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Abstract—In future micro-architectures, the increase of the
number of cores and wire network complexity is leading to
several performance degradation. These platforms are intended
to process large amount of data. One of the biggest chal-
lenges for systems scalability is actually the memory wall: the
memory latency is hardly increasing compared to technology
expectations. Recent works explore potential software and
hardware solutions mainly based on different caching schemes
for addressing off-chip access issues.

In this paper, we propose a new cooperative caching method
improving the cache miss rate for manycore micro- architec-
tures. The work is motivated by some limitations of recent
adaptive cooperative caching proposals. Elastic Cooperative
caching (ECC), is a dynamic memory partitioning mechanism
that allows sharing cache across cooperative nodes according
to the application behavior. However, it is mainly limited
with cache eviction rate in case of highly stressed neighbor-
hood. Another system, the adaptive Set-Granular Cooperative
Caching (ASCC), is based on finer set-based mechanisms for
a better adaptability. However, heavy localized cache loads
are not efficiently managed. In such a context, we propose
a cooperative caching strategy that consists in sliding data
through closer neighbors. When a cache receives a storing
request of a neighbor’s private block, it spills the least recently
used private data to a close neighbor. Thus, solicited saturated
nodes slide local blocks to their respective neighbors to always
provide free cache space. We also propose a new Priority-
based Data Replacement policy to decide efficiently which
blocks should be spilled, and a new mechanism to choose host
destination called Best Neighbor selector.

The first analytic performance evaluation shows that the
proposed cache management policies reduce by half the average
global communication rate. As frequent accesses are focused in
the neighboring zones, it efficiently improves on-Chip traffic.

Finally, our evaluation shows that cache miss rate is en-
hanced: each tile keeps the most frequently accessed data 1-
Hop close to it, instead of ejecting them Off-Chip. Proposed
techniques notably reduce the cache miss rate in case of high
solicitation of the cooperative zone, as it is shown in the
performed experiments.

Keywords-Many-cores, Tiled Micro-architectures, Memory
Hierarchy, Cooperative Caching, Cache Partitioning, Data
Sliding, Priority-Based Replacement Policy, Best Neighbor
Selector.

I. INTRODUCTION

Nowadays, multi-core processors use is very prevalent,

either in regular desktop end-products, high performance

computing systems or even in embedded computing systems

(smartphones, automotive industry). One of the trend that

can be observed since the last five years is a massively grow

of the number of cores embedded on a single chip [1]. These

systems are expected to grow up in the same way for the next

decades, leading to a generation of new massively parallel

architectures called manycores. Today, manycores made of

ten to a hundred of cores are already available [2], [3]. Up-

coming chips for 2013 are expected to embed 256 cores [4],

[5] and research projects target up to 4096 cores [6].

The manycore systems are intended to execute a set of

workloads with different memory needs. Using on-chip data

caching allows to decrease access latencies, and therefore

improves application performances. Data that are the most

often used are fetched into high speed access memory units,

close to the processing core, such as L1 caches or shared L2

caches. This avoids expensive requests to the main memory.

These mechanisms are transparent to the developer and to

the application. The resulting cache hierarchy is one of the

main issues that lead to several optimizations. As we move

down in the cache hierarchy, the memory storage capacity

grows up, as for the access latency. The way cache memories

are managed directly shapes the number of cache misses,

that is responsible of slow external memory accesses and

general performance decrease.

One way to optimize memory management relies on cache

partitioning, which refers to the sharing of low level caches

(L2/L3) between several threads that run concurrently. There

are different cache hierarchy organizations depending on

both the number of cache levels and if each level is shared

or private. For example, the Intel Tera-scale architecture [7]

relies on a distributed first-level cache that leads to different

tradeoffs in private or shared cache modes. The use of

private caches leads to small access latencies, and allows



a better scalability, which is of major importance regarding

the design of manycore architectures. The downside of this

approach is that shared data are replicated in multiple tiles,

making harder to deal with data consistency.

