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Abstract— HTTP Adaptive bitrate video Streaming (HAS)
is now widely adopted by Content Delivery Network Providers
(CDNPs) and Telecom Operators (Telcos) to improve user
Quality of Experience (QoE). In HAS, several versions of
videos are made available in the network so that the quality of
the video can be chosen to better fit the bandwidth capacity of
users. These delivery requirements raise new challenges with
respect to content caching strategies, since several versions
of the content may compete to be cached. In this paper we
present analysis of a real HAS dataset collected in France
and provided by a mobile telecom operator involving more
than 485,000 users requesting adaptive video contents through
more than 8 million video sessions over a 6 week measurement
period. Firstly, we propose a fine-grained definition of content
popularity by exploiting the segmented nature of video
streams. We also provide analysis about the behavior of
clients when requesting such HAS streams. We propose novel
caching policies tailored for chunk-based streaming. Then we
study the relationship between the requested video bitrates
and radio constraints. Finally, we study the users’ patterns
when selecting different bitrates of the same video content.
Our findings provide useful insights that can be leveraged by
the main actors of video content distribution to improve their
content caching strategy for adaptive streaming contents as
well as to model users’ behavior in this context.

General Terms:
Measurement, Design

Keywords:
HTTP Adaptive Streaming, HTTP Live Streaming, Microsoft
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networks

I. INTRODUCTION

The proliferation of mobile smart phones is significantly
changing the landscape of mobile usage. New smart phones
are designed for the best high definition video experience
and are now commonly used by users to watch TV pro-
grams either in live or in replay. In [1], Cisco reported
that mobile video will grow at a compound annual growth
rate of 90% between 2011 and 2016. All these factors
suggest that mobile streaming services will soon dominate

Part of the research leading to these results has received funding from
the European Union’s Seventh Framework Programme ([FP7/2007-2013])
under grant agreement n: 248775.

the mobile communication landscape. Hence, ensuring a fast
and a reliable content delivery accounting for users’ network
constraints is key to this evolution.

A new HTTP-based strategy, called HTTP Adaptive bi-
trate video Streaming (HAS) has recently emerged, which
takes up this challenge. Adaptive streaming over HTTP
encodes the video stream with several encoding bitrates,
thus generating several presentations of the same video
content. Each presentation is then segmented into smaller
parts, called chunks or segments, and usually varies between
2 to 10 seconds length. When a user requests a video content,
the hosting server sends back to the client a formalized
description of the media presentation, named manifest file or
Media Presentation Description(MPD), depicting all avail-
able bitrates of the requested content. The MPD enables
the client-player to choose the quality that matches best her
requirements, network and device capabilities.

HAS is widely used in mobile TV industry. Usually, TV
broadcasters delegate to CDNs and to streaming servers
the video segmentation process and to generate the ad-
equate manifest file. CDN providers and Telcos are the
most concerned to ensure a reliable and fast end to end
delivery between users and servers. Therefore, studying HAS
properties from an operator standpoint enables to accurately
understand the implications of such a way of delivery on
users’ behavior. As important as it is, this scope is not yet
as well studied by the research community as others are
(e.g. User Generated Content [2] or IPTV systems [3]). In
this paper, we conduct an in-depth analysis of the behavior
of mobile clients when requesting such HAS streams using
a large scale dataset. We also study through simulations,
the opportunity to enhance the caching of such chunk-based
streams within proxy caches.

We believe that the outcome of our analysis can be
leveraged to help content providers design caching strategies
to improve their services. The rest of the paper is organized
as follows. Section II presents our dataset. In Section III, we
focus on the chunk-based delivery properties, we propose a
fine-grained definition of content popularity and we study
through simulations the caching implications when request-
ing such chunk-based contents. In Section IV we study
the impact of the network environment on users’ behavior



when requesting HAS contents. In Section V, we analyze
the distribution of the selected video bitrates by the client-
players. Finally, we conclude in Section VI.

II. DATA COLLECTION AND PROCESSING

Our dataset has been collected from five Measurement
Points (MPs) spread within France. More precisely, the
measurement points are located in the mobile backbone on 5
Gi interfaces just above the Gateway GPRS Support Nodes
(GGSNs) as shown in Figure 1. That way, we collect all HAS
sessions of all mobile subscribers for the considered operator
in France. The measurement system is based on a passive
observation of the IP traffic of mobile customers. The data
collection is based on capturing all packet headers of HAS
streams that contain useful information, such as the packet
size and sequence number. Confidentiality and privacy are
preserved as we do not have access to the payload data
and all clients’ and subscribers’ identifiers are anonymized.
We aggregate all information relative to each persistent-TCP
connection and export it to a database, from where it is
analyzed. Each persistent-TCP connection corresponds to
one downloaded video segment. This means that the number
of downloaded chunks during one HAS session is equal
to the number of persistent TCP connections established
between the server and the client over a period of time.

