
HAL Id: hal-00833527
https://hal.science/hal-00833527

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity Comparison of Planar Parallel Manipulators
Nicolas Binaud, Stéphane Caro, Philippe Wenger

To cite this version:
Nicolas Binaud, Stéphane Caro, Philippe Wenger. Sensitivity Comparison of Pla-
nar Parallel Manipulators. Mechanism and Machine Theory, 2009, 45, pp.1477-1490.
�10.1016/j.mechmachtheory.2010.07.004�. �hal-00833527�

https://hal.science/hal-00833527
https://hal.archives-ouvertes.fr


Sensitivity Comparison of Planar Parallel Manipulators
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Abstract

This paper deals with the sensitivity comparison of three Degree-of-Freedom planar parallel

manipulators. First, a methodology is described to obtain the sensitivity coefficients of the

pose of the moving platform of the manipulators to variations in their geometric parameters

and actuated variables. Their sensitivity coefficients are derived and expressed algebraically

for a matter of analysis simplicity. Moreover, two aggregate sensitivity indices are determined,

the first one is related to the orientation of the moving platform of the manipulator and the

other one to its position. Then, a methodology is proposed to compare PPMs with regard to

their workspace size and sensitivity. Finally, 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs

are compared in order to highlight the contributions of the paper.

1 Introduction

During the early design process of engineering systems, the analysis of the performance sensi-

tivity to uncertainties is an important task. High sensitivity to parameters that are inherently

noisy can lead to poor, or unexpected performance. In robotics, the variations in the geometric

parameters of Parallel Kinematics Machines (PKMs) can be either compensated or amplified.

For that reason, it is important to analyze the sensitivity of their performance to variations

in its geometric parameters. Accordingly, it turns to be very useful to develop a methodology

for the comparison of the sensitivity of PKMs to uncertainties at their conceptual design stage.

Ideally, having this information at the conceptual design stage can help robot designers better

choose the architecture of the manipulator under design. To this end, some indices such as the

dexterity and the manipulability have been used to evaluate the sensitivity of robots perfor-

mance to variations in their actuated joints [1, 2, 3, 4, 5]. However, they are not suitable for
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the evaluation of this sensitivity to other types of uncertainty such as variations in geometric

parameters.

Two indices are proposed in [6] to evaluate the sensitivity of the end-effector pose (position +

orientation) of the Orthoglide 3-axis, a three Degree-of-Freedom (DOF) translational PKM, to

variations in its design parameters. In the same vein, four 3-RPR planar parallel manipulators

(PPMs) are compared in [7] based on the sensitivity of their performance to variations in their

geometric parameters. However, as far as the authors know, there is no work in the literature

related to such a comparison of manipulators with different architectures. Therefore, this paper

introduces a methodology to compare different types of PPMs based on the sensitivity of their

moving platform pose to variations in their geometric parameters. Only manipulators with the

same architecture were compared in [7] and [9], whereas manipulators of different architectures

are compared in this paper, namely, the 3-RPR, the 3-RRR and the 3-PRR PPMs. The archi-

tectures of the manipulators under study are first described. Then, the sensitivity coefficients

of the pose of their moving platform to variations in their geometric parameters and actuated

variables are derived and expressed algebraically. Moreover, two aggregate sensitivity indices

are determined, one is related to the orientation of the moving platform of the manipulator

and another one is related to its position. Then, a methodology is proposed to compare PPMs

with regard to their workspace size and sensitivity. Finally, 3-RPR, 3-RPR, 3-RRR, 3-RRR and

3-PRR PPMs are compared as illustrative examples.

2 Manipulators Architecture

Here and throughout this paper, R, P, R and P denote revolute, prismatic, actuated revolute

and actuated prismatic joints, respectively. Figures 1(a)-(c) illustrate the architectures of the

manipulators under study, namely the 3-RPR, the 3-RRR and the the 3-PRR PPMs, respectively.

They are composed of a base and a moving platform (MP) connected by means of three legs.

Points A1, A2 and A3, (C1, C2 and C3, respectively) lie at the corners of a triangle, point O

(point P , resp.) being its circumcenter. Each leg is composed of three joints in sequence, one of

them being actuated. For example, each leg of the 3-RRR PPM is composed of three revolute

joints mounted in sequence, the first one being actuated.