In the remainder of the paper, we focus on manycore

architectures with flat memory hierarchy. These manycores

are made of processing cores, each core hosting a single

private cache: no on-chip memory is shared. It can be found,

for example, in the Adapteva Epiphany IV [8] and the Intel

MIC Knights Corner [9], and can be compared to a wireless

ad-hoc network or an unstructured peer-to-peer system.

In such a context, the cooperative cache policy [10], [11]

has been proposed to efficiently manage data over large-scale

architectures with no shared memory. Cooperative caching

consists in taking benefits of some unused memory blocks

in the neighborhood’s private caches. According to adopted

cache organization strategy (ie: LRU), mostly used data are

kept as long as possible in cooperative areas.

This virtually increases the size of the private cache in

order to avoid off-chip evictions. Cooperative caching differs

from distributed shared memory (DSM) in a sense it does

not offer a global address space.

A particular class of high performance applications, once

deployed on a manycore architecture, is able to locally

saturate the chip with numerous reads and writes. This is

particularly true regarding image processing applications

that use convolution filters, streaming-based processing, or

the deployment of multiple applications with on-chip locality

constraints in order to minimize inter-process communica-

tions. In this scenario, private caches attached to core that

run the application are heavily solicited. Therefore, data may

have to be evicted out of the chip, even using a cooperative

cache: the saturated neighborhood can not be of any help.

In order to deal with this situation, we propose a data

sliding mechanism that offers some improvement over the

regular cooperative cache system. This mechanism lets a

core A use the private cache of its neighbor B, even if B

is saturated. In order to host this data, core B chooses one

of its own data to be stored on another neighbor C. The

mechanism ensures that the data are not evicted off-chip,

and always located close to the owner core for performance

reasons.

Our contribution has been analytically evaluated using

synthetic codes coming from industry-grade image process-

ing applications and a trace-based simulator that shows the

benefits of the sliding mechanism, by drastically decreasing

the number of data eviction.

Our paper is organized as follows: Section II presents a

survey of works related to cooperative caching strategies,

from which we motivate our contribution. In Section III

we describe the Data Sliding mechanism, and the two

cache replacement and neighbor selection policies. A first

performance evaluation is discussed in section IV, wherein

we do a global analysis of the results compared to both

the baseline cooperative mechanism and the adaptive Elastic

Caching strategy described later. The last section is for

conclusion and future perspectives.

II. RELATED WORK

A. Cooperative Caching

Memory issues induced by concurrent accesses, large

piece of data and dataflow processing are increasing in

conjunction with the number of integrated cores on a single

die. Data caching issues in large scale systems are also con-

sidered in several other areas such as mobile networks and

web servers. In these contexts, several contributions [12],

[13], [14], [15] regarding cache level organizations have

been proposed in order to enhance cache miss rate and

access latency.

In a small history of microprocessors, the first architec-

tures were based on fully private caches. Shared caches

were proposed to reduce the main memory access rate [16].

In order to benefit from both designs, hybrid caching was

proposed to support heterogeneous workloads [17]. This

leads to different utility-based and power-aware optimiza-

tions through several cache split strategies [18], [19]. Hy-

brid cache organization improves the local hit rate, taking

benefit from the fully private cache approach, and keeps

the overall miss rate as within the shared cache hierarchy.

With the growing number of processing elements in many-

core architectures, it appears to be quite difficult, or even

impossible, to provide physical shared memories among a

large number of cores (although 3D stacking may have the

leverage to design such systems in the future). This is why

distributed caching algorithms are deployed over manycore

architectures.

One of the major approach emerging in this context is

based on private cache aggregation [10], [13], [20]. Cooper-

ative caching has been proposed to enhance access latency

and reduce cache miss rate. Under heavy load conditions,

available cooperative caches provide unused sets of blocks

to neighbors that are short of space [12], [14]. This way,

data are kept close to the requesting nodes.

