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We propose a graph-cut based image segmentation method by constructing an affinity graph using ℓ 0 sparse representation. Computing first oversegmented images, we associate with all segments, that we call superpixels, a collection of features. We find the sparse representation of each set of features over the dictionary of all features by solving a ℓ 0 -minimization problem. Then, the connection information between superpixels is encoded as the non-zero representation coefficients, and the affinity of connected superpixels is derived by the corresponding representation error. This provides a ℓ 0 affinity graph that has interesting properties of long range and sparsity, and a suitable graph cut yields a segmentation. Experimental results on the BSD database demonstrate that our method provides perfectly semantic regions even with a constant segmentation number, but also that very competitive quantitative results are achieved.

Introduction

Image segmentation is a fundamental low-level image processing problem, which plays a key role in many high-level computer vision tasks, such as scene understanding [START_REF] Kumar | Efficiently selecting regions for scene understanding[END_REF], object recognition [START_REF] Lee | Object-graphs for context-aware category discovery[END_REF], etc. In the literature, unsupervised spectral segmentation algorithms have been intensively studied [START_REF] Shi | Normalized cuts and image segmentation[END_REF] [3] [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF], and many works focus more particularly on constructing a reliable affinity graph [START_REF] Kim | Learning full pairwise affinities for spectral segmentation[END_REF] [START_REF] Liu | Dense neighborhoods on affinity graph[END_REF].

Clearly, the quality of the segmentation results depend on the choice of a particular affinity graph, which depends on the neighborhood topology and pairwise affinities between nodes, which can be pixels or superpixels (i.e. groups of pixels or pixel features). Due to computer storage limit and computational complexity of the eigenvalue problem, a basic requirement for a desirable affinity graph is sparsity. Thus, most of the existing benchmark algorithms use a predefined range of local neighborhood topology, e.g., 4-connected neighbors [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF], or a fixed neighborhood radius [START_REF] Shi | Normalized cuts and image segmentation[END_REF] [START_REF] Cour | Spectral segmentation with multiscale graph decomposition[END_REF]. However, this kind of fixed local neighborhood topology fails to capture long-range connections and usually causes over-segmentation, see for instance the results of the method, that will be referred to as Segmentation by Aggregating Superpixels (SAS) in the sequel, proposed in [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF] with 4-connected neighbors (see the third column of Fig. 1). As pointed out in [START_REF] Cour | Spectral segmentation with multiscale graph decomposition[END_REF], a larger neighborhood topology radius usually outcomes a better segmentation. Unfortunately, long-range affinity graphs built with a larger neighborhood radius produce dense graphs, thus yields a heavier computational cost.

To meet the requirements of sparsity and long range simultaneously, we propose in this paper a novel unsupervised spectral segmentation algorithm by constructing an affinity graph using ℓ 0 -sparse representation, inspired by the work of Wright et al., see [START_REF] Wright | Robust face recognition via sparse representation[END_REF] and [START_REF] Wright | Sparse representation for computer vision and pattern recognition[END_REF]. The so-called ℓ 0 affinity graph is constructed over a set of superpixels. The basic idea is to find the sparse representation of each superpixel over a large dictionary containing all the other superpixels by solving a ℓ 0 -minimization problem. Then, considering the superpixels as the vertices of a graph, the edges are encoded in the non-zero representation coefficients issued from the optimization step, whereas the affinity between two superpixels can be derived from the corresponding representation error. Benefiting from the global searching and representation strategy of sparse representation, the derived ℓ 0 affinity graph has the characteristics of long range neighborhood topology and sparsity. Furthermore, we propose to refine the sparse representation by considering the spatial location information between superpixels as a penalty of the global searching and representation strategy.

To the best of our knowledge, there exists only one recent paper [START_REF] Zhang | Sparse representation-based spectral clustering for sar image segmentation[END_REF] which Figure 1: Illustration of the superiority of building ℓ 0 affinity graphs: for each row, from left to right, original image, ground-truth result, result of SAS [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF], and result using our method with a ℓ 0 affinity graph. makes use of sparse representation for the purpose of SAR image segmentation.

As compared to that technique, the proposed method proposes to operate over multi-scale super-pixels through ℓ 0 and makes use of both refined reconstruction error and distance penalty for the construction of the affinity graph. This results in an effective method for a more general task of segmenting natural images from a large image dataset.

To improve the discriminative power of the ℓ 0 graph, both mean value in Lab color space (mLab) and Color Local Binary Pattern(CLBP) features [START_REF] Zhu | Multi-scale color local binary patterns for visual object classes recognition[END_REF] are used to build the graph. The final ℓ 0 affinity graph is obtained by merging multiple ℓ 0 graphs built over different features and different superpixel scales. Then, it is used to build a bipartite graph for final image segmentation as introduced in SAS [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF].