The measurements were conducted over a 6 week and
one day period, from February 28th to April 10th 2012,
involving 485, 544 unique active clients and 8, 131, 747 HAS
sessions.
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Figure 1. Streaming infrastructure and data collection

Our dataset mainly contains:
• Live sessions: where clients watch live TV;
• Catch-up TV sessions: where TV content providers

allow clients to replay a set of videos previously
broadcasted in live.

In Table I, we show the breakdown of the live and catch-
up TV HAS sessions collected over the 5 MPs. On average,
we observe that around 70% of the HAS traffic corresponds
to live TV streaming sessions. The dataset encompasses
8,127,762 Apple HTTP Live Streaming (HLS) sessions

Live sessions catch-up TV sessions
MP 1 606,470 (63%) 354,025 (37%)
MP 2 1,198,577 (68%) 538,936 (32%)
MP 3 1,333,619 (71%) 528,745 (29%)
MP 4 1,281,758 (72%) 483,185 (28%)
MP 5 1,290,546 (71%) 515,886 (29%)

Table I
PERCENTAGE OF LIVE AND CATCH-UP TV SESSIONS

and 3,985 Microsoft Smooth Streaming (HSS) sessions.
Therefore, in the remainder of this paper, we focus on the
Apple HLS traffic as it represents the very large majority of
the overall collected HAS traffic.

We identify a session by the first HTTP-GET request of
the first chunk for which the URL address ends either with
a .ts for a HLS stream, or with a .ism for a HSS stream.
Each HAS session corresponds to the set of chunks sent to
the associated client over a period of time. Then we classify
the requested chunks according to their encoding bitrates
(profiles). The encoding schema of the different profiles of
video contents may differ slightly from one TV content
provider to the other. Hence, we proceed by setting a scale
of 8 ranges (See Table II) that closely fit the users’ profiles
mostly recommended by Apple [4].

To map a given requested chunk to the associated profile,
we assume that its size (in bytes) is approximately equal to
the volume of information contained in the HTTP payloads
transporting it, and that its encoding bitrate (video bitrate +
audio bitrate) is equal to its size divided by its duration. The
MPi starts measuring the size of the chunk once it detects
the HTTP-200 response for that chunk’s request. We get the
duration of the chunk from the manifest file relative to each
video session.

Profile i Encoding bitrate (kbps)
Profile 0 < 50
Profile 1 [50-150[
Profile 2 [150-280[
Profile 3 [280-420[
Profile 4 [420-600[
Profile 5 [600-1000[
Profile 6 [1000-2000[
Profile 7 ≥ 2000

Table II
PROFILES

Then, we classify all information relative to the requested
chunks belonging to the same session as per their profile.
The following data model shows in a tree hierarchy the most
relevant fields from our data set for the present study:

Session
Start (in timestamp).



End (in timestamp).
content_id.
client_id.
for iϵ[0..7].
profilei :

Number of chunks requested in profilei.
Bytes downloaded in profilei including packet header.
Bytes downloaded in profilei without packet header.
time to deliver all requested chunks in profilei.

III. CHUNK BASED ANALYSIS

Analyzing video popularity from different streaming tech-
nologies has always been a major focus by the research
community. It was always reported that few of videos get
the most interest of the clients while the majority are less
viewed. This suggests for instance that caching only the
most popular videos is enough. This phenomenon has been
already formally described by the Pareto principle. While,
our data set confirms once again this property for the catch-
up TV videos, we believe that the segmented nature of catch-
up TV requires a finer grained analysis of content popularity
i.e. at the granularity of one chunk. We therefore, introduce
and analyze the following two dimensions: video popularity
and chunk popularity. The former one refers to the number
of times, end-users requested a given video in a given period
of time, and the latter one refers to the number of times
clients requested a given chunk in a given period of time.

