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his paper models and solves the mathematical problem of interpolating characteristic points of signals by a partial diferential
Equation-(PDE-) based approach. he existence and uniqueness results are established in an appropriate space whose regularity is
similar to cubic spline one. We show how this space is suitable for the empirical mode decomposition (EMD) siting process.
Numerical schemes and computing applications are also presented for signal envelopes calculation. he test results show the
usefulness of the new PDE interpolator in some pathological cases like input class functions that are not so regular as in the cubic
splines case. Some image iltering tests strengthen the demonstration of PDE interpolator performance.

1. Introduction

Interpolators are widely used in signal and processing or data
analysis. In particular for the empirical mode decomposition
(EMD) algorithm [1, 2], the iterative estimation of the signal
trend is based on the computing of the envelopes obtained
by the cubic spline interpolation of local extrema. he spline
interpolation has been recognized as being very efective for
EMD. But for signals that have no local extremum, the cubic
spline interpolation fails. We proposed a PDE-based model
which overcomes this limit of classical EMD implementation,
in the computing of the envelopes for signals that have
no local extremum [2–4]. Recently, the Spectral Intrinsic
Decomposition (SID) method [5], based on the spectral
decomposition of the PDE interpolator, provides a new
application of our model. his PDE interpolator contribute,
to the mathematical modeling of the EMD and has provided
various applications in signal and image processing [4, 6].
In this paper, we describe the mathematical modeling of the
new PDE interpolator by variational methods.he resolution
of the variational problem leads to existence and uniqueness

results in appropriate spaces. he paper is organized as
follows. In Sections 2 and 2.1 recalls some PDE models in
signal and image processing, and in Section 2.2 some math-
ematical preliminary notions are set out. In Section 3, the
mathematical modeling is exposed. In Sections 4 and 5, the
resolution of the variational problem is dealt. Subsequently,
numerical implementation and applications are presented in
Section 6. At last, we inish by conclusions.

2. Some Preliminaries

2.1. PDE Models in Signal and Image Processing

and EMD Principle

2.1.1. Some Difusion Equations. his part consists of a brief
and nonexhaustive presentation of classical nonlinear difu-
sion ilters for 1D and 2D signal processing, with more focus
on the 2D case. In this purpose, we can recall the model
for nonlinear difusion in image iltering proposed by Catte
et al. [7]. his ilter is a modiied version of the well-know
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Perona andMalik model [8].he basic equation that governs
nonlinear difusion iltering is

�� (x, �) = div (� (|∇� (x, �)|2) ∇� (x, �)) , (1)

with x = (�1, �2), and where �(x, �) is a iltered version of the
original image �(x, �) = �0(x) as the initial condition, with
relecting boundary conditions. In (1), �(⋅) is the conductivity
(or difusivity) function, which is dependent (in space and
time) on the image gradient magnitude. Several forms of
difusivity were introduced in the original paper of Perona
and Malik [8]. All forms of difusivity are chosen to be a
monotonically decreasing function of the signal gradient.
Possible expressions for conductivity are

�1 (x, �) = 1
1 + (|∇� (x, �)| /�)2 ,

�2 (x, �) = exp (−(|∇� (x, �)| /�)2) .
(2)

Parameter � is a threshold one, which inluences the aniso-
tropic smoothing process. he nonlinear equation (1) acts
as a forward parabolic equation smoothing regions while
preserving edges. Other methods based on high-order PDE
are provided for image restoration like in [9–11]. Eicient
numerical schemes were introduced in [12] based on additive
operator splitting (AOS) scheme, or based on alternating
direction implicit (ADI) scheme. See [12–15] for a review and
extensions of these methods. Unlike these methods of high-
order PDE that are specially developed for denoising, our
modelwas constructed to interpolate the characteristic points
of a signal.

he major problem of nonlinear difusion-based process
is that it is generally diicult to correctly separate the high
frequency components from the low frequency ones. In case
of denoising applications, the objective of this process is to
use the difusivity function as a guide to retain useful data
and suppress noise.

Numerous authors have proposed fourth-order PDEs
for image smoothing and denoising with the hope that
these methods would perform better than their second-order
analogues [16–18]. Indeed, there are good reasons to consider
fourth-order equations.heirst reason that can be retained is
the fact that fourth-order linear difusion damps oscillations
at high frequencies (e.g., noise) much faster than second-
order difusion. On the other hand, the theory of fourth order
nonlinear PDEs is far less developed than the second order
one. Also such equations oten do not satisfy a maximum
principle or comparison principle, and implementation of
the equations could thus introduce artiicial singularities or
other undesirable behavior. In recent studies, Tumblin [19],
Tumblin and Turk [16], and Wei [17] proposed the following
form:

�� (x, �) = − div (� (� (�)) ∇Δ� (x, �)) , (3)

where �(⋅) = �1(⋅) as in (2) and � is some measurement of�(x, �). In [16], (3) is called a “low curvature image simpliier”
(LCIS), and a good choice for � is deined as � = Δ� to

enforce isotropic difusion [19]. hese PDE tools for digital
signal and image processing make more reachable the 2D
extension of the 1D PDE-based method for characteristic
points interpolation presented in this paper.

2.1.2.heEmpiricalModeDecomposition Principle. heEMD
[1] method decomposes iteratively a signal into amplitude
modulation-frequency modulation (AM-FM) type compo-
nents called intrinsic mode functions (IMF). he underlying
principle of this decomposition is to locally identify in the
signal, the most rapid oscillations deined as the waveform
interpolating interwoven local maxima and minima. To do
this, local extrema points are interpolated with a cubic
spline, to yield the upper and lower envelopes. he mean
envelope (half sum of upper and lower envelopes) is then
subtracted from the initial signal, and the same interpolation
scheme is reiterated on the remainder. he so-called siting
process stops when the mean envelope is reasonably zero
everywhere, and the resulting signal is called the irst IMF.
he higher-order IMFs are iteratively extracted applying the
same procedure to the initial signal ater the previous IMFs
have been removed.

2.2. Some Useful Mathematical Concepts. hroughout the
paper,Ω denotes an open-bounded subset ofR�, � = 1 or 2.
In the sequel, we will need the following deinitions and
results.

Deinition 1. we deine one the spaces � andV as follows

� = {� ∈ �3 (Ω) | ����
���������Ω = 0} ,

V = {� ∈ �3 (Ω) | ����
���������Ω = 0, ∫

Ω
��� = 0} ,

V� = {� ∈ �3 (Ω) such that ∃ΓΩ ⊂ Ω,
open and verifying ∫

ΓΩ
��� = 0 and

����
���������Ω = 0} .

(4)

Deinition 2. For a given function � ∈ �1(Ω), if��(�)(�) and��(�)(�) denote, respectively, the right and let derivative of� at �; the minmod derivatives of � is deine by
���� (�) = minmod (�� (�) (�) , �� (�) (�)) where

minmod (�, �) = {{{
sign (�)min (��������� , ���������) , if �� > 0,
0, if �� ≤ 0.

