∑

j=0

(k − 2j)(τ ji − τk−j
i ).

In particular the hypothesis τi ∈]0, 1[ for any i = 1, . . . , n implies that ci(C) > 0 for any
i-chain of length k > 0; one thus gets ci > 0 noticing that B(πk) contains at least an i-chain of
length k > 0, otherwise the action of the Chevalley generators ei, fi on the irreducible module
V (πλ) would be trivial.

2. By Lemma 5.3, we can write

mw =
∑

π∈B(πκ)

pw(π)π =
∑

π′∈B(πκ)

pπ′w−1(π′) = w−1





∑

π′∈B(πκ)

pπ′π′



 = w−1(m)

where we use assertion 7 of Theorem 3.6 in the third equality.
3. Since mw = w−1(m) and m(1) ∈ C̊, one gets mw(1) /∈ C because C is a fundamental

domain for the action of the Weyl group W on the tits cone X = ∪w∈Ww(C) (see [6] Proposition
3.12). �

Now let Xw = (Xw
ℓ )ℓ≥1 be a sequence of i.i.d. random variables defined on B(πκ) with

probability distribution pw. The random process Ww = (Ww
t )t>0 is defined by: for all ℓ ≥ 1 and

t ∈ [ℓ− 1, ℓ]
Ww(t) := Πℓ(X

w)(t) = Xw
1 ⊗Xw

2 ⊗ · · · ⊗Xw
ℓ−1 ⊗Xw

ℓ (t).

By (15), the random walk Ww is defined as in § 2.3 from Ww. For any ℓ ∈ Z≥0, we also define
the function ψw

ℓ on P+ setting

ψw
ℓ (µ) := Pµ(Ww(t) ∈ C for any t ∈ [0, ℓ]).
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The quantity ψw
ℓ (µ) is equal to the probability of the event “Ww starting at µ remains in the

cone C until the instant ℓ”. We also introduce the function

ψw(µ) := Pµ(Ww(t) ∈ C, t ≥ 0).

For w = 1, we simply write ψ and ψℓ instead of ψ1 and ψ1
ℓ .

The following proposition is a consequence of the previous lemma and Proposition 2.2.

Proposition 5.5.

(1) We have limℓ→+∞ ψw
ℓ (µ) = ψw(µ) for any µ ∈ P+.

(2) If w 6= 1, then ψw(µ) = 0 for any µ ∈ P+.
(3) If w = 1, then ψ(µ) > 0 for any µ ∈ P+.

Similarly to Proposition 4.5 and using (21), we obtain the

Proposition 5.6.

(1) For any weights β and η, one gets

P(Ww
ℓ+1 = β |Ww

ℓ = η) = Kκ,β−η,
τw(κ+η−β)

Sκ(τw)
= Kκ,β−η,

τκ+w(η)−w(β)

Sκ(τ)
.

(2) For any dominant weights λ and µ, one gets

P(Ww
ℓ = λ,Ww

0 = µ,Ww(t) ∈ C for any t ∈ [0, ℓ]) = f ℓλ/µ
τw(ℓκ+µ−λ)

Sκ(τw)ℓ
= f ℓλ/µ

τ ℓκ+w(µ)−w(λ)

Sκ(τ)ℓ
.

In particular

P(Ww
ℓ+1 = λ,Ww

ℓ = µ,Ww(t) ∈ C for any t ∈ [ℓ, ℓ+ 1]) = mλ
µ,κ

τw(κ+µ−λ)

Sκ(τw)
= mλ

µ,κ

τκ+w(µ)−w(λ)

Sκ(τ)
.

6. Law of the conditioned random path

6.1. The harmonic function ψ. By Assertion 2 of the previous proposition, we can write

(22) ψw
ℓ (µ) = Pµ(Ww(t) ∈ C for any t ∈ [0, ℓ]) =

∑

λ∈P+

f ℓλ/µ
τ ℓκ+w(µ)−w(λ)

Sκ(τ)ℓ

where f ℓλ/µ is the number of highest weight vertices in the crystal

(23) B(µ)⊗B(κ)⊗ℓ ≃
⊕

λ∈P+

B(λ)
⊕fℓ

λ/µ .

By interpreting (23) in terms of characters, we get

(24) sµ × sℓκ =
∑

λ∈P+

f ℓλ/µsλ

where all but a finite number of coefficients f ℓλ/µ are equal to 0. The Weyl character formula

sλ =

∑

w∈W ε(w)ew(λ+ρ)−ρ

∏

α∈R+
(1− e−α)mα
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yields
∏

α∈R+

(1− e−α)mαsµ × sℓκ =
∑

λ∈P+

f ℓλ/µ

∑

w∈W

ε(w)ew(λ+ρ)−ρ and

∏

α∈R+

(1− e−α)mαe−µsµ =
∑

λ∈P+

f ℓλ/µ
∑

w∈W

ε(w)
e−ℓκ+w(λ+ρ)−ρ−µ

e−ℓκsℓκ
.

