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Introduction

Variations in the geometric parameters of PKMs can be either compensated or amplified. For that reason, it is important to analyze the sensitivity of the mechanism performance to variations in its geometric parameters. For instance, Wang et al. [START_REF] Wang | On the accuracy of a Stewart platform -Part I, The effect of manufacturing tolerances[END_REF] studied the effect of manufacturing tolerances on the accuracy of a Stewart platform. Kim et al. [START_REF] Kim | The Kinematic Error Bound Analysis of the Stewart Platform[END_REF] used a forward error bound analysis to find the error bound of the end-effector of a Stewart platform when the error bounds of the joints are given, and an inverse error bound analysis to determine those of the joints for the given error bound of the end-effector. Kim and Tsai [START_REF] Kim | Design optimization of a Cartesian parallel manipulator[END_REF] studied the effect of misalignment of linear actuators of a 3-Degree of Freedom (DOF) translational parallel manipulator on the motion of its moving platform. Caro et al. [START_REF] Caro | Tolerance Synthesis of Mechanisms: A Robust Design Approach[END_REF] developed a tolerance synthesis method for mechanisms based on a robust design approach. Cardou et al. [START_REF] Cardou | Kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices[END_REF] proposed some kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices. Caro et al. [START_REF] Caro | Sensitivity Analysis of the Orthoglide, A 3-DOF Translational Parallel Kinematic Machine[END_REF] proposed two indices to evaluate the sensitivity of the end-effector pose (position + orientation) of Orthoglide 3-axis, a 3-DOF translational PKM, to variations in its design parameters. Besides, they noticed that the better the dexterity, the higher the accuracy of the manipulator. However, Yu et al. [START_REF] Yu | Geometric Method for the Accuracy Analysis of a Class of 3-DOF Planar Parallel Robots[END_REF] claimed that the accuracy of a 3-DOF Planar Parallel Manipulator (PPM) is not necessarily related to its dexterity. Meng et al. [START_REF] Meng | Accuracy Analysis of Parallel Manipulators With Joint Clearance[END_REF] proposed a method to analyze the accuracy of parallel manipulators with joint clearances and ended up with a standard convex optimization problem to evaluate the maximal pose error in a prescribed workspace. Some architectures of planar parallel manipulators are compared with regard to their sensitivity to geometric uncertainties in [START_REF] Binaud | Sensitivity Comparison of Planar Parallel Manipulators[END_REF]. This paper deals with the comparison of the sensitivity of two degenerate and two non-degenerate 3-RPR PPMs. Likewise, the sensitivity of two actuating modes of the 3-RPR PPM, namely the 3-RPR PPM and the 3-RPR PPM, is analyzed. First, the degeneracy conditions of 3-RPR manipulators and the manipulators under study are presented. Then, the formulation of an optimization problem is introduced to obtain the regular dexterous workspace of those manipulators. Finally, a methodology is introduced to analyze and compare the sensitivity of the pose of their moving platforms to variations in their geometric parameters.

Here and throughout this paper, R, P and P denote revolute, prismatic and actuated prismatic joints, respectively. Figure . 1 illustrates the architecture of the manipulator under study. It is composed of a base and a moving platform (MP) connected with three legs. Points A 1 , A 2 and A 3 , (C 1 , C 2 and C 3 , respectively) lie at the corners of a triangle, of which point O (point P, resp.) is the circumcenter. Each leg is composed of a R, a P and a R joints in sequence. The three P joints are actuated. Accordingly, the manipulator is named 3-RPR manipulator.

F b and F p are the base and the moving platform frames of the manipulator. In the scope of this paper, F b and F p are supposed to be orthogonal. F b is defined with the orthogonal dihedron ( Ox, Oy), point O being its center and Ox parallel to segment A 1 A 2 . Likewise, F p is defined with the orthogonal dihedron ( PX, PY ), point C being its center and PX parallel to segment

C 1 C 2 .
The pose of the manipulator MP, i.e., its position and its ori- 
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Degenerate and Non-Degenerate Manipulators

In this section, we focus on the sensitivity analysis of two degenerate and two non-degenerate 3-RPR manipulators. First, the degeneracy conditions of such manipulators are given. Then, the architectures of the four manipulators under study are illustrated.

