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ABSTRACT: This paper deals with the sensitivity analysis of

3-RPR planar parallel manipulators. First, the manipulators

under study as well as their degeneracy conditions are presented.

Then, an optimization problem is formulated in order to obtain

their maximal regular dexterous workspace. Moreover, the

sensitivity coefficients of the pose of the manipulator moving

platform to variations in the geometric parameters and in the

actuated variables are expressed algebraically. Two aggregate

sensitivity indices are determined, one related to the orientation

of the manipulator moving platform and another one related

to its position. Then, we compare two non-degenerate and

two degenerate 3-RPR planar parallel manipulators with re-

gard to their dexterity, workspace size and sensitivity. Finally,

two actuating modes are compared with regard to their sensitivity.

KEYWORDS: Sensitivity analysis, degenerate manipulators, reg-

ular dextrous workspace, transmission angle.

1 Introduction

Variations in the geometric parameters of PKMs can be ei-

ther compensated or amplified. For that reason, it is important

to analyze the sensitivity of the mechanism performance to vari-

ations in its geometric parameters. For instance, Wang et al. [1]

studied the effect of manufacturing tolerances on the accuracy of

a Stewart platform. Kim et al. [2] used a forward error bound

analysis to find the error bound of the end-effector of a Stewart

platform when the error bounds of the joints are given, and an

inverse error bound analysis to determine those of the joints for

the given error bound of the end-effector. Kim and Tsai [3] stud-

ied the effect of misalignment of linear actuators of a 3-Degree of

Freedom (DOF) translational parallel manipulator on the motion

of its moving platform. Caro et al. [4] developed a tolerance syn-

thesis method for mechanisms based on a robust design approach.

Cardou et al. [5] proposed some kinematic-sensitivity indices for

dimensionally nonhomogeneous jacobian matrices. Caro et al. [6]

proposed two indices to evaluate the sensitivity of the end-effector

pose (position + orientation) of Orthoglide 3-axis, a 3-DOF trans-

lational PKM, to variations in its design parameters. Besides, they

noticed that the better the dexterity, the higher the accuracy of the

manipulator. However, Yu et al. [7] claimed that the accuracy

of a 3-DOF Planar Parallel Manipulator (PPM) is not necessar-

ily related to its dexterity. Meng et al. [8] proposed a method

to analyze the accuracy of parallel manipulators with joint clear-

ances and ended up with a standard convex optimization problem

to evaluate the maximal pose error in a prescribed workspace.

Some architectures of planar parallel manipulators are com-

pared with regard to their sensitivity to geometric uncertainties

in [9].

This paper deals with the comparison of the sensitivity of two

degenerate and two non-degenerate 3-RPR PPMs. Likewise, the

sensitivity of two actuating modes of the 3-RPR PPM, namely

the 3-RPR PPM and the 3-RPR PPM, is analyzed. First, the

degeneracy conditions of 3-RPR manipulators and the manipula-

tors under study are presented. Then, the formulation of an op-

timization problem is introduced to obtain the regular dexterous

workspace of those manipulators. Finally, a methodology is intro-

duced to analyze and compare the sensitivity of the pose of their

moving platforms to variations in their geometric parameters.



2 Manipulator Architecture

Here and throughout this paper, R, P and P denote revolute,

prismatic and actuated prismatic joints, respectively. Figure. 1

illustrates the architecture of the manipulator under study. It is

composed of a base and a moving platform (MP) connected with

three legs. Points A1, A2 and A3, (C1, C2 and C3, respectively) lie

at the corners of a triangle, of which point O (point P, resp.) is

the circumcenter. Each leg is composed of a R, a P and a R joints

in sequence. The three P joints are actuated. Accordingly, the

manipulator is named 3-RPR manipulator.

Fb and Fp are the base and the moving platform frames of

the manipulator. In the scope of this paper, Fb and Fp are sup-

posed to be orthogonal. Fb is defined with the orthogonal dihe-

dron ( ~Ox, ~Oy), point O being its center and ~Ox parallel to seg-

ment A1A2. Likewise, Fp is defined with the orthogonal dihedron

( ~PX , ~PY ), point C being its center and ~PX parallel to segment

C1C2.