Setting τi = e−αi , we get

∏

α∈R+

(1− τα)mαSµ(τ) =
∑

λ∈P+

f ℓλ/µ
∑

w∈W

ε(w)
τ ℓκ+ρ+µ−w(λ+ρ)

Sκ(τ)ℓ
.

The sum indexed by λ is over finitely many terms, we can thus flip the two sums in the right
hand side, getting

(25)
∏

α∈R+

(1− τα)mαSµ(τ) =
∑

w∈W

ε(w)
∑

λ∈P+

f ℓλ/µ
τ ℓκ+ρ+µ−w(λ+ρ)

Sκ(τ)ℓ
.

We now need the following lemma.

Lemma 6.1. For any w ∈ W and µ ∈ P+, set Π
w
ℓ (µ) :=

∑

λ∈P+

f ℓλ/µ
τ ℓκ+ρ+µ−w(λ+ρ)

Sκ(τ)ℓ
.

We then have lim
ℓ→+∞

Πw
ℓ (µ) = 0 when w 6= 1 and the series

∑

w∈W ε(w)Πw
ℓ (µ) converges

uniformly in ℓ.

Proof. Using (22), one gets

(26) Πw
ℓ (µ) = τρ−w(ρ)+µ−w(µ)

∑

λ∈P+

f ℓλ/µ
τ ℓκ+w(µ)−w(λ)

Sκ(τ)ℓ
= τρ−w(ρ)+µ−w(µ)ψw

ℓ (µ).

Fix w 6= 1. Since τρ−w(ρ)+µ−w(µ) does not depend on ℓ and limℓ→+∞ ψw
ℓ (µ) = 0 by Proposition

5.5, we derive limℓ→+∞Πw
ℓ (µ) = 0 as desired (recall the sum is over finitely many terms).

Now, we have obviously 0 ≤ ψw
ℓ (µ) ≤ 1 and the series

∑

w∈W τρ−w(ρ)+µ−w(µ) converges by
Corollary 4.2. The uniform convergence in ℓ of the series

∑

w∈W ε(w)Πw
ℓ (µ) thus follows from

the inequality |ε(w)Πw
ℓ (µ)| ≤ τρ−w(ρ)+µ−w(µ), which is a direct consequence of (26). �

Consequently, we have
∏

α∈R+

(1− τα)mαSµ(τ) =
∑

w∈W

ε(w)Πw
ℓ (µ) = Π1

ℓ(µ) +
∑

w 6=1

ε(w)Πw
ℓ (µ)

with Π1
ℓ (µ) = ψℓ(µ), by (26). Letting ℓ→ +∞, the previous lemma finally gives

ψ(µ) =
∏

α∈R+

(1− τα)mαSµ(τ).

We have established the following theorem, which is the analogue in our context of Corollary
7.4.3 in [10]:

Theorem 6.2. For any µ ∈ P+, we have

ψ(µ) = Pµ(W(t) ∈ C for any t ≥ 0) =
∏

α∈R+

(1− τα)mαSµ(τ).
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In particular, the harmonic function ψ does not depend on the dominant weight κ considered.

Corollary 6.3. The law of the random walk W conditioned by the event

E := (W(t) ∈ C for any t ≥ 0)

is the same as the law of the Markov chain H defined as the generalized Pitman transform of
W (see Theorem 4.6). In particular, this law only depends on κ and not on the choice of the
path πκ such that Imπκ ⊂ C.
Proof. Let Π be the transition matrix of W and ΠE its restriction to the event E. We have
seen in § 2.1 that the transition matrix of W conditioned by E is the h-transform of ΠE by the
harmonic function

hE(µ) := Pµ(W(t) ∈ C for any t ≥ 0).

