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Abstract

This paper deals with the sensitivity comparison of three Degree-of-Freedom planar parallel
manipulators. First, a methodology is described to obtain the sensitivity coefficients of the
pose of the moving platform of the manipulators to variations in their geometric parameters
and actuated variables. Their sensitivity coefficients are derived and expressed algebraically
for a matter of analysis simplicity. Moreover, two aggregate sensitivity indices are determined,
the first one is related to the orientation of the moving platform of the manipulator and the
other one to its position. Then, a methodology is proposed to compare PPMs with regard to
their workspace size and sensitivity. Finally, 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs

are compared in order to highlight the contributions of the paper.

1 Introduction

During the early design process of engineering systems, the analysis of the performance sensi-
tivity to uncertainties is an important task. High sensitivity to parameters that are inherently
noisy can lead to poor, or unexpected performance. In robotics, the variations in the geometric
parameters of Parallel Kinematics Machines (PKMs) can be either compensated or amplified.
For that reason, it is important to analyze the sensitivity of their performance to variations
in its geometric parameters. Accordingly, it turns to be very useful to develop a methodology
for the comparison of the sensitivity of PKMs to uncertainties at their conceptual design stage.
Ideally, having this information at the conceptual design stage can help robot designers better
choose the architecture of the manipulator under design. To this end, some indices such as the
dexterity and the manipulability have been used to evaluate the sensitivity of robots perfor-

mance to variations in their actuated joints [1, 2, 3] 4, 5]. However, they are not suitable for
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the evaluation of this sensitivity to other types of uncertainty such as variations in geometric

parameters.

Two indices are proposed in [6] to evaluate the sensitivity of the end-effector pose (position +
orientation) of the Orthoglide 3-axis, a three Degree-of-Freedom (DOF) translational PKM, to
variations in its design parameters. In the same vein, four 3-RPR planar parallel manipulators
(PPMs) are compared in [7] based on the sensitivity of their performance to variations in their
geometric parameters. However, as far as the authors know, there is no work in the literature
related to such a comparison of manipulators with different architectures. Therefore, this paper
introduces a methodology to compare different types of PPMs based on the sensitivity of their
moving platform pose to variations in their geometric parameters. Only manipulators with the
same architecture were compared in [7] and [9], whereas manipulators of different architectures
are compared in this paper, namely, the 3-RPR, the 3-RRR and the 3-PRR PPMs. The archi-
tectures of the manipulators under study are first described. Then, the sensitivity coefficients
of the pose of their moving platform to variations in their geometric parameters and actuated
variables are derived and expressed algebraically. Moreover, two aggregate sensitivity indices
are determined, one is related to the orientation of the moving platform of the manipulator
and another one is related to its position. Then, a methodology is proposed to compare PPMs
with regard to their workspace size and sensitivity. Finally, 3-RPR, 3-RPR, 3-RRR, 3-RRR and

3-PRR PPMs are compared as illustrative examples.

2 Manipulators Architecture

Here and throughout this paper, R, P, R and P denote revolute, prismatic, actuated revolute
and actuated prismatic joints, respectively. Figures [Il(a)-(c) illustrate the architectures of the
manipulators under study, namely the 3-RPR, the 3-RRR and the the 3-PRR PPMs, respectively.
They are composed of a base and a moving platform (MP) connected by means of three legs.
Points A;, Ay and As, (Cy, Cy and Cj, respectively) lie at the corners of a triangle, point O
(point P, resp.) being its circumcenter. Each leg is composed of three joints in sequence, one of
them being actuated. For example, each leg of the 3-RRR PPM is composed of three revolute

joints mounted in sequence, the first one being actuated.

F» and F,, are the base and the moving platform frames of the manipulator. In the scope of
this paper, both F, and F, are supposed to be orthogonal. F; is defined with the orthogonal
dihedron (O_)x, dy), point O is its center and Oz is parallel to segment A;A,. Likewise, F, is
defined with the orthogonal dihedron (PTX, P_Y), point P is its center and PX is parallel to
segment C7C5.