In spite of the increasing number of nodes, data caching

capacity is more limited because of different physical and

technological constraints. It is even more crucial to effi-

ciently choose which data to remove and which data to keep

close to the processing element. Typical cache management

strategies for optimizing data eviction are called replacement

policies. These policies play a significant role in reducing

cache miss rate and data access time.

For example, energy aware platforms like mobile net-

working and storage file systems consider that communi-

cations are the major source of power consumption. Thus,

a good replacement policy allows reducing general traffic

by conserving cached data as long as possible. In order

to ensure this, some replacement policies were previously

proposed [15], [21]–[23]. They are classified following the



parameters used to take the replacement decision. A few

examples of parameters are: access cost, access pattern,

spatial and temporal dependencies. For instance, traditional

Least Frequently Used policy assumes that most frequently

accessed data will be the most probably called in next

accesses.

The next generation of on-chip systems has to support

a broad spectrum of applications with different memory

requirements, while the on-chip storage capacity is lower

and the cost of off-chip misses becomes more and more

significant. Cooperative caching seems to be a relevant

approach and the induced cache partitioning issues lead

to important optimization tracks. Thus, it is necessary to

have the best tradeoff for optimizing private and shared data

caching according to different workloads.

B. Adaptive Cache Partitioning

Many static and dynamic approaches have been presented

to improve cache resources allocation in cooperative zones.

In order to avoid strong cache contention, most current

works propose a time-based sharing partitioning system.

It particularly considers multiple applications utilities to

unfairly allocate cache resources [20].

One of the main goals is to set the frontier between

private cache and shared cache by limiting underused space.

Elastic Cooperative Caching (ECC) [24] has been proposed

as an adaptive memory hierarchy that consists in creating a

hybrid cache which dynamically re-adjusts local and shared

zones according to cached data reuse in each side. The

ECC provides an autonomous way to control data spilling in

cooperative area to avoid contention and power consumption

at the level of cache coherency unit. In addition, cache

elasticity allows to get both advantages of private cache in

terms of access latency and those of shared cache approach

with cache miss rate reduction.

Another adaptive cache partitioning proposal is the Adap-

tive Set-Granular Cooperative Caching [25]. This proposal

is also based on data migration from high utility caches

to underused ones. The Set-Granular Cooperative Caching

proposes spilling techniques that allow measuring the stress

level of each set in a set-associative cache. Depending on

measured stress degree of sets the system decides the spilled

ones and those that will receive them.

In a situation of a global short of storage capacity,

where all cooperative caches are full, none of the presented

adaptive mechanisms can afford the ability to spread out

cooperative zone, while keeping data 1-Hop close to the

requesting cores.

The Data Sliding approach handles efficiently stressed co-

operative neighborhood with data migration through neigh-

bor’s cooperative zones. In response to storing requests,

each saturated node should push only one time local private

blocks to his least stressed neighbor, so that it could store

spilled data from most stressed requesting neighbors. Finally,

local data migration is stopped when reaching a cache free

cooperative area.

Our proposal is based on two main policies: Priority-

based replacement policy and Best Neighbor Selector. These

mechanisms allow each node to decide efficiently the block

to be replaced and the best host cache (Best Neighbor) to

receive it.

III. CONTRIBUTION: DATA COOPERATIVE SLIDING

MECHANISM FOR HIGHLY STRESSED ZONES

A. Proposed Data Sliding protocol

The manycore processors provide the ability of running

several parallel applications in the same time. One of

the biggest challenges in such highly parallel architectures

is to adapt the memory resource allocation to different

application workloads. Previous studies of adaptive cache

partitioning [24] have classified the applications in four

categories regarding the amount of shared data and working

set; saturating utility, low utility, shared high utility and

private high utility. In our paper,we focus on private high

utility applications (e.g: Swim) with a high data reuse

amount. These applications are characterized by important

private cache requirements.