By the previous theorem, we have hE = ψ. It also easily follows from Theorem 4.6 that the
transition matrix of H is the ψ-transform of ΠE . Therefore both H and the conditioning of W
by E have the same law. �

6.2. Random walks defined from non irreducible representations. For simplicity we
restrict ourselves in this paragraph to the case where g is a (finite-dimensional) Lie algebra with
(invertible) Cartan matrix A. In particular, mα = 1 for any α ∈ R+. Consider τ = (τ1, . . . , τn) ∈
T . Then both root and weight lattices have the same rank n. Moreover, the Cartan matrix A
is the transition matrix between the weight and root lattices. In particular, each weight β ∈ P
decomposes on the basis of simple roots as β = β′1α1 + · · · β′nαn where (β′1, . . . , β

′
n) ∈ 1

detAZ
n

and we can set τβ = τ
β′
1

1 · · · τβ
′
n

n .
Let M be a finite dimensional g-module with decomposition in irreducible components

M ≃
⊕

κ∈κ

V (κ)⊕aκ

where κ is a finite subset of P+ and aκ > 0 for any κ ∈ κ. For each κ ∈ κ choose a path ηκ in
P from 0 to κ contained in C. Let B(κ) be the set of paths obtained by applying the operators

ẽi,f̃i, i = 1, . . . , n to the paths ηκ, κ ∈ κ. This set is a realization of the crystal of the g-module
⊕κ∈κV (κ) (without multiplicities) and we have

B(κ) =
⊔

κ∈κ

B(ηκ).

Given π = π1 ⊗ · · · ⊗ πℓ in B⊗ℓ(κ) such that πa ∈ B(κa) for any a = 1, . . . , ℓ, we set aπ =
aκ1 · · · aκℓ

. By formulas (10), the function a is constant on the connected components of B⊗ℓ(κ).
We are going to define a probability distribution on B(κ) compatible with its weight grad-

uation and taking into account the multiplicities aκ. We cannot proceed as in (17) by working
only with the root lattice of g since B(κ) contains fewer highest weight paths. So the underlying
lattice to consider is the weight lattice. We first set

ΣM (τ) =
∑

κ∈κ

∑

π∈B(ηκ)

aκτ
−wt(π) =

∑

κ∈κ

aκsκ(τ) =
∑

κ∈κ

aκτ
−κSκ(τ).

We define the probability distribution p on B(κ) by setting pπ = aκ
τ−wt(π)

ΣM (τ) for any π ∈ B(ηκ).

When card(κ) = 1, we recover the probability distribution of § 4.1. Observe that we have

ΣM(τ)ℓ =
∑

π∈B⊗ℓ(κ)

aπτ
−wt(π) for any ℓ ≥ 0.
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So we can define a probability distribution p⊗ℓ on B⊗ℓ(κ) such that

pπ = aπ
τ−wt(π)

ΣM (τ)ℓ
for any π = π1 ⊗ · · · ⊗ πℓ ∈ B⊗ℓ(κ).

Let X = (Xℓ)ℓ≥1 be a sequence of i.i.d. random variables defined on B(κ) with probability
distribution p. The random process W and the random walk W are then defined from X and
p⊗N as in § 2.3.

It is then possible to extend our results to the random path W and its corresponding random
walk W obtained from the set of elementary paths B(κ). We have then

P(Wℓ+1 = β | Wℓ = γ) =
KM,β−γ

ΣM (τ)
τγ−β

for any weights β and γ where KM,β−γ is the dimension of the space of weight β − γ in M . We
indeed have KM,β−γ =

∑

κ∈κ aκKκ,β−γwhere Kκ,β−γ is the number of paths η ∈ B(κ) such that
η(1) = β − γ. Given λ and µ two dominant weights, we also get

(27) P(Wℓ+1 = λ |Wℓ = µ,W(t) ∈ C for any t ∈ [ℓ, ℓ+ 1]) =
mλ

M,µ

ΣM(τ)
τµ−λ

wheremλ
M,µ is the multiplicity of V (λ) inM⊗V (µ). We indeed havemλ

M,µ =
∑

κ∈κ aκm
λ
κ,µwhere

mλ
κ,µ is the number of paths η ∈ B(κ) such that η(1) = λ− µ which remains in C.
We define the generalized Pitman transform P and the Markov chain H as in § 4.3. For any

ℓ ≥ 1, we yet write ψℓ(µ) = Pµ(W(t) ∈ C for any t ∈ [1, ℓ]). We then have

ψℓ(µ) =
∑

π∈B⊗ℓ(κ),µ+π(t)∈C for t∈[0,ℓ]

pπ =
∑

λ∈P+

∑

π∈B⊗ℓ(κ), µ+π(t)∈C for t∈[0,ℓ],π(ℓ)=λ

aπ
τµ−λ

ΣM (τ)ℓ
=

∑

λ∈P+

f ℓλ/µ
τµ−λ

ΣM (τ)ℓ

where f ℓλ/µ is the multiplicity of V (λ) in V (µ) ⊗ M⊗ℓ. We indeed have the equality f ℓλ/µ =
∑

π∈B⊗ℓ(κ), µ+π(t)∈C for t∈[0,ℓ],π(ℓ)=λ aπ by an easy extension of Assertion 10 in Theorem 3.6. We

can now establish the following theorem.