(5)

A �1(Ω) function being absolutely continuous admits right

and let derivatives, then �0 ∈ �1(Ω) has obviously let
and right derivatives, so that we can validate numerically
computing of the difusivity function � deined in Section 3.
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Deinition 3. Let (��)�∈N be a sequence of elements in a vec-
torial normed space (�, ‖ ⋅ ‖�); it is said that (��)�∈N converge,
weakly [20] in �, and noted by �� ⇀ �, if exists an element� ∈ � such that ∀� ∈ ��, lim�→∞�(��) = �(�), where ��

denotes the set of continuous linear forms on �.
Deinition 4 (the Green formula). Let �, � ∈ �2(Ω), then

∫
Ω
Δ��� = ∫

�Ω

������,
∫
Ω
∇�∇��� = −∫

Ω
�Δ��� + ∫

�Ω

������,
∫
Ω
(�Δ� − �Δ�) �� = ∫

�Ω
����� − ������� Green formula,

(6)

where ��/�� denotes the normal derivative of � on the
boundary �Ω ofΩ.
Deinition 5 (the Poincaré-Wirtinger inequality). LetΩ be an

open-bounded set, and let � ∈ �1(Ω), then there exists a
constant � > 0 such that the norm of � in �1(Ω) and the
norm of � in �2(Ω) are linked by the following inequality:

��������� − 1|Ω| ∫Ω ���
���������1(Ω)

≤ �‖∇�‖�2(Ω), (7)

where |Ω| denotes the length ofΩ. he best constant � in the
Poincaré-Wirtinger inequality is 1/�, for example, the inverse
of the irst positive eigenvalue � of the Laplace operator with
homogenous Neumann boundaries conditions. In our case,Ω ⊂ R, and |Ω| is the diameter ofΩ.
heorem 6 (regularity theorem). Let

� ∈ {� ∈ �3 (Ω) ���ℎ �ℎ�� ����
���������Ω = 0, ∫

Ω
��� = 0} , (8)

then there exist two strictly positive reals � and � such that
irstly,

‖∇�‖2�2(Ω) ≤ �‖Δ�‖2�2(Ω), (9)

and secondly,

‖�‖2�3(Ω) ≤ �‖Δ�‖2�1(Ω). (10)

he main existence and uniqueness result of the solution
of our henceforth problem (29) is due to the application of
the following Lions theorem [21].

heorem 7 (the Lions theorem). Let� and � be two Hilbert
spaces with � ⊂ �. One considers a bilinear application � on�×� and � an operator on�. Under the following conditions:

(1) ∃� and � > 0 such that |�(�, �)| ≥ �‖�‖2� − �|�|2�,
(2) ∃ �2 > 0 such that |(�, ��)�| ≤ �2|�|2�.

For �0 = �(0) ∈ �, the problem

� ∈ �2 (0, �; �) ∩ � (0, �;�) , (11)

such that

∀� ∈ �, (���� , ��)�
+ � (�, �) = 0 (12)

and �0 = �(0), has a unique solution.
Furthermore, ��/�� ∈ �2(0, �;��).

3. Mathematical Modeling of the New
PDE-Interpolator

Recall that the PDE model aimed to contribute to the
mathematical modeling of the EMD, as it is in [2]. In a irst
step, to be in line with the classical EMD, our goal is to
model the upper or lower envelope as the asymptotic solution
of a PDE system whose initial condition is the input signal
that we want to interpolate local extrema (or more generally
characteristic points). Initially, this envelope is obtained by
cubic spline interpolation. Let Ω be the open domain of an
given inite energy signal �0 ∈ �2(Ω). We construct an
operator � of appropriate domain�(�) as follows:

���� + �� = 0 in [0, �] × Ω,
� (0, �) = �0 in Ω,

plus boundaries conditions.
(13)

he need of asymptotic solution existence denoted by �∞
implies (��/��)(∞, �) = 0, for example, according to (13), we
have ��(∞, �) = 0. Moreover, the requirement of the same
regularity between the solution and a cubic spline leads to�4�/��4(∞, �) = 0. hus, in the irst analysis, we can choose� = �4�/��4. To leave invariant features points during the
difusion process, simply multiply in the expression �� the

term �4�/��4 by function � depending on spatial variable �
and vanishing at characteristic points. hat gives

(��) (�) = � (�) �4���4 . (14)

Another reminiscent form of long-range difusion [22] is the
following:

(��) (�) = ��� (� (�) �
3���3) . (15)

Function � can be interpreted as a difusivity function whose
role is to control the difusion process. We take it necessarily
positive to have a direct difusion and the existence of
solution. Other forms of operators are possible [3] we present
some ones as follows: for (14)

(��) (�) = � (�) [−��2���2 + (1 − �) �4���4] , (16)
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or for (15),

(��) (�) = ��� [� (�) (−����� + (1 − �) �3���3)] , (17)

or accomplete difusion involving a low

(��) (�) = ��� [−�� (�) ���� + (1 − �) ��� (� (�) �
2���2)] ,

(18)

where 0 ≤ � ≤ 1 is the tension factor which controls the
regularity of the solution.

Both forms allow more freedom on the regularity of
the solution �. To access the mathematical properties of the
solution, we chose the second form in (17) with � = 0 and the
corresponding equation (15).

At the local scale, between two consecutive character-
istic points—two local maxima, for example—the difusion
induces a smoothing phenomenon that deletes the local min-
imum. A simple form for � to calculate the envelope is given
by a positive piecewise function lower than 1 that is constant
between two characteristic points of �0 and zeroed only at
these points. Characteristic points are oten being deined
by their values and the signs of irst, second, and third local
derivatives of�0.We characterize the function� as depending
on sign(��0/��), sign(�2�0/��2), and sign(�3�0/��3).

For the purpose of existence and regularity of the solu-
tion, we are led to work with the regularized version of sign:

sign� (�) = 2� arctan(��� ) , (19)

where � is a regularization coeicient.
In the following, we deine �±

� for extrema detection,�� for turning points detection, and �±
mc for maximum and

minimum curvature points detection:

�±
� (�) = 19[

��������sign(��0�� )
�������� ± sign(�2�0��2 ) + 1]2

(+) for maxima and (−) for minima,
�� (�) = [sign� (�2�0��2 )]

2

for turning points,
�±
mc (�) = 19[

���������sign(
�3�0��3 )

��������� ± sign(�2�0��2 ) + 1]2,

(20)

(+) for maximum curvature points and (−) for minimum
curvature points. All these functions are of the form �(�) =[ℎ(�)]2 with ℎ(�) = 0 at characteristic points.

So, we have ��(�) = 0 if �(�) = 0. his property formally
allows us to cancel�� and ��/�� of the form (15) at the points
where � is null. he factor 1/9 is a normalization term and
veriies 0 ≤ �(�) ≤ 1. A more general difusivity function �
could be envisaged.

Let us consider the following diferential operators�� and�� (� for upper and � for inlexion or curvature):

∀� ∈ � (��) , ��� = ��� (�±
� (�) �3���3) , (21)

or

∀� ∈ � (��) , ��� = ��� (�� (�) �3���3) . (22)

If �0 ∈ �2(Ω), as it is the case in the classical imple-
mentation EMD, there is no problem for interpolation by
cubic spline method. But it is indeed a restriction on the
regularity of �0 which is due to the choice of the interpolation
technique that requires a good detection of local extrema
for the envelopes calculation. he basic EMD principle must
apply for input functions that are not regular as functions in�2(Ω), for example, for signal �0 ∈ �1(Ω), as it is the case
in reality [23]. But numerically, without even a regularization
function sign, if the derivatives are taken in the sense of
minmod called lux limiter or slope, the function �(�) still
has a meaning.

