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INTRODUCTION

The demand for improved efficiency of aircraft engines places increasingly stringent requirements on the design of turbomachine blades: extreme operating environments, tight manufacturing tolerances and minimal blade / casing clearances are all commonplace in modern aircraft engine designs [START_REF] Peacock | A review of turbomachinery tip gap effects: Part 2: rotating machinery[END_REF]. As turbomachines approach these extremes it is important to be confident of the robustness of a design to its service and safety specifications. The effects of uncertainties become especially important to understand for turbomachines operating in these limits of performance (e.g. [START_REF] Montomoli | Geometrical uncertainty in turbomachinery: Tip gap and fillet radius[END_REF]).

A purely experimental approach is prohibitively expensive and comes too late in the design process, so there is a need for efficient and practical computational models that can predict turbomachine behaviour. The development of such models is mainly limited by two factors:

(1) the possibility of non-linear contact between the blades and the surrounding casing structure, and (2) the uncertainties inherent in the contact properties (e.g. the exact geometry of imperfections or the constitutive law of the contact itself).

The presence of non-linearities precludes the use of well-developed linear methods. The two dominant alternatives have their own limitations: case-by-case transient analysis [3] can be prohibitively slow for complex systems, and methods for approximating periodic solutions such as the harmonic balance method [START_REF] Salles | Dynamic analysis of fretting-wear in friction contact interfaces[END_REF] can suffer problems with convergence and accuracy for non-smooth nonlinearities such as blade / casing contact [5]. In order to account for uncertainties a Monte Carlo based approach is usually employed [6] which substantially increases an already significant computational load.

There are a wide variety of methods available for modelling uncertainty, which fall into two broad categories: probabilistic and non-probabilistic (e.g. [7]). Probabilistic methods typically characterise unknown quantities in terms of a probability density function (either an assumed distribution or empirically estimated). The effect of these unknowns are propagated to the system outputs, which for non-linear systems necessitates a computationally expensive Monte Carlo analysis. The computational load can be reduced by astute choice of the random variable samples (e.g. importance sampling [START_REF] Schuëller | A critical appraisal of methods to determine failure probabilities[END_REF]), but this is nevertheless a costly approach. Nonprobabilistic methods typically represent uncertainties by allowing parameters to be defined in terms of a range of values, e.g. by fuzzy arithmetic [START_REF] Massa | Fuzzy vibration analysis and optimization of engineering structures: Application to Demeter satellite[END_REF]. Again, to propagate these uncertainties to the desired system outputs requires calculating the full non-linear response for a large number of cases, which can be prohibitively slow.

The above methods are typically used to handle 'data' or 'parametric' uncertainty: unknown quantities within a chosen model. However, it is often the case that the model itself is uncertain: for a turbomachine blade the contact law and geometry is uncertain. For an interesting discussion on 'model' and 'data' uncertainty see Legault [START_REF] Legault | Physical consequences of a nonparametric uncertainty model in structural dynamics[END_REF].

In this paper an approach is presented based on an adaptation of anti-optimisation [START_REF] Elishakoff | Optimization and anti-optimization of structures under uncertainty[END_REF]. In its usual form, anti-optimisation is used to seek the worst case response of a structure using a non-probabilistic representation of uncertain parameters. The method has also been used to seek the worst case response of a building due to uncertain loading [START_REF] Pantelides | Convex Model for Seismic Design of Structures-I: Analysis[END_REF] with bounded excitation energy. This study adapts the method to model both 'data' and 'model' uncertainty associated with the non-linear contact and applies it to the vibration analysis of a turbomachine blade undergoing blade / casing contact.

The paper is organised as follows: the chosen test system is first described, followed by an overview of the adapted anti-optimisation approach. A benchmark time-marching model is then presented, which allows validation by a Monte Carlo study. The method is then used to analyse the worst-case performance of a blade design in order to demonstrate how the proposed approach could be incorporated into the design phase of a turbomachine. Finally, conclusions are presented that highlight the strengths and weaknesses of the proposed method.

MODELLING

Note: for the sake of confidentiality, all frequencies are normalised with respect to the first eigenfrequency of the blade at rest.

