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ABSTRACT

The gravitational potential is a key function involved in many astrophysical problems. Its evaluation inside continuous media from
Newton’s law is known to be challenging because of the diverging kernel 1/|r− r′|. This difficulty is generally treated with avoidance
techniques (e.g. multipole expansions, softening length), which are themselves not without drawbacks. In this article, we present a
new path that basically fixes the point-mass singularity problem in systems with at least two dimensions. It consists of recasting the
gravitational potential ψ in an equivalent integro-differential form,

ψ(r) =
1

f (r)
∂2

q1q2
H(r),

where (q1, q2) is a pair of independent spatial variables (linear and/or angular), f is a known function, and H is an auxiliary scalar
function. In contrast with ψ, this “hyperpotential” H is the convolution of the mass density with a finite amplitude kernel κ. We show
that closed-form expressions for κ can be directly deduced from the potential of homogeneous sheets. We then give a few formulae
appropriate to the Cartesian, cylindrical and spherical coordinate systems, including axial symmetry. The method is essentially not
limited, either on the geometry of the source or on the distribution, and its implementation is straightforward. Several tests based upon
simple quadrature/differentiation schemes are presented (the homogeneous rectangular sheet, cuboid and disk, the Maclaurin disk and
a truncated Lane-Emden solution). Compared with a direct summation, the extra computational cost is low and the gain is real: no
truncated series, no free parameter, and a relative accuracy better than 1% for typically 16 nodes per spatial direction using the most
basic numerical schemes.

Key words. gravitation – methods: analytical – methods: numerical

1. Introduction

Gravitation plays an essential role in the evolution of most as-
trophysical systems, from aggregates and dusty planetary rings
to rotating stars, supermassive black holes in active nuclei and
galactic clusters (Hachisu 1986; Kozhanov 2004; Colwell et al.
2006; King 2010; Comito et al. 2011). In the investigation of var-
ious dynamical problems and equilibrium configurations from
first integrals and energy equations, the potential appears as a
fundamental scalar function. In continuous media, it is naturally
accessible through an integral, namely

ψ(r) = −G
∫

dm′

|r − r′| , (1)

where the kernel sweeps aways the point mass singularity –
a direct consequence of Newton’s inverse square law. Indeed,
the potential integral is convergent for most density distribu-
tions of physical interest (Kellogg 1929; Durand 1953; Binney
& Tremaine 1987). The singularity problem is inherent in the
discretization-counting technique usually adopted. By dividing
the system into small massive elements and summing over all
individual contributions, it is difficult to estimate precisely the
influence of any small element upon itself (i.e., “self-gravity”),
which is not ameliorate a lot by increasing the resolution.

The point mass singularity can be avoided in various ways
that are more or less faithful to Newton’s law. The multipole
expansion of the kernel |r − r′|−1 is one of the most valu-
able theoretical tools in potential theory (Kellogg 1929; Durand
1953; Cohl et al. 2001; Aksenov 1999). It is extremely efficient
outside the material domain and a few terms often suffice to
reach computer precision. Inside and even in close neighbor-
hood, however, the convergence of the series is known to be
poor because r/r′ ≈ 1. Because the series is an alternate se-
ries, convergence is much delayed and truncations are critical
(Clement 1974). Low convergence is a common property of mul-
tipole expansions and is observed in various contexts other than
gravitation (Wuensche 1975; Kosov & Popelier 2000; Gramada
& Bourne 2010). Users of multipole expansions generally need
to incorporate a large number of terms – tens to hundred typ-
ically – before accuracy becomes acceptable (Hachisu 1986;
Stone & Norman 1992; Mach & Malec 2012). Because the num-
ber of integrals to estimate is equal to the number of terms,
the computational time increases linearly. Another option to de-
rive ψ is the Poisson equation, which is rapidly solved with spe-
cific algorithms (Stone & Norman 1992; Storzer 1993; Spotz
1995; Briggs et al. 2000; Matsumoto & Hanawa 2003; Jusélius
& Sundholm 2007; Guillet & Teyssier 2011). Nevertheless,
Poisson-solvers are not always “self-starting”, meaning they
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require precise boundary conditions only the integral approach
can furnish. Another drawback is the shape of astrophysical
bodies, which are often complex and not systematically match
the numerical meshes (for techniques based on mapping, see
Grandclément et al. 2001; Reese 2006). In particular, the Poisson
equation is three-dimensional by nature, and not well-suited to
problems in one and two dimensions.