3.1. Interpretation of the Difusivity Action in the Difusion
Process. Between two consecutivemaxima�max�

and�max�+1
,

the function �+
� is piecewise constant and can be written as

follows:

� (�) =
{{{{{{{{{{{{{{{{{{{

0, at �max�
, �max�+1

,49 , at �inf �
, �inf �+1

, �min�
,

1, on ]�inf �
, �min�

[ ∪ ]�min�
, �inf �+1

[ ,
19 , sur ]�max�

, �inf �
[ ∪ ]�inf �+1

, �max�+1
[ .

(23)

We have a difusion in the sense that �� = ��/�� unhook
to the maximum of the curve �0. he reason is that the
difusion is more pronounced in local minimum because
the smoothing efect tends to regularize curves. hus, the
upper envelope �(� ≅ ∞, ⋅) of �0 is less oscillating than�0 is. he same behavior occurs for the mean envelope. We
would then try to interpret locally the relationship � ≥ �0
by evoking the maximum principle [24]. But, this principle
is not immediately checked for equations of the type (15).
he justiication lies in the fact that smoothing implies‖∇�(�, ⋅)‖�2(Ω) ≤ ‖∇�0‖�2(Ω).

In summary, we have just built a PDE system

(1) having the input signal �0 to decompose as an initial
value condition,

(2) such that the result of a difusion process preserves
characteristic points of �0,

(3) with a regularity similar to a cubic spline.

3.2. Formulation of the Mathematical Problem. Let � be one
of the above constructed interpolation operators, and � > 0
be a difusion time suiciently long. To ix ideas, we solve
the problem of upper envelope calculus. Indeed, for the other
kinds of characteristic points, the same problem arises with
analogous mathematical resolution methods.
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he problem posed by our mathematical modeling is to
ind a solution � of the system

���� + �� = 0 in [0, �] × Ω,
� (0, �) = �0 in Ω,

plus boundaries conditions.
(24)

hen, the mean envelope (interpolating turning points) cal-
culus is stated as follows.

For given �0, ind � such that

���� + ��� (�� (�) �3���3) = 0 in [0, �] × Ω,
� (0, �) = �0 in Ω,

plus boundaries conditions.
(25)

3.3. Comments on theDegeneracy in Problem (24). To prevent
the zero degeneracy case in the system (25) whose solution is
not directly accessible by variational methods, we are led to
solve an intermediate problem with

0 < � ≤ ��,� (�) ≤ � ≤ 1. (26)

hat is the nondegenerate problem deined hereater.

3.4. Formulation of the Zero Degeneracy Induced byDifusivity
Function. hedifusivity function in (26) is very close to zero
at the characteristic points while refraining to cancel and to
solve the system (25), now, just to move on to the limit when� tends to zero to retrieve (25) and its solution.

hus, in particular, we can deine the function

��,� (�) = �� (�) + 1� , � ∈ N
∗ (27)

which veriies the conditions of (26).
he new system that we call nondegenerate problem is

fomulated as follows.
Find �� such that

����� + ��� (�� (�) �3����3 ) = 0 in [0, �] × Ω,
�� (0, �) = �0 in Ω,

plus boundaries conditions.
(28)

3.5. Formulation of the Nondegenerate Problem. For � sui-
ciently large, �� is a close approximation of the envelope �,
interpolating the characteristic points.

By a density technique, we can demonstrate that this
sequence (��)�∈N converges to the solution of the system (25).
By posing for the convenience of notation 0 < � ≤ ��,� = ℎ ≤� ≤ 1, the non-degenerate problem is reworded as.

Find � such that

���� + ��� (ℎ (�) �
3���3) = 0 in [0, �] × Ω,

� (0, �) = �0 in Ω,
plus boundaries conditions.

(29)

Equation (29) is an operational diferential equations
type. he techniques for the resolution of this kind of
problem are numerous we mainly refer to the variational
formulation to ind weak solutions [25] and the method of
the approximation of evolutionary operators. he last allows
to work on a new elliptic problem.he solution is obtained by
passing to the limit of the approximate solution nstead of the
equation.

In the next section, we solve (29) by a variational
approach, according to the resolution methods for parabolic
problems described in [7, 20].

4. Existence and Uniqueness of Solutions for
PDE Interpolator

4.1. he Guideline for the Resolution of the Mathematical
Problem. Now, we summarize the general procedure to solve
the problem.

(1) First step: resolution of the problem (29). his step
includes

(i) the variational formulation in Section 4.3,

(ii) the resolution of the variational problem in
appropriate functional space,

(iii) the converse showing that the solution of the
variational problem solves the departure prob-
lem in Section 4.3.4.

(2) Second step: in Section 5, construction of the sequ-
ence (��)�∈N of solutions of problem (29), where ��
is the solution obtained with the difusivity. ℎ�(�) =ℎ(�) + (1/�), � ∈ N

∗, see Section 5. Finally, demon-
strate that the sequence (��)�∈N converges to a limit �,
where � is the solution of problem (25), in Section 5.

4.2. he Main Results Formulation. he main result which is
going to be solves is the following.

heorem 8. For �0 ∈ �1(Ω), exists a unique solution � ∈�2(0, �;V) ∩ �([0, �];�1(Ω)) of the variational problem
��� ∫Ω ���� ������+∫Ω ℎ (�) �

3���3
�3���3 ��=0, ��� ��� � ∈ V

(30)

such that �(0) = �0 and ��/�� ∈ �2(0, �;�). Reversely, let �
be a solution of the variational problem (30), then (��/��) +(�/��)(ℎ(�)(�3�/��3)) = 0.

And the complete follows result.



6 ISRN Signal Processing

heorem 9. For �0 ∈ �1(Ω), exists a unique solution
� ∈ �2 (0, �;V) ∩ � ([0, �] ;�1 (Ω)) , (31)

verifying

���� + ��� (ℎ (�) �
3���3) = 0 �� [0, �] × Ω,

�3���3

����������Ω = 0 (�� ���������� �� Ω) ,
����
���������Ω = 0 (�� ���������� �� Ω) ,

� (0, �) = �0 �� Ω.

(32)

4.3. Variational Formulation. Let � ∈ �3(Ω), and (to make
sense to integrals) multiply the equation

���� + ��� (ℎ (�) �
3���3) = 0 (33)

of the system (29) by the test function �2�/��2 ater we
integrate onΩ, then it comes out that

∫
Ω

���� �
2���2 �� + ∫Ω ��� (ℎ (�) �

3���3) �2���2 �� = 0. (34)

By using theGreen formula (seeDeinition 4) and integration
by parts, we get irstly

∫
Ω

��� (ℎ (�) �
3���3) �2���2 ��

= [ℎ (�) �3���3
�2���2]

�Ω
− ∫

Ω
ℎ (�) �3���3

�3���3 ��,
(35)

and secondly,

∫
Ω

���� �
2���2 �� = ��� ∫Ω � �

2���2 ��,
∫
Ω
� �2���2 �� = ∫�Ω ������� − ∫Ω ���� ������.

(36)

As we are in one-dimension case, the normal derivative and
the gradient on the edge in the use of the Green formula are
the same, that is to say,

∫
�Ω
������� = ∫�Ω �������. (37)

In the following, we adopt the notation ��/��.
Considering � ∈ �3(Ω) such that

�3���3

����������Ω = 0,
� ∈ � = {� ∈ �3 (Ω) | ����

���������Ω = 0}
(38)

it comes out that

��� ∫Ω ���� ������ + ∫Ω ℎ (�) �
3���3

�3���3 �� = 0,
∀� ∈ �.

