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We propose a new method called spectral intrinsic decomposition (SID) for the representation of nonlinear signals. This approach
is based on the spectral decomposition of partial differential equation- (PDE-) based operators which interpolate the characteristic
points of a signal. The SID’s components which are the eigenvectors of these PDE interpolation operators underlie the new signal
decomposition-reconstruction method. The usefulness and the efficiency of this method is illustrated, in signal reconstruction or
denoising aim, in some examples using artificial and pathological signals.

1. Introduction

The signal decomposition into atoms is an popular approach
in signal analysis. The Fourier representation technics and
other based on wavelets and time-frequency, or time scales
analysis methods [1], and recently the Empirical Mode
Decomposition [2] are extensively used in signal and image
processing. The objective is to understand the contents of the
signal by analyzing its components. It is sometimes desirable
to have these components well suited to the separation of the
noise or data in some scale analysis. Sparse representations of
signals have like pursuit methods [3], the Poper Orthogonal
Decomposition (POD) [4], or Singular Value Decomposition
(SVD) received a great deal of attentions in last recent
years. The problem solved by the sparse representation
is the most compact representation of a signal in terms
of combination of atoms in an overcomplete dictionary.
The Empirical Mode Decomposition [2] is a self adaptive
decomposition method which is essentially algorithmic

and can decompose a nonlinear signal into Amplitude
Modulation-Frequency Modulation (AM-FM) component
plus an residue. The characteristic points of a signal like
local extrema are very useful in signal analysis as its shown
in EMD algorithm. The interpolation of the characteristic
points provides a low frequency component of a signal
whose iterative extraction is the basis of the EMD sifting
process.

To overcome the lack of a solid theoretical framework of
EMD, we have proposed an analytical approach for sifting
process based on partial differential equation (PDE) in [5–
8]. We give in particular a noniterative scheme to solve
the coupled PDEs system for upper and lower envelopes
estimation with an adequate definition of the characteristic
points of the signal to be decomposed, see [6, 8]. In this
following work, we use all the eigenvectors of upper and
lower PDE-envelope operators and propose a new Spectral
Intrinsic Decomposition (SID) method for nonlinear signal
representation. The decomposition obtained with SID acts
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like a sparse representation and provides relevant results for
signal denoising with an competitive rate of reconstruction.
In the following, we introduce in Section 2 the PDE-
interpolation operator and its spectral numerical resolution.
Section 3 describes the Spectral Intrinsic Decomposition
method with an discussion on the SID’s component prop-
erties in Section 3.2. In Section 4, some comparison of tests
are performed between SID-based method for signal recon-
struction and the wavelets-based one. Finally, conclusion and
perspectives are given in Section 5.

2. PDE-Interpolator Decomposition

As proposed in [5–7], the upper (s+) or lower (s−) envelopes
of an signal s0 can be computed as the asymptotic solution of
a coupled PDEs system as the following:

∂s±(x, t)
∂t

+ g±(x, t)

(
α
∂2s±(x, t)

∂x2
+ (1− α)

∂4s±(x, st)
∂x4

)
= 0,

(1)

where α is the tension parameter which ranges from 0 to 1.
The initial value solution of this equation is s±(x, t =

0) = s0, and g± are the stopping or diffusivity functions
depending on signal derivatives, with 0 ≤ g± ≤ 1. An
diffusivity function for Maximum Curvature Points (MCP)
interpolation of s0 is given by

g±(x) = 1
9

[∣∣∣∣∣sgn

(
∂3s0(x)
∂x3

)∣∣∣∣∣± sgn

(
∂2s0(x)
∂x2

)
+ 1

]2

, (2)

where sgn denote the sign function.

2.1. Spectral Resolution of the Coupled PDEs System. Numer-
ical resolutions for coupled PDEs system in (1) are imple-
mented in [5] via classical iterative Crank-Nicolson or Du
Fort and Frankel schemes.

Equation (1) can be resolved numerically in its discrete
implicit unconditionally stable scheme as follows:

Sk+1 = Sk + ΔtASk+1, S0 = S0, (3)

where S = (s[1], . . . , s[N])T is the column vector of signal
samples for upper or lower envelopes for example, s+ or s−.
The time step is denoted by Δt and A is a matrix formed
with finite difference approximation coefficients of second
and fourth order differential operators (resp., D2 and D4),
as

A = G(αD2 − (1− α)D4), (4)

with G the diagonal matrix of stopping function values g±[n]
constructed with discrete version of stopping function values
g(x) as below:

g
(
δ3
x s0, δ2

x s0
) = g(D1D2s0,D2s0), (5)

where D2z = D+D−z and D1z = m(D+z,D−z) with D+

and D− forward and backward first difference operators on

the x dimension, and where m(a, b) stands for the minmod
limiter [6, 7] for derivatives estimation, m(a, b) = 0.5(sgn a+
sgn b) min(|a|, |b|).