In this paper, we describe a novel path for determining the
Newtonian potential of a continuous system by recasting Eq. (1).
The new form does not involve any singular kernel, series, or
“softening length”, but just the cross-derivative of the mass den-
sity convolved with a finite amplitude kernel. The recasting is
exact and general in the sense that i) it preserves the Newtonian
character of the interactions at all scales; and ii) it applies to any
density distribution and morphology (shape and number of di-
mensions larger than one). This is therefore a new tool for both
numerical applications and theoretical investigations in various
domains of astrophyscis (e.g., simulations, generation of approx-
imations, determination of potential/density pairs) and physics
as well. This paper goes beyond the analysis presented in Huré &
Dieckmann (2012), which was restricted to axial symmetry. We
consider here i) a generic treatment of the regularization step, re-
gardless of the system of coordinates; ii) a full three-dimensional
approach; iii) a simple recipe to determine the finite amplitude
kernel; and iv) a direct application to the Cartesian, cylindrical,
and spherical coordinates.

The paper is organized as follows. In Sect. 2, we recall the
integral expression for the Newtonian potential of a continuous
distribution. We formally describe the recasting of the potential
integral based upon the properties of Newton’s law (symmetry
and independant spaces). The application to the Cartesian, cylin-
drical, and spherical coordinate systems is the aim of Sect. 3.
In particular, we illustrate the method by considering a few
test-cases, mostly of astrophysical interest, by using deliberately
low-order numerical schemes (our goal is not to perform a crit-
ical study of the most efficient techniques for quadratures and
differentiations). A conclusion summarizes the results and men-
tions possible issues to consider next. A few appendices contain
formulae and demonstrations.

2. Recasting of the potential integral

The Newtonian potential at a point P(r) in space of a body is
given by Eq. (1). The integral extends over the material do-
main Ω′ (including its boundary), i.e., ψ(r) ≡ ψ(r;Ω′), dm′(r′)
is the elementary mass at P′(r′) ∈ Ω′, |r − r′| = PP′, and G is the
constant of gravity. The configuration is illustrated by Fig. 1. As
is well known, PP′ vanishes everywhere inside Ω′, making the
kernel singular, while the potential is, most of the time, a finite
function of space (see e.g. Kellogg 1929).

2.1. Idea behind recasting and strategy

As Eq. (1) shows, there are two spaces in potential theory: i) the
space of field points where the potential is requested (hereafter,
the P-space); and ii) the space of source points that describes the
source (hereafter, the P′-space). These spaces are superimposed
in practice – this is the physical space –, but are decoupled math-
ematically. Indeed, when estimating the potential from Eq. (1), r
is held fixed while the integration is performed in the P′-space.
The point-mass singularity, of hyperbolic-type, can be regular-
ized using two successive integrations in orthogonal directions
(as a proof, note that the potential of flat or curved homoge-
neous sheets is generally a finite function of space and source

(q  ,q  ,q  )1     2      3

O

r’
boundary   

dm’

r

P
Ωdomain    ’

1     2      3(q  ,q  ,q  )’     ’    ’P’

Fig. 1. Field point P(r), source point P′(r′) belonging to the material do-
mainΩ′, and elementary mass dm′. InsideΩ′, the separation PP′ vanish.

parameters). The idea is then to integrate the Newton kernel in
the P-space until the singularity is finally suppressed. This op-
eration is necessarily possible since the Newton kernel is sym-
metrical with respect to r and r′. Concretely, if P has coordi-
nates (q1, q2, q3), then the regularization step becomes1

�
q1,q2

f (r)dq1dq2

PP′(q1, q2, q3)
≡ κq1q2 (r; r′), (2)

where f is introduced for convenience (see below) and it is a
function of P only. At this stage, the coordinates (q1

′, q2
′, q3

′)
of P′ are regarded as parameters, and κq1q2 must be a function
of r. Since the regularization is performed in the P-space, it is
made regardless of the mass distribution, which is especially at-
tractive. The new kernel κq1q2 (hereafter the “hyperkernel”) has,
by construction, a finite amplitude and can be convolved with
the mass density. This is the convolution step:

− G
∫
Ω′
κq1q2 (r; r′)dm′ ≡ H(r;Ω′), (3)

where the factor −G is introduced for convenience (see below).
This integral produces an auxiliary scalar function,H (hereafter,
the “hyperpotential”). The Newtonian potential is then recovered
by reversing the regularization-step. This is the recovering step:

∂2
q1q2
H = −G∂2

q1q2

∫
Ω′
κq1q2 dm′, (4)

= −G
∫
Ω′

(
∂2

q1q2
κq1q2

)
dm′,

= −G f
∫
Ω′

dm′

|r − r′|
= fψ.