Fb and Fp are the base and the moving platform frames of the manipulator. In the scope of

this paper, both Fb and Fp are supposed to be orthogonal. Fb is defined with the orthogonal

dihedron ( ~Ox, ~Oy), point O is its center and ~Ox is parallel to segment A1A2. Likewise, Fp is

defined with the orthogonal dihedron ( ~PX, ~PY ), point P is its center and ~PX is parallel to

segment C1C2.

The MP pose, i.e., its position and its orientation, is determined by means of the Cartesian

coordinates vector p = [px, py]
T of operation point P expressed in Fb and angle φ, that is the

rotation angle between frames Fb and Fp.
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Figure 1: PPMs under study

3 Sensitivity Indices

In this section, we first introduce a methodology to derive the sensitivity coefficients of the

MP pose of the PPMs to variations in the actuated joints, in the leg lengths as well as in the

coordinates of points Ai and Ci, i = 1, 2, 3, the latter being either Polar or Cartesian. In [7]

and [9], this methodology was illustrated with a 3-RPR and a 3-RRR PPMs, respectively. Here,

it is illustrated with a 3-PRR PPM. From the foregoing sensitivity coefficients, we propose two

aggregate sensitivity indices, one related to the position of the MP and another one related to

its orientation.

3.1 Sensitivity Coefficients

We focus on the 3-PRR PPM to illustrate the methodology used to derive the sensitivity coeffi-

cients of any PPM. From the closed-loop kinematic chains O−Ai−Bi−Ci−P −O, i = 1, . . . , 3
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depicted in Fig. 1(c), the position vector p of point P can be expressed in Fb as follows,

p =





px

py



 = ai + (bi − ai) + (ci − bi) + (p− ci) , i = 1, . . . , 3 (1)

ai, bi and ci being the position vectors of points Ai, Bi and Ci expressed in Fb. Equation (??)

can also be written as,

p = aihi + ρiui + livi + ciki (2)

with

hi =





cosαi

sinαi



 , ui =





cos θi

sin θi



 , vi =





cos γi

sin γi



 , ki =





cos (φ+ βi + π)

sin (φ+ βi + π)





where ai is the distance between points O and Ai, ρi is the distance between points Ai and

Bi, li is the distance between points Bi and Ci, ci is the distance between points Ci and P ,

hi is the unit vector ~OAi/‖ ~OAi‖2, ui is the unit vector ~AiBi/‖ ~AiBi‖2, vi is the unit vector

~BiCi/‖ ~BiCi‖2 and ki is the unit vector ~CiP/‖ ~CiP‖2.

In a manner similar to [7, 8], upon differentiation of Eq.(??), we obtain:

δp = δai hi + ai δαi Ehi + δρi ui + ρi δθi Eui + δli vi + li δγi Evi + δci ki

+ci (δφ+ δβi) Eki (3)

with matrix E defined as

E =





0 −1

1 0



 (4)

δp and δφ being the position and orientation errors of the MP. Likewise, δai, δαi, δρi, δli, δci

and δβi denote the variations in ai, αi, ρi, li, ci and βi, respectively. The idle variation δγi is

eliminated by dot-multiplying Eq.(??) with liv
T
i , thus obtaining

li v
T
i δp = li δai v

T
i hi + li ai δαi v

T
i Ehi + li δρi v

T
i ui + li ρi δθi v

T
i Eui + li δli

+li δci v
T
i ki + li ci (δφ+ δβi)v

T
i Eki (5)

Equation (??) can now be cast in vector form:

A





δφ

δp



 = Ha











δa1

δa2

δa3











+Hα











δα1

δα2

δα3











+B











δρ1

δρ2

δρ3











+Hθ











δθ1

δθ2

δθ3











+Hl











δl1

δl2

δl3











+Hc











δc1

δc2

δc3











+Hβ











δβ1

δβ2

δβ3











(6)
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with

A =











m1 l1v
T
1

m2 l2v
T
2

m3 l3v
T
3











, B = diag
[

l1v
T
1
u1 l2v

T
2
u2 l3v

T
3
u3

]

(7a)