A. Popularity of catch-up videos across the time

We analyze in Figure 2 the access frequency measured at
a granularity of one hour of the top-0.6%, top-1%, top-5%,
top-17% and top-100% most requested catch-up TV videos
over the whole period of data collection. For instance, in
order to compute the access frequency of the top-5% most
requested catch-up TV videos at day 7, we concentrate on
the 5% catch-up TV videos which were most requested over
the whole period of data collection; we then sum the access
frequency of the aggregate number of requests for each of
these videos at the 7th day after their respective release date.
We observe that the popularity of catch-up videos is age-
sensitive and that clients’ requests fade significantly as time
goes on. The number of requests for such contents decreases
with a ratio of 1/8, just 2 days after putting them available to
the mobile audience. The popularity profile of these catch-
up TV videos on mobile devices is significantly different
from other types of video applications, in particular User
Generated Content (UGC) applications (e.g. Youtube) and
Premium VoD services (e.g. NetFlix) where user preferences
are globally insensitive to the most popular videos [2].

Generally catch-up TV videos are contents that were
broadcasted in live TV for the last week or at best for the last
month, due to rights negotiation with TV content provider.
Although the access frequency decreases over time, the lim-
ited availability period is still constraining for the end users.
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Figure 2. Popularity over time of the most requested videos

We observe in Figure 2 that the access frequency decreases
with a ratio of 1/10 after seven days left. However, it further
decreases with a ratio of 1/40 the next day. This is explained
by the fact that some of the content providers purge the 7-
days old videos from their catalogue. Another reason that
makes catch-up videos loose popularity so rapidly is that
viewers are not likely to watch the same video multiple times
as they do for mutable web objects. This Fetch-at-most-once-
like behavior was initially introduced by Gummadi et al. in
[5] while trying to understand the file popularity paradigm
in P2P downloads. Throughout our dataset, we validate this
suggestion for catch-up TV contents and we find that in
average 82-percentile of clients do request at most one time
the catch-up TV video, while for around 97-percentile of
clients do request the same content at most 3 times.

B. Chunk popularity and chunk based analysis

Popularity of a given chunk is dependent on two pa-
rameters: the popularity of the video it belongs to and the
position of this chunk within the video stream: Clients may
abort their sessions or make a jump forward/backward when
watching the video. More formally:

Let mi be the number of chunks within video i.
Let pij be the probability of requesting chunkj (jϵ[1 :

mi]) within a video i.
Let qil,j be the conditional probability that the next request

of the client who just requested chunkl will be for chunkj ,
either by jumping or moving forward.

Let sij>0 be the probability of aborting the session after
requesting j chunks.

Then we have the following equation:

pij =
∑mi

l=1 p
i
l ∗ qil,j

= pij−1 ∗ qij−1,j +
∑mi

l=1,l ̸=j−1 p
i
l ∗ qil,j

(1)

From now on, we assume that clients never make a jump
forward/backward when watching the video1. Equation 1
becomes:

1Previous studies on video streaming in mobile context show that up to
80% video sessions are without any trick mode (no pause and no jump
forward/backward) [6], [7]



pij = pij−1 ∗ qij−1,j

=

pi1; if j = 1

pi1 ∗
∏j

k>1 q
i
k−1,k = pi1 ∗ (1− sij); if j > 1

(2)
pi1 represents the probability that clients request the first

chunk of a given video i within the catalogue. In other words,
it represents the probability of selecting video i, when the
client browses the catalogue.
(1− sij) is the probability of requesting at least the j first

chunks once video i is selected.
Using our dataset we can estimate sij statistically by

determining the law that best fits the distribution of the
number of requested chunks per HAS session. Figure 3(a)
represents the cumulative distribution function (cdf) of the
number of requested chunks per HAS session, for both live
TV and catch-up TV videos.
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Figure 3. CDF of the requested number of chunks per HAS session

Using the maximum likelihood (MLE) estimation, we
determined that the log-normal distribution laws are best
matching the respective cumulative distribution functions

(cdf) of the live TV and catch-up TV video sessions. Then
we used the Kolmogorov Serminov goodness-of-fit test to
assess the accuracy of the estimated parameters character-
izing these log-normal laws. We set the confidence level to
up to 95%. The KS test is well adapted here given the high
number of samples of the catch-up TV sessions and Live
sessions within the dataset. The estimated parameters of the
log-normal laws and the results of the KS test are provided
in Table III.

We can make several observations about Figure 3(a). First,
the first chunks in the temporal sequence of a given content
are much more requested than the last ones. We observe that
around 90% of video sessions does not exceed 100 chunks,
i.e. 16 min (each chunk containing a 10 second of the video).