This study focuses on the dynamic analysis of a single blade from the last stage of the low pressure compressor of an aircraft engine as illustrated in Fig. 1.

Casing profile

Non-linear contact is assumed to be induced by a misalignment between the casing structure and the blade shaft. This results in a nominal clearance profile c as a function of angular displacement around the casing θ:

c (θ) = c 0 cos(θ) + c 1 , (1) 
where the constants are chosen to be c 0 = 1 mm and c 1 = 0.95 mm. Figure 2 shows the clearance profile as a function of θ for a smaller value of c 1 for the sake of clarity. Later in this study, an ensemble of randomly generated casing profiles will be considered.

Blade

The axis of rotation of the blade is perfectly rigid. The blade is modelled by a finite element mesh with approximately 52,000 degrees of freedom (DOFs), and is clamped around its root in such a way that the disk dynamics are also neglected. These simplifying hypotheses are justified by experimental observations made in [START_REF] Millecamps | Influence of thermal effects during blade-casing contact experiments[END_REF].

For this initial study it is assumed that contact can only occur at the leading edge (LE) and at the trailing edge (TE) of the blade tip as depicted in Fig. 1. Also, friction is neglected meaning Because of the very large number of DOFs, direct time integration of contact simulations would lead to cumbersome computation times. As a consequence, the Craig-Bampton [START_REF] Craig | Coupling of substructures for dynamics analyses[END_REF] component mode synthesis method is used to reduce the number of DOFs of the blade model. Such a method retains the physical contact nodes, avoiding costly mappings between the finite element and the reduced spaces for contact treatment. The final reduced model of the blade features 87 DOFs and the first twenty free vibration modes of the blade are accurately obtained (eigenfrequency error is less than 1 % with respect to the values obtained with the full finite element model).

The first two modes of the blade are depicted in Fig. 3. This blade design has been used for the simulation of blade/abradable coating interaction in [3]. It was found that it is particularly sensitive to blade/abradable coating interaction around several critical frequencies. The intention here is to use the anti-optimisation method to explore whether this behaviour is predicted for uncertain contact conditions, without using costly time integration simulations over the rotational frequency range.

Forced response

It is useful to describe the linear dynamics of the blade in terms of a transfer function matrix relating displacements u i and forces f i at the contact nodes:

         u r 1 u θ1 u z 1 u r 2 u θ2 u z 2          = G(ω)          f r 1 f θ1 f z 1 f r 2 f θ2 f z 2          , ( 2 
)
where subscripts r, θ, z denote the radial, lateral and axial components of displacement or force, and 1, 2 respectively identify the leading edge and trailing edge contact nodes.

The transfer function matrix G(ω) is readily computed from the reduced mass, stiffness and damping matrices (M, K, D respectively) of the reduced order model. Figure 4 shows two example transfer functions G r 1,r 1 (ω) (blue) and G r 2,r 2 (ω) (cyan), which are the driving point responses in the radial direction at the leading and trailing edge contact nodes. The first bending mode is identified by the dashed line at ω/ω 1 = 1 and the torsion mode occurs at ω/ω 1 = 4.1 (see Fig. 3). It can be seen that the radial compliance of the trailing edge is generally greater than the leading edge for low frequencies (below 5 kHz). Although the operating blade rotation frequencies are only in the range ω 1 /20 to ω 1 /2, impacts with the casing structure excite high frequency blade dynamics.

APPLICATION OF ANTI-OPTIMISATION FRAMEWORK

Method summary

The blade of interest is illustrated in Fig. 1 and non-linear contacts may occur at the leading and trailing edge. An output metric is denoted M, chosen on the basis of the desired output from predictions. Rather than to specify a constitutive law for the non-linearity stemming from contact, the model can be formulated as a constrained optimisation problem: seek the worst metric M by varying the non-linear forces as if they were independent external loads, subject to constraints which capture basic properties of the non-linear behaviour that are known. Formally:

Maximise: M(f 1 , f 2 ) subject to: g(f 1 , f 2 ) = 0 h(f 1 , f 2 ) ≤ 0, (3) 
where M is a scalar metric, f i is the non-linear force vector on contact nodes i (i = 1, 2 for this test system), g is a vector of equality constraints and h is a vector of inequality constraints.