The pose of the manipulator MP, i.e., its position and its ori-

entation, is determined by means of the Cartesian coordinates vec-

tor p = [px, py]
T

of operation point P expressed in frame Fb and

angle φ, that is the angle between frames Fb and Fp. Finally, the

passive joints do not have any stop.
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Figure 1. 3-RPR manipulator

3 Degenerate and Non-Degenerate Manipulators

In this section, we focus on the sensitivity analysis of two de-

generate and two non-degenerate 3-RPR manipulators. First, the

degeneracy conditions of such manipulators are given. Then, the

architectures of the four manipulators under study are illustrated.

3.1 Degeneracy condition

The forward kinematic problem of a parallel manipulator of-

ten leads to complex equations and non analytic solutions, even

when considering 3-DOF PPMs [10]. For those manipulators,

Hunt showed that the forward kinematics admits at most six so-

lutions [11] and some authors proved that their forward kinemat-

ics can be reduced to the solution of a sixth-degree characteristic

polynomial [12, 13].

As shown in [14], [15] and [16], a 3-RPR PPM is said to

be degenerate when the degree of its characteristic polynomial

becomes smaller than six. Six types of degenerate 3-RPR PPMs

exists in the literature, namely,

1. 3-RPR PPMs with two coincident joints;

2. 3-RPR PPMs with similar aligned base and moving plat-

forms;

3. 3-RPR PPMs with nonsimilar aligned base and moving plat-

forms;

4. 3-RPR PPMs with similar triangular base and moving plat-

forms;

5. 3-RPR PPMs with the three actuated prismatic joints satisfy-

ing a certain relationship;

6. 3-RPR PPMs with congruent base and moving platforms, of

which the moving platform is rotated of 180 deg about one

of its side.

In the scope of this paper, we focus on the sensitivity analysis

of the fourth and the sixth cases. For the fourth case, the forward

kinematics is reduced to the solution of two quadratics in cascade.

For the sixth case, the forward kinematics degenerates over the

whole joint space and is reduced to the solution of a third-degree

polynomial and a quadratic in sequence.

3.2 Manipulators under study

Figures 2(a)-(d) illustrate the four manipulators under study,

named M1, M2, M3 and M4, respectively. M1 and M2 are non-

degenerate manipulators while M3 and M4 are degenerate manip-

ulators. From Fig. 2(a), the base and moving platforms of M1

are equilateral. From Fig. 2(b), the base and moving platforms of

M2 are identical but in a different geometric configuration for an

orientation φ = 0. M3 and M4 illustrate the fourth and the sixth

degeneracy cases presented in Sec. 3.1. It is noteworthy that the

base and moving platforms of M2, M3 and M4 have the same cir-

cumscribed circle, its radius being equal to
√

2/2. As far as M1 is

concerned, the circumscribed circle of its moving platform is two

times smaller than the one of the base platform.

To compare the sensitivity of these PPMs, the geometric pa-

rameters have to be normalized. Therefore, let R1 and R2 be

the radii of the base and moving platforms of the PPM. In or-

der to come up with finite values, R1 and R2 are normalized as
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Figure 2. The four 3-RPR manipulators under study with φ = 0 and

p = [1,1.5]T : (a)-(b) non-degenerate manipulators, (c)-(d) degenerate

manipulators

in [17–19]. For that matter, let N f be a normalizing factor:

N f = (R1 +R2)/2 (1)

and

rm = Rm/N f , m = 1,2 (2)

Therefore,

r1 + r2 = 2 (3)

From Eqs.(2) and (3), we can notice that:

r1 ∈ [0,2] , r2 ∈ [0,2] (4)

As the former two-dimensional infinite space corresponding to

geometric parameters R1 and R2 is reduced to a one-dimensional

finite space defined with Eq.(3), the workspace analysis of the

3-RPR manipulator under study turns out to be easier.

4 Regular Dexterous Workspace

In order to compare the sensitivity of the foregoing manipu-

lators, we first define their Regular Dexterous Workspace (RDW).

Then, the sensitivity of M1, M2, M3 and M4 can be evaluated

throughout their RDW and compared. The RDW of a manipulator

is a regular-shaped part of its workspace with good and homoge-

neous kinetostatic performance. The shape of the RDW is up to

the designer. It may be a cube, a parallelepiped, a cylinder or

another regular shape. A good shape fits to the singular surfaces.