The advantage of this approach is twofold: the singularity is cir-
cumvented, and at the same time, it is accounted for exactly.
In practice, the absence of diverging kernel renders step 2 eas-
ier than with the Newton kernel. Because convolutions produce
smooth functions, step 3 is also expected to be uncomplicated.
Step 1 is by far the most critical, but it is made once only
provided the hyperkernel is analytical (there is no interest in
the recasting if κq1q2 is to be determined by numerical means).
The gravitational potential is finally found from steps 2 and 3.
The extra-cost is therefore low: there is only an additional differ-
entiation compared to the classical approach, but the singularity
is correctly managed.

1 Under invariance, the hyperbolic singularity can be converted into
a logarithmic singularity that is subsequently regularized by a single
integration, i.e.,

∫
f dq1
|r−r′| , but this is a special case (see Sect. 3).
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2.2. Note on Chandrasekhar and Lebovitz superpotentials

Our approach may evoke some aspects of the theory developped
in Chandrasekhar & Lebovitz (1962) and subsequent papers (see
also Chandrasekhar 1987). These authors have shown that the
Newtonian potential is the trace of a symmetric tensor potential,
but is also the source term of a Poisson equation, namely

∇2χ = −2ψ, (5)

where the solution is

χ ≡ −G
∫
Ω′
|r − r′|dm′. (6)

It is clear that H and χ (called “superpotential”) share two
common properties: i) they are the convolution of the density
field by a finite amplitude kernel; and ii) they exactly reproduce
the gravitational potential by partial differencing. However, the
present recasting differs from the theory of superpotentials on
the following points:

i) ψ is determined here through a single second-order partial
derivative (not three);

ii) the recasting is not limited to 3D-problems, but works for
2D-problems as well;

iii) it is not really specific to a particular system of coor-
dinates, while Cartesian coordinates are mostly used in
Chandrasekhar & Lebovitz (1962).

In some sense, the hyperpotentialH is some kind of optimized
version of the χ-function, especially designed for numerical ap-
plications which is, initially, our main motivation.

3. Results and examples

3.1. Derivation of hyperkernels, and the link
with the potential of homogeneous sheets

According to Eq. (2), the recasting depends on the capabil-
ity to determine analytically an expression for κq1q2 associated
with a given pair (q1, q2) of coordinates, preferably a closed-
form. There are many possibilities, in particular because of the
presence of the function f (q1, q2, q3), which adds a degree of
freedom. If we define f such that

d2A = f (q1, q2, q3)dq1dq2 (7)

is an area element, then

κq1q2 =

�
S

d2A(P)
|r − r′| , (8)

where S is a surface q3 = const. in the P-space. We see that
Eq. (8) is nothing but, up to a factor −G, the formula for the
gravitational potential of a homogeneous surface with unit sur-
face density dm/d2A, except that the role of the P-space and
P′-space is exchanged. To obtain a formula for κq1q2 , it is suf-
ficient to extract from the list of known potential/density pairs
those that correspond to a bi-dimensional distribution (i.e., a
sheet) and constant surface density. As Eq. (8) suggests, there is
no special constraint on the shape and size of the sheet (i.e., flat,
curved, rectangular, circular, etc.). Nevertheless, from a practi-
cal point of view, it seems preferable that S and Ω′ be geomet-
rically “compatible” enough to facilitate the convolution-step.
Since there is certain freedom in selecting the integral bounds in
Eq. (8), it is also better to consider a finite size (and finite mass)
sheet.