Degeneracy condition

The forward kinematic problem of a parallel manipulator often leads to complex equations and non analytic solutions, even when considering 3-DOF PPMs [START_REF] Hunt | Kinematic Geometry of Mechanisms[END_REF]. For those manipulators, Hunt showed that the forward kinematics admits at most six solutions [START_REF] Hunt | Structural kinematics of in-parallel actuated robot arms[END_REF] and some authors proved that their forward kinematics can be reduced to the solution of a sixth-degree characteristic polynomial [START_REF] Gosselin | Solutions polynomiales au problème de la cinématique des manipulateurs parallèles plans trois degrés de liberté[END_REF][START_REF] Pennock | Kinematic analysis of a planar eight-bar linkage: application to a platformtype robot[END_REF].

As shown in [START_REF] Gosselin | On the direct kinematics of planar parallel manipulators: special architectures and number of solutions[END_REF], [START_REF] Kong | Forward displacement analysis of third-class analytic 3-RPR planar parallel manipulators[END_REF] and [START_REF] Wenger | Degeneracy study of the forward kinematics of planar 3-RPR parallel manipulators[END_REF], a 3-RPR PPM is said to be degenerate when the degree of its characteristic polynomial becomes smaller than six. Six types of degenerate 3-RPR PPMs exists in the literature, namely, In the scope of this paper, we focus on the sensitivity analysis of the fourth and the sixth cases. For the fourth case, the forward kinematics is reduced to the solution of two quadratics in cascade.

For the sixth case, the forward kinematics degenerates over the whole joint space and is reduced to the solution of a third-degree polynomial and a quadratic in sequence. As far as M 1 is concerned, the circumscribed circle of its moving platform is two times smaller than the one of the base platform.

Manipulators under study

To compare the sensitivity of these PPMs, the geometric parameters have to be normalized. Therefore, let R 1 and R 2 be the radii of the base and moving platforms of the PPM. In order to come up with finite values, R 1 and R 2 are normalized as in [START_REF] Liu | Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms[END_REF][START_REF] Liu | Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms[END_REF][START_REF] Liu | On the Optimal Design of the PRRRP 2-DOF Parallel Mechanism[END_REF]. For that matter, let N f be a normalizing factor:
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N f = (R 1 + R 2 )/2 (1) 
and

r m = R m /N f , m = 1, 2 (2) 
Therefore,

r 1 + r 2 = 2 (3) 
From Eqs.( 2) and (3), we can notice that:

r 1 ∈ [0, 2] , r 2 ∈ [0, 2] (4) 
As the former two-dimensional infinite space corresponding to geometric parameters R 1 and R 2 is reduced to a one-dimensional finite space defined with Eq.( 3), the workspace analysis of the 3-RPR manipulator under study turns out to be easier.

Regular Dexterous Workspace

In order to compare the sensitivity of the foregoing manipulators, we first define their Regular Dexterous Workspace (RDW).

Then, the sensitivity of M 1 , M 2 , M 3 and M 4 can be evaluated throughout their RDW and compared. The RDW of a manipulator is a regular-shaped part of its workspace with good and homogeneous kinetostatic performance. The shape of the RDW is up to the designer. It may be a cube, a parallelepiped, a cylinder or another regular shape. A good shape fits to the singular surfaces.

The kinetostatic performance of a manipulator is usually characterized by the conditioning number of its kinematic Jacobian matrix [START_REF] Caro | Isoconditioning Loci of Planar Three-Dof Parallel Manipulators[END_REF][START_REF] Caro | Sensitivity Analysis of 3-RPR Planar Parallel Manipulators[END_REF]. From [START_REF] Rakotomanga | Kinetostatic Performance of a Planar Parallel Mechanism with Variable Actuation[END_REF][START_REF] Arakelian | Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure[END_REF], the transmission angle of a 3-DOF PPM can be also used to evaluate its kinetostatic performance. Here, we prefer to use the transmission angle as a kinetostatic performance index as it does not require the normalization of the kinematic Jacobian matrix. On the contrary, the kinematic Jacobian matrix of 3-DOF PPM has to be normalized by means of a normalizing length in order its conditioning number to make sense [START_REF] Ranjbaran | The Mechanical Design of a Seven-Axes Manipulator with Kinematic Isotropy[END_REF].