Many factors influence the sessions’ duration. Yet the
most important ones are obviously the billing model and
the nature of the client device. In our case, as the video
application is free or included in a flat rate mobile package,
clients do not hesitate to stop and switch between contents
before the end. Moreover, clients’ mobility (e.g. being in
public transport) may also be leveraged by shortening ses-
sions’ length. Clients seem to privilege alternative options
for longer video sessions (TV receiver or PC connected via
satellite, terrestrial, cable or fixed networks). For instance,
we find that only 20% of the video sessions exceed 10 min
in our dataset, whereas authors reported in [8] that more
than 47% sessions exceed that same duration in the Power
Info DVD Systems which contain catch-up TV videos but
also a set of premium feature films.

Second, the cumulative distribution functions diverges
from the log-normal laws when the HAS sessions have
more than 1000 chunks. A minority of clients keeps on
requesting chunks over a much longer period than the others,
and some until the end of the video. In the case where the
chunks are delivered by edge servers (belonging for example
to a CDN or a set of transparent caching servers) such a
tailed profile could degrade the caching efficiency of these
edge servers, even more if their cache size is limited and
their caching replacement algorithm is highly reactive to
the end user requests. For instance, if an edge server is
configured with the LRU caching algorithm (Least Recently
Used), any request for a chunk located at the end of a video
will make this server caches this chunk and sets it at the
top of its LRU ranking. Then, even if there is no further
request to that chunk, it will remain for a while in the cache
before being purged, possibly at the expense of some other,
more frequently requested, chunks. One could therefore
investigate the interest of adapting caching algorithms so that
they do not cache the last and very infrequently requested
chunks in videos: One could extend the object replacement
algorithm used by the edge servers by setting a chunk-
position threshold, beyond which the edge servers would
not cache any chunk. The section III-C presents the results
of a trace-driven simulation enforcing the relevancy of such



a policy.
Third, the range where the cumulated distribution func-

tions of the live and catch-up TV HAS sessions differ most
is on the first 25 chunks of the sessions. We zoom on this
range in Figure 3(b). Clearly, the density of Live sessions
within the range 1 to 5 chunks per Live session is much
higher than the density between 6 to 25 chunks per Live
session. This could be explained by the fact that users
spend more time in discovering or recognizing the program
broadcast in live. Then, they loose rapidly the interest in
watching the live channels; they rather give up or switch
to another channel. However, for catch-up TV videos, we
find that for the considered range, clients spend more time
watching video contents than watching live channels. This
explains why the CDF of the catch-up sessions is below the
CDF of Live sessions. At this stage, it is important to note
that if a client aborts her session after requesting the fifth
chunk, this does not mean that she indeed spent 50 seconds
(assuming that one chunk is 10 seconds length) watching the
video as the chunks are requested and buffered in advance
before being displayed. Previous works focused on assessing
the specific properties of well-known implementations of
HAS clients, including Netflix, Adobe dynamic streaming,
Apple HTTP live streaming client (HLS), and Microsoft
smooth streaming clients, in particular regarding start-up
time and playback buffer [9]. At the start, the playback
latency requires buffering to up to 30 seconds of the video
stream in the case of HLS. This means that the client-player
buffers up to 3 chunks before starting playing in order to
guarantee a smooth playback quality. Figure 3(b) shows that
it could be worth investigating the opportunity to adjust the
client-player buffering rules and the edge servers’ caching
replacement methods to the type of content delivered (Live
TV content vs. Catch-up TV content).

σ µ test statistic p_value
Lognormal_live 1.57033 2.50498 0.1019 0.2368

Lognormal_catch-up TV 1.54 2.76728 0.0839 0.4648

Table III
ESTIMATED PARAMETERS

C. Caching implications

Content popularity distribution may have a strong impact
on the performance of content distribution systems. In dis-
tributed systems such as CDNs (Content Delivery Networks)
this is a key factor influencing the cache hit ratio - i.e.
the percentage of requests successfully handled by the CDN
edge servers -, and thus the network resource utilization, the
delivery cost and the quality of service experienced by the
end user. With a trace-driven simulation we now illustrate the
implications of caching chunk-based streams and investigate
the benefit of setting a chunk-position threshold as defined
in Section III-B.

The trace-driven simulation uses a seven-day trace from
the collected HAS dataset and encompasses a 29, 921, 935
HTTP-client requests. The trace file contains information
about the timestamp of each new session, the video ID (we
associate an id to each video content within the data set),
and the number of chunks requested by the clients in each
session. Then we simulate the scenario where all HAS traffic
gets forwarded to a proxy-cache deployed just after the 5
GGSNs. For the sake of simplicity the simulation relies on
the four following assumptions:

• The videos are encoded at 500kbps, i.e. with a single
profile, profile 4, as it is the most common requested
profile between clients and where the sojourn time is
largely superior than profile 2 and 3 as we will detail
in Section V.