Ha = diag
[

l1v
T
1
h1 l2v

T
2
h2 l3v

T
3
h3

]

(7b)

Hα = diag
[

l1a1v
T
1
Eh1 l2a2v

T
2
Eh2 l3a3v

T
3
Eh3

]

(7c)

Hl = diag
[

l1 l2 l3
]

(7d)

Hθ = diag
[

l1ρ1v
T
1
Eh1 l2ρ2v

T
2
Eh2 l3ρ3v

T
3
Eh3

]

(7e)

Hc = diag
[

l1v
T
1
k1 l2v

T
2
k2 l3v

T
3
k3

]

(7f)

Hβ = diag
[

l1c1v
T
1
Ek1 l2c2v

T
2
Ek2 l3c3v

T
3
Ek3

]

(7g)

and

mi = −li ci v
T
i Eki , i = 1, . . . , 3 (8)

Let us notice that A and B are the direct and the inverse Jacobian matrices of the manipulator,

respectively. Assuming that A is non singular, i.e., the manipulator does not meet any Type II

singularity [10, 11, 12, 13], we obtain upon multiplication of Eq.(??) by A−1:





δφ

δp



 = Ja











δa1

δa2

δa3











+ Jα











δα1

δα2

δα3











+ J











δρ1

δρ2

δρ3











+ Jθ











δθ1

δθ2

δθ3











+ Jl











δl1

δl2

δl3











+Jc











δc1

δc2

δc3











+ Jβ











δβ1

δβ2

δβ3











(9)

with

J = A−1B (10a)

Ja = A−1Ha (10b)

Jα = A−1Hα (10c)

Jθ = A−1Hθ (10d)

Jl = A−1Hl (10e)

Jc = A−1Hc (10f)

Jβ = A−1Hβ (10g)

and

A−1 =
1

det(A)





v1 v2 v3

w1 w2 w3



 (11a)
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vi = ljlk(vj × vk)
Tk (11b)

wi = E (mjlkvk −mkljvj) (11c)

det(A) =
3
∑

i=1

mivi (11d)

k = i× j (11e)

j = (i+ 1) modulo 3; k = (i+ 2) modulo 3; i = 1, 2, 3. J is the kinematic Jacobian matrix of

the manipulator whereas Ja, Jα, Jθ, Jl, Jc and Jβ are named sensitivity Jacobian matrices of

the pose of the MP to variations in ai, αi, θi, li, ci and βi, respectively. Indeed, the terms of Ja,

Jα, Jθ, Jl, Jc and Jβ are the sensitivity coefficients of the position and the orientation of the

MP of the manipulator to variations in length li and the Polar coordinates of points Ai, Bi and

Ci. Likewise, J contains the sensitivity coefficients of the pose of the MP of the manipulator to

variations in the prismatic actuated joints. It is noteworthy that all these sensitivity coefficients

are expressed algebraically for a matter of simplicity analysis and compactness.

Let δaix and δaiy (δbix and δbiy, resp.) denote the position errors of points Ai (points

Bi, resp.), i = 1, 2, 3, along ~Ox and ~Oy, namely, the variations in the Cartesian coordinates

of points Ai and Bi. Likewise, let δciX and δciY denote the position errors of the Cartesian

coordinates of points Ci along ~PX and ~PY . From Fig. 1(c),





δaix

δaiy



 =





cosαi −ai sinαi

sinαi ai cosαi









δai

δαi



 (12a)





δbix

δbiy



 =





0 −ρi sin θi

0 ρi cos θi









δρi

δθi



 (12b)





δciX

δciY



 =





cos βi −ci sin βi

sin βi ci cos βi









δci

δβi



 (12c)

From Eq.(??), we can notice that variations in the Cartesian coordinates of point Bi do not

depend on variations in the actuated prismatic joints, δρi, because the influence of variations

in geometric parameters and the influence of variations in the actuated joints on the pose of

the PPM are analyzed separately. Accordingly, from Eq.(??) and Eqs.(??)-(c), we obtain the

following relation between the MP pose error and the variations in the Cartesian coordinates

of points Ai, Bi and Ci:





δφ

δp



 = JA





























δa1x

δa1y

δa2x

δa2y

δa3x

δa3y





























+ J











δρ1

δρ2

δρ3











+ JB





























δb1X

δb1Y

δb2X

δb2Y

δb3X

δb3Y





























+ Jl











δl1

δl2

δl3











+ JC





























δc1X

δc1Y

δc2X

δc2Y

δc3X

δc3Y





























(13)

JA, JB, JC and Jl are named sensitivity Jacobian matrices of the MP pose to variations in li
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and the Cartesian coordinates of points Ai, Bi, and Ci, respectively.