R

φ

θ θ

φ

’

’

(P’−space)

r r’
P P’

x

y

x’

y’

z z’

(P−space)
coordinates of field points coordinates of source points

z z’

R’

field point P source point P’

(x, y, z) Cartesian coordinates (x′, y′, z′)
(R, θ, z) cylindrical coordinates (R′, θ′, z′)
(r, θ, φ) spherical coordinates (r′, θ′, φ′)

Fig. 2. Notations for the Cartesian, cylindrical, and spherical coordi-
nates: P-space (left) and P′-space (right).

3.2. An easy implementation

For each point P where ψ is requested, the sequence of opera-
tions is the following:

1. computing the hyperkernel κq1q2 from an appropriate formula
(this depends on the coordinate system; see next section);

2. estimating the hyperpotentialH from Eq. (3) for the actual
density distribution (a volume density ρ or a surface den-
sity Σ). A quadrature scheme is needed. This is the first place
where numerical errors are generated;

3. estimating the cross-derivative of H . A differentiation
scheme is needed. This requires determining hyperpotential-
values in the vicinity of the actual point P. This is the second
place where numerical errors are generated.

Clearly, all techniques curently used to compute ψ from Eq. (1)
can be employed forH . BecauseH is a convolution (see below),
fast specific algorithms coupled with high-perfomance differen-
tiation schemes can probably be envisaged. Tests presented in
the following will employ the most basic schemes, which have
produced good results.

3.3. Results: the case of Cartesian coordinates

Table 1 lists pairs (q1, q2), the associated area element d2A,
and the function f appropriate for the Cartesian, cylindrical and
spherical coordinates that are most often used. Other coordinate
systems and geometries can obviously be considered as well.
The notations are summarized in Fig. 2. In Cartesian coordi-
nates, the recasting that corresponds to the pair (q1, q2) = (x, y) is

ψ(r) = ∂2
xy

∫
Ω′
κxydm′, (9)

and other pairs can be considered by permutation. As argued
above, we can determine κxy by considering a surface q3 ≡
z = const., i.e., a flat horizontal sheet, and the most natu-
ral choice is the rectangular shape. The formula for the poten-
tial is known in that case (e.g. Durand 1953). It is reproduced
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Table 1. Pairs (q1, q2), function f , and associated area element d2A for the three most popular coordinate systems.

q1, q2 f d2A Surface S Hyperkernel κq1q2

Cartesian coordinates x, y 1 dxdy rectangular sheet κxy, see Eq. (A.4)
y, z 1 dydz rectangular sheet κyz (see κxy)
x, z 1 dxdz rectangular sheet κxz (see κxy)

Cylindrical coordinates θ, z R Rdθdz piece of hollow cylinder –
R, θ R RdθdR polar sector κRθ , see Eq. (C.4)
R, z 1 dRdz meridional sheet κRz, see Eq. (B.2)

Spherical coordinates θ, φ r2 sinφ r2 sin φdφdθ spherical cap –
r, φ r rdrdφ meridional sector κrφ, see the Appendix D
r, θ r sin φ r sin φdrdθ piece of cone –

Axial symmetry∗ R R dR disk κR, see Eq. (C.6)
r 1 dr cone –
φ 1 dφ spherical cap –

Notes. The formula for the hyperkernel κq1q2 , when known in closed form, is indicated in the last column (otherwise “–”). (∗) Under axial symmetry,
a single variable is necessary (see Sect. 3.6).

-1 -0.5 0 0.5 1
x-x’

-5

0

5

10

hyperkernel κxy
 (x5)

Newton kernel 1/Δ
y-y’=0

0.1

0.5

y-y’=0

0.1

0.5

Fig. 3. The hyperkernel κxy in the (x, y)-plane in the vicinity of point P′
(magnified by a factor 5), for z = z′ and three different values of y − y′
labelled on the curves. The Newton kernel which diverges for |r−r′| = 0
is shown for comparison.

in Appendix A. The hyperkernel is deduced by exchanging P
and P′, which leads to Eq. (A.4). Figure 3 displays κxy in the
(x, y)-plane in the vicinity of the point P′(x′, y′), for three differ-
ent values of y−y′ and for z−z′ = 0. The Newton kernel 1/|r− r′|
is also shown for comparison. We can see that the hyperkernel is
a smooth function with finite amplitude. In particular, it is zero
at zero relative separation. Any type of mass density profile can
be injected in Eq. (9), bi- or three-dimensional, uniform or not.