• All chunks are 10 second length.
• We only consider the Catch-up TV sessions. Effectively

in Live sessions, chunks are generated on the fly. Hence,
this introduces some complexity on assessing the time
between generating the chunk on the fly, caching it
and the difference in time between clients watching the
same content in live. This will be the subject of future
work.

• Clients do not make any jump forward/backward during
the video session.

1) LRU with Chunk position threshold: Figure 4 rep-
resents the cache hit ratio obtained with this simulation
scenario for different cache sizes (C) and for different values
of the chunk-position threshold (Cth).
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Figure 4 shows that for small cache sizes (C<50Gb)
setting Cth to 100 leads to approximately the same cache
hit ratio as if there were no chunk-position threshold (i.e.
Cth = ∞). On Figure 5 we observe that this allows to save
up to 50% of cache-update ratio (i.e. the ratio of requests
making the cache updating the list of cached objects due to
a cache-miss). For larger cache sizes (C>50Gb), setting Cth

to 200 leads to approximatively the same cache hit ratio as
if there were no chunk-position threshold (i.e. Cth = ∞),
while this allows to gain 20% on the cache update-ratio. This
can contribute to significantly reduce the cache replacement
processing time, especially in large caches where the object
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lookup time is critical.
Figure 6 depicts the average cache hit-ratio for each

position of the chunks in the temporal sequence of the videos
they belongs to (i.e. the average cache hit-ratio for each
chunki during the whole simulation). We call this the cache
hit ratio per chunk position, and we note ci the position
of the ist chunk from the content in the dataset. Setting a
chunk threshold (cth) improves the per chunk hit-ratio for
all ci < cth while keeping approximately the same overall
hit-ratio when setting the most appropriate threshold with
respect to the cache size as shown in Figure 4. The gain
per chunk hit-ratio, may reach up to 20% if we consider
caching the very first chunks (i.e. cth = 10). When setting
the threshold to up to 60 chunks per session (80% of catch-
up TV sessions as shown in Figure 3(a)) we may improve up
to 5% the average hit-ratio for all ci < c60. This significantly
increases the number of times a client is served from the
cache than from the origin server.

2) LRU versus CC: In [10] authors proposed a caching
algorithm, named Chunk based Caching (CC), with the same
objective of improving the caching efficiency and the QoS
experienced by the clients by taking into account the seg-
mented nature of HAS contents in the caching logic. The CC
algorithm takes into account the time structure of the chunks
belonging to the same video object by considering that if a
client is requesting chunk Ci within a HAS session, she
will be very likely to request chunk Cn>i shortly. Therefore
the idea was to give priority in the cache to the chunks that
should be requested shortly given the latest clients’ requests.

This is well adapted to pay-per-view video services as the
end user is motivated to watch the video she paid for, until
the end. This was the simulation setup chosen by authors
in [10]. In contrast, the dataset considered in our present
study corresponds to free or all-inclusive video services and
it shows a very different structure, with most HAS sessions
ending long before the end of the videos. In Figure 7, we
keep only on the 10% most popular videos of the previous
simulation setup, we also keep on the parameters chosen by
authors in [10].
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CC is a tunable algorithm: selecting the appropriate pa-
rameters depends basically on the nature of the traffic to
be cached. We show in Figure 7 that LRU outperforms
CC for the considered parameters. This is due to the fact
that CC supposes that the probability to abort a session is
null. Hence, it highly scores the advanced chunks position
where in the reality most of the clients abort their sessions,
shortly after having started viewing them. Therefore, ad-
vanced chunks position would persist in the cache regarding
their high score which limits the opportunity to the first
chunks of video contents to be cached. This calls for deeper
investigation on how to choose the most suited parameters
for CC in order to ensure a better hit-ratio.

IV. RADIO IMPLICATIONS IN HAS STREAMING

In HAS, client-players try to adapt at best the playback
quality to match the available bandwidth. Authors in [9]
studied throughout experiments the behavior of the buffer
under bandwidth restrictions using open source tools. How-
ever, in real world and in the context of mobile commu-



nication, radio conditions are potentially the main reason
that pushes client to decide on the bitrate to request and to
impact the time needed to deliver chunks to the end users.
We assess this time in our data set, and we find that in 76%
of HAS sessions, the average download time of one chunk
takes less than 10 seconds. However, when chunks are 10
second long, spending an average delay of more than 10
seconds per session to deliver one chunk to the end user,
would certainly turn the client-player into buffering mode.
In turn, this could impact the quality of experience and
triggers the HAS adaptation to lower profiles. In this section
we investigate the radio implications when requesting HAS
sessions. We limit our study only on catch-up video sessions.