So the explicit form leads to the following numerical
resolution:

Sk+1 = (I− ΔtA)−1Sk, S0 = S0, (6)

with I the identity matrix. Finally (1) can be decomposed
into a linear system from implicit numerical scheme (6) by

Sk+1 = L−1Sk, S0 = S0, k ≥ 0, (7)

where L is the linear operator including stopping function
values and differential operator formed by fourth-order and
second-order derivative. So, referring to numerical schemes
(6), L is given by

L = I− Δt A. (8)

The operator matrix L, has real-valued eigenvalues that are
always greater or equal to 1. Then, eigenvalues, λn, of L−1

are always smaller or equal to 1, (0 < λn ≤ 1), see [7].
In Figure 1(d), the sequence of eigenvalues is plotted for an
given tested signal.

2.2. The Asymptotic Solution as an Linear Combination of
Fixed Vector Point of Upper and Lower Envelope Operators.
The iterative scheme (7) can be rewrite in term of initial
solution S0 as

Sk = (L−1)kS0, k ≥ 1, (9)

after convergence, the asymptotic solution, S∞, is given by

S∞ =
(

L−1)∞S0. (10)

Let V be a matrix of L−1’s sequence of eigenvectors
(Vn) and D a diagonal matrix having L−1’s sequence of
eigenvalues (λn), at the diagonal. So we have the following
decomposition:

L−1 = VDV−1. (11)

It is easy to see that

(
L−1)k = (VDV−1)k = VDkV−1. (12)

So, the asymptotic solution in (10) is obtained by

S∞ =
(

VD∞V−1)S0. (13)

The asymptotic eigenvalue matrix D∞ is a diagonal
matrix with eigenvalues λ∞n = 1 only at loci where matrix
G is zeroed, and λ∞n = 0 where g[n] > 0, for example, for
λn < 1.

In the following, E denotes either the upper or lower
envelope operator. The upper and lower envelope of the
signal are calculated with the eigenvectors associated to
eigenvalue λ = 1. Hence, as its shown in (13), S∞ is a
linear combination of 1-eigenvectors weighted by the signal
amplitude. Instead of focusing only on the envelope calculus,
we now consider all the set of eigenvalues of the envelope
operator E.
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Figure 1: Input chirp signal in (a), some eigenvectors in (b) and all the eigenvalues for the upper envelope operator in (c). A similar
result is obtained for lower envelope. Around the intermittency at the coordinate 400, each PSMF presents as nonstationarity but
contributes everywhere else to the signal composition with a centred and stationary component which are Amplitude Modulation-Frequency
Modulation (AM-FM). In (d) all the eigenvalues are in the segment ]0; 1] and greater than 1/17.
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Figure 2: Original Signals signal 1 in (a) and signal 2 in (b), their reconstructed version by Wavelets methods and SID-based method. The
SID approach works like Wavelets methods with the advantage of the skip of the choice of the mother wavelet.

3. The Spectral Intrinsic
Decomposition Method

Let us consider all the eigenvalues of the envelope operator
E of a signal s0. The set of eigenvectors of E is an pseudo-
dictionary, each of its component called Spectral Proper
Mode Function (SPMF), is intrinsic to the signal. The SID
decomposition deals to the combination of all SPMF.

3.1. On the Properties of SPMF and Spectral Intrinsic De-
composition Principle. The atoms SPMF calculated from
the operator E are adaptive and well localized around the
caracteristic points of the signal. In Figure 1, we show the
original signal in Figure 1(a), and some eigenvectors (SPMFs
V920, V940, V960, V980, V100) associated to lowest eigenvalues
for the upper envelope in Figure 1(b). Figure 1(c) presents
the SPMFs numbers V20, V40, V60, V80, and V100. Around
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Figure 3: Original Signals signal 3 in (a) and signal 4 in (b), their reconstructed version by Wavelets methods and SID-based method. The
SID approach works better than wavelets methods with a stronger power of reconstruction and the advantage of the skip of wavelet form
choice.

the intermittency at the coordinate 400, the last SPMFs cor-
responding to lesser eigenvalues present an nonstationarity
but contribute everywhere else to the signal composition,
with a centred and stationary component which is Amplitude
Modulation-Frequency Modulation (AM-FM).