Theorem 6.4. The law of the random walk W conditioned by the event

E := (W(t) ∈ C for any t ≥ 0)

is the same as the law of the Markov chain H defined as the generalized Pitman transform of
W (see Theorem 4.6). The associated transition matrix ΠE verifies

(28) ΠE(µ, λ) =
Sλ(τ)

Sµ(τ)ΣM (τ)
mλ

M,µτ
µ−λ

and we have yet

Pµ(W(t) ∈ C for any t ≥ 0) =
∏

α∈R+

(1− τα)Sµ(τ).

Proof. The computation of the harmonic function ψ(µ) = Pµ(W(t) ∈ C for any t ≥ 0) is similar
to § 6.1. We have from the Weyl character formula

∏

α∈R+

(1− e−α)e−µsµ =
∑

λ∈P+

f ℓλ/µ
∑

w∈W

ε(w)
ew(λ+ρ)−ρ−µ

sℓM
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where sM = char(M). When we specialize τi = e−αi in sM , we obtain ΣM (τ). Hence

∏

α∈R+

(1− τα)Sµ(τ) =
∑

λ∈P+

f ℓλ/µ

∑

w∈W

ε(w)
τµ+ρ−w(λ+ρ)

ΣM (τ)ℓ
.

If we set Πw
ℓ (µ) :=

∑

λ∈P+

f ℓλ/µ
τρ+µ−w(λ+ρ)

ΣM (τ)ℓ
, we yet obtain limℓ→+∞Πw

ℓ (µ) = 0 when w 6= 1 and

Π1
ℓ (µ) = ψℓ(µ). Moreover

∏

α∈R+

(1− τα)Sµ(τ) =
∑

w∈W

ε(w)Πw
ℓ (µ) = Π1

ℓ (µ) +
∑

w 6=1

ε(w)Πw
ℓ (µ)

so the harmonic function ψ = limℓ→+∞ ψℓ is also given by ψ(µ) =
∏

α∈R+
(1−τα)Sµ(τ). Since ΠE

is the Doob ψ-transform of the the restriction (27) of W to C, we obtain the desired expression
(28) for ΠE(µ, λ).

To see that ΠE coincides with the law of the image of W under the generalized Pitman
transform, we proceed as in Proof of Theorem 4.6. Consider µ = µ(ℓ), µ(ℓ−1), . . . , µ(1) a sequence
of elements in P+. Let S(µ(1), . . . µ(ℓ), λ) be the set of paths bh ∈ B⊗ℓ(κ) remaining in C and

such that bh(k) = µ(k), k = 1, . . . , ℓ and b(ℓ+1) = λ. Consider b = b1⊗· · ·⊗bℓ⊗bℓ+1 ∈ B⊗ℓ+1(κ).

We have P(b1 ⊗ · · · ⊗ bk)(k) = µ(k) for any k = 1, . . . , ℓ and P(b)(ℓ + 1) = λ if and only if

P(b) ∈ S(µ(1), . . . µ(ℓ), λ). Moreover, by (17), for any bh ∈ S(µ(1), . . . µ(ℓ), λ), we have

P(b ∈ B(bh)) =
∑

b∈B(bh)

pb =
∑

b∈B(bh)

ab
τ−wt(b)

ΣM (τ)ℓ+1
= abh

τ−λSλ(τ)

ΣM(τ)ℓ+1

since ab = abh for any b ∈ B(bh). This gives

P(Hℓ+1 = λ,Hk = µ(k),∀k = 1, . . . , ℓ) =
τ−λSλ(τ)

ΣM (τ)ℓ+1

∑

bh∈S(µ(1),...µ(ℓ),λ)

abh

=
τ−λSλ(τ)

ΣM (τ)ℓ+1

ℓ−1
∏

k=1

mµ(k+1)

µ(k),M
×mλ

µ,M

also using extension of Assertion 10 in Theorem 3.6. Similarly

P(Hk = µ(k),∀k = 1, . . . , ℓ) =
τ−µSµ(τ)

ΣM (τ)ℓ

ℓ−1
∏

k=1

mµ(k+1)

µ(k),M

which implies

P(Hℓ+1 = λ | Hk = µ(k),∀k = 1, . . . , ℓ) =
Sλ(τ)

Sµ(τ)ΣM (τ)
mλ

M,µτ
µ−λ.

