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Abstract—Cellular networks have witnessed the emergence
of the HTTP Adaptive Streaming (HAS) as a new video delivery
method. In HAS, several qualities of the same videos are made
available in the network so that clients can chose the best
quality that fits their bandwidth capacity. This has particular
implications on caching strategies with respect to the viewing
patterns and the switching behavior between video qualities. In
this paper we present analysis of a real HAS dataset collected
in France and provided by the country’s largest mobile phone
operator. Firstly, we analyse the viewing patterns of HAS
contents and the distribution of the encoding bitrates requested
by mobile clients. Secondly, we give an in-depth analysis of the
switching pattern between video bitrates during a video session
and assess the implication on the caching efficiency. We also
model this switching based on empirical observations. Finally,
we propose WA-LRU a new caching algorithm tailored for HAS
contents and compare it to the standard LRU. Our evaluations
demonstrate that WA-LRU performs better and achieves its goals.

Categories and Subjects Descriptors:
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General

General Terms:
Measurement, Design

Keywords:
HTTP Adaptive Streaming, HTTP Live Streaming, Microsoft
Smooth Streaming, Live, Catch-up TV, chunks, profiles, LRU.

I. INTRODUCTION

Cellular networks have recently experienced a tremendous
growth in data traffic. In [1], Cisco reported that mobile video
traffic will reach 11.2 exabytes per month by 2017. This
suggests that mobile streaming services will soon dominate
the mobile communication landscape. Hence, ensuring a fast
and a reliable content delivery accounting for users’ network
constraints is key to this evolution. HTTP Adaptive bitrate
video Streaming (HAS) seems to solve this challenge since
several encoding bitrates of the same content are provided
to the mobile audience to sustain streaming experience and
hence to achieve the highest quality of experience. In HAS,
after generating several presentations of the same content, each
presentation is segmented into smaller parts -called chunks
or segments- and usually varies between 2 to 10 seconds
length. When a user requests a video content, the hosting
server sends back to the client a formalized description of the
media presentation, named manifest file or Media Presentation

Description (MPD), depicting all available bitrates of the re-
quested content. The MPD enables the client-player to choose
the quality that matches best his/her requirements, network and
device capabilities.

HAS is widely used in mobile TV industry. Usually, TV
broadcasters delegate to CDNs and to streaming servers the
video segmentation process and to generate the adequate man-
ifest file. CDN providers and Telcos are the most concerned
to ensure a reliable and fast end to end delivery between
users and servers. Therefore, studying HAS properties from
an operator standpoint enables to accurately understand the
clients’ behavior and to provide guidelines to design adequate
caching strategies tailored for HAS. As important as it is, this
scope is not yet as well studied by the research community as
others are (e.g. User Generated Content [2] or IPTV systems
[3]). In this paper, we highlight the main features of HAS, in
particular, we investigate:

• The behavior of mobile clients when requesting HAS
contents for both live streaming and on-demand video
streaming: Which laws best model the requested
number of chunks during HAS sessions? How this
behavior would be affected by radio constraints? What
are the encoding profiles mostly requested by mobile
clients? This clearly can be leveraged by caching
mechanisms.

• The switching between video qualities during HAS
sessions: How frequently mobile clients switch be-
tween the encoding bitrates during the session? How
HAS affects the performance of proxy-caches? How
can we characterize the switching pattern between bi-
trates (i.e. sojourn time per profile, start-up bitrate,...)

• We propose WA-LRU a novel caching mechanism that
exploits the segmentation inherent to HAS and we
validate the improvements throughout simulations.

The rest of the paper is organized as follows. Section II rep-
resents our dataset. In Section III, we study clients’ behavior
when requesting HAS streams. In Section IV we analyze the
switching between video qualities and assess the implication
of HAS on caching efficiency. In section V, we propose an
effective caching algorithm that leverages the time-structure
relationship of video chunks within a stream. In Section VI,
we describe some related works and conclude the paper in
Section VII.
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Fig. 1. End-to-end delivery: Devices and hosting servers for both catch-up contents and live channels

II. THE DATASET OVERVIEW

Data collection: We have connected a server-log sys-
tem at a Gi interface of one of the GGSNs deployed by
the operator in France. We captured a total of 1.763.516
adaptive streaming session. We logged exactly a 92.595.115
HTTP GET request for each chunk requested. In our study,
the considered GGSN serves a 230 NodeB/BTS. This area is
covered by 3G/HSPA/HSPA+ and 2G (EDGE) radio access
networks and served 246.913 unique active clients during the
measurement period. The data collection was conducted over a
period of 9 weeks from November 7th 2012 until January 9th

2013, involving mainly Apple HTTP Live Streaming (HLS)
and Microsoft smooth streaming sessions (HSS). However, we
limit our analysis on HLS sessions since they form more than
99% of HAS sessions in our dataset.