The kinetostatic performance of a manipulator is usually

characterized by the conditioning number of its kinematic Jaco-

bian matrix [20, 21]. From [22, 23], the transmission angle of a

3-DOF PPM can be also used to evaluate its kinetostatic perfor-

mance. Here, we prefer to use the transmission angle as a kineto-

static performance index as it does not require the normalization

of the kinematic Jacobian matrix. On the contrary, the kinematic

Jacobian matrix of 3-DOF PPM has to be normalized by means

of a normalizing length in order its conditioning number to make

sense [24].

4.1 Transmission angle

The transmission angle ψi associated with the ith leg is de-

fined as the angle between force vector Fci and translational ve-

locity vector Vci at point Ci as illustrated in Fig. 3.
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Figure 3. Transmission angle of the 3-RPR PPMs

The direction of force Fci is the direction of leg AiCi, namely,

γi = arctan

(

yCi
− yAi

xCi
− xAi

)

, i = 1,2,3 (5)

The instantaneous centre of rotation depends on the leg under



study. For example, instantaneous centre of rotation I1 associated

with leg 1 is the intersecting point of forces Fc2 anf Fc3.

Table 1 gives the Cartesian coordinates of instantaneous cen-

tre of rotation Ii associated with the ith leg of the 3-RPR PPM,

expressed in frame Fb, with bi = yCi
− xCi

tanγi, i = 1,2,3.

The direction of Vci is defined as,

βi = arctan

(

yCi
− yIi

xCi
− xIi

)

+
π

2
, i = 1,2,3 (6)

Accordingly,

ψi = |γi −βi| , i = 1,2,3 (7)

Finally, the transmission angle ψ of the overall mechanism is

defined as,

ψ = max(ψi) , i = 1,2,3 (8)

and the smaller ψ, the better the force transmission of the mecha-

nism.

4.2 RDW determination

In the scope of this study, the RDW of the PPM is supposed

to be a cylinder of φ-axis with good kinetostatic performance, i.e.,

the transmission angle ψ is smaller than 75◦ throughout the cylin-

der. In order to obtain such a RDW, we can solve the following

optimization problem:

Pb
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∣

∣

∣

min
x

1/R

s.t. ∆φ ≥ 30◦

ψ ≤ 75◦

R being the radius of the cylinder and ∆φ the orientation range

of the MP of the manipulator within its RDW. Here, ∆φ is equal

to 30◦ arbitrarily. This optimization problem has five decision

variables:

x = [R Ix Iy φmin φmax]

Ix and Iy being the Cartesian coordinates of the center of the cylin-

der, φmin and φmax being the lower and upper bounds of φ angle

(∆φ = φmax −φmin).

This optimization problem is solved by means of a Tabu

search Hooke and Jeeves algorithm [25]. As a result, the RDW of

the manipulator is completely defined by means of the decision

variables corresponding to the global minimum1.

(a) M1 (b) M2

(c) M3 (d) M4

Figure 4. Maximal Regular Dexterous Workspace

Table 2. RDW radius of M1, M2, M3 and M4

R1 R2 R3 R4

1.21 0.62 0.75 2.69

Figures 4-(d) illustrate the workspace, the singularities and

the maximal RDW of M1, M2, M3 and M4. Their radii are given

in Table 2. We can notice that M4 has the biggest RDW and M2

the smallest one.

5 Sensitivity Analysis

In this section, the sensitivity of M1, M2, M3 and M4 is eval-

uated throughout their RDW for a matter of comparison. The

1The solution obtained with a Tabu search Hooke and Jeeves algorithm will

not be necessarily the global optimum. However, it will provide a solution that is

close to the global one and satisfactory in the framework of this research work.



Table 1. Cartesian coordinates of instantaneous centres of rotation

I1 I2 I3

xIi

b3 − b2

tan(γ2)− tan(γ3)

b1 − b3

tan(γ3)− tan(γ1)

b2 − b1

tan(γ1)− tan(γ2)

yIi

b3 tan(γ2)− b2 tan(γ3)

tan(γ2)− tan(γ3)

b1 tan(γ3)− b3 tan(γ1)

tan(γ3)− tan(γ1)

b2 tan(γ1)− b1 tan(γ2)

tan(γ1)− tan(γ2)

sensitivity coefficients, and, two aggregate sensitivity indices are

determined to analyze the sensitivity of the pose of the moving

platform of a 3-RPR manipulator to variations in its geometric

parameters. Then, the contours of these indices are plotted in M1,

M2, M3 and M4 RDWs and the results are analyzed.