The MP pose, i.e., its position and its orientation, is determined by means of the Cartesian
coordinates vector p = [p,, py]T of operation point P expressed in F, and angle ¢, that is the

rotation angle between frames F, and F,.



(c) 3-PRR PPM

Figure 1: PPMs under study

3 Sensitivity Indices

In this section, we first introduce a methodology to derive the sensitivity coefficients of the
MP pose of the PPMs to variations in the actuated joints, in the leg lengths as well as in the
coordinates of points A; and C;, i = 1,2, 3, the latter being either Polar or Cartesian. In [7]
and [9], this methodology was illustrated with a 3-RPR and a 3-RRR PPMs, respectively. Here,
it is illustrated with a 3-PRR PPM. From the foregoing sensitivity coefficients, we propose two
aggregate sensitivity indices, one related to the position of the MP and another one related to

its orientation.

3.1 Sensitivity Coefficients

We focus on the 3-PRR PPM to illustrate the methodology used to derive the sensitivity coeffi-
cients of any PPM. From the closed-loop kinematic chains O— A;,— B;—C;—P—-0,i1=1,...,3



depicted in Fig. [{l(c), the position vector p of point P can be expressed in F, as follows,

p= |:];m:|:az‘+(bi_ai)+(ci_bi)+(p—ci), 1=1,...,3 (1)

a;, b; and c; being the position vectors of points A;, B; and C; expressed in F,. Equation (77)

can also be written as,

p = ah; + piw; + liv; + cik; (2)
with
b, — COS Qi u— cos b; _ | cosi k= cos (¢ + B; + )
sin oy sin 0; sin ; sin (¢ + 5; + )

where a; is the distance between points O and A;, p; is the distance between points A; and
B;, l; is the distance between points B; and Cj, ¢; is the distance between points C; and P,
h; is the unit vector OA, / HO?LXZ-HQ, w; is the unit vector A;B; / HA;BiHQ, v; is the unit vector
B:C’Z/HB:CZHQ and k; is the unit vector C’;P/HC:PHQ.

In a manner similar to [7, 8], upon differentiation of Eq.(?7), we obtain:

+¢; (06 +053;) Ek; (3)

0 -1
E:L 0] @

op and d¢ being the position and orientation errors of the MP. Likewise, da;, da;, dp;, 6l;, dc;

with matrix E defined as

and 00; denote the variations in a;, oy, p;, l;, ¢; and S;, respectively. The idle variation dv; is

eliminated by dot-multiplying Eq.(??) with /;v?, thus obtaining

Equation (??) can now be cast in vector form:

5¢ 5&1 (50[1 (Spl (5(91 (Sll
A { 5 ] = H, | day | +Hy | dag | +B | dps | +Hp | 00 | +H; | dls
p Sa Saus 5ps 505 5l
dcy 031
+H. | dc; | + Hpg | 05, (6)

dcs 033



with
my vt
A = | my vl ,B:diag{llvrful loviug l3V3Tu3} (7a)
mz  lzv]
H, = diag| ;vThy Lvihy [5vihy | (7b)
H, = diag| ha,v]Eh, bapviEhy lasviEh, | (7c)
H, = diag|l, I, I (7d)
Hy = diag[ LpvEhy bpoviEhy lypyvIEh, | (7e)
H, = diag| (vik bvike lvik ] (7f)
H; = diag| Le,vIEk leov]Eks lyeyviEk, | (78)
and

——lZCZV;TEkZ, Z:]_,,3 (8)

Let us notice that A and B are the direct and the inverse Jacobian matrices of the manipulator,
respectively. Assuming that A is non singular, i.e., the manipulator does not meet any Type II

singularity [10} 11, 12, [13], we obtain upon multiplication of Eq.(??) by A~!:

56 day day dp1 06, oly
[5p] = Jo| dag | +Ja| ay | +T | dpa | +To | 60y | + 1| Oy
Sas Sas 8ps 80, ol
ocy 05
+J. | bey | +Ts | 05, (9)
dcs 053
with
J = A'B (10a)
J., = A'H, (10b)
J, = A'H, (10c)
Jy = A 'H, (10d)
J, = AT'H, (10e)
J. = A'H. (10f)
J; = A'Hy (10g)
and

_ 1 vy U2 U3
A7l = 11
det(A) [ Wi Wy W3 ] ()



(T ljlk(Vj XVk)Tk

w;, = E(m;lyvy —myliv;)
3
det(A) = > mu;
i=1

k = ixj

j = (i+1) modulo 3; k= (i 4+ 2) modulo 3; i =1,2,3. J is the kinematic Jacobian matrix of
the manipulator whereas J,, Jo, Jg, J;, J. and J are named sensitivity Jacobian matrices of
the pose of the MP to variations in a;, «, 0;, l;, ¢; and ;, respectively. Indeed, the terms of J,
Ja, Jo, Ji, J. and Jg are the sensitivity coefficients of the position and the orientation of the
MP of the manipulator to variations in length [; and the Polar coordinates of points A;, B; and
C;. Likewise, J contains the sensitivity coefficients of the pose of the MP of the manipulator to
variations in the prismatic actuated joints. It is noteworthy that all these sensitivity coefficients

are expressed algebraically for a matter of simplicity analysis and compactness.

Let da;, and da;, (6b;, and &b, resp.) denote the position errors of points A; (points
B, resp.), 1 = 1,2, 3, along Oz and dy, namely, the variations in the Cartesian coordinates
of points A; and B;. Likewise, let dc;x and dc;y denote the position errors of the Cartesian
coordinates of points C; along PX and PY. From Fig. Mc),

0y ] [ cos o; —a;sino; da;

.. (12a)
dagy, | | sino;  aijcosqy doy;
0b;y _ 0 —p;sinb; 0p; (12b)
(Sbiy ] i 0 P; COS (9@ 592
0cix ] _ [ c?s B; —c;sin f; oc; (120)
ociy | | sin B;  ¢;cos B 00;

From Eq.(?7), we can notice that variations in the Cartesian coordinates of point B; do not
depend on variations in the actuated prismatic joints, dp;, because the influence of variations
in geometric parameters and the influence of variations in the actuated joints on the pose of
the PPM are analyzed separately. Accordingly, from Eq.(??) and Eqs.(??)-(c), we obtain the
following relation between the MP pose error and the variations in the Cartesian coordinates
of points A;, B; and C;:

[ Sa, | [ Sbiy | [ Seiyx |
daq Oby dcry
[ o¢ ] 5a2i o dbax oh dcox
= Ja +J | dps | +JB +Ji| 0l | +Je (13)
op dag, 503 Oboy 51, dcoy
daz, dbsx dcsx
das, Obsy dcsy

Ja, Jg, Jo and J; are named sensitivity Jacobian matrices of the MP pose to variations in [;



and the Cartesian coordinates of points A;, B;, and Cj, respectively.

In order to better highlight the sensitivity coefficients, let us write the 3 x 6 matrices J 4,