Content types: HTTP adaptive streaming is mainly
used by Over-The-Top TV companies. Telecom companies,
on their side, offer their subscribers the TV-service as a free
value-added service. Our dataset mainly contains:

• Live TV sessions, where clients watch live TV;

• Catch-up TV sessions, where TV content providers
allow clients to replay a set of videos previously
broadcasted in live. In our dataset, we observe that
around 76% of HAS sessions corresponds to Live
streaming sessions, the rest corresponding to catch-up
TV.

Figure 1(a) shows that 99% of the HAS sessions are
streamed using IOS based devices. IPhones’ IOS versions
are ranging from V 4.0 to V 6.1, IPads’ IOS versions are
ranging from 4.2.1 to 6.0.2. However, minority of sessions are
streamed from Android and Windows phone-based devices.

Catch-up hosting servers: Figure 1(b) shows that the
domain wat.tv is the most frequently requested domain name
(25% of client requests) by mobile clients when requesting
catch-up video contents. wat-tv is a TV service provider
that hosts catch-up videos of most of the local French-TV
broadcasters. Other TV channels delegates to world wide
CDNs to deliver their contents on their behalf. For example:
"vod-flash.canalplus.fr" CNAMES Akamai servers. Other TV
companies also play the role of content service providers
(CSPs) by using their own streaming infrastructure such as
the domain cdn.m6web.fr.

Live streaming servers: Figure 1(c) shows that 75%
of live HAS sessions are streamed from servers with domain
name orange.fr: This means that subscribers usually access
live TV channels through the Orange service. Orange provides
streaming servers to enable local TV stations to broadcast
their contents to mobile clients. The domain chunk-output-
1.live.tv-radio.com is the second most requested domain (7%
of client requests) which CNAMES Akamai servers to deliver
live contents.

Nbr iof profiles 1 2 3 4 5 6 7 8
percentage 17% 22% 32% 13% 7% 4% 4% 1%

TABLE I. PERCENTAGE OF AVAILABLE PROFILES

Data processing: we identify a session by the first
HTTP-GET request of the first chunk for which the URL
address ends either with a .ts for a HLS stream, or with a .ism
for a HSS stream. Each HAS session corresponds to the set of
chunks sent to the associated client over a period of time. To
perform our analysis, our logging system captures all packet
headers of HAS streams which contain useful information,
such as the packet size and sequence number. All information
is aggregated per TCP connection and exported into a database,
from where they are analyzed. Each persistent-TCP connection
corresponds to one downloaded video segment. This means
that the number of downloaded chunks during one session is
equal to the number of persistent TCP connections established
between the server side and the end-user over a period of
time. The encoding schema of the different profiles may differ
among video contents since each of the TV service providers
may define his own range of encoding rates.

Figure 2(a) shows the distribution of the encoding profiles
of all catch-up contents within the data-set. We observe that
most of the defined encoding profiles are below 1000 kbps. In
Table I, we show the proportion of number of the available
profiles for catch-up TV contents requested during the mea-
surement period. In Figure 2, we estimate the average distance
in kbps between the encoding profiles defined for each catch-
up video:

distance =

∑Nb profiles-1
i>1 (profilei+1-profilei)

Nbr profiles

We observe that in 95% of catch-up contents, the average
difference between the encoding profiles is higher than 100



kbps. For this reason and since we are interested in aggregated
statistics to draw conclusions about HAS characteristics, we
define a scale of 8 different profiles (see Table II) that will be
used to map each requested chunk from each HAS session to
the appropriate profile (P).
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Fig. 2. Profiles presentation used for catch-up contents

We assume that the encoding rate is equal to the volume
of data contained in the packet payloads per one chunk and
divided by the chunk’s duration, which we get from the
manifest file relative to each session. The measurement of the
encoding rate of each chunk is initiated the time we capture
the HTTP-200 response from the hosting server. When the
download ends, we map the encoding rate to the corresponding
profile.

Profile i Encoding bitrate (kbps)
Profile 0 (P0) < 50
Profile 1 (P1) [50-150[
Profile 2 (P2) [150-280[
Profile 3 (P3) [280-420[
Profile 4 (P4) [420-600[
Profile 5 (P5) [600-1000[
Profile 6 (P6) [1000-2000[
Profile 7 (P7) ≥ 2000

TABLE II. PROFILES

Fields description: We have extended our previous
work [2] (to be published soon) to give a particular interest
to the switching between bitrates on large scale, as well to
study time specificity of the transitions. To achieve this level
of granularity, we proceed as follows: In each bitrate-switching
we create a new log entry, in which we record the timestamp
relative to this transition and the newly visited profile (Pi). The
following data model shows in a tree hierarchy the information
contained in each log-entry:

Sessionid

Session Start (in timestamp).
URL
Cumulative number of requested chunks in session id.
Current profile Pjϵ[0..7].
Next profile Pkϵ[0..7],k ̸=j (when a bitrate-switching

happens).
Cumulative number of requested chunks within profile

Pjϵ[0..7].
Cumulative Bytes downloaded in profile Pjϵ[0..7].
Cumulative time to deliver all requested chunks in

profile Pjϵ[0..7].