5.1 Sensitivity coefficients

From the closed-loop kinematic chains O−Ai −Ci −P−O,

i = 1, . . . ,3 depicted in Fig. 1, the position vector p of point P can

be expressed in Fb as follows,

p =

[

px

py

]

= ai +(ci − ai)+ (p− ci) , i = 1, . . . ,3 (9)

ai and ci being the position vectors of points Ai and Ci expressed

in Fb. Equation (9) can also be written as,

p = aihi +ρiui + ciki (10)

with

hi =

[

cosαi

sin αi

]

, ui =

[

cosθi

sinθi

]

, ki =

[

cos(φ+βi +π)

sin(φ+βi +π)

]

where ai is the distance between points O and Ai, ρi is the dis-

tance between points Ai and Ci, ci is the distance between points

Ci and P, hi is the unit vector ~OAi/‖ ~OAi‖2, ui is the unit vector

~AiCi/‖ ~AiCi‖2 and ki is the unit vector ~CiP/‖ ~CiP‖2.

Upon differentiation of Eq.(10), we obtain:

δp = δai hi + ai δαi Ehi + δρi ui +ρi δθi Eui

+δci ki + ci (δφ+ δβi) Eki (11)

with matrix E defined as

E =

[

0 −1

1 0

]

(12)

δp and δφ being the position and orientation errors of the MP.

Likewise, δai, δαi, δρi, δci and δβi denote the variations in ai, αi,

ρi, ci and βi, respectively.

The idle variation δθi is eliminated by dot-multiplying

Eq.(11) by ρiu
T
i , thus obtaining

ρi uT
i δp = ρi δai uT

i hi +ρi ai δαi uT
i Ehi +ρi δρi

+ρi δci uT
i ki +ρi ci (δφ+ δβi)uT

i Eki (13)

Equation (13) can now be cast in vector form, namely,

A

[

δφ

δp

]

= Ha







δa1

δa2

δa3






+Hα







δα1

δα2

δα3






+B







δρ1

δρ2

δρ3






+

Hc







δc1

δc2

δc3






+Hβ







δβ1

δβ2

δβ3






(14)

with

A =







m1 ρ1uT
1

m2 ρ2uT
2

m3 ρ3uT
3






, B =







ρ1 0 0

0 ρ2 0

0 0 ρ3






(15a)

Ha = diag
[

ρ1uT
1 h1 ρ2uT

2 h2 ρ3uT
3 h3

]

(15b)

Hα = diag
[

ρ1a1uT
1 Eh1 ρ2a2uT

2 Eh2 ρ3a3uT
3 Eh3

]

(15c)

Hc = diag
[

ρ1uT
1 k1 ρ2uT

2 k2 ρ3uT
3 k3

]

(15d)

Hβ = diag
[

ρ1c1uT
1 Ek1 ρ2c2uT

2 Ek2 ρ3c3uT
3 Ek3

]

(15e)

and

mi =−ρi ci uT
i Eki , i = 1, . . . ,3 (16)

Let us notice that A and B are the direct and the inverse Jaco-

bian matrices of the manipulator, respectively. Assuming that A

is non singular, i.e., the manipulator does not meet any Type II sin-



gularity [26], we obtain upon multiplication of Eq.(14) by A−1:

[

δφ

δp

]

= Ja







δa1

δa2

δa3






+ Jα







δα1

δα2

δα3






+ J







δρ1

δρ2

δρ3






+

Jc







δc1

δc2

δc3






+ Jβ







δβ1

δβ2

δβ3






(17)

with

J = A−1B (18a)

Ja = A−1Ha (18b)

Jα = A−1Hα (18c)

Jc = A−1Hc (18d)

Jβ = A−1Hβ (18e)

and

A−1 =
1

det(A)

[

v1 v2 v3

v1 v2 v3

]

(19a)

vi = ρ jρk(u j ×uk)
T k (19b)

vi = E(m jρkuk −mkρ ju j) (19c)

det(A) =
3

∑
i=1

mivi (19d)

k = i× j (19e)

j = (i+ 1) modulo 3; k = (i+ 2) modulo 3; i = 1,2,3. J is the

kinematic Jacobian matrix of the manipulator whereas Ja, Jα,

Jc and Jβ are named sensitivity Jacobian matrices of the pose

of the MP to variations in ai, αi, ci and βi, respectively. Indeed,

the terms of Ja, Jα, Jc and Jβ are the sensitivity coefficients of

the position and the orientation of the moving platform of the

manipulator to variations in the Polar coordinates of points Ai and

Ci. Likewise, J contains the sensitivity coefficients of the pose of

the MP of the manipulator to variations in the prismatic actuated

joints. It is noteworthy that all these sensitivity coefficients are

expressed algebraically.