Jp and Jo and the 3 x 3 matrices J

Ja
Jp
Jo
J
Ji

The 3 x 2 matrices Jy4,, Jp, and J¢,

as

and J; as follows,

Ja, Ja, JAS}
Jo, J5, Js, |
Joo Je JCS}
Bde ds ]

|
|
= |
|
|

Ju i jla}

(14a)
(14b)
(14c)
(14d)
(14e)

and the three dimensional vectors j; and j;, are expressed

I o= | M) =123
. JAip -
Jp = | 2P0, i=1,2,3
. JBip -
Jo. = |99 | i=1,23
. JC’Lp -
o= ‘7.“’5], i=1,23
L .]ip
o= || =123
L Jiip
R
Ji, =
L > det(A)
jae = 0. VD 16
JAi¢ det(A) I Vi 0; Ui P; } ( ) . -
. —= .. L. 17 D
JB;¢ det(A) I Viq; VT } ( ) det(A) :
with . 1 r 1
.= s vt 18 _
o = Famy Lo vt ] 08 dey = gy
vilivTui -
Jig = - (19) . 1
det(A -
Ny v( ) Jp = Jet(A)
o _ 1 Vg 20 L
o = Jet(A) (20) o
P det(A)

0iy Pis Gi, Ti, S; and t; taking the form:

0;

T

| ll'V

o;wli
oiwiTj
awli
C_Iz‘WiTj
siwli

T
SiW; ]

T

i
T.
ll'Wi 1

To
piw; 1
T-
biw; ]
To
W, 1

T.
Tiwi.] ]

To
tiwi 1

Tor wTs
liv; u;w; i
T

u,w; j

(15a)

(15b)

(15c¢)

(15d)

(15¢)

] (21)

(22)

(23)

(24)

(25)

(26a)



pi = liV@T j (26Db)
¢ = —lvIEu;sin6; (26¢)
r; = L;vIEu;cos; (26d)
si = lvik;cosfB; — l;vi Ek;sin j3; (26e)
t; = lv]k;sinB; + ;vi Ek; cos f3; (26f)

Ja,60 IBig» Joyes Jig and Ji,¢ contain the sensitivity coefficients of the MP orientation to variations
in the Cartesian coordinates of points A;, B;, C;, in the prismatic actuated variables p; and in
length [;, respectively. Similarly, J4,p, JB,p, Jcip, Jip and ji,, contain the sensitivity coefficients
related to the MP position. It is apparent that this methodology can be applied to any PPM

to obtain their sensitivity coefficients.

Finally, the designer of such PPMs can easily identify the most influential geometric vari-
ations to their MP pose and choose the proper dimensional tolerances from their sensitivity
coefficients. Two aggregate sensitivity indices related to variations in the geometric errors of

the moving and the base platforms are introduced thereafter.

3.2 Two Aggregate Sensitivity Indices

This section aims at determining indices in order to compare distinct PPMs with regard to
the sensitivity of the pose of their moving platform to variations in their geometric parameters.
What we mean by “distinct” PPMs is that they are different in terms of architecture and size.
To this end, the relation between the MP pose and the variations in the geometric parameters

is given by:

|: 5¢ ] = JsMVM (27)
op

The 3xnjy; matrix Jg,, is named “aggregate sensitivity Jacobian matrix” of manipulator M, and

SM
nys is the number of geometric variations that are considered. Assuming that actuated joints
are not geometric parameters, n3_grpr is equal to 12 whereas n3_rrr and nz_pgrpr are equal to
18. The njs-dimensional vector v,; contains the variations in the geometric parameters. The

global sensitivity Jacobian matrices of the five PPMs under study can be expressed as follows:

SRPR

JAEPR JCEPR i| (28a
SRPR (28b

J [ )
J | Janen Jeupn | )
Jownn = | Jagen Jnmnn Jomen ICann | (28¢)
J [ )
J [ )

JARER JIIRER leRgR JCR@R} (28d

JAERR JBERR JlgRR JCERR:| (28e

SRRR

SPRR



and
VRPR = VRBR:[éaZ- oc; }T (29)
VRRR = VRERZ{dai 0ly;  Oly; 5ci]T (30)
vern = [ da; by 0L e | (31)
with
da, = {(5(111 day, Oas, dag, Odas, 5a3y} (32a)
oc;, = {501)( dciy Ocax Ocay OcCsx 5031/} (32b)
Oy = [ 6l Sl Oy | (32c)
Oy = [ 6l Olay loy | (32d)
ob; = [ 8bi, by, Obs Oby, by, Oby, | (32e)
o = [ o1 8ty ol | (32f)