Different combinations of these kind of applications pro-

vide effective issues of managing concurrent accesses to

cache hierarchy, especially in cooperative neighboring cache

schemes. Cores with short cache solicitations benefit from

the extension of storage space through shared zones. This

creates highly stressed spots in cooperative zones. To be able

to provide an adaptive cooperative policy, it is important

that storage space can be distributed efficiently between

cooperative nodes. In fact, in the case of highly stressed

neighborhood, adaptive cooperative caching mechanisms can

not manage data storage considering the memory needs of

all the cooperative nodes.

The elastic cooperative cache hierarchy provides balanced

cache partitioning between local cache space and shared

unused space. However, the cyclic adaptive aspect of this

mechanism depends on the running application behavior

as well as the neighbor’s one. Therefore, when both ap-

plications are private high utility, the partitioning unit will

try to dynamically adjust the size of each zone. As cyclic

cache partitioning decision is based on concurrent private

and shared access hits, more blocks will be replaced in both

zones and then evicted off-chip.

In this paper, we propose a new cache spilling mechanism

which allows stressed neighborhoods to keep frequently

accessed data on-chip, near the owning tiles. The sliding

mechanism allows the migration of private blocks between

neighbors in a highly stressed context, as seen in figure 1.a.

As far as we know, this is not allowed in existing cache

cooperative systems. When a tile sends a private block

to a neighbor cache, this one replaces the least recently

used private block by the new received one. In order to



Figure 1. Data propagation through neighbors

avoid the eviction of the data, the host node sends the

replaced private block to his nearest neighbor. Thereby,

every neighbor receiving spilled data pushes local blocks to

his cooperative neighboring zone in order to release cache

space for incoming shared blocks. This process is recursively

repeated until the sliding propagates to a non saturated

area, or to what has been defined as the edge of the chip.

In the latter case, private data is evicted out of the chip.

However, this worst case may not occur in large manycore

architectures, where temporary cool areas still exist.

To simplify our approach, cached blocks are 1-chance

forwarded, which means that a block that has been moved

to a neighbor can not be moved again (except to move back

to the owner). This is not a limitation, and we can imagine

switching to a N-chance forwarding system, as long as it

remains more efficient than getting the data from external

memory. Thus, each node keeps its private data one-hop

close (figure 1.b), instead of migrating them to the opposite

side of the chip or even evicting them off-chip.

B. Functional Description of Data Sliding Mechanism

According to our approach, the cache functional state

is either in AV AILABLE or SLIDING mode. The

SLIDING mode is activated when the whole neighborhood

is highly stressed. When a cache is saturated (ie: cache

occupancy is higher than THSAT ), data sliding is not

automatically activated. Only highly competitive accesses to

saturated caches allows data neighbor-to-neighbor sliding.

In order to get information about both core and neighbor-

hood workloads, we define two main types of counters, that

are managed on each core:

• The Local Hit Counter (LHC) is incremented accord-

ing to local accesses,

• The Neighbor Hit Counter (NHC) is associated to each

neighbor and is incremented according to each shared

data accesses from the neighbor.

Comparing neighboring access to local access amounts

lets the system evaluate the memory needs of both sides. A

tile is defined as stressed when the distance between LHC

and
∑

NHC is lower than a given threshold THSLD.

Figure 2. State machine of Data Sliding mechanism

Then, the system switches on SLIDING mode. When

the previous condition is no more satisfied it returns to

AV AILABLE mode and all counters are reset (see fig-

ure 2).

For performance reasons, a dedicated free block is chosen

on each core in order to satisfy every sliding request without

waiting for the end of the propagation. The least recently

used private block is thereafter chosen to be slided onto

another neighbor and the resulting free block is locked to

satisfy the next sliding request.

The figure 3 presents different steps of cache replace-

ment policy with sliding blocks through 3 neighbors. Three

neighbors N1, N2 and N3, are represented along with their

private caches (fig. 3.1) . A data @a is stored on the N1

floating free block (fig. 3.2) . The least frequently used data

@b on N1 is thereafter elected to be slided on neighbor

N2 (fig. 3.3). The resulting block is being the new floating

free block (fig. 3.4) . Finally, the sliding process stops for

neighbor N3 offers enough free space.