Let δaix and δaiy denote the position errors of points Ai,

i = 1,2,3, along ~Ox and ~Oy, namely, the variations in the Carte-

sian coordinates of points Ai. Likewise, let δciX and δciY denote

the position errors of points Ci along ~PX and ~PY , namely, the

variations in the Cartesian coordinates of points Ci.

From Fig. 1,

[

δaix

δaiy

]

=

[

cosαi −ai sinαi

sinαi ai cosαi

][

δai

δαi

]

(20a)

[

δciX

δciY

]

=

[

cosβi −ci sinβi

sinβi ci cosβi

][

δci

δβi

]

(20b)

Accordingly, from Eq.(17) and Eqs.(20a)-(b), we obtain the fol-

lowing relation between the pose error of the MP and variations

in the Cartesian coordinates of points Ai and Ci:

[

δφ

δp

]

= JA























δa1x

δa1y

δa2x

δa2y

δa3x

δa3y























+ J







δρ1

δρ2

δρ3






+ JC























δc1X

δc1Y

δc2X

δc2Y

δc3X

δc3Y























(21)

JA and JC being named sensitivity Jacobian matrices of the pose

of the MP to variations in the Cartesian coordinates of points Ai

and Ci, respectively. Indeed, the terms of JA and JC are the sensi-

tivity coefficients of the pose of the MP to variations in the Carte-

sian coordinates of points Ai and Ci.

In order to better highlight the sensitivity coefficients, let us

write the 3× 6 matrices JA and JC and the 3× 3 matrix J as fol-

lows:

JA =
[

JA1
JA2

JA3

]

(22a)

JC =
[

JC1
JC2

JC3

]

(22b)

J =
[

j1 j2 j3

]

(22c)

the 3× 2 matrices JAi
and JCi

and the three dimensional vectors

ji being expressed as:

JAi
=

[

jAiφ

JAi p

]

, i = 1,2,3 (23a)

JCi
=

[

jCiφ

JCi p

]

, i = 1,2,3 (23b)

ji =

[

jiφ

jip

]

, i = 1,2,3 (23c)



with

jAiφ =
1

det(A)

[

vi qi vi ri

]

(24a)

jCiφ =
1

det(A)

[

vi si vi ti

]

(24b)

jiφ =
ρi vi

det(A)
(24c)

JAi p =
1

det(A)

[

qiv
T
i i riv

T
i i

qiv
T
i j riv

T
i j

]

(24d)

JCi p =
1

det(A)

[

siv
T
i i tiv

T
i i

siv
T
i j tiv

T
i j

]

(24e)

jip =
1

det(A)

[

ρiv
T
i i

ρiv
T
i j

]

(24f)

qi, ri, si and ti taking the form:

qi = ρiu
T
i i (25a)

ri = ρiu
T
i j (25b)

si = ρiu
T
i ki cosβi −ρiu

T
i Eki sinβi (25c)

ti = ρiu
T
i ki sinβi +ρiu

T
i Eki cosβi (25d)

jAiφ
, jCiφ

and jiφ contain the sensitivity coefficients of the orien-

tation of the MP of the manipulator to variations in the Cartesian

coordinates of points Ai, Ci and prismatic actuated variables, re-

spectively. Similarly, JAi p, JCi p and jip contain the sensitivity co-

efficients related to the position of the MP.

Accordingly, the designer of such a planar parallel manipula-

tor can easily identify the most influential geometric variations to

the pose of its MP and synthesize proper dimensional tolerances

from the previous sensitivity coefficients. Two aggregate sensitiv-

ity indices related to the geometric errors of the moving and base

platforms are introduced thereafter.

5.2 Global sensitivity indices

The pose errors of the manipulator MP depend on variations

in the geometric parameters as well as on the manipulator configu-

ration. In order to analyze the influence of the manipulator config-

uration on those errors, let us first formulate some indices in order

to assess the aggregate sensitivity of the MP pose to variations in

the geometric parameters for a given manipulator configuration.