The 3 x ny matrices Jg,, is composed of two blocks, js,,¢ and Js,,;, i.e.,

SM

SM

j8M¢ ] (33)

JS]Mp

The expressions of js,,» and js,,, are given in Appendix 1. The sensitivity matrices of the 3-
RPR PPM and the 3-RRR PPM are given in [7,0]. From Eq.(20) and Appendix 1, we define an

aggregate sensitivity index vy,, of the MP orientation to variations in the geometric parameters:

_ ”.]SM¢>”2 (34)

dMm Ny

Likewise, an aggregate sensitivity index v,,, of the MP position to variations in its geometric

parameters is defined as:

by = Ll )
| . ||2 denotes the Euclidean norm. The lower v,,,, the lower the aggregate sensitivity of the
orientation of the MP of the manipulators to variations in its geometric parameters. Similarly,
the lower v,,,, the lower the aggregate sensitivity of the position of the MP to variations in
the geometric parameters. As a matter of fact, vy, (1,,,, resp.) characterizes the intrinsic
sensitivity of the orientation (position, resp.) of the MP to any variation in the geometric

parameters.

Let us notice that v,,, as well as the sensitivity coefficients related to the MP position
defined in this Section and Section 3.1l are frame dependent, whereas v,,, and the sensitivity

coefficients related to the MP orientation are not.

Finally, let us notice that vg,, indices are expressed in [rad/L|, whereas v,,, indices are
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dimensionless, [L] being the unit of length.

4 Comparison Methodology

In this section, we define a methodology to compare PPMs with regard to their workspace size

and sensitivity. This methodology is broken down into six steps:
1. normalization of the geometric parameters;
2. determination of the manipulator workspace (WS) and the regular workspace (RW);
3. determination of the smallest regular workspace (RW.in);

4. evaluation of the sensitivity of the MP orientation to variations in the geometric param-

eters throughout the RW,,;,, by means of v,,, defined in Eq.(?7?);

5. evaluation of the sensitivity of the MP position to variations in the geometric parameters
throughout the RW,,;,, by means of v,,, defined in Eq.(?7);

6. comparison with the average and the maximum sensitivities of the manipulator through-
out its RWin.

The radii of the circumcircles of the base and the moving platforms of the manipulators are
normalized as explained in Section ?7. The dimensions of the legs and the passive and actu-
ated joints are determined in such a way that the manipulators under study have equivalent
workspaces. The RW of the manipulators are obtained by means of an optimization problem
introduced in Section ??. Finally, the smallest one is taken (RW,,;,), and the sensitivity is
evaluated thoughout RW,,.;,.

4.1 Geometric Parameters Normalization

Let Ry and R, be the radii of the base and moving platforms of the PPM. In order to come
up with finite values, R; and R, are normalized as in [I4] [I5, [I6]. For that matter, let N; be

a normalizing factor:

Ny =(Ri1+ Ry)/2 (36)
and
Tm = Rn/Ny, m=1,2 (37)
Therefore,
T + To = 2 (38)

From eq.(??), we can notice that:

r €1[0,2], rs €10,2] (39)
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Moreover, the circumcircle radii of the base and moving platforms, i.e., r; and ry, are similar for
the manipulators under study. All PPMs are symmetrical, i.e., the base and moving platforms

are equilateral. Consequently, we defined ratio r;/ry and the other geometric parameters as

follows :
1
ro/T1 = A (40a)
a;y = a2:a3:7’1:§ <40b)
1

ciT = 02203:7’2:§ (40(3)

{an, 0,05} = {—51/6, —7/6, 7/2} (40d)

{/817/827/83} = {—57'('/6, —7T/6, 7T/2} (406)