C. Data Replacement Policy

Once a core receives a sliding request from one of its

neighbors, a block of its own has to be slided. This block

is chosen in regard of the data replacement policy. Re-

placement policy presented in Elastic Cooperative Caching

strategy [24] doesn’t consider memory needs of cooperative

neighbors. It only relies on current partitioning scheme and

replaces data in the appropriate area. In highly solicited

neighborhood, this strategy can lead to under-used cache

space in an area whereas the other one is in lack of storage

space. It is mostly because the partitioning scheme doesn’t

reflect memory needs of the whole cooperative neighbors.

We therefore propose to get rid of the cache partitioning

scheme, while introducing labels to the data that indicate if

it is private or shared. This way, the proposed replacement

policy can either choose to replace private or shared blocks

according to data access frequency of both the core and its

cooperative neighborhood.

According to counters values, the private or shared last

recently used data is replaced as following:



Figure 3. Data Replacement Strategy

1) LHC >
∑

NHC: The local core needs are greater

than the overall neighbor needs. Therefore, the shared

LRU is replaced,

2) LHC <
∑

NHC: The overall neighbor needs are

greater than the local core. Therefore, the private LRU

is replaced,

3) LHC ≃

∑
NHC: Both sides are running under high

mutual solicitation. This condition is raised when the

distance between LHC and
∑

NHC is smaller than

a given threshold. In this case, we choose to replace

the private LRU. Our sliding protocol is activated and

the local data is migrated to a neighbor. If it appears

that this neighbor is also stressed, it replaces its local

block with the new one and sends the old block to

its own neighboring. Thereby, hot spots are managed

with less off-chip evictions.

Through this counter-based priority replacement policy,

frequently accessed blocks are maintained as long as possi-

ble close to their owner nodes. In a highly stressed context,

shared blocks have always the priority. Only private data are

evicted to neighbors. Sliding data are propagated across the

chip until reaching a free cooperative cache. Therefor, global

cache workload is shared evenly between stressed and free

zones through the chip.

D. Best Neighbor Selector

The second important mechanism in this data spilling

strategy is to efficiently choose the destination neighbor.

We propose a neighbor selection policy based on the NHC

counters introduced in section III-C. Unlike a simple Round

Robin strategy, used in previous works, that evenly bal-

ances data over the neighborhood, we propose to select

the neighbor which has a smaller hit counter. The NHC

information is therefore used to choose the neighbor with

the less workload. In a highly stressed neighborhood, a large

number of cache blocks may move to neighbors, taking

advantage of the highly connected network-on-chip mesh.

The best neighbor definition depends on the associated

NHC counter. This counter somehow mirrors the neighbor

cache needs. Indeed, stressed neighbors send more requests

to their cooperative zone, mechanically increasing their

associated NHC. Blocks are sent to the least stressed nodes,

which leads to a non-uniform distribution of requests. In this

approach, available nodes are the most solicited in order

to avoid blocks eviction. Thus, it enhances cooperation,

avoiding hot spots by considering host node availability in

blocks distribution.

Furthermore, the best neighbor selection is based on

status information collected in a passive manner. The NHC

counters are updated thanks to each neighbor request, not

using an active polling of the neighbors. Active polling (i.e.

heartbeat) would give more accurate real-time information,

but would also increase the number of control messages

handled by the network on chip, decreasing the application

performances. This approach, close to the piggybacking

practice, gives to each core a local view of the chip status,

which is something very familiar to large-scale distributed

systems such as peer-to-peer and wireless ad-hoc networks,

where a global view would be practically impossible to

build.

In manycore architectures, some of the cache coherence

features can be handled and accelerated by dedicated hard-

ware. Our cache mechanisms require a single Cooperative

Caching Unit (CCU). This unit is in charge of 1) labeling

every stored block in the cache and 2) enforcing both data

replacement and neighbor selection policies. If we compare

to the Elastic Caching system, our solution reduces the meta-

data traffic since both blocks eviction and allocation are only

based on local counter comparisons, without any complex

synchronization or distributed consensus between cores.