In the following discussion, the appropriate choice of M, g and h will be considered. The focus of this paper is to develop appropriate metrics and constraints: the optimisation itself is solved using the Sequential Quadratic Programming algorithm of Matlab's standard optimisation function fmincon [START_REF] Nocedal | Numerical Optimization[END_REF]. Development of optimisation algorithms falls beyond the scope of the present study.

In its typical form, anti-optimisation seeks the worst case response by varying model parameters subject to bounds: in contrast the free variables here are time samples of the nonlinear force itself subject to constraints which have a physical interpretation with respect to the underlying non-linear law.

This approach is thought to be particularly well-suited to the vibration analysis of blade / casing contact because:

-uncertainties associated with the non-linearity are captured intrinsically; -the localised nature of the non-linearities limits the size of the search space of the antioptimisation;

-the method requires careful identification of the desired output from the model (by requiring identification of a target metric M);

-computing the target metric only requires calculating the solution to a linear forced response problem.

The choice of target metric and constraints are key to the success of the model: different kinds of 'worst case' solutions will be identified for different metrics, and the stringency of the constraints will govern how conservative worst-case predictions are.

Target metric

There are several outputs that are of interest from a model of turbomachine blade dynamics, for example: peak stress (in order to predict blade failure), root mean square blade displacement (as a measure of the overall vibration level of the blade) or peak blade-tip displacement (to assess the wear profile of abradable coatings). For the purposes of this study, the target metric M is chosen to be the peak displacement at the contact nodes:

M = max ||u i ||, (4) 
where u i is the displacement at contact nodes i (with i = 1, 2). While any of the above metrics could be chosen, peak tip displacement is straightforward and efficient to calculate and provides a clear proof-of-concept demonstration of the anti-optimisation approach. Note that although the anti-optimisation procedure is intended to find the worst case solutions, the best case can be identified extremely easily by minimising instead of maximising M.

Non-linearity constraints

The anti-optimisation constraints are chosen to represent what is known about the physical behaviour of the non-linearities. This provides a flexible approach: loose constraints can be used to describe large uncertainties while increasingly stringent constraints can be applied as more information is known. The choice of constraints is central to the model and represents one of the key challenges.

A trade-off exists between choosing constraints that are entirely based on physical arguments without regard for their numerical tractability, and a numerically convenient choice that is sufficient to bound the problem but is not physically derived. The approach taken here is to make an initial choice that has a direct physical interpretation, then to relax them slightly to improve numerical robustness.

The nominal non-linearity described by Eq. ( 1) is based on an assumed misalignment between the shaft and the centre of a circular casing: this results in a sinusoidal variation in nominal clearance, such that contact must occur during part of the blade revolution. For the purposes of this study it is hypothesised that the exact geometry of the casing profile is uncertain and that the contact law is also uncertain. The following set of constraints is chosen to represent this ensemble of non-linearities (though the choice is by no means unique):

1. The tip radial displacement cannot exceed the nominal clearance profile shown in Fig. 2:

u i • r ≤ c (θ);
(5)

2. The contact forces can only be in the radial direction (no friction):

f i • θ = f i • z = 0; (6) 
3. Only compressive contact forces can be applied:

f i • r ≤ 0; (7) 
4. The non-linear contact forces can only be non-zero when the blade tip is within an active zone, i.e. within a certain distance d from the nominal casing profile (to represent a range of geometric uncertainty and detailed contact law uncertainty):

||f i || = 0 if u i .r ≤ c (θ) -d , (8) 
where r, θ and z are unit vectors corresponding to the local coordinate system at the contact nodes. These constraints are summarised graphically in Fig. 5 with number labels corresponding to constraints 1-4 above. Note that no specific form of constitutive law is defined for the nonlinearity and that the above constraints are designed to represent a general ensemble of possibilities. In addition, note that the constraints 'close the loop' of the model as they are functions of both the non-linear forces and the tip displacements. 