III. ANALYSIS OF CLIENTS’ BEHAVIOR

A. Distribution of requested chunks per session

We are now interested to analyze the viewing pattern
of mobile clients. In HAS, video contents are segmented in

chunks and requested independently therefore this gives the
opportunity to study the behavior of clients at chunk level.
Figure 4 shows the distribution of the number of requested
chunks per catch-up TV and Live HAS sessions.

Using the maximum likelihood (MLE) estimation, we
determined that the Log-normal (µ, σ1) distribution is best to
match the requested number of chunks for both live and catch-
up TV video sessions for the first 40 chunks per session. Log-
normal distribution is ubiquitous to describe several mobile
communication patterns such as the call holding times [3],
the file data transfer in the mobile networks [4]... It once
again fits well the behavior of clients when streaming HTTP
adaptive contents for the first 40 chunks per session. Then, the
generalized pareto distribution (GPD (k, σ2, θ)) best models
the tail observed when the number of chunks exceeds 40
chunks per session. Pareto distribution is well known to model
long-tails, commonly used to describe the non-popular video
contents [5]. In our case this indicates that few sessions
request advanced chunks position. We show in Table III, the
parameters of both log-normal and GPD distributions used to
model the requested number of chunks per session. This is
goes beyond the characterization that we made in [2] where we
assumed that log-normal law may simply model the requested
number of chunks. However, the long-tail needs a sharper
distribution which is best modeled by pareto law. Combining
Log-noraml and GPD, we may find a fine-grain model to fit
the real-world access pattern of video chunks.
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Log-normal (x ≤ 40) Generalized pareto (x > 40)
params µ σ1 k σ2 θ

catch-up 1.75145 1.01198 0.034218 118.55 40
live 1.87679 1.00993 0.412856 78.5267 40

TABLE III. EMPIRICAL MODELS

In the case where the chunks are delivered by caches or
edge servers in the case of CDNs, such a tailed profile would
degrade the caching efficiency especially in the case of a
limited storage capacity and the use of a reactive replacement
strategy. From the cache standpoint, requesting such advanced
chunks position within a stream would compete the most
requested chunks within the cache although few of clients will
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Fig. 3. Distribution of requested profiles with respect to the chunkindex for both catch-up and live video streaming

effectively reach that stage of video streams. This becomes
more critical when the cache adopts the LRU (Least recently
used) algorithm, where these chunks will be top-ranked the
time they will be requested, thus pushing down chunks that will
probably get requested in the near future. In the last section of
this paper, we estimate the potential benefit of not caching the
chunks forming the tail when deploying a proxy-cache between
the clients and the hosting server.

B. Profiles in catch-up and live sessions

A key advantage and characteristic of HTTP Adaptive
Streaming is the possibility for the users to dynamically change
the encoding bitrate of the video content as a function of the
state of the network. Figure 3(a) shows the fraction of sessions
in which profilei (Pi) has been requested. First, we note that
the sum of the fractions of the requests as per the 8 profiles
is higher than one (both in the cases of the live TV HAS
sessions and catch-up TV sessions), since clients may switch
between profiles during the same session. We also observe that
profile 3 was requested in 63% of catch-up sessions, followed
by profile 2 (60%), followed by profiles 4 and 5 (52% of catch-
up sessions). However, we observe a significant difference
between the live and catch-up TV HAS sessions. We observe
that Profile 2 figures in more than 80% of live HAS sessions.
The rest of profiles are less requested in live TV HAS sessions.
This calls for deeper investigations on how to best manage the
specificities of live TV HAS sessions in a mobile context, in
the content preparation process (at the time the chunks are
generated and the manifest files being updated dynamically)
as well as in the delivery process either for Live or catch-up
sessions, for example with specific caching strategies contents
and for the most frequently visited profiles.

In Figure 3(b) and 3(c), we bin chunkindex every 50 chunk
over all HAS sessions, where the index ranges from 1 to the
last requested chunk in the session and points to the position
of the chunk within the stream. We show in these figures the
proportion of requested profiles at each binned chunkindex.
Interestingly, In Figure 3(b), We observe that although profile
3 figures in 63% of catch-up sessions (as shown in Figure 3(a)),
we find that its proportion is around 30% for the first requested
chunk, then it consistently falls below 20% for chunkindex>50.
This will be further investigated in the next section. We
also observe that when requesting the first chunk of catch-up
contents, clients mostly select lower profiles. We observe that
for chunk1, 82% of catch-up sessions, clients request profiles
lower than profile 4. This is explained such as, the MPDs are

configured in a way to make clients start always buffering
lower video bitrates to reduce at best the delays required at
the joining-phase (loading time). Then, they rather decide to
switch to higher profiles so far they experience a high available
bandwidth. This is well illustrated in Figure 3(b), since profiles
higher than P3 accounts for more than 60% of clients’ requests
when chunkindex≥51. However, we observe in Figure 3(c) that
for live sessions, profile 2 is uniformly and mostly selected
over all chunkindex.