IV. PERFORMANCE EVALUATION

A. Test Procedure Description

In order to evaluate the benefits of the sliding mechanism,

data replacement and neighbor selection policies, we have

made some preliminary experiments that compare the be-

havior of the contribution with two cache coherency proto-

cols: the Baseline protocol [26] and the Elastic Cooperative

Caching protocol (as presented in section II).

The Baseline protocol is a regular protocol widely used

in multi-core architectures. One of the most famous flavor

is the 4-state home-based MESI protocol (which stands for

modified, exclusive, shared and invalid). In a home-based

protocol, each piece of data is under the responsibility of a

dedicated core, the home-node, in charge of granting access

and managing the data consistency state. Data addresses are



usually mapped to home-nodes using a round-robin or a hash

function. Each time a core requests to read or write a data,

it has to contact the associated home-node to get access to

an up to date version of the data. This procedure is costly

and most likely means that there are concurrent accesses on

the data between cores, or that the data is not cached on

the chip and has to be fetched from external memory. The

Baseline protocol does not implement any cooperative strat-

egy between caches. Both Elastic Cooperative Caching and

Sliding protocols can be built upon the Baseline protocol,

as a transparent extension that virtually enlarges the private

local cache on each node.

The goal of these experiments is to show that there is a

real benefit to 1) use cooperative strategies by comparing

the Baseline protocol with the ECC protocol and 2) use a

sliding mechanism to keep data on-chip by comparing the

ECC protocol with our contribution.

All the experiments are based on an analytical simulation

that calculates, for each physical link of the network on

chip, the number of messages induced by the application

accesses. This experimental protocol is based on an ana-

lytical approach and does not take into account the timing

of events. We used several synthetic applications, as well

as some image processing pieces of code taken from an

industry-grade application. We ran these codes under the

supervision of the PinTools [27] instrumentation software.

Pintools allow to analyze the application behavior at the

instruction level. In our experimental process we used a

modified version of the pinatrace [28] plugin to generate a

specific cache access trace with an additional core id field.

The format of the output file contains six information

fields per access:
1) Instruction address
2) Access type: read or write
3) Mapped data address
4) Data size
5) Prefetched instruction indicator
6) Core id

Here is an example of a cache trace generated by the

modified Pinatrace tool:

0xb5d79c80: W 0x8057284 4 0 3

0xb5d79c60: W 0x8057274 4 0 3

0xb5d78cb7: R 0x8057280 4 0 1

0xb5d78ce9: R 0x8057274 4 0 1

For each access, we simulate the behavior of the under-

lying cache coherency protocol and we deduce, for each

physical link of the network on chip, the type and the

number of messages that are transferred. We consider a 4x4

core array connected thanks to a mesh topology wherein

every tile is connected to 4 neighbors. This NoC topology is

used in some current manycore architecture such as Tilera

Gx (6 overlapped meshes of 4-port routers). Requests are

routed through a point to point communication mode. In

this context, the distance between two cores is determined

Figure 4. Access pattern for the global traffic evaluation

by the Manhattan distance. Different types of messages

are distinguished depending on the request subject and

destination. In order to compare the cache protocols by

highlighting the cooperative ability, we focus on two groups

of requests:

• Messages to Home Node: all messages whose des-

tination is a Home Node (Read, Write, Invalidation,

Downgrade)

• Messages to Neighbor: requests sent to neighbors to

read and write shared data.

The cost of each request depends on the number of nodes

that messages go through before reaching the destination.

Hence, a 1-hop communication leads to a lower access cost

in term of latency and power energy than requests to remote

nodes across the chip. Requests to access data in a neighbor

shared cache are always 1-hop far, whereas reaching the

home-node and fetching the data from another node or from

external memory usually take a greater number of hops.

In order to evaluate the protocols, we used the following

performance metrics:

• Network load: message distribution across the chip and

average point to point message count,

• Hop counts: the number of hops between source

(requester) and destination or Home Node.