Model Reduction

There are too many variables to carry out a full optimisation in a reasonable time scale: choosing 128 time samples per revolution, the total number of degrees of freedom is 768 (with 6 contact degrees of freedom). This can be significantly improved by using a reduced set of basis functions for the non-linear forces. Some care is needed as the choice of basis implicitly introduces an extra constraint which is not derived from physical arguments. In addition, the set of basis functions needs to be compatible with the physical constraints described above. never be compatible with discontinuous constraints. The problem is most clearly illustrated in reference to Fig. 6 which shows example constraints on radial force f r as a function of θ for a typical displacement response. Consider limiting non-linear force solutions to consist of a constant plus a purely sinusoidal term. It is clear that no combination exists that satisfies the constraints because the constraints are discontinuous. This problem can be partly solved by relaxing constraint (4) such that it is not discontinuous, as illustrated in Fig. 7. The modified constraint is chosen to allow arbitrary amplitude force when the radial displacement is within the contact zone, and a decreasing amplitude outside of this range. The modified definition of constraint ( 4) is chosen to be

i || ≤ A c (θ) -u r (θ, t ) -d if c (θ) -u r (θ) ≥ d , ( 9 
)
where A is a constant that controls the strictness of the constraint (as A → 0 the modified constraint tends to the original discontinuous constraint), c (θ) is the nominal clearance profile, and u r (θ, t ) is the radial component of the contact node displacement. The constant A was chosen empirically, such that the allowable force outside the active zone was negligible. The relaxation of constraint (4) nevertheless places a too great restriction on the allowable solutions, particularly if only a few harmonics are to be used for the reduced set of basis functions. This was solved by implementing the compression constraint by saturating the basis functions, rather than requiring the linear combination of basis functions to remain negative. This is illustrated in Fig. 8, which shows the effect of saturation on a function consisting of a constant plus a single harmonic. This implementation permits discontinuous solutions that can be arbitrarily large for a finite duration, allowing the representation of impact-type forces that would be expected in reality.

The combination of relaxing constraint (4) and implementing constraint (2) by saturation was found to provide a highly effective compromise between physical realism and numerical robustness. Finally, the scheme was implemented by solving the optimisation problem using only two harmonics, then using that solution as a starting point for a new optimisation with four harmonics, and repeating this procedure using eight harmonics.

BENCHMARK TIME-DOMAIN SOLUTION

The predictions obtained from the anti-optimisation strategy described above are compared with a time-domain benchmark model. These simulations are carried out based on the strategy presented in [START_REF] Legrand | Full three-dimensional investigation of structural contact interactions in turbomachines[END_REF], that was applied in [3] and is briefly recalled here for the sake of clarity. For a definition of variables see the Nomenclature at the end of this paper.

The time-marching procedure involves the explicit central differences scheme combined with a Lagrange multiplier based contact algorithm [START_REF] Carpenter | Lagrange constraints for transcient finite element surface contact[END_REF]. At each time step n, the procedure is divided into four steps:

1. prediction at time step n + 1 of the displacements u:

u n +1,p = M h 2 + D 2h -1 2M h 2 -K u n + D 2h - M h 2 u n -1 (10) 
2. determination of the gap function and detection of the contact nodes of the blade that penetrated the casing.

3. correction of the predicted displacements to ensure a vanishing of the gap function:

g n +1 = `Nt u n +1,c + g p = 0. ( 11 
)
Lagrange multipliers (or contact forces) and updated displacements are obtained as follows:

       λ = `Nt M h 2 + D 2h -1 `N -1 g p u n +1 = u n +1,p + M h 2 + D 2h -1 `Nλ (12) 
4. time increment.

In order to remain consistent with the theoretical framework adopted for the anti-optimisation procedure, contact is only treated in the radial direction.

VALIDATION Case study

Before carrying out a full uncertainty study to validate the method, it is interesting to consider the kind of solutions that are obtained by the anti-optimisation approach and compare these with their counterpart benchmark simulations. Two rotational frequencies are considered:

1. ω = ω 1 /20: this frequency choice represents an almost quasi-static case, 2. ω = ω 1 /1.95: close to a peak response of the non-linear system.