(39)

Let us consider the following bilinear forms

� (�, �) = ∫
Ω
ℎ (�) �3���3

�3���3 ��,
� (�, �) = ∫

Ω

���� ������.
(40)

he addition of boundaries conditions transforms our initial
problem into the system

���� + ��� (ℎ (�) �
3���3) = 0 in [0, �] × Ω,

�3���3

����������Ω = 0 (on the edge of Ω) ,
����
���������Ω = 0 (on the edge of Ω) ,

� (0, �) = �0 in Ω.

(41)

he variational formulation of our problem consequently,
subject to additional conditions that would cause a change of
space, is the following

Find � ∈ � such that
��� (� (�, �)) + � (�, �) = 0,

∀� ∈ �, (42)

where � and � are like in heorem 7.
his kind of problem is studied in [21]. However, before

continuing the resolution, we explore some properties of the
space �.
4.3.1. On the Quotient Space �/R. he space � is deined by�(�) ∩ �(�), where �(�) and �(�) are the domains of � and�. Let us consider the quotient space

�
R
= { {� + �, � ∈ R} such that � ∈ �3 (Ω) ,

and
����
���������Ω = 0}

(43)

and the new spaceV deined by

V = {� ∈ �3 (Ω) | ����
���������Ω = 0, ∫

Ω
��� = 0} . (44)

Let �̃ ∈ �/R, and let � be a representative of �̃ class, then(��̃/��)|�Ω is deined by

��̃��
���������Ω = � (� + �)��

���������Ω = ����
���������Ω = 0 with � ∈ R. (45)



ISRN Signal Processing 7

henullity of∫Ω �̃��means∃� ∈ R, constant such that∫Ω(�+�)�� = 0, with � one representative of �̃
if � = − 1|Ω| ∫Ω ���, then

∫
Ω
�̃�� = ∫

Ω
(� + �) ��

= ∫
Ω
(� − 1|Ω| ∫Ω ���)�� = 0.

(46)

So for all �̃ ∈ �/R, we have ∫Ω �̃�� = 0. Accordingly, any
element of the quotient space �/R is, on one hand, in�3(Ω)
with normal derivative on the boundaries of Ω null and, on
the other hand, is zero average onΩ.hus, the quotient space�/R is identiied with the space V. We can work later in
the space V with zero mean. he inal variational problem
to solve is the following

ind �∈V such that
��� (� (�, �))+� (�, �)=0, ∀� ∈ V.

(47)

4.3.2. Application of the Lions heorem. To apply the Lions
theorem, we need to identify the applications �, �, and � and
the spaces� and�. And inally, wemust prove that the norm
deined inV, which derives from the scalar product given by

the bilinear application �, is equivalent to the norm of�3(Ω).
Let us deine � as the identity, and let us deine � and � by|�(�, �)| = (√ℎ(�3�/��3), √ℎ(�3�/��3))�2(Ω), and �(�, �) =∫Ω(��/��)(��/��)��, obtained from (39), (40); the spaces� = V and� are deine as follows.
(a) he linear operator �: in the variational prob-

lem (11) in the Lions theorem, (��/��, ��)� denotes a
scalar product on �. Indeed, we deine � = {� ∈�1(Ω) such that (��/��)|�Ω = 0, ∫Ω ��� = 0}.

he operator � = �, �� = �, is the identity which
is continuous (verify the Lions conditions heorem 7), and
the term (��/��, ��)� = (�/��)(�(�, �)) is equal to

∫
Ω

��� (���� ) ������ = ∫Ω ��� (����) ������
= ( ��� (���� ) , ����)�2(Ω)

. (48)

In this identiication, ((�/��)(��/��), ��/��)�2(Ω) is a well

scalar product in the subspace � of �1(Ω), formed by
functions with zero mean. Indeed, according to Poincare-

Wirtinger inequality (see Deinition 5) in�1(Ω),��������� − 1|Ω| ∫Ω ���
���������1(Ω)

≤ 1�
������������

���������2(Ω)
, (49)

where � is the irst positive eigenvalue of Laplace operator inΩ. But as �, � ∈ V, then ∫Ω ��� = 0, consequently there
exists �2 > 0 such that:

‖�‖�1(Ω) ≤ �2
������������

���������2(Ω)
, (50)

that is to say the �1(Ω) norm is equivalent to the gradient
norm inV. Hence, one can replace the scalar product of the
gradient by�1(Ω) scalar product.

Hereinater, we complete the proof that the precedent
choices allow the application of the Lions theorem in our
context.

(b) Vis an Hilbert space with equivalent norm to �3(Ω)
norm.

heorem 10. he spaceV, resulting from (11) andV analysis,
deined by

V = {� ∈ �3 (Ω) | ����
���������Ω = 0, ∫

Ω
��� = 0} , (51)

is an Hilbert space with the a norm equivalent to�3(Ω) norm.

Proof. At irst V = {� ∈ �3(Ω) | (��/��)|�Ω = 0, ∫Ω ��� =0} is a closed vector subspace of �3(Ω). Note that the
condition of the nullity of the mean in V may be replaced

by ∫ΓΩ ��� = 0, where ΓΩ is a nonempty open subset of Ω. In
this caseV becomes rather

V� = {� ∈ �3 (Ω) such that ∃ΓΩ ⊂ Ω verifying

∫
ΓΩ
��� = 0, and ����

���������Ω = 0} .
(52)

From the fact that

0 < � ≤ ℎ (�) ≤ � < 1, ∀� ∈ Ω, (53)

the norms built with the two bilinear applications � and � are
equivalent to the norm constructed by the linear form, noted

by |‖ ‖|2
V
with � ∈ V, and given by

|‖�‖|2
V
= �������� ����

��������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)
. (54)

Indeed, |‖ ‖|2
V
is as well a norm inV.here is no diiculty to

formally verify the triangular inequality. If |‖�‖|2
V
= 0, then‖��/��‖2�2(Ω) = 0 and ‖�3�/��3‖2�2(Ω) = 0. Consequently, � is

necessarily constant almost everywhere inΩ, for example, � is
equal to a constant real �. But as ∫Ω ��� = 0 implies �|Ω| =0, so� = � = 0. We have thus built a standard scalar product
on V from bilinear forms of the variational formulation. V
is a Hilbert space with the scalar product associated with
the norm (54). In addition, this norm is equivalent to the�3(Ω) norm, as it shown in Lemma A.2. Now, we just need
to prove that the correspondence (�, �) ∈ V ×V �→ �(�, �)
is continuous and coercive on the Hilbert spaceV.
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4.3.3. he Application �( ⋅ , ⋅ ) Is Continuous and Coercive. For�, � ∈ V,

|� (�, �)| = ����������(√ℎ
�3���3 , √ℎ �3���3)

�2(Ω)

����������
≤ ����������

�3���3

����������2(Ω)
⋅ ���������
�3���3

����������2(Ω)

≤ �|‖�‖|V ⋅ |‖�‖|V,
(55)

hence the continuity of�(⋅, ⋅) is onV×V. In order to complete
the application conditions of heorem 7, we only check the
irst condition of the same theorem.

For

� ∈ V, −‖�‖2�1(Ω) ≤ −�������� ����
��������
2

�2(Ω)
, (56)

hence

|‖�‖|2
V
− ‖�‖2�1(Ω) ≤ |‖�‖|2V − �������� ����

��������
2

�2(Ω)
, (57)

nevertheless

� (�, �) = ���������√ℎ
�3���3

���������
2

�2(Ω)
≥ ����������

�3���3

���������
2

�2(Ω)

= �[|‖�‖|2
V
− �������� ����

��������
2

�2(Ω)
] .