We illustrate the potential recasting with two simple exam-
ples. As a first test, we consider a square sheet in the (x, y)-plane
with constant surface density Σ0 (or dm′ = Σ0dx′dy′), length
unity, and centered on the origin, with vertices at (± 1

2 ,± 1
2 , 0). It

is discretized on a N′ × M′ grid with regular spacing in each di-
rection. The P-grid is made of N×M points with uniform spacing
as well. The quadratures and partial derivatives are determined
by second-order schemes that are among the most basic ones
(e.g. Press et al. 1992). Figure 4 shows the error index

ε = log

[
max

(
2 × 10−16,

∣∣∣∣∣1 − ψ

ψe

∣∣∣∣∣
)]

(10)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

y

x

-4

-3.5

-3

-2.5

-2

Fig. 4. Error index ε on potential values in the plane of the homogeneous
square sheet with vertices at (± 1

2 ,± 1
2 , 0) (boundary in white). The mean

error index is −2.52 (dashed line).

between ψ determined from Eq. (9) and the reference poten-
tial ψe (2 × 10−16 is for double-precision computations). This
case is for N′ = M′ = 32 and N = M = N′ + 2, which leaves
just one point outside the sheet, left and right, bottom and top.
We see that the relative error is rather uniform inside the mate-
rial domain, of about 0.1%. Close to the edges of the sheet, the
error rises slightly. Outside Ω′, the accuracy is still uniform, but
typically better by an order of magnitude.

As a second test, we consider a cube with uniform den-
sity ρ0 (i.e., dm′ = ρ0dx′dy′dz), length unity, and vertices at
(± 1

2 ,± 1
2 ,± 1

2 ). The numerical setup is the same as for the sheet,
and z = 0. The reference potential is also known for this 3D body
(MacMillan 1930; Waldvogel 1976). Figure 5 displays the error
index versus x and y in the cube’s midplane. Again, we notice
that the relative error is uniform, with 0.2% typically inside the
body, and a factor 10 better outside. Edge effects are less marked
than in 2D. The integration of the kernel in the third direction
smoothes the errors, and the potential is now derivable when
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Fig. 5. Same conditions and same color code as for Fig. 4, but for the
homogeneous cuboid with vertices at (± 1

2 ,± 1
2 ,± 1

2 ). The mean value is
−3.00 (dashed line).

crossing the lateral faces of the cube. The Fortran 90 program
used in these two examples is available upon request.

3.4. The hyperpotential is a convolution product

As shown in Appendix A, when we set X = x − x′, Y = y − y′
and Z = z − z′, the hyperkernel κxy becomes

κxy = −Z atan XY
Z|r−r′ | + Y ln X+|r−r′ |√

Y2+Z2

+X ln Y+|r−r′ |√
X2+Z2

≡ κxy(X, Y, Z),

where |r− r′| = √X2 + Y2 + Z2, and so the hyperpotential writes
in the 3D case

H(x, y, z) =

�
Ω′
ρ(x′, y′, z′)

× κxy(x − x′, y − y′, z − z′)dx′dy′dz′. (11)

Since ρ = 0 outside Ω′, the integral bounds can be safely
changed for ±∞. We then conclude thatH is a convolution prod-
uct. This is expected because the potential itself is a convolution
product (Binney & Tremaine 1987; Hackbusch et al. 2010). We
have

∂2
xy(ρ ∗ κxy) = ρ ∗ ∂2

xyκ
xy = ρ ∗ 1

|r − r′| · (12)

This result is independent of the coordinate system, namely:

H =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Σ ∗ κq1q2 , in 2D,

ρ ∗ κq1q2 , in 3D.
(13)

3.5. Results in cylindrical and spherical coordinates

In curved geometries, there are apparently fewer options. The
reason is that a few formula for the potential of canonical sur-
faces are missing yet, and it is hard to find closed-form expres-
sions for the hyperkernel by direct integration of Eq. (2). One

can probably use a series representation instead, but any trunca-
tion is expected to produce an approximate potential. Surfaces
q3 = const. of particular interest are (see Fig. 2 and Table 1)

1. in cylindrical coordinates:
(a) a piece of a hollow cylinder (surface R = const.);
(b) a meridional sheet (surface θ = const.);
(c) a polar sector (surface z = 0);

2. in spherical coordinates:
(a) a piece of spherical shell (surface r = const.);
(b) a meridional sector (surface θ = const.);
(c) a piece of cone (surface φ = const.).