Comparing to the existing benchmark spectral segmentation algorithms, the proposed method has the following two advantages:

1. Benefiting of the characteristics of the ℓ 0 graph, our algorithm outcomes semantic segmentation results. As shown in the last column of Fig. 1, the proposed algorithm can provide meaningful segmentation results, in particular, the whole object can be segmented correctly even when there are significant color variations within the object (e.g., the cow image).

2. Most of the existing algorithms require, for each image, a careful and manual tuning of the number of segments K (usually from 2 to 40 [START_REF] Kim | Learning full pairwise affinities for spectral segmentation[END_REF]) in order to obtain a desirable result. In contrast, our algorithm can produce meaningful results with K = 2 for most images in the Berkeley Segmentation Database (BSD) [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], which is more realistic in practical applications.

The organization of the paper is as follows: in Section 2 we introduce the proposed method and the construction of the ℓ 0 affinity graph, and we present in Section 3 comparison experiments with SAS and other methods on the BSD.

Construction of the graph and segmentation 2.1 Extracting multi-features over multi-scale superpixels

As pointed in [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF], superpixels generated by different methods with varying parameters can capture various and multiscale visual contents of a natural image. By superpixel, we mean here a connected maximal region in a segmented image. As shown in Fig. 2, we first oversegment the input image into multiscale superpixels with either the Mean Shift algorithm (MS) [START_REF] Comaniciu | Mean shift: A robust approach toward feature space analysis[END_REF] or the Felzenszwalb-Huttenlocher (FH) graph-based method [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], and using the same parameters as in the SAS algorithm [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF]. Then, to obtain a discriminative affinity graph, we compute for each superpixel different features. Actually, any kind of region-based feature can be used. In this paper, we consider two types of features: mean value in Lab color space (mLab), and CLBP. Color is a very basic yet powerful cue to distinguish objects, whereas LBP is robust to monotonic light changes and can be used to capture texture characteristics. The parameters of these features will be introduced in section 3.1. 

C-LBP mLAB

Construction of the ℓ 0 affinity graph

Let I denote an oversegmented image obtained from the initial image at the previous step, either by Mean Shift (MS) or Felzenszwalb-Huttenlocher (FH) approach. We denote as S = {s i } N i=1 the collection of its superpixels, i.e. individual regions. For each superpixel s i , x mLab i ∈ R 3 and x CLBP i ∈ R 256 are single feature normalized vectors extracted from s i and associated with mLab and CLBP, respectively. Therefore, if N denotes the number of regions in the oversegmented image, we get two feature vectors {x mLab 

1 , • • • , x mLab N } and {x CLBP 1 , • • • , x CLBP N }. For each feature vector {x 1 , • • • , x N }, we define the sparse representation dictionary D = [x 1 , • • • , x N ] ∈ R m×N (m =
= argmin α x i -Dα 2 2 , α ∈ R N , α 0 ≤ L, α i = 0 (1)
where α ∈ R N runs over all sparse representation vectors, the ℓ 0 norm α 0 is the number of non-zero coefficients in α, and the parameter L controls the sparsity of the representation. In other words, the vector αi is associated with the best representation of x i , in the ℓ 2 nom, as a linear combination of at most L elements among

x 1 , • • • , x i-1 , x i+1 , • • • , x N .
This vector can be computed with the Orthogonal Matching Pursuit (OMP) algorithm [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF], and it provides a link between the superpixel s i (associated with the feature x i ) and the other superpixels.

Clearly, this representation is only feature-based and does not really incorporate spatial constraints, which may be a drawback for segmentation purposes where objects are supposed to be connected. We therefore consider an additional step where we discard, in the representation above, the farthest superpixels (i.e., far from a spatial viewpoint).

In practice, for the case L = 3 that appeared in our experiments to yield good results, if more than two superpixels are selected by Eq. (1) to represent s i , we find the farthest one from s i according to the distance between centroids, and we remove it from the sparse representation. In the case L > 3, other methods can be used, for instance thresholding above the average distance or a fraction of it. If k 1 , • • • , k h denote the indices of the removed superpixels, we recompute the sparse representation in Eq. (1) in a very constrained way, i.e. by restricting to all α such that α j = 0 whenever αi j = 0 and, in addition,

α k 1 = • • • = α k h = 0.
We denote as αi the updated sparse representation vector, and we define

r i j = x i -αi j x j 2 2 
(2)

Finally, the similarity coefficient w i j between superpixel s i and superpixel s j is defined as

w i j = 1 if i = j 1 -(r i j + r ji )/2 if i = j. (3) 
and we denote as W = (w i j ) the similarity matrix.