�

6.3. Example: random walk to the height closest neighbors. We now study in detail
the case of the random walk in the plane with transitions 0 and the height closest neighbors.
The underlying representation is not irreducible and does not decompose as a sum of minuscule
representations. So the conditioning of this walk cannot be obtained by the methods of [10].2

2The results of [10] permit nevertheless to study the random walk in the space R3 with transitions ±ε1±ε2±ε3
corresponding to the weights of the spin representation of g = so9.
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The root system of type C2 is realized in R2= Rε1 ⊕ Rε2. The Cartan matrix is

A =

(

2 −1
−2 2

)

The simple roots are then α1 = ε1 − ε2 and α2 = 2ε2. We have P = Z2. The fundamental
weights are ω1 = ε1 and ω2 = ε1 + ε2. We have C = {(x, y) ∈ R2 | x ≥ y ≥ 0} and P+ = {λ =
(λ1, λ2) | λ1 ≥ λ2 ≥ 0}, the set of partitions with two parts . Choose τ1 ∈]0, 1[, τ2 ∈]0, 1[. For
λ = (λ1, λ2) ∈ P+, we have λ = λ1α1 +

λ1+λ2
2 α2. Thus τ

λ = τλ1
1 (

√
t2)

λ1+λ2 .
Consider the sp4(C)-module M = V (1)⊕a1 ⊕ V (1, 1)⊕a2 . The elementary paths in B(κ) can

be easily described from the highest weight paths

π1 : t 7→ tε1 and γ12 :

{

2tε1, t ∈ [0, 12 ]
ε1 + 2(t− 1

2)ε2, t ∈]12 , 1]
in C.

We obtain B(κ) = B(π1)⊕B(γ12) where

(1) B(π1) : π1 : t 7→ tε1, π2 : t 7→ tε2, π1 : t 7→ −tε1 and π2 : t 7→ −tε2 with t ∈ [0, 1]
(2) B(γ12) :

γ12 :

{

2tε1, t ∈ [0, 12 ]
ε1 + 2(t− 1

2)ε2, t ∈]12 , 1]
γ12 :

{

2tε1, t ∈ [0, 12 ]
ε1 − 2(t− 1

2)ε2, t ∈]12 , 1]
,

γ22 :

{

2tε2, t ∈ [0, 12 ]
ε2 − 2(t− 1

2)ε2, t ∈]12 , 1]

γ21 :

{

2tε2, t ∈ [0, 12 ]
ε2 − 2(t− 1

2)ε1, t ∈]12 , 1]
and γ21 :

{

−2tε2, t ∈ [0, 12 ]
−ε2 − 2(t− 1

2)ε1, t ∈]12 , 1]
.

The crystal B(κ) is the union of the two following crystals

π1
1→ π2

2→ π2
1→ π1

γ12
2→ γ12

1→ γ22
1→ γ21

2→ γ21

Observe that for the path γ22, we have γ22(0) = γ22(1) = 0. The other transitions correspond
to the 8 closest neighbors in the lattice Z2.

We now define the probability distribution p on the set B(π1)
⊕m1 ⊕B(γ12)

⊕m2 . We have

ΣM (τ) = a1
1 + τ1 + τ1τ2 + τ21 τ2

τ1
√
τ2

+ a2
1 + τ2 + τ1τ2 + τ21 τ2 + τ21 τ

2
2

τ1τ2
.

The probability p is defined by

p1 =
a1

ΣM (τ)τ1
√
τ2
, p2 =

a1
ΣM (τ)

√
τ2
, p2 =

a1
√
τ2

ΣM (τ)
, p1 =

a1τ1
√
τ2

ΣM (τ)

p12 =
a2

ΣM (τ)τ1τ2
, p12 =

a2
ΣM(τ)τ1

, p22 =
a2

ΣM (τ)
, p21 =

a2τ1
ΣM(τ)

, p21 =
a2τ1τ2
ΣM(τ)

.

The set of positive roots is

R+ = {ε1 ± ε2, 2ε1, 2ε2} and ρ = (2, 1).