For cases 1a, 2a, and 2c (with φ′ < π
2 ), the potential is apparently

not known in closed-form; this would be helpful. We have no
hyperkernel to propose. This question remains open. Case 1b is
accessible since the meridional sheet is nothing but a rectangular
sheet in the plane (x, z), rotated counter-clockwise by an angle θ′.
The formula for κRz can then be deduced from the Cartesian case
(see Appendix B); this is Eq. (B.2). Case 1c can also be treated
since the potential of a polar sector has been derived in Huré
(2012). The formula is reproduced in the Appendix C, and the
hyperkernel κRθ is given by Eq. (C.4). Finally, case 2b is feasi-
ble since the meridional sector is a polar sector. We can then use
the result for κRθ established in cylindrical coordinates and ap-
ply convenient rotations to derive κrφ. A more direct calculus is
presented in Appendix D.

3.6. Axial symmetry

If the source is axially symmetrical (i.e., ∂θ′ρ = 0), the inte-
gration of the Newton kernel in the P′-space over the polar an-
gle θ′ ∈ [0, 2π] leads to∫

2π

dθ′

|r − r′| =
4
δ

K(k), (14)

where K is the complete elliptic integral of the first kind, δ2 =

(R′ + R)2 + (z − z′)2, and kδ = 2
√

RR′. Because this function is
hyperbolically singular when k → 1, we can determine an hy-
perpotential by an integration in the P-space. Again, there are not
many options because we lack formulae for the potential of the
hollow cylinder, for the cone, and for the piece of spherical shell
(see Table 1). Fortunately, there is the formula for the potential of
the circular disk, i.e., a closed-form for

∫
4
δK(k)R′dR′ (Durand

1953; Krough et al. 1982; Lass & Blitzer 1983; Huré 2012). We
can therefore deduce an axially symmetrical hyperkernel κR by
exchanging the role of P and P′ (see also Appendix C). This
leads to Eq. (C.6). The potential is also axially symmetrical, and
it finally writes

ψ =
1
R
∂RH , (15)

where

H =
∫
Ω′
κRdm′. (16)

We now present three last examples. Figure 6 is for the circular
disk with radius unity. The P-grid and the P′-grid are made of
N′ = 32 and N = N′ + 1 points equally spaced in R2 and R′2
respectively – this radial scale is natural in this type of problem,
both for the convolution and for the derivative. As above, the two
grids coincide inside Ω′ (there is just one point outside the disk)
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Fig. 6. Error index for the homogeneous disk (top panel), and for the
(inhomogeneous) Maclaurin disk (bottom panel). The set-up is the same
in both cases (edge at R′ = 1), and N′ = 32. The computational grid has
N = 33 points, but the same spacing.

and the numerical schemes are second-order. The error index is
shown at four different altitudes, including for the disk midplane
(i.e. z = z′). The top panel shows the homogeneous disk. We see
that the relative error is, on average, of about 0.1%, with again
a slight degradation near the edge. The bottom panel shows the
Maclaurin disk where Σ =

√
1 − R′2. For this inhomogeneous

case, the reference solution is taken from Schulz (2009). We see
that the relative error is about 5 × 10−3, which is not as good as
in the homogeneous case. The error is almost insensitive to the
altitude from the disk plane. This is due to the actual surface den-
sity profile (quadrature schemes are generally not very efficient
to manage infinite derivatives).

The last example is an inhomogeneous sphere with radius
unity. The potential/density pair is the following
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r′ ≤ 1 : ρ(r′) = sin(πr′)
πr′ ,

ψe(r) = − 4G
π

[
1 + sin(πr)

πr

]

r′ ≥ 1 : ρ(r′) = 0,
ψe(r) = − 4G

π
1
r ,

(17)

which corresponds to the solution of the Lane-Emden equation
with polytropic exponent γ = 2 (or index n = 1), truncated at the
first zero. The hyperpotential in spherical coordinates writes

H =
∫ π

0
sinφ′dφ′

∫ 1

0
ρ(r′)κRr′2dr′. (18)

where κR is the cylindrical hyperkernel κR. This is a typical ex-
ample where the surface S (a disk) and the domain Ω′ (concen-
tric shells) are somewhat disconnected. Here, the sphere is dis-
cretized into N′ × M′ points equally spaced in the (r′, φ′)-plane.
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Fig. 7. Same legend and same color code as for Fig. 5, but a radially
inhomogeneous sphere (boundary in white; see text). The mean index
is −2.83 (dashed line). The P-grid (R, z) is a square, larger than the
sphere’s radius by 10%.