Implications with mobile access networks

In our dataset, clients had access to Internet via different
technologies including EDGE, WCDMA (3G), HSPA (3G+),
and, since January 2012, HSPA+ (3G++), which covers
nearly 50% of the overall considered population of end users
during the period of collection. In our dataset, we observe
that 94.6% of the catch-up HAS sessions were streamed over
3G access networks, 4.8% from the EDGE radio access,
while 0.06% of HAS sessions were streamed from both 2G
and 3G access network, indicating that the corresponding
clients were on the move when requesting chunks and
experienced an inter-system handover during their HAS
session. Actually the data transmission performance depends
on multiple parameters, including the user’s distance from
the cell towers, the coding and modulation schemes used
by the users and whether the User Equipment (UE) is
compatible with the mobile access network. For example, a
given UE may be compatible only with the earliest release
of 3G, while being in an area covered by WCDMA and
HSPA; in that case the UE selects the WCDMA network.
All these constraints may influence the QoE and the chunk
download time.

Then, we differentiate streaming HAS contents from
EDGE networks and from 3G radio access networks. In
Figure 8 and 9, we compare each Average requested Encod-
ing Bitrate (AEB) to the corresponding Average Download
Throughput (ADT) of each video session. We then normalize
them to match the scale ranging from 0 to 100 on the x-axis.

ADT =

∑7
profile=0 DTprofile

♯requested profiles per session

such as:

DTprofile =
Downloaded bytes per profile including packet header

Time needed to download the corresponding bytes

AEB =

∑7
profile=0 EBprofile

♯requested profiles per session

such as:

EBprofile =
Downloaded bytes per profile without packet header

♯ chunks per profile * chunk duration

To emphasize the difference between AEB and the cor-
responding ADT of each session, we sort video sessions
according to the difference |ADT − AEB|. In this figure
we define a new metric:

fbuffer =
session duration

♯ chunks per session * chunk duration

if (fbuffer > 1), then the playback was potentially in-
terrupted at least one time during the stream, as if the
time spent in the network to deliver all chunks exceeds the
playing time, this would certainly turn the client-player into
the buffering mode. We show in table IV the average, median
and CoV of all measured ADT and AEB for both 2G and
3G/3G+/3G++ networks with respect to fbuffer. Clearly 2G
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Figure 8. AEB versus ADT in UMTS

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0  10  20  30  40  50  60  70  80  90 100

k
b
p
s

videos sorted according to |AVB - ADT|

AVB in EDGE
ADT in EDGE

(a) fbuffer > 1

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90 100

k
b
p
s

videos sorted according to |AVB - ADT|

AVB in EDGE
ADT in EDGE

(b) fbuffer < 1

Figure 9. AEB versus ADT in EDGE

WCDMA/HSPA/HSPA+ EDGE
fbuffer < 1 fbuffer > 1 fbuffer < 1 fbuffer > 1

ADT(kbps) AEB(kbps) ADT(kbps) AEB(kbps) ADT(kbps) AEB(kbps) ADT(kbps) AEB(kbps)
Average 1087.73 336.061 576.011 329.124 112.528 124.044 88.2743 142.803
Median 916.946 321.571 403.984 256.479 115.954 147.477 84.2004 119.748

CoV 1,5242 2,0078 1,06 1,2742 2,507 1,7403 2,0628 1,3518

Table IV
AVERAGE, MEDIAN AND COV OF ADT AND AEB IN 2G AND 3G

NETWORKS

access network restricts requesting higher presentations as in
average the Download throughput is less than 113 kbps. This
raises the question of the efficiency of the rate adaptation
for regions with limited penetration of high speed mobile
networks and sophisticated smart phones such as developing
countries.



Content providers should give more attention, while set-
ting the Manifest file and define more appropriate pre-
sentations to clients connecting from 2G access networks.
In the collected data set we find that around 74.03% of
sessions streamed over 2G networks experience fbuffer > 1.
This means that these sessions certainly suffer from video
interruptions. However clients with 3G connections exhibit
a better QoE as the requested encoding bitrates are much
higher than 2G.

Besides, in Figures 8 and 9 we observe that when
fbuffer > 1, the requested encoding bitrates are close
and even bypass the download throughput experienced by
clients. Therefore this is a potential cause of buffer deple-
tion and thus a bad quality of experience. However, when
fbuffer < 1, the Download throughput is much higher than
the requested encoding bitrates. We find that the average
download throughput is around 1080 kbps. Therefore clients
are able to request higher quality presentations.