(58)

hus,

� (�, �) ≥ � [|‖�‖|2
V
− ‖�‖2�1(Ω)] , ∀� ∈ V. (59)

We have found thus (�, �) = (�, �) such that

� (�, �) ≥ �|‖�‖|2
V
− �‖�‖2�1(Ω), ∀� ∈ V. (60)

All the conditions of heorem 7 are acquired; now, the main
existence result for solution of system (41) can be enunciated
as follows.

heorem 11. For �0 ∈ �1(Ω), exists a unique solution � ∈�2(0, �;V) ∩ �([0, �];�1(Ω)) of the problem
��� ∫Ω ���� ������ + ∫Ω ℎ (�) �

3���3
�3���3 �� = 0,

��� ��� � ∈ V ���ℎ �ℎ��
� (0) = �0, ���� ∈ �2 (0, �;�) .

(61)

4.3.4. Equivalence with the Initial Problem. Reversely, let � be
a solution of the variational problem

��� ∫Ω ���� ������ + ∫Ω ℎ (�) �
3���3

�3���3 �� = 0 ∀� ∈ V. (62)

As we must consider a test function

� ∈ �3 (Ω) such that
�2���2 still in � (Ω) , ����

���������Ω = 0.
(63)

Let us take a function test � ∈ �(Ω) and� ∈ R such that

∫
Ω
(� + �) �� = 0. (64)

We pose the following Neumann problem:

�2���2 = � + �,
����
���������Ω = 0.

(65)

Its variational formulation gives a unique solution in� ={� ∈ �1(Ω) | ∫Ω ��� = 0}, and the regularity of � ∈ �2(Ω)
implies the regularity of the solution which is in � ∈ �3(Ω),
consequently � ∈ V.

Returning to (62) with �, solution of the problem (65), the
irst term can be written as

��� ∫Ω ���� ������ = ��� (∫Ω � �
2���2 �� − ∫�Ω �������) ,

as
�2���2 = � + �, ����

���������Ω = 0,
and it comes out that

��� ∫Ω ���� ������ = ��� ∫Ω � (� + �) ��
= ��� (∫Ω ���� + �∫

Ω
���) .

(66)

However, ∫Ω ��� = 0, subsequently
��� ∫Ω ���� ������ = ��� ∫Ω ���� = ∫Ω ���� ���. (67)

he second term of (62) is written as follows:

∫
Ω
ℎ (�) �3���3

�3���3 �� = ∫Ω ℎ (�) �
3���3
������, (68)

which gives in the distribution sense

∫
Ω
ℎ (�) �3���3

�3���3 �� = ∫Ω ��� (ℎ (�) �
3���3)���, (69)

from which

∫
Ω

���� ���+∫Ω ��� (ℎ (�) �
3���3)���=0, ∀� ∈ � (Ω) .

(70)
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We deduce that

���� + ��� (ℎ (�) �
3���3) = 0. (71)

We verify now that (�3�/��3)|�Ω = 0. Returning to (70) with� = �2�/��2 and according to the Green formula, we have

∫
Ω
[���� + ��� (ℎ (�) �

3���3)] �2���2 ��
− ∫

�Ω
ℎ (�) �3���3

��� (����) ⋅ ��� = 0
∀� ∈ V.

(72)

But as (�/��)(��/��) ⋅ � = (�/��)(��/��) = �2�/��2, it gives
according to (71) ∫�Ω ℎ(�)(�3�/��3)(�2�/��2)�� = 0 ∀� ∈
V, and consequently ℎ(�)(�3�/��3) = 0 on boundaries ofΩ,
or as ℎ(�) ̸= 0, �3�/��3 = 0 on boundaries ofΩ.

In conclusion � is solution of the initial equation (41),
then we enunciate the following theorem.

heorem 12. For �0 ∈ �1(Ω), exists a unique solution � ∈�2(0, �;V) ∩ �([0, �];�1(Ω)), verifying
���� + ��� (ℎ (�) �

3���3) = 0 �� [0, �] × Ω,
�3���3

����������Ω = 0 (�� ���������� �� Ω) ,
����
���������Ω = 0 (�� ���������� �� Ω) ,

� (0, �) = �0 �� Ω.

(73)

4.3.5. Some Remarks on the Modeling Space. he nullity
condition of the average for functions inV has been decisive
in the construction of the norm on this space. his space
is prima facie clearly not natural for EMD because of entry
function�0 that is not necessarily zeromean. But at the cost of

working with an initial condition �0 ∈ �1(Ω), such that �0 =�0 − (1/|Ω|) ∫Ω �0��, we can consider� as�1(Ω) functions
with null local mean.

he Nullity of the Mean Envelope: A Characteristic of V and
EMD Algorithm. his condition, far from being superluous,
was even expected because the space V is the space of the
mean envelopes which must be zero mean in EMD stiting
process for mode extraction. If it were to calculate the upper
or lower envelopes, it should be noted that the condition
of the mean nullity raised a query. In EMD algorithm, this
nullity condition is afected on the mean envelope and not on
upper or lower envelopes. his question does not arise in the
model giving the envelope interpolating inlection points of
a signal. he elements ofV� are not zero mean on Ω, but on
a non-empty subset ΓΩ ofΩ.

he nullity of the mean of the signal on a ΓΩ is not
immediately visible andwarranty to decompose any function.

We show in Lemma A.1 that each relevant function to be
decomposed by EMD is an integrable function possessing at
least three extrema belonging to V�. he modeling space of
the extrema interpolation isV� deined in (52).

Let � be a function admitting at least three extrema we
can consider that � passes at least once a zero at a point ��
in its deinition domain. Otherwise, we just work with the
translatory (as our model is invariant by translation of the
input function) vector which is equals to the half amplitude
of �.
5. Convergence of the Sequence (��)�∈N of

Solutions of (41) to a Solution of the
Called Degenerate Problem

In the following sections, we demonstrate that the sequence(��)�∈N of solutions of the non degenerate problem is
bounded. Next, we prove that there exists a subsequence of(��)�∈N which converges weakly to an element � ∈ V and,
inally, that this element is solution of the degenerate initial
problem.

5.1. Some Estimations. From (28)we have in the distributions
sense (multiplying by �2��/��2):

∫
Ω

����� �
2����2 �� + ∫Ω ��� (ℎ� (�) �3����3 ) �2����2 �� = 0, (74)

which is equivalent to

⟨����� , �
2����2 ⟩

���
+⟨ ��� (ℎ� (�) �3����3 ) , �2����2 ⟩

���
=0.
(75)

Ater integration by parts, it comes out that

12 ∫Ω ��� (
�������� �����

��������
2)�� + ∫

Ω
ℎ� (�) (�3����3 )

2�� = 0, (76)

then by integrating with respect to the variable � ∈]0, �[, it
comes out that

12
����������� (�, ⋅)��

��������
2

�2(Ω)
− 12

����������0��
��������
2

�2(Ω)

+ ∫�

0
∫
Ω
ℎ� (�) (�3����3 )

2�� �� = 0,
(77)

which implies that

����������� (�, ⋅)��
��������
2

�2(Ω)
+ 2∫�

0
∫
Ω
ℎ� (�) (�3����3 )

2�� ��
= ����������0��

��������
2

�2(Ω)
.