It is interesting to note that the EMD Sifting process
[2] allows for tracking of these AM-FM components by

searching iteratively around the extrema. Even in SID the
role of extrema in the occurrence of nonstationarity is noted.
Also, the SPMF contains local frequencies of the signal.
Hence localy, the SPMF decomposition (SID) works like
the basic EMD’s principle that considers a signal as an
superposition of a lower frequency component and a most
higher frequency component.
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Wavelets reconstruction Reconstruction by SID 

Length Threshold Error/db3
Error
/Haar

PSNR
/Haar

PSNR
/db3

Number 
added Vp Error/SID PSNR/SID

Signal 1 501 30 25.3841 26.7309 32.8918 33.1163 100 15.1394 38.3007

Signal 2 100 1 0.0727 0.46 12.9011 10.9169 25 0.0146 17.8929

Signal 3 1024 30 0.0317 0.0357 8.1013 8.6235 300 5.19E-04 26.4784

Signal 4 95 10 3.8051 4.41248 16.1294 16.4798 50 1.422 20.7545
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Figure 4: In (a): The table of comparative results showing the performance of SID. In (b): graphical representation of all the errors. In (c).
The SID-based reconstruction method works better than the wavelets one.

When the classical EMDs principle leads to a locally
decomposition with two components, the SID decomposi-
tion gives a sequence (of number greater than the number
of characteristic points) of really localized component as
follows:

s0 =
∑

k∈{ j/λj=1, λj eigenvalue of E}
VkCk

+
∑

k /∈{ j/λj=1, λj eigenvalue of E}
VkCk,

(14)

where Vk denotes an eigenvector of E (SPMF) and Ck the
decomposition coefficient depending on s0. The first term
of (14) corresponds to the envelope of s0. Then it appears
that the SID provides a generalization of the EMD’s basic
principle because in (14), we have more than the number
of maxima or minima components. SPMF participates in

the whole dynamic of the signal with a strong localization
around the points that generated the eigenvectors.

In most cases, an SPMF can be viewed as a (nonlinear)
frequency narrow-band wavelet ϕ with Amplitude Modula-
tion by a lower frequency signal a[n]:

SPMFk[n] = Ak[n]ϕk[n]. (15)

The redundancy and the orthogonality of the dictionary of
all SPMF depend on the properties of the operator E. When
E is symmetric, we can have the orthogonality and SPMF too
similar to a wavelet function (see example in Figure 1).

3.2. The Spectral Intrinsic Decomposition. The Spectral
Intrinsic Decomposition procedure is define as the calculus
of all the SPMF for an given signal. Let us take the same
notation than in Section 3.1 and consider the upper envelope
operator E = L−1. The same procedure can be performed
with the lower envelope. The eigen decomposition of E gives:
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Figure 5: In (a) the same result with two different scale representations. In (b) the comparative representation of the SNR. SID-based
reconstruction method gives satisfactory results compared to wavelet-based method.

[VE, LE] = eig(E), where VE = [V1, . . . , Vsize(s0)] and LE =
[L1, . . . , Lsize(s0)] (with the possibility zeros to complete the
size of the vector) are, respectively, the set of eigenvectors and
the set of eigenvalues of E. The coefficient reconstruction of
s0 is given by:

C = LEV−1
E s⊥0 , with s⊥0 the transpose of s0. (16)

Hence s0 is computed by the formula s0 = VC.
The Spectral Intrinsic Decomposition of s0 described in

Algorithm 1, is given as follows:

s0 =
N∑
k=1

VkCk. (17)

This decomposition is intrinsic and depends only to the
position of caracteristic points of s0 that define the diffusivity
function in the interpolation operator. We notice that the
SID versus lower envelope works like the SID with the upper
envelope and has the same reconstruction ability.

The reason is that the PDE-interpolation operator use all
the data in s0 and these SPMFs generate the same functional
space. All the SPMF participate locally in the reconstruction
of the signal s0. Hence, in the sense of the superposition
principle, SID is more general than the EMD’s classical
principe.

4. Application to Signal
Reconstruction and Filtering

The SID-based signal denoising principle is derived from the
idea that regular signal can be accurately approximated using
a small number of approximation coefficients (at a suitably
chosen level) or some of the detail coefficients. The SPMF
corresponding to smaller eigenvalues contain the noise or
the highest frequency component of any given signal. The

denoising procedure contains three steps: decomposition-
threshold-reconstruction (DTR). The decomposition clas-
sically can be a wavelets representation depending on a
choice of wavelet and a level NL. For each level from 1
to NL, a threshold is selected and hard thresholding is
applied to the detail coefficients. At last we compute wavelet
reconstruction using the original approximation coefficients
of level NL and the modified detail coefficients of levels from
1 to N . In following we propose a new reconstruction and
denoising method by taking the Spectral Intrinsic instead of
the wavelet at the decomposition step of the DTR procedure.
There are two denoising approaches that can be explored
here for test results. The first consists of taking the wavelet
expansion of the signal and keeping the largest absolute value
coefficients. In this case, one can set a global threshold and
evaluate the denoising performance by the signal-to-noise
ratio (SNR), or the relative error of reconstruction. Thus,
only a single parameter needs to be selected. The second
approach consists of applying visually determined level-
dependent thresholds. In Algorithm 2, we have described the
SID-based reconstruction method as follows: with the SID of
s0, we first compute the set of all reconstruction coefficients
by