In Table IV, we observe that the CoV of AEB when
fbuffer < 1, which represents 73.43% of HAS sessions
when streaming over 3G access networks, is extremely
high (>2). In that case, clients experience a wide range
of download throughputs as different UMTS releases are
being deployed by the telecom operator in France. Therefore
clients are more likely to request chunks from different
profiles. We provide deeper analysis on how client requests
different qualities of HAS contents in Section V.

V. PROFILES IN HAS
A. Distribution of requested profiles in HAS sessions

Figure 10(a) shows the distribution of the number of
visited profiles during the HAS sessions from the collected
dataset. Almost 80% of catch-up TV HAS sessions visited
only two different profiles, 40% never switched to a different
profile. This is largely due to the significant proportion of
very short catch-up TV sessions as shown in Figure 3(a): the
HAS session is ended by the user before any HAS adaptation
happens. This phenomenon is even more pronounced in
the case of the live TV HAS sessions. There is no HAS
adaptation for almost 60% of the live TV HAS sessions,
thus 20% more than in the catch-up TV HAS sessions.
This is most probably due to the aforementioned specific
behavior of the users watching live TV: they access to a
TV channel without necessarily knowing what is currently
broadcasted, and they need a few seconds to decide whether
to keep or stop watching it. Previous studies estimated that
the delay between an event that triggers HAS adaptation
and the effective transition to another representation level
is about 14 seconds [11], which is largely superior to the
time needed by the user to recognize the TV program and
to decide to stop watching it. Therefore these clients abort
their sessions before any transition gets triggered.

Figure 10(b) depicts the requests’ distribution per profile
respectively for the live TV HAS sessions and for the catch-
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Figure 10. Number of visited profiles and profiles selection during HAS
sessions

up TV HAS sessions. First, we note that the sum of the
fractions of the requests as per the 8 profiles is higher than
one (both in the cases of the live TV HAS sessions and
catch-up TV sessions), since, as shown on Figure 10(a),
several profiles are visited during a significant part of the
HAS sessions (40% of the live TV HAS sessions and 60%
of the catch-up TV HAS sessions). We also observe that
the clients’ requests are more concentrated in profiles 2,
3 and 4 for catch-up HAS sessions. However, there are
some significant differences between the live and catch-up
TV HAS sessions. The proportion of live TV HAS sessions
visiting profiles above profile 3 is marginal. This calls for
deeper investigations on how to best manage the specificities
of live TV HAS sessions in a mobile context, in the content
preparation process (at the time the chunks are generated
and the manifest files, updated dynamically) as well as in
the delivery process either for Live or catch-up sessions, for
example with specific caching strategies contents and for the
most frequently visited profiles (i.e. profiles 2 and 3 for Live
sessions and 2, 3 and 4 for catch-up sessions).

Finally, for catch-up HAS sessions, profiles 5, 6 and
7 corresponding to the encoding bitrates higher than 600
kbps, are rarely visited. The most probable reason for this
behavior is that most of TV broadcasters set a range of
encoding bitrates that is less than 600 kbps. However with
an HSPA or HSPA+ connection, clients could be eligible
to request such profiles. Besides, Figure 8(b) shows that in
an important number of sessions, clients exhibit a download
throughput higher than 600 kbps (profile 5). We believe that
adding higher profiles within the manifest file with higher
encoding bitrates would not necessarily cause performance
degradation at the client side especially with the deployment
of the LTE technology and with the on-going improvement
in the computing capabilities at the client devices. At this
time, we expect that this will become more challenging for
the service providers as to deliver contents with such large
ranges of encoding bitrates.



Nchunks
/session

Nchunks
/profile 0
/session

Nchunks
/profile 1
/session

Nchunks
/profile 2
/session

Nchunks
/profile 3
/session

Nchunks
/profile 4
/session

Nchunks
/profile 5
/session

Nchunks
/profile 6
/session

Nchunks
/profile 7
/session

Max 347.42 35.92 189.34 198.63 174.60 215.77 83.51 111.46 20.43
Average 58.40 4.25 23.88 29.29 12.77 45.19 20.88 13.77 6.92
Median 41.43 2.24 10.14 20.64 5.93 31.26 16.35 7.7 5.32
CoV =
σ(deviation)

µ(mean)

1.03 0.53 1.21 1.15 1.56 0.96 0.74 0.96 0.55

Table V
BREAKDOWN OF NUMBER OF CHUNKS BY SESSION

B. Sojourn time per profile

In this part, we only focus on the catch-up TV HAS
sessions, as we capture a significant variation in requested
profiles: Client requests are distributed within several bi-
trates, unlike Live sessions where chunks requests belong
most probably to either profile 2 or 3.