C. Time constraints and clients’ behavior

In HAS, client-players try to adapt at best the playback
quality to match the available bandwidth. Authors in [6]
studied throughout experiments the behavior of the buffer
under bandwidth restrictions using open source tools. However,
in real world and in the context of mobile communication,
radio conditions are potentially the main reason that pushes
clients to decide on the bitrate to request.

Figure 5 shows that the profile selection is potentially
correlated to the Download Throughout (DT) experienced by
the clients. In Figure 5, we bin DT every 500 kbps, we observe
that -when DT is equal to 500 kbps- 82% of requests are to
download profiles equal or below P3. However the distribution
of profiles equal or higher than P4, is superior to 60% when
clients experience DT > 2Mbps.
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So far, we study the user-engagement [7] by correlating
the average playing time across all sessions as a function
of the experienced average delay while delivering video
chunks. The playing time in our case corresponds to the
length of data that was downloaded during a session (i.e.
nb of requested chunks per session*Chunk_duration). To do
so, we define the delay metric (D) measured for each session,



which captures the average delivery time of one chunk per
session divided by the average chunk duration per session:

D = T̃chunk

Chunk duration

If (D > 1), then the playback was potentially interrupted
at least one time during the stream, as if the time spent in the
network to deliver one chunk exceeds the chunk duration, this
would certainly turn the client-player into the buffering mode.
In Figure 6(b), we bin D in units of 0.2, and evaluate the
playing time as a function of D. We stopped at D = 6, since
as shown in Figure 6(a), the number of sessions in which D
is superior to 6 is handful and thus not enough representative.
For catch-up TV contents, Figure 6(b) shows that the average
playing time is exponentially distributed as a function of D.
When D = 1, we observe that the user-engagement decreases
with a ratio of 3

4 , and still decreases as far as D becomes
higher. However, surprisingly, for live sessions, we observe
that the average playing time is still higher for D > 1 and
does not show a clear pattern as the case for catch-up sessions.
One possible reason is that when D > 1 clients might let their
live session open while doing something else and waiting until
the stream recovers.
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Fig. 6. Impact of the Delays in chunks delivery on the playing-time

We show in Figure 7(a) that when D < 1, clients are
more likely to maintain their catch-up sessions active. We find
that in 13% of catch-up sessions clients request at least 100
chunks. However, clients spend less time viewing a video when
D > 1, mainly due to the video interruptions. We find that
only in 2% of HAS sessions, clients request more than 100
chunks. We also observe that 50% of HAS sessions are aborted
after requesting only 3 chunks per session when D > 1. This
indicates that while experiencing long delays in the joining-
phase (i.e. D>1), we observe that one out of two sessions is
aborted from the beginning. While delivering video chunks, it
is worth to give priority to the first chunks of video contents
to be served as fast as possible to guarantee a smooth joining-
phase to the end-users. Our algorithm WA-LRU -which we
represent in the last section- takes up this challenge since it
gives priority to the first chunks to be cached. For live sessions
(Figure 7(b)), we observe that in 15% of live sessions, clients
request more than 100 chunks per session when D < 1, while
only 3% of live sessions reach 100 chunks per session when
D > 1.

IV. SWITCHING BETWEEN PROFILES

From now on, we concentrate only on catch-up sessions,
since we observe a wide variety of requested profiles in catch-
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Fig. 7. CDFs of number of chunks per session when D < 1 and D > 1

up sessions. However, this is not true for live sessions where
clients tend to request one particular profile which is P2.
Hence, this makes the studies on the switching between bitrates
and implications on caching-efficiency less significant in the
live case, since clients do not adapt their bitrates as frequently
as we observe for catch-up sessions.

A. Switching behavior

We show in Figure 8(a), the maximum, minimum, average
and median number of transitions when requesting N chunks
per session. We stopped at 300 chunks per session since
minority of sessions reach effectively that stage of catch-up
sessions (around 25 catch-up session, see Figure 8(b)), thus we
assume that it is not enough representative. Figure 8(a) shows
that whatever the number of requested chunks per session, the
minimum number of transitions during a session is always 0.
This indicates that in these sessions, clients never switched
between bitrates either because the content provider might
have defined a single video bitrate for the considered catch-up
content, or clients may experience a high available bandwidth
that prevented them from making any transition during the
session. In the same figure, we also observe that clients start
making transitions after requesting at least 2 chunks. This is
a property of HLS where clients start buffering lower profiles
before moving to higher ones in order to guarantee a smoother
loading time. We also observe that in average, the number
of transitions during a HAS session is bounded between
[1/6, 1/2] of the total requested chunks per session which is
considered important and may adversely affect the end-to-end
quality of service. We believe that switching between bitrates
might be an efficient solution to sustain the video stream by
allowing the clients suffering from resources scarcity to switch
to lower profiles. However, assuming that we have a cache-
server as a middle-box between clients and content-hosting
servers, we show in the following that switching from one
quality to another may affect the performance of the cache.