The nominal casing profile defined in Eq. ( 1) is used to initiate contact for the benchmark solution. The anti-optimised solution represents the worst case in the presence of uncertainties defined by the constraints described above.

The anti-optimisation approach predicts the upper bound for the steady-state response, so these predictions should be compared with the benchmark solutions after transients have decayed. Therefore the benchmark solution was computed for N = 100 blade revolutions with the blade initially at rest. Figure 9 shows the radial displacement at the leading and trailing edge contact nodes (solid blue and cyan lines respectively) for the last period with ω = ω 1 /20, together with the casing profile (grey line). To assess whether steady-state conditions have been reached, the correlation C(n) of the n th period with the last period can be quantified by computing the inner product of the normalised vectors:

C(n) = u r (n).u r (N) ||u r (n)|| 2 ||u r (N)|| 2 . ( 13 
)
For this test, C(N-1) = 0.99995 (by definition C(N) = 1) and the final period represents a reliable indication of the steady-state. Figure . 10 shows the anti-optimised solution (axes to the same scale as Fig. 9). It is reassuring that the worst-case blade displacement is much greater than the benchmark. Comparing overall maximum displacement amplitudes gives the metrics M = 0.21 mm (benchmark) and M = 1.23 mm (anti-optimisation). The much larger displacement predicted by the antioptimisation approach is not surprising as it accounts for an ensemble of non-linearities defined by the constraints in Eqs. (5), (6), ( 7) and [START_REF] Schuëller | A critical appraisal of methods to determine failure probabilities[END_REF]. The active zone boundary is indicated by the dashed line in Fig. 10: recall that non-linear forces can be non-zero when the radial displacement is between the dashed and solid grey lines.

Figure . 11 shows the last period of the blade response at ω = ω 1 /1.95. In this case the correlation of the previous period with the final period is C(N-1) = 0.987, indicating that the solution is again very close to steady-state conditions. The response is much larger than for ω = ω 1 /20 with maximum displacement amplitude of M = 5.89 mm for the benchmark simulation. The period of the solution is half that of the blade revolution which approximately corresponds to the first bending mode of the structure. The peak occurs at ω 1 /1.95 rather than at exactly ω 1 /2 due to contact stiffening. The anti-optimised solution is shown in Fig. 12 and is remarkably similar to the benchmark simulation. In this case the anti-optimised metric M = 4.9 mm, which is lower than the benchmark. This discrepancy is likely to be precisely because the solutions shown in Figs. 11 and 12 are so similar. The worst case solution is given by the contact geometry of the benchmark simulation, which represents an extreme within the ensemble of non-linearities that can be represented by the constraints (5), (6), ( 7) and [START_REF] Schuëller | A critical appraisal of methods to determine failure probabilities[END_REF]. However, there is an additional constraint due to the reduced basis functions chosen. Hence the worst case that can be achieved by antioptimisation is slightly lower than the 'true' bound. This could be solved by a slackening of the constraints to encompass a broader ensemble. The anti-optimisation approach is computationally efficient. Each benchmark solution takes between 6 minutes and 1 hour to solve (for 100 blade revolutions), compared with 1-3 minutes for the anti-optimisation solution (using the same computing resources). However, the primary advantage of the anti-optimised solution is that it also accounts for uncertainty.

Monte Carlo simulations

In order to assess the validity of the anti-optimisation method, a Monte Carlo test was carried out using the benchmark time-domain model. The anti-optimisation constraints could represent uncertainty about the underlying constitutive law of the contact (e.g. contact stiffness variation) or about the contact geometry (or both). For simplicity, only the casing profile is randomised for the present Monte Carlo validation. For a given test, the profile was randomly generated from an ensemble that was consistent with the anti-optimisation constraints. Casing profiles were chosen from:

c (θ) = c 0 + P i =1 c i cos(i θ + φ i ), (14) 
where c 0 = 0.825 mm (i.e. a constant offset in the middle of the active zone, c 1 = 1 mm (as before), and the magnitude c i , phase φ i and maximum perturbation order P are randomised for each test such that the overall casing profile falls within the active zone. A set of profiles is illustrated in Fig. 13: the black and green profiles indicate upper and lower bounds (which are consistent with the active zone defined by Eq. ( 8)), and the grey profiles are example random profiles: note that some profiles are dominated by short wavelength perturbations while others have a longer wavelength perturbation. The angular velocity of the blade was randomised in the range 0.05 < ω/ω 1 < 0.52 (representative of realistic angular velocities). The time-domain benchmark solutions are carried out over 25 blade rotations. In order to remain consistent with the anti-optimisation procedure, only the simulations for which a steady state was reached -defined here as C(N -1) > 0.9 -are considered in this section.

Figure . 14 shows a summary of the results: 2,300 grey dots represent the target metric M, defined in Eq. ( 4), for each time simulation (maximum of the amplitude of the displacements of both the leading and trailing edge from the last period of the benchmark simulation with a randomised casing profile). Black and green lines represent benchmark simulations with perfectly sinusoidal casing profiles, which correspond to black and green profiles in Fig. 13.

It can be seen in Fig. 14 that the green casing profile generally gives close to the highest amplitude displacements, while the black casing profile usually results in the minimum. In reference to Fig. 13 this comes as little surprise as these two profiles represent two extremes of the ensemble. This pattern is not followed at the peaks along the frequency sweep: it can be seen that there are peaks just above ω = ω 1 /n with n = 2, 3, 4 . . . 8. The peaks are at slightly higher frequencies than the exact resonance subharmonics due to contact stiffening (the presence of the non-linear contact for part of the cycle results in an apparent increase in system stiffness). This effect is strongest for the green profile as the severity of the contact is increased. These results put into perspective the case studies conducted in the previous section. At ω = ω 1 /20, the anti-optimised solution (red line in Fig. 15) was well above the benchmark (black line in Fig. 14). At ω = ω 1 /1.95, the anti-optimised prediction was 20 % below the benchmark. The discrepancy was because the worst case solution was given by the limit of the ensemble of profiles, which could not be attained by the anti-optimisation approach in practice. It can be seen that most discrepancies correspond to peaks of the two extreme profiles (peaks of the black and green lines in Fig. 14): for each of these the discrepancies are small.

The worst case prediction also reveals the underlying trend of the uncertain response with respect to frequency, with non-linear peak responses just above each subharmonic of the first bending mode (ω = ω 1 /n for n = 2, 3, 4 . . . 8) in agreement with the Monte Carlo data. The predictions are not overly conservative, giving tight bounds across the frequency range studied. The best case predictions (red lower bound in Fig. 15) also agree very well with the Monte Carlo data. The total computation time for the worst case analysis was approximately 5 hours, compared with 120 hours for the Monte Carlo study.

CONCLUSION

This study focuses on an adapted anti-optimisation procedure for the study of blade vibration arising from contact with the casing. Both data and model uncertainty can be accounted for by using constraints to flexibly describe an ensemble of non-linearities. A case study allows for an in-depth description of the proposed strategy and underlines both its limitations and potential. While the predictions require careful interpretation, their consistency with time simulations is demonstrated. The consistency of the proposed approach with respect to time simulations is reinforced by comparing worst case predictions with large scale Monte Carlo simulations throughout the rotational frequency range of interest for a specific blade design. Excellent agreement is obtained with worst case predictions accounting for 96 % of the Monte Carlo simulations, without being overly conservative. In addition, the method predicts the trend of the Monte Carlo results.

The anti-optimised results need to be treated with care: no guarantee can be made that global worst cases have been identified. Therefore the anti-optimisation analysis should be repeated with different initial conditions in order to check the robustness of solutions. Nevertheless, this proof-of-concept study demonstrates that the method has a great deal of potential for the efficient analysis of blade / casing interaction in the presence of uncertainties, and the results demonstrate how the proposed approach could be integrated within a blade design optimisation loop. 
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 15 Figure 15: Superposition of the anti-optimised prediction with Monte Carlo simulations.
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