In order to better highlight the sensitivity coefficients, let us write the 3 × 6 matrices JA,

JB and JC and the 3× 3 matrices J and Jl as follows,

JA =
[

JA1
JA2

JA3

]

(14a)

JB =
[

JB1
JB2

JB3

]

(14b)

JC =
[

JC1
JC2

JC3

]

(14c)

J =
[

j1 j2 j3

]

(14d)

Jl =
[

jl1 jl2 jl3

]

(14e)

The 3× 2 matrices JAi
, JBi

and JCi
and the three dimensional vectors ji and jli are expressed

as :

JAi
=





jAiφ

JAip



 , i = 1, 2, 3 (15a)

JBi
=





jBiφ

JBip



 , i = 1, 2, 3 (15b)

JCi
=





jCiφ

JCip



 , i = 1, 2, 3 (15c)

ji =





jiφ

jip



 , i = 1, 2, 3 (15d)

jli =





jliφ

jlip



 , i = 1, 2, 3 (15e)

with

jAiφ =
1

det(A)

[

vi oi vi pi
]

(16)

jBiφ =
1

det(A)

[

vi qi vi ri
]

(17)

jCiφ =
1

det(A)

[

vi si vi ti
]

(18)

jiφ =
vi liv

T
i ui

det(A)
(19)

jliφ =
li vi

det(A)
(20)

JAip =
1

det(A)





oiw
T
i i piw

T
i i

oiw
T
i j piw

T
i j



(21)

JBip =
1

det(A)





qiw
T
i i riw

T
i i

qiw
T
i j riw

T
i j



 (22)

JCip =
1

det(A)





siw
T
i i tiw

T
i i

siw
T
i j tiw

T
i j



 (23)

jip =
1

det(A)





liv
T
i uiw

T
i i

liv
T
i uiw

T
i j



 (24)

jlip =
1

det(A)





liw
T
i i

liw
T
i j



 (25)

oi, pi, qi, ri, si and ti taking the form:

oi = liv
T
i i (26a)
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pi = liv
T
i j (26b)

qi = −liv
T
i Eui sin θi (26c)

ri = liv
T
i Eui cos θi (26d)

si = liv
T
i ki cos βi − liv

T
i Eki sin βi (26e)

ti = liv
T
i ki sin βi + liv

T
i Eki cos βi (26f)

jAiφ
, jBiφ

, jCiφ
, jiφ and jliφ contain the sensitivity coefficients of the MP orientation to variations

in the Cartesian coordinates of points Ai, Bi, Ci, in the prismatic actuated variables ρi and in

length li, respectively. Similarly, JAip, JBip, JCip, jip and jlip contain the sensitivity coefficients

related to the MP position. It is apparent that this methodology can be applied to any PPM

to obtain their sensitivity coefficients.

Finally, the designer of such PPMs can easily identify the most influential geometric vari-

ations to their MP pose and choose the proper dimensional tolerances from their sensitivity

coefficients. Two aggregate sensitivity indices related to variations in the geometric errors of

the moving and the base platforms are introduced thereafter.

3.2 Two Aggregate Sensitivity Indices

This section aims at determining indices in order to compare distinct PPMs with regard to

the sensitivity of the pose of their moving platform to variations in their geometric parameters.

What we mean by “distinct” PPMs is that they are different in terms of architecture and size.