All steps above are applied to both feature vectors

{x mLab 1 , • • • , x mLab N } and {x CLBP 1 , • • • , x CLBP N
}, and yield two matrices W mLab and W CLBP , and therefore two ℓ 0 graphs G mLab = {S,W mLab } and G CLBP = {S,W CLBP }. These two graphs can be merged into a single graph G = {S,W } where W = (w i j ) is defined by

w i j = (w mLab i j ) 2 + (w CLBP i j ) 2 . ( 4 
)
So far, we dealt with a single oversegmented image only. In order to benefit of the advantages of using various oversegmented images, as in the SAS method, the same procedure can be applied to each oversegmented image

I k , k = 1, • • • , M and yields the graphs G k = {S,W k } M k=1 . The final ℓ 0 -affinity graph G = {S,W } is obtained by a simple concatenation, i.e. W = diag(W 1 ,W 2 , • • • ,W M ).

Transfer cuts and image segmentation

To perform image segmentation, we use the Transfer Cuts method (Tcuts) [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF], that has proven to be fast and efficient. First, we build a bipartite graph over the input image I and its superpixel set S. Recall that our final fused ℓ 0 affinity graph G = {S,W } is constructed over the superpixel set S. The bipartite graph also incorporates the relationship information between pixels and superpixels, and is defined as ). W SS is the affinity graph between superpixels computed in section 2.2. The Tcuts method yields a partition of the bipartite graph into K clusters. More precisely, it provides the bottom K eigenpairs {λ i , f i } K i=1 of the following generalized eigenvalue problem over superpixels only:

G B = {U,V,
L V f = λ D V f, (5) 
where

L V = D V -W V , D V = diag(B ⊤ 1), and W V = B ⊤ D -1 U B, D U = diag(B1).

EXPERIMENTAL RESULTS

Database and parameter settings

We evaluate our method on a standard benchmark image segmentation database, the BSD [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]. The BSD contains 300 images, each one provided with at least 4 or 5 ground truth segments labeled by several people. Four measurements are used for quantitative evaluation: Probabilistic Rand Index (PRI) [START_REF] Unnikrishnan | Toward objective evaluation of image segmentation algorithms[END_REF], Variation of Information (VoI) [START_REF] Meila | Comparing clusterings: an axiomatic view[END_REF], Global Consistency Error (GCE) [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF], and Boundary Displacement Error (BDE) [START_REF] Freixenet | Yet another survey on image segmentation: Region and boundary information integration[END_REF]. A segmentation result is better if PRI is higher and the other three ones are lower.

For feature extraction, we use the LBP [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF][START_REF] Kumar | Efficiently selecting regions for scene understanding[END_REF] operator in the RGB color space, and the feature dimension is reduced from 256 × 3 to 64 by PCA. For building the ℓ 0 graph, we use the Orthogonal Matching Pursuit (OMP) algorithm [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF] to solve Eq. ( 1), in which the sparsity number L = 3 is used for all the experiments.

We organize our experimental results as follows: first, we show some visual comparison results with SAS; then, quantitative comparison with SAS and other algorithms are listed; finally, we show more visual examples of our method with a fixed segment number K = 2.

Visual comparison with SAS

Our work follows a similar, yet not identical, strategy as the SAS algorithm, i.e., building a bipartite graph over multiple superpixels and pixels, then use Tcuts for image segmentation. The main difference between the two methods is the affinity graph construction. In SAS, 4-connected neighborhoods of superpixels are used, and the pairwise superpixel similarity is computed by the Gaussian weighted Euclidean distance in the color feature space. In our method, we build a ℓ 0 affinity graph using sparse representation over multiple types of features and multi-scale superpixels, making the constructed graph having the characteristics of long range neighborhood topology, yet with sparsity and high discriminative power.

In this section, we show some visual comparison results with SAS. As shown in Fig. 3, four groups of visual examples are reported: the first two columns display the results of SAS and the last two columns show our results. Notice that the results of SAS are the best results reported by the authors, where the segmentation number K for the owl, leopard, people, and landscape are 5, 4, 40, and 9 respectively. For our method, all the results are obtained by setting K = 2.