To this end, let Eq.(21) be expressed as:

[

δφ

δp

]

= Js

[

δai δρi δci

]T

(26)

with

Js =
[

JA J JC

]

(27)

and

δai =
[

δa1x δa1y δa2x δa2y δa3x δa3y

]

(28a)

δρi =
[

δρ1 δρ2 δρ3

]

(28b)

δci =
[

δc1X δc1Y δc2X δc2Y δc3X δc3Y

]

(28c)

The 3× 15 matrix Js is named “sensitivity Jacobian matrix” and

can be written as follows:

Js =

[

jsφ

Jsp

]

(29)

with

jsφ =
[

jA1φ jA2φ jA3φ j1φ j2φ j3φ jC1φ jC2φ jC3φ

]

(30a)

Jsp =
[

JA1 p JA2 p JA3 p j1p j2p j3p JC1 p JC2 p JC3 p

]

(30b)

From Eq.(30a), we can define an aggregate sensitivity index

νφ of the orientation of the MP of the manipulator to variations in

its geometric parameters and prismatic actuated joints, namely,

νφ =
‖jsφ‖2

nv

(31)

nv being the number of variations that are considered. Here, nv is

equal to 15.

Likewise, from Eq.(30b), an aggregate sensitivity index νp

of the position of the MP of the manipulator to variations in its

geometric parameters and prismatic actuated joints can be defined

as follows:

νp =
‖Jsp‖2

nv

(32)

For any given manipulator configuration, the lower νφ, the

lower the overall sensitivity of the orientation of its MP to vari-

ations in the geometric parameters. Similarly, the lower νp, the



lower the overall sensitivity of the MP position to variations in

the geometric parameters. As a matter of fact, νφ (νp, resp.) char-

acterizes the intrinsic sensitivity of the MP orientation (position,

resp.) to any variation in the geometric parameters. Let us notice

that νp as well as the sensitivity coefficients related to the MP

position defined in Sections 5.1 are frame dependent, whereas νφ

and the sensitivity coefficients related to the MP orientation are

not.

In order to evaluate the sensitivity of the manipulator over its

workspace or part of it, four global sensitivity indices are defined

as follows:

νφ =

∫
W νφ dW
∫

W dW
(33a)

νφmax = max(νφ) (33b)

νp =

∫
W νp dW
∫

W dW
(33c)

νpmax = max(νp) (33d)

νφ and νp are the average values of νφ and νp over W , W being

the manipulator workspace or part of it. Likewise, νφmax and νpmax

are the maximum values of νφ and νp over W .

Finally, νφ, νφ and νφmax are expressed in [rad/L], whereas νp,

νp and νpmax are dimensionless, [L] being the unit of length.

5.3 Comparison of two non-degenerate and two de-

generate 3-RPR PPMs

In this section, the sensitivity of M1, M2, M3 and M4 is eval-

uated within their RDW for a matter of comparison based on ag-

gregate sensitivity indices νφ and νp defined in Eqs.(31) and (32)

and global sensitivity indices νφ, νφmax , νp and νpmax defined in

Eqs.(33a)-(d).

Figures 5(a)-(d) (Figures 6(a)-(d), resp.) illustrate the isocon-

tours of the maximum value of νφ (νp, resp.). for a given orien-

tation φ of the MP throughout the RDW of M1, M2, M3 and M4,

respectively.

Table 3. Values of νφ, νφmax , νp and νpmax for M1, M2, M3 and M4

M1 M2 M3 M4

νφ 0.292 0.254 0.233 0.192

νφmax 0.426 0.365 0.386 0.322

νp 0.171 0.231 0.194 0.316

νpmax 0.263 0.327 0.284 0.441

Table 3 and Fig. 7 illustrate the values of νφ, νφmax , νp and

νpmax for the four manipulators under study. It is apparent that
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Figure 5. νφ isocontours of: (a) M1, (b) M2, (c) M3 and (d) M4
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Figure 6. νp isocontours of: (a) M1, (b) M2, (c) M3 and (d) M4

M4 has the least sensitive orientation of its MP and that M1 has

the least sensitive position of its MP. On the contrary, M4 has the

most sensitive position of its MP and M1 has the most sensitive

orientation of its MP.
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6 Sensitivity Comparison of Two Actuating Modes

In this section, two actuating modes of the 3-RPR PPM,

namely the 3-RPR PPM and the 3-RPR PPM, are compared with

regard to their sensitivity to variations in geometric parameters2.

Table 4 shows the eight actuating modes of the 3-RPR PPM.