(78)
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But as ℎ�(�) ≥ �, we have
����������� (�, ⋅)��

��������
2

�2(Ω)
+ 2∫�

0
∫
Ω
ℎ� (�) (�3����3 )

2�� ��
≥ ����������� (�, ⋅)��

��������
2

�2(Ω)
+ 2�∫�

0
∫
Ω
(�3����3 )

2�� ��
(79)

or

����������� (�, ⋅)��
��������
2

�2(Ω)
+ 2∫�

0
∫
Ω
ℎ� (�) (�3����3 )

2�� ��
≥ ����������� (�, ⋅)��

��������
2

�2(Ω)
+ 2�∫�

0

���������
�3����3

���������
2

�2(Ω)
��,

(80)

from which

����������0��
��������
2

�2(Ω)
≥ ����������� (�, ⋅)��

��������
2

�2(Ω)

+ 2�∫�

0
[����������

��������2V − ����������� (�, ⋅)��
��������
2

�2(Ω)
]��.

(81)

hus, on one hand,

����������0��
��������
2

�2(Ω)
≥ ����������� (�, ⋅)��

��������
2

�2(Ω).
(82)

But

����������� (�, ⋅)��
��������
2

�2(Ω)
≥ �2������

����2�1(Ω), (83)

where � comes from inequality (49), which implies that

������
����2�∞(0,�;�1(Ω)) ≤ 1�2

����������0��
��������
2

�2(Ω)
, (84)

������
����2�2(0,�;�1(Ω)) ≤ ��2

����������0��
��������
2

�2(Ω)
. (85)

hen, the sequence (��)�∈N is bounded in�∞(0, �;�1(Ω)) and
in �2(0, �;�1(Ω)). And on the other hand

2�∫�

0
[����������

��������2V − �����������(�, ⋅)��
��������
2

�2(Ω)
]�� ≤ ����������0��

��������
2

�2(Ω)
, (86)

which gives

∫�

0

����������
��������2V�� ≤ ∫�

0

����������� (�, ⋅)��
��������
2

�2(Ω)
�� + 12�

����������0��
��������
2

�2(Ω)
.
(87)

But as

�����������(�, ⋅)��
��������
2

�2(Ω)
≤ ������ (�, ⋅)����2�1(Ω), (88)

therefore

∫�

0

����������
��������2V�� ≤ ∫�

0

������ (�, ⋅)����2�1(Ω)�� + 12�
����������0��

��������
2

�2(Ω)
. (89)

hus,

∫�

0

����������
��������2V�� ≤ �������

����2�∞(0,�;�1(Ω)) + 12�
����������0��

��������
2

�2(Ω)
, (90)

which implies according to (84) that

∫�

0

����������
��������2V�� ≤ ��2

����������0��
��������
2

�2(Ω)
+ 12�

����������0��
��������
2

�2(Ω)
. (91)

We inally deduced the second estimate

������
����2�2(0,�;V) = ������

����2�2(0,�;V�)
≤ ( ��2 + 12�)

����������0��
��������
2

�2(Ω)
. (92)

hen, the sequence (��)�∈N is bounded in �2(0, �;V).
5.2. Weak Convergence of the Subsequence of (��)�∈N. he

sequence (��)�∈N is bounded in the space �2(0, �;V). hen
there exists a subsequence (���)�∈N that converge weakly to �
in �2(0, �;V) with ��/�� ∈ �2(0, �; ��).

Leting � ∈ V be a test function, we have the following.

Firstly. As ��� → �weakly in �2(0, �; �), therefore, ��� → �
weakly in �2(0, �;�1(Ω)).

hus, in the distributions sense,

∫
Ω

������ �2���2 �� = ��� ∫Ω
������ ������, (93)

by integrating on [0, �], we have
∫�

0
∫
Ω

������ �2���2 �� �� = −∫�

0

��� ∫Ω
������ ������ ��

= −∫�

0
⟨������ , �2���2⟩

���
��

= −∫
Ω
(��� (�) − ��� (0)) �2���2 ��.

(94)

By integrating by parts again the last equation, we have

∫
Ω
(��� (�) − ��� (0)) �2���2 �� = ∫Ω

���� (�)�� ������
− ∫

Ω

���� (0)�� ������.
(95)
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his expression converges to

∫
Ω

�� (�)�� ������ − ∫Ω ��0�� ������ = ∫Ω [�� (�)�� − ��0�� ] ������
= ∫

Ω
[� (�) − �0] �2���2 ��

= ∫�

0
⟨���� , �

2���2⟩
���

��.
(96)

herefore, ∫�
0 ∫Ω(����/��)(�2�/��2)���� converges when�� tends to ininity to

∫�

0
∫
Ω

���� �
2���2 �� ��. (97)

Consequently, ����/�� → ��/�� weakly in �2(0, �;V�).
Secondly. As ℎ�(�) = ℎ(�) + (1/�),

we have
��� (ℎ��

�3�����3 − ℎ (�) �3���3)
= ��� (ℎ (�) �3��3 (��� − �)) + 1��

�4�����4 .
However, ∫

Ω

�4�����4 ��� = ∫
�Ω

�3���3 � ⋅ ���
− ∫

Ω

���� �
3�����3 ��.

And because
�3���3

����������Ω = 0, �3�����3 converges to
�3���3

in �2 (0, �; �2 (Ω)) ,
(98)

then,

1��
����������∫Ω

�4�����4 ������������� =
1��
����������∫Ω

�3�����3
������

����������
≤ 1��

�������� ����
���������2(Ω)

����������
�3�����3

�����������2(Ω)

(99)

converges to zero when �� tends to ininity.
On the other hand, from (98), we have���������∫Ω

��� (ℎ (�) �3��3 (��� − �)) ���
���������

≤ � ���������∫Ω
�3��3 (��� − �) ������

���������
(100)

which converges to zero in �2(0, �; �2(Ω)) according to weak
convergence (see Deinition 3) in �3(Ω) of �3���/��3 to

�3�/��3. hus, we have shown that in the distributions sense
of the one hand

∫
Ω

������ �2���2 �� (101)

converges to

∫
Ω

���� �
2���2 ��, (102)

and on the other hand,

∫
Ω

��� (ℎ��
�3�����3 )��� (103)

converges to

∫
Ω

��� (ℎ (�) �
3���3)���. (104)

Consequently, for each � ∈ �2(0, �; ��),

∫
Ω

������ ��� + ∫
Ω

��� (ℎ��
�3�����3 )��� (105)

converges in the distributions sense to

∫
Ω

���� ��� + ∫Ω ��� (ℎ (�) �
3���3)���, (106)

that is to say, ⟨(����/��), �⟩��� + ⟨(�/��)(ℎ��(�)(�3���/��3)),�⟩��� convergeswhen �� tends to ininity to ⟨(��/��), �⟩���+⟨(�/��)(ℎ(�)(�3�/��3)), �⟩���. It remains to show that the
limit � is a solution of the degenerate problem. But∫Ω(����/��)��� + ∫Ω(�/��)(ℎ��(�3���/��3))��� = 0,
which implies in the distributions sense ∫Ω(��/��)��� +∫Ω(�/��)(ℎ(�)(�3�/��3))��� = 0. In other words, the
weak limit of the sequence (���)�∈N is weak solution of the

initial degenerate problem. Moreover, this solution is unique

and is in �2(0, �;V) ∩ �([0, �];�1(Ω)). Better, using the

compact inclusion of V (which behaves like �3(Ω) because
of the equivalence of the norms) in �2(Ω), we conclude
that the sequence of solutions of non-degenerate problem

(approximated problem) converges strongly in�2(Ω) to the

solution of the initial degenerate problem. he space �2(Ω)
is, moreover, the space of strong solutions of the initial system
(25).
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6. Numerical Implementation
and Applications

Deliberately, we present the numerical implementation in the
case of dimension � = 2. he reason is that we give examples
both on 1D and 2D signals.