To this end, the relation between the MP pose and the variations in the geometric parameters

is given by:





δφ

δp



 = JsMvM (27)

The 3×nM matrix JsM is named “aggregate sensitivity Jacobian matrix” of manipulatorM , and

nM is the number of geometric variations that are considered. Assuming that actuated joints

are not geometric parameters, n3−RPR is equal to 12 whereas n3−RRR and n3−PRR are equal to

18. The nM -dimensional vector vM contains the variations in the geometric parameters. The

global sensitivity Jacobian matrices of the five PPMs under study can be expressed as follows:

JsRPR
=

[

JARPR
JCRPR

]

(28a)

JsRPR
=

[

JARPR
JCRPR

]

(28b)

JsRRR
=

[

JARRR
Jl1RRR

Jl2RRR
JCRRR

]

(28c)

JsRRR
=

[

JARRR
Jl1RRR

Jl2RRR
JCRRR

]

(28d)

JsPRR
=

[

JAPRR
JBPRR

JlPRR
JCPRR

]

(28e)
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and

vRPR = vRPR =
[

δai δci
]T

(29)

vRRR = vRRR =
[

δai δl1i δl2i δci
]T

(30)

vPRR =
[

δai δbi δli δci
]T

(31)

with

δai =
[

δa1x δa1y δa2x δa2y δa3x δa3y
]

(32a)

δci =
[

δc1X δc1Y δc2X δc2Y δc3X δc3Y
]

(32b)

δl1i =
[

δl11 δl12 δl13
]

(32c)

δl2i =
[

δl21 δl22 δl23
]

(32d)

δbi =
[

δb1x δb1y δb2x δb2y δb3x δb3y
]

(32e)

δli =
[

δl1 δl2 δl3
]

(32f)

The 3× nM matrices JsM is composed of two blocks, jsMφ and JsMp, i.e.,

JsM =





jsMφ

JsMp



 (33)

The expressions of jsMφ and jsMp are given in Appendix 1. The sensitivity matrices of the 3-

RPR PPM and the 3-RRR PPM are given in [7, 9]. From Eq.(20) and Appendix 1, we define an

aggregate sensitivity index νφM
of the MP orientation to variations in the geometric parameters:

νφM
=

‖jsMφ‖2
nM

(34)

Likewise, an aggregate sensitivity index νpM of the MP position to variations in its geometric

parameters is defined as:

νpM =
‖JsMp‖2

nM

(35)

‖ . ‖2 denotes the Euclidean norm. The lower νφM
, the lower the aggregate sensitivity of the

orientation of the MP of the manipulators to variations in its geometric parameters. Similarly,

the lower νpM , the lower the aggregate sensitivity of the position of the MP to variations in

the geometric parameters. As a matter of fact, νφM
(νpM , resp.) characterizes the intrinsic

sensitivity of the orientation (position, resp.) of the MP to any variation in the geometric

parameters.

Let us notice that νpM as well as the sensitivity coefficients related to the MP position

defined in this Section and Section 3.1 are frame dependent, whereas νφM
and the sensitivity

coefficients related to the MP orientation are not.

Finally, let us notice that νφM
indices are expressed in [rad/L], whereas νpM indices are
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dimensionless, [L] being the unit of length.

4 Comparison Methodology

In this section, we define a methodology to compare PPMs with regard to their workspace size

and sensitivity. This methodology is broken down into six steps:

1. normalization of the geometric parameters;

2. determination of the manipulator workspace (WS) and the regular workspace (RW);

3. determination of the smallest regular workspace (RWmin);

4. evaluation of the sensitivity of the MP orientation to variations in the geometric param-

eters throughout the RWmin by means of νφM
defined in Eq.(??);

5. evaluation of the sensitivity of the MP position to variations in the geometric parameters

throughout the RWmin by means of νpM defined in Eq.(??);

6. comparison with the average and the maximum sensitivities of the manipulator through-

out its RWmin.

The radii of the circumcircles of the base and the moving platforms of the manipulators are

normalized as explained in Section ??. The dimensions of the legs and the passive and actu-

ated joints are determined in such a way that the manipulators under study have equivalent

workspaces. The RW of the manipulators are obtained by means of an optimization problem

introduced in Section ??. Finally, the smallest one is taken (RWmin), and the sensitivity is

evaluated thoughout RWmin.