In the remainder of this section, we present three main

experiments evaluating the global traffic on the chip, the

neighbor selection policy and the replacement policy.

B. First Performance Evaluation Results

1) Global traffic evaluation: In this first test, we analyze

the traffic induced by an important workload and a highly

stressed neighborhood. In such a context, nodes mutually

request additional memory storage support from neighbor

caches. To induce this behavior, we used a synthetic appli-

cation that alternates accesses between the central node and

its four neighbors, as shown in figure 4.

Figures 5 and 7 respectively show the number of messages

triggered by the Baseline and the Elastic protocols. The X

and Y axis represent a flat view of the chip, made of a 4x4

core array. The Z axis represent the number of messages

that goes through these coordinates.

The upper yellow shapes indicate the maximum number of

messages observed on the chip, and the downer blue shapes



Figure 5. Traffic with Baseline Protocol

Figure 6. Traffic with Sliding Data Caching

indicate that there were no communications. In both Baseline

and ECC figures there is a yellow peak corresponding to the

highly stressed core and a surrounding medium red shape

corresponding to the stressed neighborhood.

Using cooperative caching has two major advantages.

First, it slightly reduces the overall number of messages by

keeping more data on-chip. Second, traffic peak outskirts are

cooler using the cooperative protocol than the baseline one.

This is due to the massive reduction of home-node requests

that cross the entire chip in the case of the baseline protocol.

Only the immediate surroundings remain hot, due to the

cooperative caching activity.

Afterwards, we compare the Elastic Cooperative protocol

with our Sliding mechanism (see figure 6). The number of

exchanged messages is approximately the same for both the

Elastic Caching mechanism and the Sliding Data Caching.

However, we notice that the traffic area is reduced with the

proposed Sliding mechanism. Communications are basically

concentrated in the near neighborhood.

Remote requests to Home Nodes reflect a high cache

miss rate. Thanks to cooperative caching, traffic area is

remarkably reduced. This is due to the reduction of the

average communications with Home Nodes which means

Figure 7. Traffic with Elastic Caching

Figure 8. Access pattern for the best neighbor selection policy

that there are less cache misses.

The Sliding Caching mechanism allows every cooperative

node to push local private data to its neighboring perimeter

for storing shared blocks. On one side, less blocks have

to be evicted off-chip which reduces cache miss rate and

then requests to Home nodes. On the other side, each node

maintains frequently accessed data at only 1-Hop close. This

approach promotes neighbor-to-neighbor communications,

which explain traffic concentration on the cooperative zone.

Remote requests to Home Nodes are multi-Hop, point-to-

point communications, where closer requests (1-Hop com-

munication) enhance access cost to data and reduce the

global network load through the chip.

2) Best Neighbor strategy evaluation: In this experimen-

tation, we evaluate the best neighbor selection policy for

cooperative caching compared to the regular round-robin

policy. As for the previous experimentation, we set a highly

stressed central node. We also saturate the North and West

neighbors while the South and East ones remain free (see

figure 8 for this scenario). In both protocols, the central node

workload triggers cooperative process with its neighboring.

In the Elastic approach, the data repartition is based on

a Round-Robin algorithm. This allows to equally distribute

data caching in a circular order on the neighboring. The best

neighbor strategy defines the destination node according to

the memory load of each neighbor, as reflected by the local

neighbor hit counters (NHC).

Figure 9 and 10 respectively show the traffic standing



Figure 9. Traffic to neighbors using the Round Robin policy

Figure 10. Traffic to neighbors using the Best Neighbor policy

between neighbors in order to remotely access to data in a

shared cache.

As the Best Neighbor policy considers the memory needs

of the selected destination node, evicted blocks from the

central stressed neighbor are stored in free cache neighbors.

Whereas, the Round-Robin policy penalizes private data of

North and West nodes, which increases the cache miss rate

and consequently the Home-Node accesses. North and West

nodes replace their private data with shared blocks from

central node.