C = LEV−1
E s⊥0 , (18)

and retain all the SPMF corresponding to the 1-eigenvalues
of E that gives the significant SPMF in SID representation of
s0, by calculating the coefficients for 1-eigenvalues denoted
by Cm. After, like in the wavelet reconstruction or denoising
method, we fix the number of supplementary SPMF (by
estimating Cs) to add to the significant set of SPMF
retained before. Secondly we reconstruct an approximate
and denoised version of s0 by forming the reconstruction
coefficient:

CR =
[

Cm Cs

]
, (19)
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Error/db3 Error/Haar Error/SID
Signal 5 0.0276 0.2881
Signal 6 0.006 0.0124 0.0031
Signal 7 0.1001 0.2453

PSNR/Haar PSNR/db3 PSNR/SID
Signal 5 19.314 29.5071 57.5439
Signal 6 31.9394 35.1173 38.0023
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Figure 6: Original Signals. Signal 5, signal 6, and signal 7, respectively, in (a), (b), and (c); their reconstructed version by Wavelets methods
and SID-based method. According to the comparison table of SNR and errors in (d), the SID approach works as well as Wavelets methods
with the advantage of adaptability.
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(1) compute g± from S0, using for example MCP (2)
(2) compute matrix operator L−1 = E (8)
(3) perform eigendecomposition of E, [VE, LE] = eig(E)
(4) perform reconstruction coefficients of S0, C = LEV−1

E S−1
0

(5) set [Vk], and [Lk] for k = 1 . . . N , �Result

and S0 ←
∑N

k=1 Vk ∗ Ck

Algorithm 1: Spectral intrinsic decomposition algorithm.

(1) compute matrix operator L−1 = E (8)
(2) perform eigendecomposition of E, [VE, LE] = eig(E)
(3) compute reconstruction’s coefficients:

C = LEV−1
E s⊥0

(4) find retained significant eigenvectors associated to eigenvalue equal to 1, Cm

(5) fix the number of supplementary eigenvectors to add Cs

(6) find retained significant eigenvectors CR = [Cm Cs]

(7) compute reconstructed signal
Sc =← VECR;

�Results

and SNR =← −20∗ log10

(‖Sc − S0‖
‖s0‖

)

Algorithm 2: Signal reconstruction with spectral intrinsic decomposition approach.

and completing by zeros for equalization of matrix size. In
[7] we have proposed an optimal method to compose Cs by
regularization technique. The reconstructed signal version is

Sc = VECR. (20)

Finally we compute the SNR and the number of points
or number of SPMF retained for the signal reconstruction.
In example tests presented in Figures 2(a), 2(b), 3(a),
and 3(b) we apply a global thresholding, for a given and
unoptimized wavelet choice, to produce a nearly complete
square norm recovery for a signal and compare it with
the SID version one. For signal 3 reconstruction, the
high frequency component is lost with wavelet method
while SID-reconstruction retains quite perfectly this essential
component. We can clearly see in Figures 4(b), 4(c), 5(a),
5(b), and 6 that the SID-based reconstruction works better
than the classical wavelet method with fewest reconstruction
error and gives better SNR. Another advantage of the SID
based-reconstruction method is its self-adaptability and its
unique dependence on signal to be approximate. To compare
scores of these methods we compute the retained energy in
percentage defined by

−20∗ log10

(‖Sc − s0‖
‖s0‖

)
(21)

and we have compare the percentage of the number of useful
points for signal reconstruction, see Figure 4(a).

5. Conclusion

In this paper we have introduced a new decomposition
method based on a spectral decomposition of an intrinsic
interpolation operator of a signal. The new SID method
is self adaptive and works more generally than the EMD
basic principle. The SID gives a dictionary in terms of SPMF
that are similar to atoms in sparse representation. The test
results demonstrate that SID can be used in signal denoising
as much as the wavelets technic, with the advantage of self
adaptability. The SID is also suitable for signal compression,
one issue of our future works.
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