For the first example, although the owl is in a highly clustered background and has itself strong color variations, our method segments it correctly while the segmentation provided by SAS is not meaningful. For the second example, the leopard texture is very similar to the background. The SAS algorithm oversegments the leopard into three parts. In contrast, our method provides the whole body of the leopard. Similar results are achieved for the third example: in contrast with SAS where K has been carefully tuned at K = 40, our method can segment correctly the main object (i.e., the people) by setting K = 2. In the last example as well, SAS over-segments the hill into several parts.

Quantitative comparison with SAS and other algorithms

In this section, we report quantitative comparison with SAS and other standard benchmarks: Ncut [START_REF] Shi | Normalized cuts and image segmentation[END_REF], JSEG [START_REF] Yining | Unsupervised segmentation of color-texture regions in images and video[END_REF], MNcut [START_REF] Cour | Spectral segmentation with multiscale graph decomposition[END_REF], NTP [START_REF] Wang | Normalized tree partitioning for image segmentation[END_REF], SDTV [START_REF] Donoser | Saliency driven total variation segmentation[END_REF], LFPA [START_REF] Kim | Learning full pairwise affinities for spectral segmentation[END_REF] and SAS [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF]. The results are shown in Table 1, where we highlight the best result of each measurement in bold. The average scores of the benchmark methods are collected from [START_REF] Li | Segmentation using superpixels: A bipartite graph partitioning approach[END_REF] and [START_REF] Kim | Learning full pairwise affinities for spectral segmentation[END_REF]. We can see that our method ranks in the first place with PRI and BDE, and is competitive with others in terms of VoI and GCE. However, all these scores are collected by tuning K manually for each image and choosing the best results, which is unrealistic in practical applications (for our method, we set K from 2 to 40). Thus, to demonstrate the obvious advantage of our method related to K, we compare the average scores of SAS and our method by fixing K = 2 for all images on the BSD. We can see that in this case, our method outperforms SAS with PRI, GCE and BDE (the gain being really significant for BDE). 

Methods

More visual examples

To demonstrate the advantage of our algorithm in practical applications, we show more visual segmentation results of our method with K = 2. As can be seen in Fig. 4, all the objects are correctly segmented even in the following cases where: 1) The detected object is quite tiny (as seen in the first two rows); 2) Multiple objects are needed to segment in the same image (as in both middle rows); 3) The colors of background and object are quite similar (as in both last rows). 

CONCLUSION

We proposed a graph-cut method for unsupervised image segmentation based on a ℓ 0 affinity graph using sparse representation. By solving several ℓ 0 minimization problems, the neighborhood topology structures and the affinities among superpixels can be derived simultaneously. In addition, the ℓ 0 affinity graph has nice properties of sparsity and long range neighborhood topology. The ℓ 0 graph is then refined by slightly forcing the spatial locality of the representation. The discriminative power of the ℓ 0 affinity graph is then enhanced by fusing mLab and CLBP features over multi-scale superpixels. Experimental results on the BSD database show that our method yields very competitive qualitative and quantitative segmentation results compared to other state-of-the-art methods.
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 2 Figure 2: Illustration of extracting multi-features over multi-scale superpixels.

  3 for mLab and m = 256 × 3 for CLBP, or possibly less by dimension reduction, see Section 3). For each i ∈ {1, • • • , N}, we consider the following ℓ 0 -minimization problem αi

  B}, where U = I ∪ S, V = S, and B = W IS W SS , with W IS = (b i j ) |I|×|V | , and b i j = a positive constant b if pixel i belongs to superpixel j, 0 otherwise (in our experiments, we set b = 10 -3
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 3 Figure 3: Four examples of visual comparison with SAS: first two columns: results of SAS, last two columns: results with our method.

Figure 4 :

 4 Figure 4: More visual results of our method with K = 2.

Table 1 :

 1 Quantitative comparison of our method with other state-of-the-art methods over BSD.

		PRI↑	VoI↓	GCE↓	BDE↓
	NCut	0.7242 2.9061 0.2232 17.15
	JSEG	0.7756 2.3217 0.1989 14.40
	MNCut	0.7559 2.4701 0.1925 15.10
	NTP	0.7521 2.4954 0.2373 16.30
	SDTV	0.7758 1.8165 0.1768 16.24
	LFPA	0.8146 1.8545 0.1809 12.21
	SAS	0.8319 1.6849 0.1779 11.29
	Ours	0.8355 1.9935 0.2297 11.1955
	SAS (K=2) 0.6197 2.0119 0.1106 42.2877
	Ours (K=2) 0.6270 2.0299 0.1050 23.1298

Acknowledgements This work was supported by the Chinese Scholarship Council (CSC), and by the French research agency ANR through the VideoSense project under the grant 2009 CORD 026 02.