B. Impact of HAS on caching performance

To assess the implication of the switching between profiles
on caching efficiency, we conduct a 15-days trace-driven
simulation from the data-set and compare the case where
clients are served with a single video quality (e.g. such in
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progressive download) to the case where clients are served
with multi-profiles (e.g. such in HAS). To do so, we assume
we have a cache deployed after the GGSN (i.e. on the same
link where we have fixed the logging system).

For the sake of simplicity, we assume that:

• all chunks are 10 seconds length.

• we only consider the Catch-up TV sessions, since in
Live sessions, chunks are generated on the fly. Hence,
this introduces some complexity on assessing the time
between generating the chunk on the fly, caching it
and the difference in time between clients watching
the same content in live.

• When we use Multi-profiles of the catch-up contents,
we consider the original dataset and format it with
respect to the following encoding profiles: Piϵ[0..7] =
[40, 64, 240, 360, 440, 640, 1840, 2540]kbps.

• When we use Single-profile for all catch-up contents:
we consider that all chunks are encoded at 640kbps
(i.e. P5).

• By default we use LRU as a cache replacement
algorithm since it is largely adopted by CDNs, and
scales well in large networks.

• Clients do not make any jump forward/backward dur-
ing the catch-up session 1.

We evaluate the performance of the cache for different
values of the capacity C such as: C = Γ ∗ S, where S

1Previous studies on video streaming in mobile context show that up to
80% video sessions are without any trick mode (no pause and no jump
forward/backward) [8], [9]
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represents a duration of 200 seconds (20 chunks), typically
a short video-clip. In Figure 9 we assess the hit-ratio when
using both single and multi profiles streaming technologies.
When Γ ≥ 100, we observe that although we have set the
single-profile at 640kbps which is relatively high regarding
the distribution of the requested profiles, we find that using
a single-profile to encode video contents would increase the
cache hit-ratio and may reach up to 15% of difference with
regard to the multi-profile case. This is because some of the
chunks belonging to the same video content are requested in
different video qualities by users, and the cache would see
them as different objects, since they have different URLs.

In most of the related works [10] [11], authors tried to
propose several heuristics to estimate the bandwidth in advance
and to select the appropriate profile. Authors tend to propose
sensitive heuristics, and therefore clients will be so likely to
change their video quality and this is without considering
the implication on the end-to-end delivery chain. Raising the
number of different qualities of the same chunkindex from
the same video content in the network would decrease the
probability to find this chunk within the cache. This is well
illustrated in Figure 9, where using multi-profiles of the same
video content reduces the hit-ratio as comparing to streaming
with a single-profile. As a consequence, clients would be
redirected to the origin server, and hence further delays would
be expected while downloading the video segments, and so
far this would push client-players -that already implements
a reactive adaptive streaming solutions- to trigger more and
more the adaptation mechanism. To solve that, one possible
solution would be to decrease the number of transitions (i.e.
maximizing the sojourn time per profile) during the video
session, while avoiding the buffer depletion and ensuring a
high user-engagement.

C. Markov characterization of the switching between profiles

In the following we study the switching properties between
profiles. To do so, we use Markov chains since they best
describe and model this switching pattern. More precisely we
use a continuous-time markov chain (CTMC), as the switching
between bitrates is time-dependant during a HAS session
(clients remain for a while in one particular profile before
moving for another one), and as we only need to have a
knowledge about the current profile to decide to which profile
we should move next (no history is needed to be kept to decide
to which profile we should move). In this part, we use our



data set to capture empirical distributions to characterize the
CTMC. More precisely, we investigate:

• The sojourn time per Pi∈[0..7]

• The initial distribution π(0) = [πi(0)]

• The infinitesimal generator

• State of the CTMC (π(t)) at instant t > 0

We start to formulate the switching process between pro-
files, and then identify step-by-step, all parameters needed to
feed that model based on empirical observations. Formally, let
t0 be the time where a client decides to switch from profile Pi

to Pj ̸=i in time slot dt, after spending an amount of time Ti

in Pi. We note pi,j the probability to move from Pi to profile
Pj .Then we have:

P{i,j}(dt) = P [(X(t0 + dt) = j|X(t0) = i]

= P [Ti 6 dt] ∗ pi,j
(1)

Sojourn time per profile: µiϵ[0..7]: P [Ti 6 dt] repre-
sents the cumulative distribution when the client sojourn in Pi

a duration Ti < dt . We use MLE estimation to evaluate the
law that best matches the sojourn time in Pi. We find that the
exponential distribution fits the empirical data well. We show
in Table IV, the parameters per each profile.