4.1 Geometric Parameters Normalization

Let R1 and R2 be the radii of the base and moving platforms of the PPM. In order to come

up with finite values, R1 and R2 are normalized as in [14, 15, 16]. For that matter, let Nf be

a normalizing factor:

Nf = (R1 +R2)/2 (36)

and

rm = Rm/Nf , m = 1, 2 (37)

Therefore,

r1 + r2 = 2 (38)

From eq.(??), we can notice that:

r1 ∈ [0, 2] , r2 ∈ [0, 2] (39)
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Moreover, the circumcircle radii of the base and moving platforms, i.e., r1 and r2, are similar for

the manipulators under study. All PPMs are symmetrical, i.e., the base and moving platforms

are equilateral. Consequently, we defined ratio r1/r2 and the other geometric parameters as

follows :

r2/r1 =
1

5
(40a)

a1 = a2 = a3 = r1 =
5

3
(40b)

c1 = c2 = c3 = r2 =
1

3
(40c)

{α1, α2, α3} = {−5π/6, −π/6, π/2} (40d)

{β1, β2, β3} = {−5π/6, −π/6, π/2} (40e)

As the former two-dimensional infinite space corresponding to geometric parameters R1 and

R2 is reduced to a one-dimensional finite space defined with Eqs.(??) and (??), the workspace

analysis of the PPM under study is easier. Moreover, αi and βi, i = 1, 2, 3, are given in [rad]

and r1 and r2 are given in [m]. It is apparent that the base and the moving platforms are

equilateral. For the 3-RRR PPMs,

l11 = l12 = l13 = l21 = l22 = l23 = l (41a)

l =
−r2 +

√

r22 + 2(r12 − r22)

2
(41b)

l is obtained in such a way that l1i and l2i, i = 1, 2, 3, are identical and to have the same

workspace size for the 3-RRR and the 3-RRR PPMs [17]. Moreover, we can determine an

isotropic configuration for each 3-RRR. In an isotropic configuration, the sensitivity of a manip-

ulator in both velocity and force or torque errors is a minimum, and the manipulator can be

controlled equally well in all directions. The concept of kinematic isotropy has been used as a

criterion in the design of planar manipulators [18]. The actuated joints limits are:

0 < ρiRPR < 2l (42a)

0 < ρiPRR < 2l (42b)

For the 3-PRR PPM,

l1 = l2 = l3 = l (43)

With the geometric parameters normalization the PPMs under study have an equivalent size.

Finally, each PPM has an isotropic configuration. The sensitivity analysis is conducted in the

vicinity of the isotropic configuration. We define an isotropic pose for every PPM, the position

is the same, i.e., p = [0, 0] but the orientation is different. The orientation φisoM corresponding

to an isotropic configuration of manipulator M is given below:

φisoRPR = 0 (44a)
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φisoRPR = cos−1

(

r2
r1

)

(44b)

φisoRRR =
π

4
− cos−1

(

r1
2 + 2l2 − r2

2

2
√
2lr1

)

(44c)

φisoRRR = cos−1

(

r1
2 + 2l2 − r2

2

2
√
2lr1

)

− π

4
(44d)

φisoPRR =
5π

6
− cos−1

(

l√
r22 + l2

)

− cos−1

(

r1

2
√
r22 + l2

)

(44e)

4.2 Regular Workspace

Assessing the kinetostatic performance of parallel manipulators is not an easy task for 6-DOF

parallel manipulators [19]. However, it is easier for planar manipulators as their singularities

have a simple geometric interpretation [20, 21]. The RW of a manipulator is a regular-shaped

part of its workspace with good and homogeneous kinetostatic performance. The shape of the

RW is up to the designer. It may be a cube, a parallelepiped, a cylinder or another regular

shape. A reasonable choice is a shape that fits well the one of the singular surfaces. It appears

that a cylinder suits well for planar manipulators.

In the scope of this study, let the RW of the PPM be a cylinder of φ-axis with a good

kinetostatic performance, i.e., the orientation range ∆φ is defined around φisoM and the sign

of the determinant of the kinematic Jacobian matrix of the manipulator, i.e., sign(det(J)),

remains constant. Accordingly, the RW of the PPMs are obtained by solving the following

optimization problem:

Pb

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

minimize 1/R

over x =
[

R Ix Iy φmin φmax

]

subject to ∆φ ≥ π/6

sign(det(J)) = constant

(45)

R is the radius of the cylinder and ∆φ the orientation range of the MP of the manipulator

within its RW. Here, ∆φ is set to π/6 arbitrarily. This optimization problem has five decision

variables, namely, x =
[

R Ix Iy φmin φmax

]