As the former two-dimensional infinite space corresponding to geometric parameters R; and
Ry is reduced to a one-dimensional finite space defined with Eqgs.(??) and (7?), the workspace
analysis of the PPM under study is easier. Moreover, «; and 3;, i = 1,2, 3, are given in [rad]
and r; and ry are given in [m]. It is apparent that the base and the moving platforms are
equilateral. For the 3-RRR PPMs,

lh = lip=lhs=lyg =ln=1ls=1 (41a)
—ry + (/722 4+ 2(112 — 1ry?
l _ 2 2 2 (1 2) (41b)

[ is obtained in such a way that [; and ly;, ¢ = 1,2, 3, are identical and to have the same
workspace size for the 3-RRR and the 3-RRR PPMs [I7]. Moreover, we can determine an
isotropic configuration for each 3-RRR. In an isotropic configuration, the sensitivity of a manip-
ulator in both velocity and force or torque errors is a minimum, and the manipulator can be
controlled equally well in all directions. The concept of kinematic isotropy has been used as a

criterion in the design of planar manipulators [I8]. The actuated joints limits are:

0 < pirpr <2l (42&)
0 < pz‘pRR<2l (42b)

For the 3-PRR PPM,
Lho=1ly=15=1 (43)

With the geometric parameters normalization the PPMs under study have an equivalent size.
Finally, each PPM has an isotropic configuration. The sensitivity analysis is conducted in the
vicinity of the isotropic configuration. We define an isotropic pose for every PPM, the position
is the same, i.e., p = [0, 0] but the orientation is different. The orientation ¢;s,5s corresponding

to an isotropic configuration of manipulator M is given below:

(bisoEPR = 0 (44&)
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GisorPR = COS (E) (44b)
P 7”1
2 2 2
™ 1 (" -+ 20° — T2
150 = 44
Disota = 7 08 ( 2/, ) (o)
2 2 2
1 ("™ —+ 20° — T2 ™
150 = - - 44d
buoRpR = COS ( 2v/2lr, ) 1 (44d)
iso = — — —_— ———— 44
DisoPRR g —cos ( e 12> co (2 e l2> (44e)

4.2 Regular Workspace

Assessing the kinetostatic performance of parallel manipulators is not an easy task for 6-DOF
parallel manipulators [19]. However, it is easier for planar manipulators as their singularities
have a simple geometric interpretation [20} 21]. The RW of a manipulator is a regular-shaped
part of its workspace with good and homogeneous kinetostatic performance. The shape of the
RW is up to the designer. It may be a cube, a parallelepiped, a cylinder or another regular
shape. A reasonable choice is a shape that fits well the one of the singular surfaces. It appears
that a cylinder suits well for planar manipulators.

In the scope of this study, let the RW of the PPM be a cylinder of ¢-axis with a good
kinetostatic performance, i.e., the orientation range A¢ is defined around ¢;s,3s and the sign
of the determinant of the kinematic Jacobian matrix of the manipulator, i.e., sign(det(J)),
remains constant. Accordingly, the RW of the PPMs are obtained by solving the following

optimization problem:

minimize 1/R
over X = { R I, I, Omin gbm,m}
subject to A¢p > /6

sign(det(J)) = constant

Pb (45)

R is the radius of the cylinder and A¢ the orientation range of the MP of the manipulator
within its RW. Here, A¢ is set to m/6 arbitrarily. This optimization problem has five decision
variables, namely, x = { R I, I, Omin Omaz } I, and I, are the Cartesian coordinates of

the center of the cylinder. ¢,,;, and ¢,,., are the lower and upper bounds of A¢ and are defined

as follows:
A
(bmin = ¢isoM - TQS (46&)
A
(bma:v = (bisoM—i_Tgb (46b)

The global minimum, i.e., the optimum RW of the manipulator, of problem (2I) is obtained
by means of a Tabu search Hooke and Jeeves algorithm [22]. Finally, v,,, and v,,, are used to
evaluate the global orientation and positioning errors of the manipulator throughout the RW
of the PPMs under study.
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Figure 2: Manipulators under study is an isotropic configurations

5 Illustrative Examples: Comparison of Five PPMs

This section aims at illustrating the sensitivity indices and comparison methodology introduced
in Sections and [l respectively. For that purpose, the sensitivity of the symmetrical (base
and MP are equilateral) 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs are analyzed in detail.