Transmission angle

The transmission angle ψ i associated with the ith leg is defined as the angle between force vector Fc i and translational velocity vector Vc i at point C i as illustrated in Fig. 3.
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Transmission angle of the 3-RPR PPMs

The direction of force Fc i is the direction of leg A i C i , namely,

γ i = arctan y C i -y A i x C i -x A i , i = 1, 2, 3 (5) 
The instantaneous centre of rotation depends on the leg under study. For example, instantaneous centre of rotation I 1 associated with leg 1 is the intersecting point of forces Fc 2 anf Fc 3 .

Table 1 gives the Cartesian coordinates of instantaneous centre of rotation I i associated with the ith leg of the 3-RPR PPM,

expressed in frame F b , with b i = y C i -x C i tan γ i , i = 1, 2, 3.
The direction of Vc i is defined as,

β i = arctan y C i -y I i x C i -x I i + π 2 , i = 1, 2, 3 (6) 
Accordingly,

ψ i = |γ i -β i | , i = 1, 2, 3 (7) 
Finally, the transmission angle ψ of the overall mechanism is defined as,

ψ = max(ψ i ) , i = 1, 2, 3 (8) 
and the smaller ψ, the better the force transmission of the mechanism.

RDW determination

In the scope of this study, the RDW of the PPM is supposed to be a cylinder of φ-axis with good kinetostatic performance, i.e., the transmission angle ψ is smaller than 75 • throughout the cylinder. In order to obtain such a RDW, we can solve the following optimization problem:

Pb min x 1/R s.t. ∆φ ≥ 30 • ψ ≤ 75 •
R being the radius of the cylinder and ∆φ the orientation range of the MP of the manipulator within its RDW. Here, ∆φ is equal to 30 • arbitrarily. This optimization problem has five decision variables:

x = [R I x I y φ min φ max ] I x and I y being the Cartesian coordinates of the center of the cylinder, φ min and φ max being the lower and upper bounds of φ angle

(∆φ = φ max -φ min ).
This optimization problem is solved by means of a Tabu search Hooke and Jeeves algorithm [START_REF] Al-Sultan | A tabu search Hook and Jeeves algorithm for unconstrained optimization[END_REF]. As a result, the RDW of the manipulator is completely defined by means of the decision variables corresponding to the global minimum1 . 
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Sensitivity Analysis

In this section, the sensitivity of M 1 , M 2 , M 3 and M 4 is evaluated throughout their RDW for a matter of comparison. The Table 1. Cartesian coordinates of instantaneous centres of rotation
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sensitivity coefficients, and, two aggregate sensitivity indices are determined to analyze the sensitivity of the pose of the moving platform of a 3-RPR manipulator to variations in its geometric parameters. Then, the contours of these indices are plotted in M 1 , M 2 , M 3 and M 4 RDWs and the results are analyzed.

Sensitivity coefficients

From the closed-loop kinematic chains O -A i -C i -P -O, i = 1, . . . , 3 depicted in Fig. 1, the position vector p of point P can be expressed in F b as follows,

p = p x p y = a i + (c i -a i ) + (p -c i ) , i = 1, . . . , 3 (9) 
a i and c i being the position vectors of points A i and C i expressed in F b . Equation ( 9) can also be written as,

p = a i h i + ρ i u i + c i k i ( 10 
)
with

h i = cosα i sin α i , u i = cos θ i sin θ i , k i = cos (φ + β i + π) sin (φ + β i + π)
where a i is the distance between points O and A i , ρ i is the distance between points A i and C i , c i is the distance between points C i and P, h i is the unit vector OA i / OA i 2 , u i is the unit vector

A i C i / A i C i 2 and k i is the unit vector C i P/ C i P 2 .
Upon differentiation of Eq.( 10), we obtain:

δp = δa i h i + a i δα i E h i + δρ i u i + ρ i δθ i E u i +δc i k i + c i (δφ + δβ i ) E k i ( 11 
)
with matrix E defined as

E = 0 -1 1 0 ( 12 
)
δp and δφ being the position and orientation errors of the MP.