Profilei exponential µi (seconds)
P0 583.898
P1 865.413
P2 934.798
P3 995.341
P4 1107.89
P5 1088.39
P6 1128.9
P7 1236.49

TABLE IV. SOJOURN TIME DISTRIBUTION

Then using Taylor series (dt− > 0), Eq ( 1) becomes:

P [Ti 6 dt] = (1− e−µi∗dt) ∗ pi,j
= µi ∗ dt ∗ pi,j + o(dt)

This indicates that the transition rate (µi,j) from Pi to Pj

is also exponentially distributed, such as: µi,j = µi ∗ pi,j
The initial distribution π(0) = [πi(0)]: In HLS, The

client begins by retrieving the master MPD file which depicts
the list of encoding profiles proposed by the content publisher.
The media player begins playback with the first bitrate listed
in the master MPD; it is expected that the first bitrate to be
selected is the suggested bitrate of the content publisher [12].
Hence, all clients should start with a preset profile. This is in
adequacy with what we observe in Figure 10. In this figure
we show the percentage of videos in which clients request
the same chunkindex from the same catch-up videos, but
at N different bitrates. We find that for chunkindex=1, all
clients requesting the same catch-up video, start always by
the preset profile in the manifest file (suggested by the content
publisher). Then client-players change the video-bitrate as a
function of the experienced bandwidth. We observe that for the
range chunkindex∈[50..300] (around 99% of HAS sessions, see

Figure 4), 50% of video contents are requested with different
profiles by mobile clients. Based on this, we assess the initial
distribution π(0) = [pi(0)i]i∈[0..7] of the first requested chunk
chunk1 over all HAS sessions, as follows:

π(0) = (0.0029 0.0981 0.3704 0.3473 0.0888 0.0843 0.0082 0)

π(0) shows that in around 81% of sessions, clients start
always requesting profiles lower than or equal to P3, since
clients start always requesting lower profiles to reduce delays
at the joining-phase, then as Figure 3(b) shows, the distribution
of requested profiles for chunkindex>50 is mostly concentrated
between profiles 3,4 and 5.
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The infinitesimal generator: Transition from i− > j:
Let Q = [qi,j ] be the infinitesimal generator of the CTMC we
are characterizing, such as:

q{i,j} =

{
µi,j = µi ∗ pi,j ; ∀ i ̸= j

−
∑j=7

j=0;j ̸=7 µi,j = −
∑j=7

j=0;j ̸=7 µi ∗ pi,j ; i = j

(pi,j) are the coefficients of the transition probability
matrix P from one state i (rows) to the next state j (columns)
(i.e. The moment when the client-player decides to update his
current bitrate from Pi to Pj). Using our dataset we assess P
as follows:

P =



0 0.0997 0.2650 0.2685 0.1784 0.1358 0.0460 0.0066
0.0053 0 0.1533 0.3482 0.2683 0.1753 0.0464 0.0029
0.0036 0.0405 0 0.4237 0.28 0.2034 0.0456 0.0028
0.0021 0.0410 0.2496 0 0.4204 0.2486 0.0339 0.0041
0.0007 0.0192 0.1271 0.3867 0 0.4080 0.0500 0.0079
0.0009 0.0099 0.0817 0.2005 0.4790 0 0.2016 0.0260
0.001 0.0055 0.0303 0.0739 0.1617 0.6060 0 0.1213
0.0004 0.0018 0.0078 0.0160 0.0441 0.2266 0.7031 0


Hence we may infer the state of the CMTC at instant t.

Let π(t) be the distribution of Pi∈[0..7] at t > 0. Since the
time spent within a profile is exponentially distributed, then
we have:

π(t) = π(0) ∗ eQ∗t

π(t) seems to achieve the stationary regime, since intu-
itively from figure 3(b), we observe that when progressing
in the video stream, the distribution of Pi∈[0..7] seems to
be uniform for all chunkindex>50; except the case when the
index is superior to 900, which represents a handful number
of sessions (see figure 8(b)).



V. CACHING HAS CONTENTS

Now we leverage the observation made in section III-A,
and propose a novel caching mechanism -namely WA-LRU
(Workload Aware-LRU)- that gives less priority to chunks with
high indexes to be cached since they are less requested than
the first ones.