For instance, the first actuating mode corresponds to the 3-

RPR PPM, also called RPR1-RPR2-RPR3 PPM in the scope of

this paper, as the first revolute joints (located at points Ai) of its

limbs are actuated. Likewise, the eighth actuating mode corre-

sponds to the 3-RPR PPM, also called RPR1-RPR2-RPR3 PPM,

as the prismatic joints of its limbs are actuated. For the fourth ac-

tuating mode, the prismatic joint of the first limb is actuated while

the first revolute joints of the two other limbs are actuated.

Table 4. The eight actuating modes of the 3-RPR PPM

Actuating mode number active angles

1 RPR1-RPR2-RPR3 θ1, θ2, θ3

2 RPR1-RPR2-RPR3 θ1, θ2, ρ3

3 RPR1-RPR2-RPR3 θ1, ρ2, θ3

4 RPR1-RPR2-RPR3 ρ1, θ2, θ3

5 RPR1-RPR2-RPR3 θ1, ρ2, ρ3

6 RPR1-RPR2-RPR3 ρ1, ρ2, θ3

7 RPR1-RPR2-RPR3 ρ1, θ2, ρ3

8 RPR1-RPR2-RPR3 ρ1, ρ2, ρ3

Table 5. RDW radius of M1 and M5

R1 R5

1.21 1.60

2As the actuators are not of the same type for the two manipulators (revolute ac-

tuators for the first one and prismatic actuators of the second one), their variations

are not considered in order the sensitivity comparison of the two manipulators to

make sense.
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Figure 8. Two actuating modes: (a) 3-RPR manipulator, (b) 3-RPR ma-

nipulator, φ = 0 and p = [1.5,1]T

Figure 9. M5 Regular Dexterous Workspace

Let M1 and M5 denote the 3-RPR and the 3-RPR PPMs,

respectively, as shown in Figs. 8(a)-(b). The RDW of M5 is illus-

trated in Fig. 9. From Table 5, we can notice that the RDW of M5

is larger than the one of M1.

Figures 10(a)-(b) show the isocontours of the maximum

value of νφM1
and νφM5

throughout the RDW of M1 and M5. Like-

wise, Figs. 11(a)-(b) show the isocontours of the maximum value

of νpM1
and νpM5

. As a matter of fact, those isocontours corre-

spond to the maximal global positioning and orientation errors

with regard to the orientation φ of the moving platform of the ma-

nipulator.

Table 6 and Fig. 12 illustrate the values of νφ, νφmax , νp and

νpmax for the two actuating modes under study. It is apparent that

M1 is better than M5, both in terms of orientation and position-

ing errors of its moving platform due to variations in geometric

parameters.
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Figure 10. (a) M1 νφ and (b) M5 νφ isocontours

x

y

0.15
0.2 0.25 0.3

0.35

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(a)

x

y

0.2

0.25

0
.3

0.35

-1.5 -0.75 0 0.75 1.5

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

(b)

Figure 11. (a) M1 νp and (b) M5 νp isocontours

Table 6. Values of νφ, νφmax, νp and νpmax for M1 and M5

M1 M5

νφ 0.251 0.289

νφmax 0.448 0.501

νp 0.163 0.222

νpmax 0.369 0.423

νφ νφmax νp νpmax
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Figure 12. Comparison of •—•: M1 and ⋆—⋆: M5

7 Conclusions

This paper dealt with the sensitivity analysis of 3-RPR pla-

nar parallel manipulators (PPMs). First, the manipulators un-

der study as well as their degeneracy conditions were presented.

Then, an optimization problem was formulated in order to obtain

their maximal regular dexterous workspace (RDW). Accordingly,

the sensitivity of the pose of their moving platform to variations

in geometric parameters was evaluated within their RDW. Then, a

methodology was proposed to compare PPMs with regard to their

dexterity and sensitivity. Four 3-RPR PPMs were compared as

illustrative examples. Moreover, two actuating modes were com-

pared with regard to their sensitivity to geometric uncertainties.

Finally, four global sensitivity indices were introduced in order to

evaluate the sensitivity of PPMs over their Cartesian workspace.

Those indices characterize the intrinsic sensitivity of the moving

platform pose to any variation in the geometric parameters. They

are like amplification factors of errors in geometric parameters.

There values remain always lower than one for the manipulators

under study. It means that there is no amplification of errors in

geometric parameters. The proposed indices can also be used to

help the designer of PPMs select a good manipulator architecture

at the conceptual design stage.
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