Potential values are determined from Eq. (15) in the (R2, z)-plane
at N × M points equally spaced; the computational box is larger
than the sphere’s radius by 10%. Figure 7 shows the error index
for N′ = M′ = 32 and N = M = 32. We see that the deviation is
remarkably homogeneous inside and outside the sphere. The rel-
ative error is about 0.2% inside and outside the material domain.
This is comparable to the case of the cube.

Centrally symmetrical configurations can also be treated by
using an hyperkernel, but there is nothing really new here (see
Appendix E).

4. Summary and concluding remarks

We demonstrated that the Newtonian potential of continuous
bodies can be determined from the partial cross-differentiation of
the mass density convolved with a finite amplitude kernel (a hy-
perkernel), regardless of any coordinate system. The recasting of
Newton’s integral is free of singularity and exact, and it applies
to any type of two- and three-dimensional systems. Provided
the hyperkernel is analytical, the extra-cost with respect to di-
rect estimations is weak or negligible: it is only N operations
vs. N2 in a grid with N points. It is much lower if the method
is only used to generate boundary conditions (and coupled with
Poisson-solvers based on FFTs). The gain in accuracy is huge
since i) direct estimates cannot avoid errors; ii) there is no free
parameter; and iii) there is no trunctaed series. We have given a
few examples in Cartesian, cylindrical, and spherical coordinates
that prove the efficiency even with low-order quadrature and dif-
ferentiation schemes. The recasting is therefore very attractive
for any numerical applications. It is also a new tool for investi-
gating various theoretical problems and derive potential/density
pairs or approximations.

This work can therefore be continued and improved in sev-
eral ways. Knowing analytical expressions for the hyperkernel
associated with a given pair of orthogonal coordinates is the crit-
ical point of the method. We have shown that hyperkernels can
be directly generated by considering the potential of homoge-
neous sheets, while there are doutblessly other possibilities. For
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Cartesian coordinates, all hyperkernels are known. In cylindri-
cal and spherical geometries, a few closed-form expressions are
apparently lacking yet (hollow cylinder and cone for instance).
It would therefore be interesting to investigate this kind of ques-
tion. The formula for the polar sector should be helpful for most
astrophysical applications however, such as for modelling ro-
tating fluids. Other coordinate systems and geometries can be
envisaged. For instance, the potential of inhomogeneous ellip-
tic bodies can be determined, as done under central symmetry
(see the end of Sect. 3.6), from the theory of thin homeoids (e.g.
MacMillan 1930). This show the importance of seeking new po-
tential/density pairs associated to 2D-systems. It would also be
interesting to analyze in more detail the numerical implemen-
tation of the method. There is obviously a wide panel of tech-
niques at our disposal to perform quadratures/convolutions and
differentiations, finite differences (as considered here), spectral
methods, etc.

Finally, applications exceed the astrophysical context of
gravitation. The approach is obviously suited to electrostatics
and to electromagnetism since the potential vector is

A(r) =
∫

udq′

|r − r′| , (19)

where u is the velocity of electric charges. It is also transposable
to incompressible hydrodynamics where the pressure p obeys a
Poisson equation too,

p(r) = −
∫ ∇ · [(u · ∇) u] dm′

|r − r′| , (20)

where u is the fluid velocity.
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Appendix A: Hyperkernel for the rectangular sheet
(Cartesian coordinates)

The notations are those of Fig. 2. Up to a factor −G, the potential
of a homogeneous rectangular sheet with unity surface density
is found from the integral�

dx′dy′√
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

, (A.1)

where the bounds represents the coordinates of the four corners
of the rectangular sheet. A closed-form expression is found for
instance in Durand (1953). If we set X = x − x′, Y = y − y′
and Z = Z − z′, we have |r − r′| = √X2 + Y2 + Z2 and dx′dy′ =
dXdY. The indefinite integral is�

dXdY
|r − r′| = X − Y ln

(|r − r′| − X
) − X ln

(|r − r′| − Y
) − Z

[
atan

X
Z
+ atan

XY
Z|r − r′|

]
· (A.2)