A. Presentation of WA-LRU

WA-LRU leverages the segmented nature of HAS contents
and cope with the long-tail caused by video sessions that reach
advanced chunks position. Indeed, chunks forming the long-
tail are subject for cache-eviction when using the native LRU,
since it blindly caches the chunks objects without considering
any property of the content (i.e. popularity, temporal locality
of video chunks within catch-up contents,..). Upon a cache-
miss, the cache will automatically pull the chunk from the
parent-server or origin server, and thus evicts the least recently
requested chunks in the LRU-list: typically chunks forming
the tail or chunks that belong to non-popular contents. WA-
LRU does not consider the popularity criteria of video contents
since it is common that clients tend to request mostly popular
contents. The challenge raised by WA-LRU is to decide
whether to cache or not the recently requested chunk. This
decision is made with regard to the index of the chunk within
the video stream. The most challenging task -that WA-LRU
address- is: how can we map the information we get from
the instantaneous workload on the cache into the decision of
caching or not the requested chunk. We define the workload
-in bytes- on the cache over a period of T seconds as follows:

[W ]T =
∫ t+T

t
encode-rate(t) ∗ chunk-length(t)dt (2)

In Figure 12, we picked one representative week data from
our data set and we plot the workload at a granularity of
one hour (T=3600s). We observe that the workload follows
a strong diurnal pattern. This let us suppose that our caching
mechanism should consider the variation of the workload along
the day (i.e. It should be aggressive at peak workload, and
smooth at low workload).
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Fig. 12. Workload pattern measured by the logging system from 08/11/2012
to 15/11/2012

Under a high workload, a cache -running LRU- would
be so reactive and would evict intensively chunk objects. We
define the parameter R (Reactiveness of the cache) to assess
the bytes’ ratio to be evicted periodically at every T seconds
and C represents the cache capacity.

RT =
[Bytes evicted]T

C =
[W ]T−[Bytes served from the cache]T

C
(3)

RT is sensitive to the diurnal pattern since it depends on
the workload. Under a high workload, RT would increase and
reach its maximum at peak hours. To the end of the paper, we
set T = 10seconds to match it to the chunk length. By doing
so and if we assume that RT=10s is static or varies slightly
at each period T = 10s across the time (we further show that
this assumption could be retained), then if a particular chunk
is being requested at time t0 (This will promote it to the top of
the LRU ranking list), then it will be evicted from the cache if
it would not be requested again for the next t0+10∗floor( 1

RT
)

seconds. For the rest of the paper, we note ∆T = floor( 1
RT

).

To illustrate our purpose, if we suppose that
floor( 1

RT=10s
) = 500, and that there is only one client

requesting video k, and he is currently requesting the 501st

chunk. Therefore, assuming that clients do not use any
trick-mode (jump backward or forward) while watching the
content, then, it would be useless to cache this chunk, since
we are sure in advance that no-client would request that
chunk at least for the next 10 ∗ ∆T=10s = 5000seconds
(before being evicted). Hence, for each chunk which index is
superior to 500, the cache will not cache it.

Since the value of ∆T=10s depends on the workload, hence
it will change across the time (i.e. becomes smaller at high
workload, and bigger at low workload). We then consider the
following weighted moving average method to compute the
value of the threshold periodically at each T=T+10s and to
which we compare each chunk’s index as follows:

{
Th0 = 1

RT=10s

ThT = (1− β) ∗ ThT−10 + β ∗ 1
RT=10s

If Th is lower than the index of the chunk, then this
chunk would not be cached; else it would be cached. β is
used to avoid the instantaneous dramatic variation of RT=10s.
However, in our data set we find that the coefficient of variance
of the workload (Cov = σ

µ ) over the day is equal to 0.7 which
is inferior to 1. This indicates that the variation of R is smooth
across the time. Based on this information and for the sake of
simplicity we set β = 1.

B. How WA-LRU works?

We illustrate how WA-LRU works in the following two
scenarios. chunkAindex represents the position of client A
within the video content, where index ranges from 1 to the
last chunk of the video content (m).

The two following scenarios (Figures 13 and 13) depict
how WA-LRU works:

In Figure 13, client A requests a new chunk which index
is superior to Th; If the chunk is not within the cache, then
while downloading it from the origin server, the cache will not
cache it.

In figure 14, client A and B are requesting the same video
content at the same time. Then, if chunkAindex > chunkBindex+
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∆T=10s, at this time, it would be useless to cache chunkAindex
since after 10∗∆T=10s seconds, it should be evicted and client
B would be redirected to the origin server to download it. If
chunkAindex 6 chunkBindex+∆T=10s, then chunkAindex should
be kept within the cache since in less than 10∗∆T=10s seconds,
client B would reach chunkAindex of the video stream. However
chunkBindex should not be cached since the index is superior
to Th.

C. Pseudo-code of WA-LRU

Let ST=10s = [s0, s1, .., sN ]T=10s be the set of active
sessions updated each T = 10s. si could be assimilated to
a 3-dimension vector such as si = [V ideoid, Chunkid, Pk]i.
In Algorithm 1, we present the pseudo-code of WA-LRU:

• Line 1: updates ST periodically to capture the active
sessions.

• Lines [2-3]: The cache is not full yet and no policy is
applied. So we cache all chunks.

• Line 4: The cache is full and chunks are cached and
evicted with respect to the WA-LRU policy.

• Lines [5-16]: To decide whether to cache schunkid
i

or not. Scenarios presented in V-B depicts well the
mechanism we propose.

• Line 7: By the end of T s, the value R is updated with
respect to the number of bytes evicted from the cache.