In the sequel, we adopt the following notation. he mesh
of the domainΩ × [0, �] is given by

(��, ��) = (�Δ�, �Δ�) for � ≥ 0, � ∈ N. (107)

We note by ��
� the approximate value of the solution�(�, �) at the point (�Δ�, �Δ�) = (�Δ�, �).

he discrete solution at the iteration � is obtained at the
discrete time �� and is denoted by ��. An approximation of
the temporal derivative is �� = ��/�� at this same time �� =�Δ� is then (��+1 − ��)/Δ�.
6.1. Numerical Schemes for the PDE Resolution. he discrete
model calculating the mean envelope can be written as
follows:

�� = − 2∑
�,�=1

�1�� (��,��1���2���) , (108)

where ���� denotes the derivative of order � ∈ {1, 2} relatively
to the spatial coordinate ��.

To take into account the discontinuity of the difusivity
function, we use the harmonic mean of ��,� deined by

��+1/2,� = [�
−1
�,� + �−1

�+1,�2 ]−1 ,

��−1/2,� = [�
−1
�−1,� + �−1

�+1,�2 ]−1,

��,�+1/2= [�
−1
�,� + �−1

�,�+12 ]−1,

��,�−1/2 = [�
−1
�,� + �−1

�,�−12 ]−1.

(109)

Recall that � is strictly positive, which allows its inversion in
the previous system.

We deine also the numerical derivatives of � by
�+

� � (�, �) = � (� + 1, �) − � (�, �)
forward diference on the ��-direction,

�−
� � (�, �) = � (�, �) − � (� − 1, �)
backward diference on the ��-direction,

�0
� � (�, �) = � (� + 12 , �) − � (� − 12 , �)
central diference on the ��-direction,

�+
� � (�, �) = � (�, � + 1) − � (�, �)
forward diference on the ��-direction,

�−
� � (�, �) = � (�, � − 1) − � (�, �)
backward diference on the ��-direction,

(110)

and inally we pose ����(�, �) = �+
� �−

��+
� �(�, �). For posi-

tive integer, � and �, the numerical approximation � ���, of��,��1���2��� in (108) is given by

� �� = ��+1/2,��+
� ��� − ��−1/2,��−

� ���

+ ��,�+1/2�+
���� − ��,�−1/2�−

����. (111)

We present the irst natural explicit scheme.

6.1.1. An Explicit Scheme. An explicit scheme to solve the

PDE is the following: (��+1 − ��)/Δ� = −∑2
�,�=1 � ���� or��+1 = (�−Δ�∑2

�,�=1 � ��)��. Let us poseD = �−Δ�∑2
�,�=1 � ��.

hus,

��+1 = D�� with �0 = �0. (112)

If � is the image or the signal size, the matrix D is a sparse

matrix of order�2.
However, this explicit scheme requires for its stabilityΔ� very small. To overcome this drawback, other numerical

schemes can be used such as Du Fort and Frankel [22], which
is unconditionally stable, but conditionally consisting of time
steps Δ� not too great, to satisfy the condition of numerical
stability of Courant-Friedrich-Levy [26] schemes. Another
very efective scheme is proposed by Vogel and Oman in [27]
it is based on the principle of the ixed point. It allows us to
address the problem stationarywith the result of the existence
of the asymptotic solution. With this scheme, the solution is
an eigenvector of the operator represented by the matrixD.

6.1.2. he Additive Operator Splitting Scheme. We can use the
additive operator splitting scheme (AOS) which is written as
follows:

��+1 = 12
2∑

�=1
(� + 2Δ����)−1(� − Δ� 2∑

�=1
∑
� ̸= �
� ��)��. (113)
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his scheme is more stable, but requires a matrix inversion,
even if the matrix is pentadiagonal. his inversion may be
afected by thehomas [28] algorithm modiied. In (113), the
reverse of the matrix is independent of the iteration � and is
carried out once only for � = 0.
6.1.3. he Alternate Direction Implicit Scheme (ADI). Simpli-
ication which reduces the complexity of the computation
of the solution can be made in the implementation of the
numerical equation (108) combining an implicit form for half
the computation time and an explicit form for the remainder.

It is more diicult to implement this scheme, ADI, for the
fourth-order PDE. his is due to cross derivatives in (108).
Witelski and Bowen [29] suggest a readjustment of the ADI
in which a mixed derivative is calculated explicitly in (108) by
the following:

��+1 = ( 2∏
�=1

(� − Δ����))
−1(� + Δ� 2∑

�=1
∑
� ̸= �
� ��)��. (114)

Besides the approximation errors inherent in all numerical
scheme, the fundamental diference between theses methods
remains the computation time.

6.2. he Boundary Conditions. he boundary conditions
used are those of system (41). In fact, the solution is a

polynomial of order 3 and can be written as �(�) = �3�3 +�2�2 + �1� + �0. he nullity of its derivatives of orders 3 and1 on the edges leads to �3 = 0, ��/�� = 2�2� + �1 = 0 on
the boundary. Hence, �2 = �1 = 0, which inally gives �(�) =�0. We have taken as boundary conditions that outside, the
domain, the signal is constant. his means into practice the
cancellation of all the derivatives of order less than or equal
to 3. For difusivity function at the edges, it is constant.When
this constant is null, we join a nonnatural manner to care of
edge efects, which was to take the signal ends at the same
time as local maximum and local minimum. We do not this
here.

6.3. Test Results of PDE Interpolator on Signal. In our numer-
ical tests, we used the implicit scheme of Crank-Nikelson
which gives good results with Δ� that can take very large
values. In the following, we give some examples of calculation
of upper and lower envelopes and for the mean envelope
interpolating the inlection points of the signal. his scheme
in consistent of order 1 both in space and in time.

6.3.1. Some Examples. First, we present in Figure 1 a patho-
logical case of a signal without local extremum, when we
cannot calculate the envelopes by spline interpolation of the
extrema. Our PDE interpolator works well with the max-min
curvature points detection in the difusivity function.

Figure 2 represents the evolution of the PDE solutionwith
the form given by (14). Upon iteration 40000, the solution
almost evolves addition; it is potentially an envelope.

In Figure 3, we represent the envelope calculation of the
same function with the form given by (16) for diferent

15 20 25 30 35 40 45
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Mean envelope

Upper envelope

Lower envelope

Signal s

Figure 1: PDE interpolator for signal without local extrema. he
input signal is in blue unbroken line, and the envelopes are in dotted
lines.

tension factor �. We can see that the regularity of envelopes is
no longer for values of � close to zero.

In Figure 4, we represent the envelope calculation with
the form given by (17) for diferent tension factor � = 0.

In Figure 5, we make a comparison between our PDE
interpolator and the cubic spline interpolation for an input
signal � that equal to the superposition of two sinusoidal
components with diferent amplitudes and frequencies, �1
and �1. When it comes to interpolate the classical local
extrema, we have almost the same result, the two not being
satisfactory, which certainly requires a bit more iterations
in the siting process. In contrast by, our interpolator which
passes through the points of maximum and minimum local
curvature gives the correct envelopes quite properly.