Then, their sensitivity are compared.

5.1 Sensitivity Analysis

In this section, the sensitivity of 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs to variations
in their geometric parameters is evaluated within their WS for a matter of comparison based
on the aggregate sensitivity indices vy,, and v,,, defined in Eqs.(??) and (?7), respectively.
Figures 2(a)-(e) illustrate the corresponding manipulators, before geometric parameters nor-
malization, the radii of the circumscribed circles of their base and moving platforms being
different. The PPMs are represented in their isotropic configuration, the orientation ¢ of their
MP being equal to ¢;s,ns and point P being coincident with the origin of F;, i.e., p = [0, O]T.

In order to have an idea of the aggregate sensitivity of the MP pose of the manipulator to
variations in its geometric parameters, Figs. B(a) to [[(b) illustrate the isocontours of vy,, and
Vp,, for a given orientation range A¢ centered at ¢;sons of the MP throughout the WS of the
3-RPR; 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs, respectively. We can notice that the closer P
to the geometric center of WS, the larger the aggregate sensitivity of the MP pose to variations
in the geometric parameters. It is apparent that the orientation and the position of the MP of
the 3-RPR is the most sensitive to variations in geometric parameters.

It appears that the two aggregate sensitivity indices can be used as amplification factors of

any geometric parameter error of the PPMs.
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Figure 3: Sensitivity isocontours of the 3-RPR manipulator
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Figure 4: Sensitivity isocontours of the 3-RPR manipulator
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Figure 5: Sensitivity isocontours of the 3-RRR manipulator
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Figure 6: Sensitivity isocontours of the 3-RRR manipulator
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Figure 7: Sensitivity isocontours of the 3-PRR manipulator

5.2 Comparative study

In order to highlight the comparison methodology proposed in Section ] we used the sensitivity
analysis illustrated in Section ??. Whether they are globally more or less sensitive to geometric
errors than their PPMs counterparts is a question of interest for the designer. In order to
compare the sensitivity of the foregoing manipulators, we first define their Regular Workspace
(RW). Then, the sensitivity of the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs can be
evaluated and compared throughout the smallest RW. Their radii are illustrated in Figs. Bl(a)

to [(b) in red circle dashed and are given in Table ?? and compared. We can notice that the

Table 1: Classification of the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs w.r.t their RW

size

3-RPR 3-RPR 3-RRR 3-RRR 3-PRR
RW | 0387 0177 0272  0.272  0.206

3-RPR PPMs have the largest RW, whereas the 3-RPR have the smallest RW. Therefore, we use
the 3-RPR RW, called RW,,;,, to evaluate the average and the maximum sensitivities of each
PPM under study.
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Finally, Table 77 gives the sensitivity results of 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR PPMs
with regard to their average and maximum sensitivity of the orientation and the position of
their MP to variations in their geometric parameters, throughout RW,,,;,,. The results are quite
similar and good, because the sensitivity analysis is evaluated in their workspace center (RW,,;)
and around their isotropic orientation (¢;s,ns). In addition, the two aggregate sensitivity indices
can be considered as mean amplification factors of any geometric parameter error of the PPMs.
Hence, with these results, there is no error amplification. However, these results are illustrated
in Fig. 8 and we can notice that the 3-RPR manipulator is globally the least interesting, i.e., it
has the least robust design. Finally, the position of point P on the moving platform affects the
shape of the sensitivity isocontours and the global sensitivity indices v, and v,, but does not

change the results of the previous comparison.