Algorithm 1 WA-LRU
Require: ST

1: update(ST )
2: if R = 0 then ◃
3: CHUNK :: CACHE
4: else
5: for i=N; i=1; i- - do
6: for j=N-1; j=1; j- - do
7: if sV ideoid

j == sV ideoid
i then

8: if sChunkid
j + 1

R 6 sChunkid
i then

9: CHUNK :: CACHE
10: else
11: CHUNK :: DONOT CACHE
12: end if
13: end if
14: end for
15: end for
16: end if
17: update(R)

D. Evaluation

We evaluate our algorithm along 3 metrics:

• Average hit-ratio.

• Update-ratio: Ratio of requests leading to update the
list of cached chunks.
Reducing the update-ratio will reduce the amount of
processing time within the cache to update the list
cached chunks. Thus it would be interesting to reduce
this ratio while increasing the hit-ratio.

• Per-chunk hit ratio: Average cache hit-ratio per each
chunkindex of video contents.

We evaluate the performance of the cache for different
values of the capacity C such as: C = Γ[W̃ ]T=10s, where
[W̃ ]T=10s represents the average workload over a period
of T = 10seconds measured along the 15 days from the
trace-driven simulation. We keep on the assumptions that we
introduced in IV-B and we only consider the multi-profiles case
to fit the real-world characteristics of HAS

We observe in Figure 11(a) that, WA-LRU outperforms
LRU when Γ < 50. This means that when the cache avoids
updating blindly the list of cached chunks (especially chunks
forming the tail), therefore, we give more chance to the



earlier chunkindex to persist more within the cache. On the
other hand, we observe in Figure 11(b) that WA-LRU reduces
significantly the update-ratio when Γ < 100. This is due to
the mechanism we have presented: chunks that would not be
requested would not be cached. As a consequence, this relieves
the cache from making unnecessary cache-updates and thus
reduces significantly the amount of fetching and processing
time within the cache. In Figure 11(c), we show the gain in per-
chunk hit-ratio when using WA-LRU against LRU. We show
that for low cache sizes, we may achieve at least a gain of
3% for the 3 first requested chunks of video contents. This
is important for the joining − phase since clients would be
served from the cache rather than from the origin server, and
since this is the most critical phase that impacts the user-
engagement during the rest of the video stream. Moreover we
observe that WA-LRU enhances the per-chunk hit ratio for
most of the advanced chunks position (at the tail) since they
would not be cached, unless if the cache predicts that in the
near future they will be requested (i.e. case of scenario 2:
chunkAindex 6 chunkBindex +∆T=10s).

However, one limitation of our approach is that we can not
predict when clients will abort their sessions. For instance, by
referring to scenario 2 represented in Figure 14, if clients A
and B are watching the same video content, such as:
chunkAindex 6 chunkBindex + ∆T=10s, then WA-LRU will
decide to cache chunkAindex because it considers that client B
will request it before its eviction. However, client B may abort
his session before reaching it. This makes the prediction not
accurate and this explains why in Figure 11(c), when we set
Γ = 2, we observe that the hit-ratio per chunk position might
be higher when using LRU rather than WA-LRU. However, this
is so infrequent as shown in Figure 11(c), and may happens
only for chunks with high indexes.

VI. RELATED WORKS

HTTP Adaptive Streaming has hugely attracted various
TV broadcasters and industries specialized in delivering video
contents. In [13], authors analyzed a large-scale Chinese TV
service provider. They studied the influence of handled devices
on users viewing habits. More specifically, they analyzed
channels popularity and compared the access frequencies of
mobile TV channels against IPTV systems. In [14], authors
provided interesting comparison between the three existing
types of streaming: Progressive download, Progressive down-
load with byte range, and HLS. However they did not provide
a thorough analysis about the profile-based analysis as we have
done. In [15], authors proposed a new caching algorithm that
leverages the segmented nature of HAS contents and gives
priority to the chunks that would be requested shortly given
the latest clients’ requests. In [16], authors proposed iDASH
to assess the benefits of combining the Scalable Video Coding
(SVC) with HAS, and studies the impact on caching efficiency.

All these studies provide complementary insights, yet none
of them has been focusing on the profile based analysis as we
do here. In this paper, we analyze HAS traffic based on real
measurements provided by a large scale European operator.
This enables to have a fine-grained study of user behavior
and mobile access patterns. We further proposed WA-LRU a
new caching algorithm that leverages the observations we have
made on clients’ behavior.

VII. CONCLUSION

We believe that these observations can be leveraged to
provide guidelines for designing and tuning adequate con-
tent delivery systems and mechanisms for mobile networks,
including for content caching logic, as well to model clients’
behavior in that context. We collected the first large and timely
dataset of its kind that allowed us to characterise the switching
pattern and clients’ behavior when requesting HTTP adaptive
streaming contents. Then we ended the paper by proposing an
effective caching algorithm that leverages the time-structure of
video chunks within video contents.
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