The action of the Weyl group on Z2 yields the 8 transformations which preserves the square of
vertices (±1,±1). For any partition µ = (µ1, µ2) ∈ P+, we obtain by the Weyl character formula
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and Theorem 6.2

ψ(µ) = Pµ(W(t) ∈ C, t ≥ 0) = (1− τ1)(1− τ2)(1− τ1τ2)(1− τ21 τ2)Sµ(τ1, τ2) =
∑

w∈W

ε(w)τw(µ+ρ)−(µ+ρ) =

1 + τµ1−µ2+1
1 τµ1+2

2 + τ2µ1+4
1 τµ1+µ2+3

2 + τµ1+µ2+3
1 τµ2+1

2

− τµ1−µ2+1
1 − τµ2+1

2 − τ2µ1+4
1 τµ1+2

2 − τµ1+µ2+3
1 τµ1+µ2+3

2

Moreover, the law of the random walk W conditioned by the event

E := (W(t) ∈ C for any t ≥ 0)

is the same as the law of the Markov chain H defined as the generalized Pitman transform of W
(see Theorem 4.6). To compute the associated transition matrix M, we need the tensor product
multiplicities mλ

µ,M = a1m
λ
(1,0),µ+a2m

λ
(1,1),µ. We have for any partitions λ and µ with two parts

mλ
(1,0),µ =

{

1 if λ and µ are equal or differ by only one box
0 otherwise

and

mλ
(1,1),µ =

{

1 if λ and µ are equal or differ by two boxes in different rows
0 otherwise.

We thus have for any λ, µ ∈ P+

ΠE(µ, λ) =
ψ(λ)

ψ(µ)ΣM (τ)

(

a1m
λ
(1,0),µ + a2m

λ
(1,1),µ

)

τµ1−λ1
1

√
τ2

(µ1+µ2−λ1−λ2).

7. Some consequences

In the remaining of the paper, we assume W is constructed from an the irreducible g-module
V (κ) in the category Oint.

7.1. Asymptotics for the multiplicities f ℓλ/µ. Consider λ, µ ∈ P+ and ℓ ≥ 1 such that

f ℓλ/µ > 0 and f ℓλ > 0. Then, we must have ℓκ + µ − λ ∈ Q+ and ℓκ − λ ∈ Q+. Therefore

µ ∈ Q and it decomposes as a sum of simple roots. In the sequel, we will assume the condition
µ ∈ Q ∩ P+ is satisfied.

We assume the notation and hypotheses of Theorem 6.2. Consider a sequence λ(ℓ) of dominant
weights such that λ(ℓ) = ℓm(1) + o(ℓ). By Assertion 2 of Proposition 4.5, we have P(Wℓ =

λ(ℓ),W0 = µ,W(t) ∈ C ∀t ∈ [0, ℓ]) = f ℓ
λ(ℓ)/µ

τℓκ+µ−λ

Sκ(τ)ℓ
. Since m(1) ∈ C̊, the strong law of large

numbers implies that the sequence (1ℓWℓ)ℓ≥0 tends to m(1) almost surely. We get

lim
ℓ→+∞

Pµ(Wℓ = λ(ℓ),W(t) ∈ C for any t ∈ [0, ℓ])

P0(Wℓ = λ(ℓ),W(t) ∈ C for any t ∈ [0, ℓ])
= lim

ℓ→+∞

f ℓ
λ(ℓ)/µ

f ℓ
λ(ℓ)

τµ.

We also have limℓ→+∞(Wℓ = λ(ℓ)) = 1. Therefore, limℓ→+∞ Pµ(Wℓ = λ(ℓ),W(t) ∈ C for any t ∈
[0, ℓ]) = ψ(µ). So we obtain for any sequence of dominant weights of the form λ(ℓ) = ℓm(1)+o(ℓ)

lim
ℓ→+∞

f ℓ
λ(ℓ)/µ

fλ(ℓ)

τµ =
ψ(µ)

ψ(0)
= Sµ(τ)

where the last equality follows from Theorem 6.2 for S0(τ) = 1. We have proved the following
Corollary of Theorem 6.2.
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Corollary 7.1. For any µ ∈ Q ∩ P+, and any sequence of dominant weights of the form

λ(ℓ) = ℓm(1) + o(ℓ), we have limℓ→+∞

fℓ

λ(ℓ)/µ

fℓ
λ

= τ−µSµ(τ).

Remark: One can regard this corollary as an analogue of the asymptotic behavior of the
number of paths in the Young lattice obtained by Kerov and Vershik (see [8] and the references
therein).

7.2. Probability thatW stay in C. By Theorem 6.2, we can compute Pµ(W(t) ∈ C for any t ∈
[0, ℓ]). Unfortunately, this does not permit do make explicit Pµ(Wℓ ∈ C ∀ℓ ≥ 1). Nevertheless,
we have the immediate inequality

Pµ(W(t) ∈ C for any t ≥ 0) ≤ Pµ(Wℓ ∈ C for any ℓ ≥ 1).