Likewise, δa i , δα i , δρ i , δc i and δβ i denote the variations in a i , α i , ρ i , c i and β i , respectively.

The idle variation δθ i is eliminated by dot-multiplying

Eq.( 11) by ρ i u T i , thus obtaining

ρ i u T i δp = ρ i δa i u T i h i + ρ i a i δα i u T i Eh i + ρ i δρ i +ρ i δc i u T i k i + ρ i c i (δφ + δβ i ) u T i Ek i ( 13 
)
Equation ( 13) can now be cast in vector form, namely,

A δφ δp = H a    δa 1 δa 2 δa 3    + H α    δα 1 δα 2 δα 3    + B    δρ 1 δρ 2 δρ 3    + H c    δc 1 δc 2 δc 3    + H β    δβ 1 δβ 2 δβ 3    (14) 
with

A =    m 1 ρ 1 u T 1 m 2 ρ 2 u T 2 m 3 ρ 3 u T 3    , B =    ρ 1 0 0 0 ρ 2 0 0 0 ρ 3    (15a) 
H a = diag ρ 1 u T 1 h 1 ρ 2 u T 2 h 2 ρ 3 u T 3 h 3 (15b) H α = diag ρ 1 a 1 u T 1 Eh 1 ρ 2 a 2 u T 2 Eh 2 ρ 3 a 3 u T 3 Eh 3 (15c) H c = diag ρ 1 u T 1 k 1 ρ 2 u T 2 k 2 ρ 3 u T 3 k 3 ( 15d 
)
H β = diag ρ 1 c 1 u T 1 Ek 1 ρ 2 c 2 u T 2 Ek 2 ρ 3 c 3 u T 3 Ek 3 ( 15e 
)
and

m i = -ρ i c i u T i Ek i , i = 1, . . . , 3 (16) 
Let us notice that A and B are the direct and the inverse Jacobian matrices of the manipulator, respectively. Assuming that A is non singular, i.e., the manipulator does not meet any Type II sin-gularity [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF], we obtain upon multiplication of Eq.( 14) by A -1 :

δφ δp = J a    δa 1 δa 2 δa 3    + J α    δα 1 δα 2 δα 3    + J    δρ 1 δρ 2 δρ 3    + J c    δc 1 δc 2 δc 3    + J β    δβ 1 δβ 2 δβ 3    (17) 
with

J = A -1 B (18a) J a = A -1 H a (18b) J α = A -1 H α (18c) J c = A -1 H c (18d) J β = A -1 H β (18e) 
and

A -1 = 1 det(A) v 1 v 2 v 3 v 1 v 2 v 3 (19a) v i = ρ j ρ k (u j × u k ) T k (19b) v i = E (m j ρ k u k -m k ρ j u j ) (19c) det(A) = 3 ∑ i=1 m i v i (19d) k = i × j (19e) j = (i + 1) modulo 3; k = (i + 2) modulo 3; i = 1, 2, 3.
J is the kinematic Jacobian matrix of the manipulator whereas J a , J α , J c and J β are named sensitivity Jacobian matrices of the pose of the MP to variations in a i , α i , c i and β i , respectively. Indeed, the terms of J a , J α , J c and J β are the sensitivity coefficients of the position and the orientation of the moving platform of the manipulator to variations in the Polar coordinates of points A i and C i . Likewise, J contains the sensitivity coefficients of the pose of the MP of the manipulator to variations in the prismatic actuated joints. It is noteworthy that all these sensitivity coefficients are expressed algebraically.

Let δa ix and δa iy denote the position errors of points A i , i = 1, 2, 3, along Ox and Oy, namely, the variations in the Cartesian coordinates of points A i . Likewise, let δc iX and δc iY denote the position errors of points C i along PX and PY , namely, the variations in the Cartesian coordinates of points C i .