3) Priority Based Replacement Policy: The third perfor-

mance test evaluates the cache partitioning policy based

on the shared and private blocks priority. The experiment

consists in saturating all neighboring caches, and multiply-

ing redundant data accesses across the neighborhood. This

scenario generates alternated accesses to shared and private

areas of cooperative caches.

The Elastic Cooperative approach updates its cache parti-

tioning every N cycles, which doesn’t satisfy the application

needs in presence of a very heavy data flow. In fact,

concurrent accesses to private and shared zones generate a

strong oscillation between both areas. Our proposed cache

replacement policy is not time dependent, but rather event-

driven. At every storing request, the local and neighbors

Figure 11. Traffic using the cyclic elastic partitioning policy

Figure 12. Traffic using the priority replacement policy

counters are compared. The decision about the block to be

replaced is based on the access frequency to both private

and shared blocks.

Figures 11 and 12 respectively show the traffic induced

by both regular cyclic elastic partitioning policy and the

priority replacement policy. Using the priority replacement

strategy, the maximum number of messages is divided by

two, drastically reducing the hot spot.

The decrease of requests to Home Nodes is due to the low

data eviction rate. So, the average miss rate is lower when

using priority based data replacement.

As a conclusion we can observe that proposed techniques

based on comparing locally managed counters allow to

reduce data off-chip evictions based on the consideration of

both private and shared data access rates. Obviously, priority

is given to frequently accessed blocks. Data with less priority

is migrated to neighboring caches in case of highly stressed

context and evicted off-chip otherwise.

Both Best Neighbor policy for destination nodes and

priority replacement strategy for evicted blocks grant a

robust behavior in the framework of the adaptive sliding

mechanism, in the context of highly stressed neighborhood.



V. CONCLUSION

The Data Sliding strategy described in this paper, is a new

approach of Cooperative Caching intended to handle highly

stressed neighborhood. Our proposal is based on two main

mechanisms:

1) Neighborhood Counters: This mechanism allows

each core to passively monitor its neighbor stress rate

and is used for cache resource partitioning. Data to be

replaced in the cache, as well as the remote host core

are selected through a comparison between local and

shared hit counters. The use of different counters is

an efficient way to estimate the memory requirements

of each cooperative node in order to adapt the sharing

cache resource to different loads.

2) Allowing 1-Hop private data migration: Sliding

Data strategy provides a balanced data repartition-

ing across the chip when cooperative area is highly

solicited. It leads to fairly handle competitive cache

accesses between local and shared blocks. Our contri-

bution proposes to promote the received data, and push

the local blocks to the neighbor’s caches. We show

that it is an efficient way to reduce the overall cache

miss rate by keeping frequently accessed data on the

chip and replacing off chip evictions with neighboring

storage.

As for now, the data stored in a neighbor cache can not

be accessed by this neighbor. This is not only designed

by simplicity: letting a remote node access another private

data bypasses the underlying cache coherence protocol and

breaks the consistency model. However, some particular data

access patterns involving those two neighbors may benefit

from such a clearance. As a future work, we plan to study

the interactions between the cooperative sliding protocol and

the main cache consistency protocol in order to allow the

local use of neighbor’s data, while preserving a consistent

state.

Experiments presented in this paper are based on an event-

driven trace. They do not take into account any time metrics,

such as access latency and data access rate. These metrics

would give information about the absorption capacities of

access requests. That is why we plan to use a micro-

architecture simulation environment such as [29] for eval-

uating time performances of our proposed strategy. We also

aim to use a scalable cache coherent NUMA architecture

such as [30] that allows us to implement our proposal in a

highly parallel platform.

Furthermore, the evaluations are based on a synthetic

access memory trace that only reflects the behavior of some

application sub-routines. In our future analysis, we plan to

consider heterogeneous parallel applications that generate

multiple hot spots on the chip. For this, we plan to use

high utility applications, such as the distributed version of

the simulated annealing metaheuristic algorithm [31] that

recursively leads to multiple hot spots on the chip while

exploring the space of solutions.
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