In the remaining of this paragraph, we will assume that g is of finite type. Then, each crystal
B(πκ) is finite. For any i = 1, . . . , n, write m0(i) ≥ 1 for the maximal length of the i-chains
appearing in B(πκ). Set κ0 =

∑n
i=1(m0(i) − 1)ωi. Observe that κ0 = 0 if and only if κ is a

minuscule weight.

Lemma 7.2. Assume Wk ∈ C for any k = 1, . . . , ℓ. Then κ0 +W(t) ∈ C for any t ∈ [0, ℓ].

Proof. Since κ0 is a dominant weight, we can consider πκ0 any path from 0 to κ0 which remains
in C. First observe that the hypothesis Wk ∈ C for any k = 1, . . . , ℓ is equivalent to κ0 +W(k) ∈
κ0+C for any k = 1, . . . , ℓ.We also know by Assertion 8 of Theorem 3.6 that B(πκ0)⊗B(πκ)

⊗ℓ is
contained in PminZ for any ℓ ≥ 1. Set W(ℓ) = π1⊗· · ·⊗πℓ. By Assertion 3 of Proposition 3.4, we
have to prove that ẽi(πκ0⊗π1⊗· · ·⊗πℓ) = 0 for any i = 1, . . . , n providing wt(πκ0⊗π1⊗· · ·⊗πk) =
πκ0 ⊗π1⊗· · ·⊗πk(1) ∈ κ0+P+ for any k = 1, . . . , ℓ. Fix i = 1, . . . , n. Set κ0(i) = m0(i)−1. We
proceed by induction.

Assume ℓ = 1. Since we have ẽi(πκ0) = 0, it suffices to prove by using Assertion 2 of
Proposition 3.5 that εi(π1) ≤ ϕi(πκ0). By definition of the dominant weight πκ0 , we have
ϕi(πκ0) = κ0(i). So we have to prove that εi(π1) ≤ κ0(i). Assertion 7 of Theorem 3.6 and the
hypothesis wt(πκ0 ⊗ π1) ∈ κ0 + P+ permits to write

(29) wt(πκ0)i +wt(π1)i = wt(πκ0 ⊗ π1)i ≥ κ0(i).

Recall that π1 belongs to B(πκ). So εi(π1) ≤ κ0(i) + 1 because εi(π1) gives the distance of
π1 from the source vertex of its i-chain. When εi(π1) < κ0(i) + 1 we are done. So assume
εi(π1) = κ0(i) + 1. This means that π1 satisfies ϕi(π1) = 0. Therefore, wt(π1)i = −κ0(i) − 1.
But in this case, we get by (29)

wt(πκ0 ⊗ π1)i = κ0(i)− (κ0(i) + 1) = −1 ≥ κ0(i)

hence a contradiction.
Now assume ẽi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) = 0 for any k = 1, . . . , ℓ − 1. Observe that wt(πκ0 ⊗

π1 ⊗ · · · ⊗ πℓ−1)i = ϕi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) ≥ κ0(i) since πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1 ∈ κ0 + P+ and
ẽi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) = 0. We also have

(30) wt(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ)i = wt(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1)i +wt(πℓ)i ≥ κ0(i).

We proceed as in the case ℓ = 1. Assume first εi(πℓ) ≤ ϕi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1). Then
by Proposition 3.5 and the induction equality ẽi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) = 0, we will have
ẽi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ) = 0.

Now assume εi(πℓ) > ϕi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1). Since ϕi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) ≥ κ0(i) and
πℓ ∈ B(πκ0), we must have εi(πℓ) = κ0(i) + 1, ϕi(πℓ) = 0 and ϕi(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1) = κ0(i).
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Therefore, we get wt(πℓ)i = −κ0(i)− 1 and wt(πκ0 ⊗ π1 ⊗ · · · ⊗ πℓ−1)i = κ0(i). Then (30) yields
yet the contradiction

−1 ≥ κ0(i).

�

Remark: In general the assertion Wk ∈ C for any k = 1, . . . , ℓ is not equivalent to the assertion
κ0 + W(t) ∈ κ0 + C for any t ∈ [0, ℓ]. This is nevertheless true when κ is a minuscule weight
since κ0 = 0 in this case and the paths in B(πκ) are lines.

We deduce from the previous lemma the inequality

Pµ(Wk ∈ C for any k = 0, . . . , ℓ) ≤ Pµ+κ0(W(t) ∈ C for any t ∈ [0, ℓ]).

When ℓ tends to infinity, this yields

Pµ(Wℓ ∈ C for any ℓ ≥ 1) ≤ Pµ+κ0(W(t) ∈ C for any t ≥ 0.