From Fig. 1,

δa ix δa iy = cos α i -a i sin α i sin α i a i cos α i δa i δα i (20a) δc iX δc iY = cos β i -c i sin β i sin β i c i cos β i δc i δβ i (20b)
Accordingly, from Eq.( 17) and Eqs.(20a)-(b), we obtain the following relation between the pose error of the MP and variations in the Cartesian coordinates of points A i and C i :

δφ δp = J A            δa 1x δa 1y δa 2x δa 2y δa 3x δa 3y            + J    δρ 1 δρ 2 δρ 3    + J C            δc 1X δc 1Y δc 2X δc 2Y δc 3X δc 3Y            (21) 
J A and J C being named sensitivity Jacobian matrices of the pose of the MP to variations in the Cartesian coordinates of points A i and C i , respectively. Indeed, the terms of J A and J C are the sensitivity coefficients of the pose of the MP to variations in the Cartesian coordinates of points A i and C i .

In order to better highlight the sensitivity coefficients, let us write the 3 × 6 matrices J A and J C and the 3 × 3 matrix J as follows:

J A = J A 1 J A 2 J A 3 (22a) J C = J C 1 J C 2 J C 3 (22b) J = j 1 j 2 j 3 ( 22c 
)
the 3 × 2 matrices J A i and J C i and the three dimensional vectors j i being expressed as:

J A i = j A i φ J A i p , i = 1, 2, 3 (23a) 
J C i = j C i φ J C i p , i = 1, 2, 3 (23b) 
j i = j iφ j ip , i = 1, 2, 3 (23c) 
with

j A i φ = 1 det(A) v i q i v i r i (24a) j C i φ = 1 det(A) v i s i v i t i (24b) j iφ = ρ i v i det(A) (24c)
J A i p = 1 det(A) q i v T i i r i v T i i q i v T i j r i v T i j (24d) 
J C i p = 1 det(A) s i v T i i t i v T i i s i v T i j t i v T i j (24e) j ip = 1 det(A) ρ i v T i i ρ i v T i j (24f)
q i , r i , s i and t i taking the form:

q i = ρ i u T i i (25a) r i = ρ i u T i j ( 25b 
)
s i = ρ i u T i k i cos β i -ρ i u T i Ek i sin β i (25c) t i = ρ i u T i k i sin β i + ρ i u T i Ek i cos β i (25d)
j A i φ , j C i φ and j iφ contain the sensitivity coefficients of the orientation of the MP of the manipulator to variations in the Cartesian coordinates of points A i , C i and prismatic actuated variables, respectively. Similarly, J A i p , J C i p and j ip contain the sensitivity coefficients related to the position of the MP.

Accordingly, the designer of such a planar parallel manipulator can easily identify the most influential geometric variations to the pose of its MP and synthesize proper dimensional tolerances from the previous sensitivity coefficients. Two aggregate sensitivity indices related to the geometric errors of the moving and base platforms are introduced thereafter.

Global sensitivity indices

The pose errors of the manipulator MP depend on variations in the geometric parameters as well as on the manipulator configuration. In order to analyze the influence of the manipulator configuration on those errors, let us first formulate some indices in order to assess the aggregate sensitivity of the MP pose to variations in the geometric parameters for a given manipulator configuration.

To this end, let Eq.( 21) be expressed as:

δφ δp = J s δa i δρ i δc i T ( 26 
)
with

J s = J A J J C (27)
and δa i = δa 1x δa 1y δa 2x δa 2y δa 3x δa 3y (28a)

δρ i = δρ 1 δρ 2 δρ 3 ( 28b 
)
δc i = δc 1X δc 1Y δc 2X δc 2Y δc 3X δc 3Y (28c) 
The 3 × 15 matrix J s is named "sensitivity Jacobian matrix" and can be written as follows:

J s = j s φ J s p ( 29 
)
with

j s φ = j A 1 φ j A 2 φ j A 3 φ j 1φ j 2φ j 3φ j C 1 φ j C 2 φ j C 3 φ (30a) 
J s p = J A 1 p J A 2 p J A 3 p j 1p j 2p j 3p J C 1 p J C 2 p J C 3 p (30b)
From Eq.(30a), we can define an aggregate sensitivity index ν φ of the orientation of the MP of the manipulator to variations in its geometric parameters and prismatic actuated joints, namely,

ν φ = j s φ 2 n v (31)
n v being the number of variations that are considered. Here, n v is equal to 15.