In Table V, we show the breakdown per profile of the max,
mean, average and Coefficient of Variance (CoV) of number
of chunks per video content and relative to each profile. We
only considered the 17% of most popular videos, as they
account for more than half of the overall requests. More
precisely, we focus on videos that were requested at least
500 times during the measurement period.

The mean and median requested number of chunks cor-
responding to profile 4 is the highest one with CoV lower
than one. This means that clients request approximately the
same number of chunks when visiting this profile and that
the corresponding video bitrate of their profile matches well
the bandwidth and CPU capabilities of the clients. However,
Content providers may also restrict the encoding ranges so
that clients would see profile 4 as the highest available
profile in the manifest file.

We also observe that although profile 3 is highly requested
by clients, as shown in Figure 10(b), we find that the average
and median requested number of chunks by session in profile
3 is low comparing to profiles 2, 4 and 5. This means that
usually clients do not sojourn for a long time in profile
3. They rather decide to switch to other profiles, mainly
profile 2, 4 or 5. The reason behind this is that in HLS, the
first requested profile is preset in the manifest file [12]. All
clients requesting a given video start by requesting the first
chunk in that preset profile. We show in Table VI that more
than half of video contents within our dataset are preset
with profile 3 as a Starting Profile (SP). Therefore, when
requesting these videos, clients’ players start buffering the
first chunks (typically 3 chunks) from that preset profile and
then decide to switch to other profiles.

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Stats 4.4% 0.6% 27.98% 52.72% 4% 9.7% 0.6% 0%

Table VI
BREAKDOWN OF STARTING PROFILE SPi

This is confirmed in Table VII, which shows the break-
down of the Number of Visited Profiles (VP) during a HAS
session assuming its Starting Profile is SPi. In this table,
more than 80% of the HAS sessions for which the starting
profile is preset to 3 visit several other profiles.

SP0 SP1 SP2 SP3 SP4 SP5 SP6

1 VP 43.51% 21.58% 28.99% 19.93% 62.21% 55.4% 79.3%
2 VP 26.85% 53.02% 49.05% 59.21% 28.09% 26.59% 11.2%
3 VP 20.15% 18.6% 18.26% 14.57% 7.82% 12.81% 4.85%
4 VP 6.37% 6.5% 3.4% 6.09% 1.5% 4.6% 3.3%
5 VP 2.12% 0.3% 0.3% 0.2% 0.4% 0.6% 1.4%

Table VII
BREAKDOWN OF NUMBER OF VISITED PROFILES (VP) ASSUMING

STARTING PROFILE SPi

To conclude this section, the key outcomes of this analysis
per profile are the followings:

• In HLS, the first requested profile is preset in the
manifest file; in our trace about 80% of HAS sessions
start with either Profile 2 or 3 (as shown on Table VI).

• While Profile 3 is among the most-frequently preset
profiles in the manifest files, the sojourn time in Profile
3 is relatively short. The clients rather decide to switch
quickly to other profiles, mainly profile 2, 4 or 5.

• In contrast, when clients start with the highest profiles
( > 3), they rarely make transitions. They experience
the best and most adequate bitrate level during their
whole HAS session. For example, 79.3% of the catch-
up sessions starting at Profile 6 show no transition.

VI. RELATED WORKS AND CONCLUSION

Most of the related works were already cited through
the analysis and comparisons that we made in the previous
sections. We briefly summarize here the other most rele-
vant related works. In [13], authors analyzed a large-scale
Chinese TV service. They analyzed channels popularity and
compared the access frequencies of mobile TV channels
against IPTV systems. In contrast, we have collected all
HAS traffic of all TV service providers within France and
we delved the content popularity at the chunk level. In [14],
authors made comparison between the three existing types
of streaming: Progressive download, Progressive download
with byte range, and HLS. However they did not provide



a thorough analysis about the profile-based analysis as we
reported in our present paper.

One of the main lessons of this analysis is that caching
in the network all bitrates of all chunks of all videos is
clearly not the best solution. This is particularly true for
the considered content is subject to flash crowds, where the
cache will be under a heavy workload. We started to show
the considerable gain in update-ratio and per chunk position
hit ratio when setting the appropriate thresholds. In future
works, we plan to concentrate on the adaptation process
by tracking the exact timestamp of clients when switching
between profiles in each session. We will also study the im-
plication of such transitions on the cache eviction behavior
and propose novel caching policies tailored for the HTTP
bitrate adaptation.
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