. Ix and Iy are the Cartesian coordinates of

the center of the cylinder. φmin and φmax are the lower and upper bounds of ∆φ and are defined

as follows:

φmin = φisoM − ∆φ

2
(46a)

φmax = φisoM +
∆φ

2
(46b)

The global minimum, i.e., the optimum RW of the manipulator, of problem (21) is obtained

by means of a Tabu search Hooke and Jeeves algorithm [22]. Finally, νφM
and νpM are used to

evaluate the global orientation and positioning errors of the manipulator throughout the RW

of the PPMs under study.
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Figure 2: Manipulators under study is an isotropic configurations

5 Illustrative Examples: Comparison of Five PPMs

This section aims at illustrating the sensitivity indices and comparison methodology introduced

in Sections 3.2 and 4, respectively. For that purpose, the sensitivity of the symmetrical (base

and MP are equilateral) 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs are analyzed in detail.

Then, their sensitivity are compared.

5.1 Sensitivity Analysis

In this section, the sensitivity of 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs to variations

in their geometric parameters is evaluated within their WS for a matter of comparison based

on the aggregate sensitivity indices νφM
and νpM defined in Eqs.(??) and (??), respectively.

Figures 2(a)-(e) illustrate the corresponding manipulators, before geometric parameters nor-

malization, the radii of the circumscribed circles of their base and moving platforms being

different. The PPMs are represented in their isotropic configuration, the orientation φ of their

MP being equal to φisoM and point P being coincident with the origin of Fb, i.e., p = [0, 0]T .

In order to have an idea of the aggregate sensitivity of the MP pose of the manipulator to

variations in its geometric parameters, Figs. 3(a) to 7(b) illustrate the isocontours of νφM
and

νpM , for a given orientation range ∆φ centered at φisoM of the MP throughout the WS of the

3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs, respectively. We can notice that the closer P

to the geometric center of WS, the larger the aggregate sensitivity of the MP pose to variations

in the geometric parameters. It is apparent that the orientation and the position of the MP of

the 3-RPR is the most sensitive to variations in geometric parameters.

It appears that the two aggregate sensitivity indices can be used as amplification factors of

any geometric parameter error of the PPMs.



14

x

y 0
.4

0
.5

-0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) νφRPR

x

y

0.
15

0
.1

4

-0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) νpRPR

Figure 3: Sensitivity isocontours of the 3-RPR manipulator
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Figure 4: Sensitivity isocontours of the 3-RPR manipulator
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Figure 5: Sensitivity isocontours of the 3-RRR manipulator



15

x

y

0
.3

5

0
.4

0
.4

0
.6

0
.6

0.6

-0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) νφRRR

x

y

0.11

0
.1

2

0.13
0.
14

0.
14

0.15

0
.2

0
.2

-0.4 -0.2 0 0.2 0.4 0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) νpRRR

Figure 6: Sensitivity isocontours of the 3-RRR manipulator
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Figure 7: Sensitivity isocontours of the 3-PRR manipulator

5.2 Comparative study

In order to highlight the comparison methodology proposed in Section 4, we used the sensitivity

analysis illustrated in Section ??. Whether they are globally more or less sensitive to geometric

errors than their PPMs counterparts is a question of interest for the designer. In order to

compare the sensitivity of the foregoing manipulators, we first define their Regular Workspace

(RW). Then, the sensitivity of the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs can be

evaluated and compared throughout the smallest RW. Their radii are illustrated in Figs. 3(a)

to 7(b) in red circle dashed and are given in Table ?? and compared. We can notice that the

Table 1: Classification of the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs w.r.t their RW
size

3-RPR 3-RPR 3-RRR 3-RRR 3-PRR
RW 0.387 0.177 0.272 0.272 0.206

3-RPR PPMs have the largest RW, whereas the 3-RPR have the smallest RW. Therefore, we use

the 3-RPR RW, called RWmin to evaluate the average and the maximum sensitivities of each

PPM under study.
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Finally, Table ?? gives the sensitivity results of 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs

with regard to their average and maximum sensitivity of the orientation and the position of

their MP to variations in their geometric parameters, throughout RWmin. The results are quite

similar and good, because the sensitivity analysis is evaluated in their workspace center (RWmin)

and around their isotropic orientation (φisoM). In addition, the two aggregate sensitivity indices

can be considered as mean amplification factors of any geometric parameter error of the PPMs.