By using Theorem 6.2, this implies the

Theorem 7.3. Assume g is of finite type (then mα = 1 for any α ∈ R+). Then, for any µ ∈ P+

we have
∏

α∈R+

(1− τα)Sµ(τ) ≤ Pµ(Wℓ ∈ C for any ℓ ≥ 1) ≤
∏

α∈R+

(1− τα)Sµ+κ0(τ).

In particular, we recover the result of Corollary 7.4.3 in [10] :

Pµ(Wℓ ∈ C for any ℓ ≥ 1) =
∏

α∈R+

(1− τα)Sµ(τ)

when κ is minuscule.

Remark: The inequality obtained in the previous theorem can also be rewritten

1 ≤ Pµ(Wℓ ∈ C for any ℓ ≥ 1)

Pµ(W(t) ∈ C for any t ∈ [0,+∞[)
≤ Sµ+κ0(τ)

Sµ(τ)
.

When µ tends to infinity, we thus have Pµ(Wℓ ∈ C ∀ℓ ≥ 1) ∼ Pµ(W(t) ∈ C for any t ≥ 0) as
expected.

8. Appendix (proof of Proposition 2.1)

By definition of the probability Q, for any ℓ ≥ 1 and any µ0, · · · , µℓ, λ ∈ C, one gets

Q(Yℓ+1 = λ | Yℓ = µℓ, · · · , Y0 = µ0) =
Q(Yℓ+1 = λ, Yℓ = µℓ, . . . , Y0 = µ0)

Q(Yℓ = µℓ, . . . , Y0 = µ0)

=
P(E,Yℓ+1 = λ, Yℓ = µℓ, . . . , Y0 = µ0)

P(E,Yℓ = µℓ, . . . , Y0 = µ0)
=:

Nℓ

Dℓ
.
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We first have, using the Markov property

Nℓ = P(Y(t) ∈ C for t ≥ 1, Yℓ+1 = λ, Yℓ = µℓ, . . . , Y0 = µ0)

= P(Y(t) ∈ C for t ≥ ℓ+ 1 | Yℓ+1 = λ,Y(t) ∈ C for t ∈ [0, ℓ + 1], Yℓ = µℓ, . . . , Y0 = µ0)

× P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [0, ℓ+ 1], Yℓ = µℓ, . . . , Y0 = µ0)

= P(Y(t) ∈ C for t ≥ ℓ+ 1 | Yℓ+1 = λ)

× P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [0, ℓ+ 1[, Yℓ = µℓ, . . . , Y0 = µ0)

= P(Y(t) ∈ C for t ≥ 0 | Y0 = λ)

× P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [0, ℓ+ 1[, Yℓ = µℓ, . . . , Y0 = µ0)

with
P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [0, ℓ+ 1[, Yℓ = µℓ, . . . , Y0 = µ0)

= P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ+ 1[| Y(t) ∈ C for t ∈ [0, ℓ[, Yℓ = µℓ, . . . , Y0 = µ0)

× P(Y(t) ∈ C for t ∈ [0, ℓ[, Yℓ = µℓ, . . . , Y0 = µ0)

= P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ+ 1[| Yℓ = µℓ)× P(Y(t) ∈ C for t ∈ [0, ℓ[, Yℓ = µℓ, . . . , Y0 = µ0).

We therefore obtain

Nℓ = P(E | Y0 = λ)× P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ+ 1] | Yℓ = µℓ)

× P(Y(t) ∈ C for t ∈ [0, ℓ[, Yℓ = µℓ, . . . , Y0 = µ0).

A similar computation yields

Dℓ = P(E | Yℓ = µℓ]× P[Y(t) ∈ C for t ∈ [0, ℓ[, Yℓ = µℓ, . . . , Y0 = µ0).

Finally, we get

Q(Yℓ+1 = λ | Yℓ = µℓ, · · · , Y0 = µ0) =

P(Yℓ+1 = λ,Y(t) ∈ C for t ∈ [ℓ, ℓ+ 1] | Yℓ = µℓ)×
P(E | Y0 = λ)

P(E | Y0 = µℓ)
.
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[2] Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5 et 6, Hermann (1968).
[3] B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer (2004).
[4] J. Hong, S. J. Kang, Introduction to quantum groups and crystals bases, Graduate studies in Mathematics,

42 Amer. Math. Soc. (2002).
[5] A Joseph, Lie Algebras, their representation and crystals, Lecture Notes Weizman Institute.
[6] V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, third edition (1989).
[7] M. Kashiwara, On crystal bases, Canadian Mathematical Society, Conference Proceedings, 16 (1995),

155-197.
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