6.3.2. he Speciic Case of the PDE Interpolator of the Turning
Points. In the case of the PDE interpolator of inlection
points, we have the advantage of not only calculating asymp-
totic solution of PDE but also dividing the computing time
almost in half. Only, we must numerically have a good
estimate of the envelope to guard against a sampling of the
input signal which must also be quite dense. his model
asks more numerically regularity and in some cases an over-
sampling.

In Figures 6 and 7, we proceed to calculate the solution of
the PDE interpolator passing through the inlection points,
for diferent sampling for the same composite signal � =�1 + �2. he convergence is slower if the number of sampling
points is higher, but the solution is a good estimate of the
mean envelope. In Figure 6, with a more dense sampling,
convergence is slower, and we get a mean envelope judged
more suitable than 128 sampling points. In Figure 7, with
adequate sampling,we presented themean envelope expected
trend, that is the component �1 of the signal �. To capture
the inlection points, a sampling of four once of the smallest
local period of the signal is generally eligible for a suitable to
estimate the envelope. his is a consequence of the theory of
Shannon sampling.

6.3.3. Test on 2D Signal. Finally, in Figure 8, we use the 2D
version of the PDE interpolator for image restoration. he
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(a) Input signal is in blue color. In red and green colors are the
envelopes upon iteration 4000
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(b) Input signal is in blue color. In red and green colors are the
envelopes upon iteration 40000
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(c) Input signal is in blue color. In red and green colors are the
envelopes upon iteration 400000

Figure 2: In (a) input signal is in blue color. In red and green colors
are the envelopes calculus upon iteration 4000. In (b) the envelopes
calculus upon iteration 40000. In (c) the envelopes calculus upon
iteration 400000.
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(a) Input signal is in blue color. In red and green colors are the
envelopes at the convergence for � = 0.05
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(b) Input signal is in blue color. In red and green colors are the
envelopes at the convergence for � = 0.5
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(c) Input signal is in blue color. In red and green colors are the
envelopes at the convergence for � = 1

Figure 3: In (a, b, and c) input signal is in blue color. In red and
green colors are the envelopes at the convergence of the evolutive
PDE.



ISRN Signal Processing 15

200 250 300 350 400 450 500

4000 iterations

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) Input signal in blue color. In red and green colors the envelopes
upon iteration 4000
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(b) Input signal in blue color. In red and green colors the envelopes
upon iteration 40000
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(c) Input signal in blue color. In red and green colors the envelopes
upon iteration 400000

Figure 4: Envelope calculus by (17) with � = 0. In (a), at this
stage, the two envelopes overlap by location. In (b), less overlap and
practically the asymptotic solution are almost reached. In (c), the
stability of the evolution leading to the solution.

corrupted image taken as an input 2D signal in our model
which proceeds by edge propagating provides an interpolated
version of the data that is clean enough.

7. Conclusion

In this paper, we model a new PDE interpolator which
permits to calculate the envelopes of a signal. he existence
and uniqueness of the solution to the mathematical problem
are determined by a variational approach. his theoretical
framework contributes to the mathematical modeling of
EMD algorithm. We have shown, in particular, how the V

space reminds the extraction conditions of the EMD modes,
and we prove that the set of eligible functions to be decom-

posed by EMD are in �1(Ω). he PDE interpolator is not
based on any prior knowledge on the noise level as opposed
to the total variation method in [11]. he tests in both signal
and image processing demonstrate the efectiveness of the
new interpolator and provide an insight into opportunities in
multiscale analysis of multidimensional signal.

Appendix

LemmaA.1. Let� ∈ �1(Ω) having at least three local extrema
and null at least at one point of Ω. One can assume that �
vanishes by changing sign. hen, there exist � > 0 and �� ∈ Ω
such that the local mean at �� is null, for example,

�loc� [�] (��) = 12� ∫
��+�

��−�
� (�) �� = 0. (A.1)

Proof. Let �� and � > 0 such that �(��) = 0, �(�� − �) <0, and �(�� + �) > 0. Proceed by contradiction as the
local mean is continuous, and �loc�[�] not null implies
that it keeps a constant sign on Ω. Suppose that ∀�, � >0, �loc�[�](�) > 0. In particular, the positive sequence(�loc1/�[�](�� − �))�∈N∗ converges to �(�� − �) ≥ 0. his is
absurd because �(�� − �) < 0. hus, the proof of Lemma A.1
is performed.

From this lemma, any eligible function for EMD is inV�.

Lemma A.2. here exist two constants ��, �� > 0 such that∀� ∈ V:

��‖�‖2�3(Ω) ≤ |‖�‖|2V ≤ ��‖�‖2�3(Ω). (A.2)

Proof of Lemma A.2

Step 1 (second part of (A.2)). Rewriting irst the norms,‖�‖2�3(Ω) = ∑3
�=0 ‖���/���‖2�2(Ω) , that is to say,

‖�‖2�3(Ω) = ‖�‖2�2(Ω) + �������� ����
��������
2

�2(Ω)

+ ���������
�2���2

���������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)
,

(A.3)
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Figure 5: Comparison between PDE interpolator and cubic spline. he input signal is in blue color, and in red and black colors are the
envelopes.
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Figure 6: he envelope of the signal test � = �1 + �2 sampling with 256 points.

and secondly,

|‖�‖|2
V
= �������� ����

��������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)
, (A.4)

we have immediately |‖�‖|2
V
≤ ‖�‖2�3(Ω) posing �� = 1.

Step 2 (irst part of (A.2)). Firstly,

���������
�2���2

���������
2

�2(Ω)
= ∫

Ω
(�2���2)

2��, (A.5)

and by integration by parts,

∫
Ω
(�2���2)

2�� = ∫
�Ω

���� �
2���2 �� − ∫Ω ���� �

3���3 ��. (A.6)

As � ∈ V, we have

∫
Ω
(�2���2)

2�� = −∫
Ω

���� �
3���3 ��, (A.7)
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Figure 7: he envelope of the signal test � = �1 + �2 sampling with 1024 points.
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Figure 8: PDE interpolator for image restoration. An original image (a) is corrupted (b) and restored (c) by our 2DPDE-interpolator. Original
image.

and, therefore, the use of Schwarz inegality gives���������
�2���2

���������
2

�2(Ω)
≤ �������� ����

���������2(Ω)

���������
�3���3

����������2(Ω)
; (A.8)

then, we deduce���������
�2���2

���������
2

�2(Ω)
≤ 12

�������� ����
��������
2

�2(Ω)
+ 12

���������
�3���3

���������
2

�2(Ω)
. (A.9)

More ∫Ω ��� = 0, then according to Poincaré-Wirtinger

theorem [20], it comes out that ‖�‖2�1(Ω) ≤ �Ω‖��/��‖2�2(Ω).
herefore,

‖�‖2�3(Ω) = ‖�‖2�1(Ω) + ���������
�2���2

���������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)

≤ �Ω
�������� ����

��������
2

�2(Ω)
+ 12

�������� ����
��������
2

�2(Ω)

+ 12
���������
�3���3

���������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)
.

(A.10)

hus,

‖�‖2�3(Ω) ≤ max(12 , �Ω, 32)(
�������� ����

��������
2

�2(Ω)
+ ���������

�3���3

���������
2

�2(Ω)
) .
(A.11)

If we pose

�� = 1(max ((1/2) + �Ω, 3/2)) , (A.12)

we have

��‖�‖2�3(Ω) ≤ |‖�‖|2V. (A.13)

he inegality (A.2) is established and the lemma’s proof is
completed.
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