Hence, with these results, there is no error amplification. However, these results are illustrated

in Fig. 8 and we can notice that the 3-RPR manipulator is globally the least interesting, i.e., it

has the least robust design. Finally, the position of point P on the moving platform affects the

shape of the sensitivity isocontours and the global sensitivity indices νφ and νp, but does not

change the results of the previous comparison.

Table 2: Mean and maximum global sensitivity indices νφ and νp

3-RPR 3-RPR 3-RRR 3-RRR 3-PRR
νφmean

0.4487 0.3866 0.3211 0.3172 0.3321
νφmax

0.5664 0.3969 0.3377 0.3337 0.3662
νpmean

0.1626 0.1372 0.1138 0.1134 0.1238
νpmax

0.1881 0.1423 0.1244 0.1242 0.1368

6 Conclusions

This paper dealt with the sensitivity comparison of five planar parallel manipulators, namely,

the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR planar parallel manipulators. First, we have intro-

duced a methodology to obtain the sensitivity coefficients of the orientation and the position

of the moving platform of the planar parallel manipulators to variations in their geometric
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parameters and actuated variables. Their sensitivity coefficients were derived and expressed

algebraically. Moreover, two aggregate sensitivity indices were determined for each manipula-

tor under study, one related to the orientation of the moving platforms of the manipulator and

another one related to their position. Then, a methodology was proposed to compare planar

parallel manipulators with regard to their workspace size and sensitivity. Finally, the sensitivity

of five planar parallel manipulators, 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR were compared as

illustrative examples. The sensitivity indices νφM
and νpM introduced in the paper should help

the designer of planar parallel manipulators at the conceptual design stage. Joint clearances

and flexibilities also affect the positioning accuracy. The sensitivity to joint clearances and

flexibilities in the revolute joints can be taken into account in the definition of the variations in

the positions of the revolute joint centers. Prismatic joint clearances and link flexibilities will

be studied in future work, considering also spatial manipulators.
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Appendices

APPENDIX 1 : Sensitivity matrices for the manipulators under study

jsRPRφ = [ jA1RPRφ jA2RPRφ jA3RPRφ jC1RPRφ jC2RPRφ jC3RPRφ ]

jsRPRφ = [ jA1RPRφ jA2RPRφ jA3RPRφ jC1RPRφ jC2RPRφ jC3RPRφ ]

jsRRRφ = [ jA1RRRφ jA2RRRφ jA3RRRφ jl11RRRφ jl12RRRφ jl13RRRφ

jl21RRRφ jl22RRRφ jl23RRRφ jC1RRRφ jC2RRRφ jC3RRRφ ]

jsRRRφ = [ jA1RRRφ jA2RRRφ jA3RRRφ jl11RRRφ jl12RRRφ jl13RRRφ

jl21RRRφ jl22RRRφ jl23RRRφ jC1RRRφ jC2RRRφ jC3RRRφ ]

jsPRRφ = [ jA1PRRφ jA2PRRφ jA3PRRφ jB1PRRφ jB2PRRφ jB3PRRφ
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JsRPRp = [ JA1RPRp JA2RPRp JA3RPRp JC1RPRp JC2RPRp JC3RPRp ]

JsRRRp = [ JA1RRRp JA2RRRp JA3RRRp jl11RRRp jl12RRRp jl13RRRp

jl21RRRp jl22RRRp jl23RRRp JC1RRRp JC2RRRp JC3RRRp ]

JsRRRp = [ JA1RRRp JA2RRRp JA3RRRp jl11RRRp jl12RRRp jl13RRRp

jl21RRRp jl22RRRp jl23RRRp JC1RRRp JC2RRRp JC3RRRp ]

JsPRRp = [ JA1PRRp JA2PRRp JA3PRRp JB1PRRp JB2PRRp JB3PRRp

jl1PRRp jl2PRRp jl3PRRp JC1PRRp JC2PRRp JC3PRRp ]
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