Likewise, from Eq.(30b), an aggregate sensitivity index ν p of the position of the MP of the manipulator to variations in its geometric parameters and prismatic actuated joints can be defined as follows:

ν p = J s p 2 n v (32)
For any given manipulator configuration, the lower ν φ , the lower the overall sensitivity of the orientation of its MP to variations in the geometric parameters. Similarly, the lower ν p , the lower the overall sensitivity of the MP position to variations in the geometric parameters. As a matter of fact, ν φ (ν p , resp.) characterizes the intrinsic sensitivity of the MP orientation (position, resp.) to any variation in the geometric parameters. Let us notice that ν p as well as the sensitivity coefficients related to the MP position defined in Sections 5.1 are frame dependent, whereas ν φ and the sensitivity coefficients related to the MP orientation are not.

In order to evaluate the sensitivity of the manipulator over its workspace or part of it, four global sensitivity indices are defined as follows:

ν φ = W ν φ dW W dW (33a) 
ν φ max = max(ν φ ) (33b) 
ν p = W ν p dW W dW (33c) 
ν p max = max(ν p ) (33d) 
ν φ and ν p are the average values of ν φ and ν p over W , W being the manipulator workspace or part of it. Likewise, ν φ max and ν p max are the maximum values of ν φ and ν p over W . Finally, ν φ , ν φ and ν φ max are expressed in [rad/L], whereas ν p , ν p and ν p max are dimensionless, [L] being the unit of length.

Comparison of two non-degenerate and two degenerate 3-RPR PPMs

In this section, the sensitivity of M 1 , M 2 , M 3 and M 4 is evaluated within their RDW for a matter of comparison based on aggregate sensitivity indices ν φ and ν p defined in Eqs.(31) and (32) and global sensitivity indices ν φ , ν φ max , ν p and ν p max defined in Eqs.(33a)-(d). In this section, two actuating modes of the 3-RPR PPM, namely the 3-RPR PPM and the 3-RPR PPM, are compared with regard to their sensitivity to variations in geometric parameters 2 .

Table 4 shows the eight actuating modes of the 3-RPR PPM.

For instance, the first actuating mode corresponds to the 3-RPR PPM, also called RPR 1 -RPR 2 -RPR 3 PPM in the scope of this paper, as the first revolute joints (located at points A i ) of its limbs are actuated. Likewise, the eighth actuating mode corresponds to the 3-RPR PPM, also called RPR 1 -RPR 2 -RPR 3 PPM, as the prismatic joints of its limbs are actuated. For the fourth actuating mode, the prismatic joint of the first limb is actuated while the first revolute joints of the two other limbs are actuated. Actuating mode number active angles

1 RPR 1 -RPR 2 -RPR 3 θ 1 , θ 2 , θ 3 2 RPR 1 -RPR 2 -RPR 3 θ 1 , θ 2 , ρ 3 3 RPR 1 -RPR 2 -RPR 3 θ 1 , ρ 2 , θ 3 4 RPR 1 -RPR 2 -RPR 3 ρ 1 , θ 2 , θ 3 5 RPR 1 -RPR 2 -RPR 3 θ 1 , ρ 2 , ρ 3 6 RPR 1 -RPR 2 -RPR 3 ρ 1 , ρ 2 , θ 3 7 RPR 1 -RPR 2 -RPR 3 ρ 1 , θ 2 , ρ 3 8 RPR 1 -RPR 2 -RPR 3 ρ 1 , ρ 2 , ρ 3 
Table 5. RDW radius of M 1 and M 5 R 1 R 5

1.21 1.60 2 As the actuators are not of the same type for the two manipulators (revolute actuators for the first one and prismatic actuators of the second one), their variations are not considered in order the sensitivity comparison of the two manipulators to make sense. Table 6 and Fig. 12 illustrate the values of ν φ , ν φ max , ν p and ν p max for the two actuating modes under study. It is apparent that M 1 is better than M 5 , both in terms of orientation and positioning errors of its moving platform due to variations in geometric parameters. This paper dealt with the sensitivity analysis of 3-RPR planar parallel manipulators (PPMs). First, the manipulators under study as well as their degeneracy conditions were presented.