Table 2: Mean and maximum global sensitivity indices v4 and v,

3RPR 3-RPR 3-RRR 3-RRR 3-PRR
Voo | 04487 0.3866 0.3211 0.3172 0.3321
Vo,.. | 0.5664 0.3969 0.3377 0.3337 0.3662
Vomewn | 01626 0.1372  0.1138  0.1134  0.1238
Vproo | 0.1881 0.1423 0.1244 0.1242 0.13683

6 Conclusions

This paper dealt with the sensitivity comparison of five planar parallel manipulators, namely,
the 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR planar parallel manipulators. First, we have intro-
duced a methodology to obtain the sensitivity coefficients of the orientation and the position

of the moving platform of the planar parallel manipulators to variations in their geometric
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parameters and actuated variables. Their sensitivity coefficients were derived and expressed
algebraically. Moreover, two aggregate sensitivity indices were determined for each manipula-
tor under study, one related to the orientation of the moving platforms of the manipulator and
another one related to their position. Then, a methodology was proposed to compare planar
parallel manipulators with regard to their workspace size and sensitivity. Finally, the sensitivity
of five planar parallel manipulators, 3-RPR, 3-RPR, 3-RRR, 3-RRR and 3-PRR were compared as
illustrative examples. The sensitivity indices vg4,, and v,,, introduced in the paper should help
the designer of planar parallel manipulators at the conceptual design stage. Joint clearances
and flexibilities also affect the positioning accuracy. The sensitivity to joint clearances and
flexibilities in the revolute joints can be taken into account in the definition of the variations in
the positions of the revolute joint centers. Prismatic joint clearances and link flexibilities will

be studied in future work, considering also spatial manipulators.
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Appendices

APPENDIX 1 : Sensitivity matrices for the manipulators under study

Jsrpro
Jsrpro
Jsrrro
JsrrRO
Jsprro
SRPRP
SRPRP
SRRRP

SRRRP

SPRRP

[ jAlEPR¢ jAngbe jASEPR¢ jCIEPRd) jngPbe jCSEPR¢ ]

[ jAlebe jA2R3R¢ jA3R£R¢ jClR5R¢> jCzR3R¢ jCSR£R¢ ]

[ jA15RR¢> jAQERR¢ jASﬁRRd’ jlllﬁRRd’ jllQERRd) jll3§RR¢>
jl21§RR¢ leQﬁRR(b jl23ERR¢ jClERR¢ jC2§RR¢ jC3ERR¢ ]

[ jAlRER¢ jA2R§R¢ jA3RER¢ j111R§R¢ j112R§R¢ jllsRﬁR(b
jlmRER(b j122R§R¢ j123R§R¢ jClRER¢ jC2R§R¢ jC3RER¢ ]

[ jA1gRR¢ jAzgRR¢ jAngbe jBlBRR¢ jBQBRR¢ stgRR¢>
jl1gRR¢ jlzgRR¢ jlngR(b jClBRR¢ jCQgRR¢> stgRR¢> ]

[ JAlEPRP JAQEPRP JASEPRP JClEPRp JCQEPRP JCSEPRP ]
[ JA1R£RP JAQRERP JASRERP JCleRp JCQRERP JCSRERP ]
[ JAIERRP ']AQERRP JASERRP jlllERRP jl12§RRP jl13§RRP
leIERRP jl22§RRp jl23§RRp JCIERRP JC2§RRP JCSERRP ]

[ JAIRERP ']AQRERP JA3R§RP jlllRﬁRP jllQRERp jl13RERP
jlleng leQRERp leSRERP JCIRERP JCQRERP JCSRERP ]

[ JA1£RRP JAQERRP JASBRRP JBlgRRP JBQERRP JB35RRP

Juprrp Jloprrp Jlsprrp JClgRRp JCQERRP JC35RRP ]
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