Then, an optimization problem was formulated in order to obtain their maximal regular dexterous workspace (RDW). Accordingly, the sensitivity of the pose of their moving platform to variations in geometric parameters was evaluated within their RDW. Then, a methodology was proposed to compare PPMs with regard to their dexterity and sensitivity. Four 3-RPR PPMs were compared as illustrative examples. Moreover, two actuating modes were compared with regard to their sensitivity to geometric uncertainties.

Finally, four global sensitivity indices were introduced in order to evaluate the sensitivity of PPMs over their Cartesian workspace.

Those indices characterize the intrinsic sensitivity of the moving platform pose to any variation in the geometric parameters. They are like amplification factors of errors in geometric parameters.

There values remain always lower than one for the manipulators under study. It means that there is no amplification of errors in geometric parameters. The proposed indices can also be used to help the designer of PPMs select a good manipulator architecture at the conceptual design stage.

  entation, is determined by means of the Cartesian coordinates vector p = [p x , p y ] T of operation point P expressed in frame F b and angle φ, that is the angle between frames F b and F p . Finally, the passive joints do not have any stop.
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 2 Figures 2(a)-(d) illustrate the four manipulators under study, named M 1 , M 2 , M 3 and M 4 , respectively. M 1 and M 2 are nondegenerate manipulators while M 3 and M 4 are degenerate manipulators. From Fig. 2(a), the base and moving platforms of M 1 are equilateral. From Fig. 2(b), the base and moving platforms of M 2 are identical but in a different geometric configuration for an orientation φ = 0. M 3 and M 4 illustrate the fourth and the sixth degeneracy cases presented in Sec. 3.1. It is noteworthy that the base and moving platforms of M 2 , M 3 and M 4 have the same circumscribed circle, its radius being equal to √ 2/2. As far as M 1 is concerned, the circumscribed circle of its moving platform is two
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 2 Figure 2. The four 3-RPR manipulators under study with φ = 0 and p = [1, 1.5] T : (a)-(b) non-degenerate manipulators, (c)-(d) degenerate manipulators
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 4 Figure 4. Maximal Regular Dexterous Workspace

Figures 5 (

 5 Figures 5(a)-(d) (Figures 6(a)-(d), resp.) illustrate the isocontours of the maximum value of ν φ (ν p , resp.). for a given orientation φ of the MP throughout the RDW of M 1 , M 2 , M 3 and M 4 , respectively.
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 5644 Figure 5. ν φ isocontours of: (a) M 1 , (b) M 2 , (c) M 3 and (d) M 4
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 74 Figure 7. Comparison of •-• : M 1 , ⋆-⋆ : M 2 , •-• : M 3 , ⊳-⊳ : M 4 6 Sensitivity Comparison of Two Actuating Modes
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 5895 Figure 8. Two actuating modes: (a) 3-RPR manipulator, (b) 3-RPR manipulator, φ = 0 and p = [1.5, 1] T
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 101112 Figure 10. (a) M 1 ν φ and (b) M 5 ν φ isocontours

Table 2 .

 2 RDW radius of M 1 , M 2 , M 3 and M 4 M 2 , M 3 and M 4 . Their radii are given in Table2. We can notice that M 4 has the biggest RDW and M 2 the smallest one.

	R 1	R 2	R 3	R 4
	1.21 0.62 0.75 2.69
	Figures 4-(d) illustrate the workspace, the singularities and
	the maximal RDW of M 1 ,			

Table 3 .

 3 Values of ν φ , ν φ max , ν p and ν p max for M 1 , M 2 , M 3 and M 4

		M 1	M 2	M 3	M 4
	ν φ	0.292 0.254 0.233 0.192
	ν φ max 0.426 0.365 0.386 0.322
	ν p	0.171 0.231 0.194 0.316
	ν p max 0.263 0.327 0.284 0.441

Table 3 and

 3 Fig.7illustrate the values of ν φ , ν φ max , ν p and ν p max for the four manipulators under study. It is apparent that

Table 4 .

 4 The eight actuating modes of the 3-RPR PPM

The solution obtained with a Tabu search Hooke and Jeeves algorithm will not be necessarily the global optimum. However, it will provide a solution that is close to the global one and satisfactory in the framework of this research work.