For the present purpose, we only need to generate the Newton
kernel by a mixed partial derivative ∂2/∂x∂y, and so, we have a
certain liberty in choosing the most convenient integral bounds.
Here, we take x and x′ for the integral over x′, and y and y′ for
the integral over y. from this, we obtain∫ x′−x

0
dX

∫ y′−y

0

dY
|r − r′| = −Y ln

|r − r′| − X√
Y2 + Z2

− X

ln
|r − r′| − Y√

X2 + Z2
− Z atan

XY
Z|r − r′| · (A.3)

Consequently, the hyperkernel is obtained from this expression
by exchanging the variables x′ and x, and y′ and y. We find

κxy = Y ln |r−r′|+X√
Y2+Z2

+ X ln |r−r′ |+Y√
X2+Z2

− Z atan XY
Z|r−r′ | · (A.4)

To generate κyz associated with a potential expressed as
∂2H/∂y∂z, we perform the permutations (x, x′) ↔ (z, z′) in the
formulae above. To generate κxz associated with a potential ex-
pressed as ∂2H/∂x∂z, we perform the permutations (y, y′) ↔
(z, z′).

Appendix B: Hyperkernel for the meridional sheet
(cylindrical coordinates)

The notations are those of Fig. 2. First, we use Eq. (A.4) and
perform the permutations (y, y′)↔ (z, z′). We find

κxz = Z ln
|r − r′| + X√

Y2 + Z2
+X ln

|r − r′| + Z√
X2 + Y2

− Y atan
XZ

Y |r − r′| ·(B.1)

Then, we apply a counter-clockwise rotation (i.e., positive
trigonometric sense) around the z-axis by an angle θ′. We ob-
tain the meridional sheet. The hyperkernel then writes

κRZ = (z − z′) ln
|r − r′| − (R′ + R cos 2β)√

R2 sin2 2β + (z − z′)2

−(R′ + R cos 2β) ln
|r − r′| + z − z′√

R2 + R′2 − 2′R′R cos 2β

+R sin 2β atan
(z − z′)(R′ + R cos 2β)

R sin 2β|r − r′| , (B.2)

and the potential is given by

ψ(r) = −G∂2
Rz

∫
Ω′
κRzdm′. (B.3)

Appendix C: Hyperkernel for the polar sector
(cylindrical coordinates)

The notations are those of Fig. 2. Again up to a factor −G, the
potential of a circular sector is found from the formula�

R′dR′dθ′

|r − r′| , (C.1)

where

|r − r′|2 = (R′ + R)2 + (z − z′)2 − 4R′R cos2

(
θ − θ′

2

)
· (C.2)

This double integral has been calculated in Huré (2012). The
indefinite form is�

R′dR′dθ′

|r − r′| = δE(β, k) +
R′2 − R2

δ
F(β, k) +

R′ − R
R′ + R

ζ2

δ

Π(β,m2, k) − R sin 2β asinh
R′ + R cos 2β√
ζ2 + R2 sin2 2β

− ζ atan
ζ(R′ + R cos 2β)
R sin 2β |r − r′| , (C.3)

where F(φ, k), E(φ, k) and Π(φ,m2, k) are the incomplete elliptic
integral of the first, second, and third kinds, respectively, δ =
(R′ + R)2 + ζ2, ζ = z − z′, kδ = 2

√
R′R, 2β = π − (θ − θ′).

A45, page 7 of 9



A&A 554, A45 (2013)

To generate κRθ, it is sufficient to consider the following integral
bounds: 0 and R′ for the radial integration, and θ − π and θ′ for
the angular part. Next, the source point and the field point are
exchanged (note that δ, k, ζ2 and m are not impacted). We finally
obtain

κRθ = δE(β′, k) +
R2 − R′2

δ
F

(
β′, k

)
+

R − R′

R + R′
ζ2

δ
Π

(
β′,m2, k

)

+ R′ sin 2β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ asinh
R + R′ cos 2β√
ζ2 + R′2 sin2 2β

− asinh
R′ cos 2β√

ζ2 + R′2 sin2 2β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ζ

{
atan

[
ζ(R + R′ cos 2β)
a sin 2β |r − r′|

]

− atan

⎛⎜⎜⎜⎜⎜⎝ ζ√
ζ2 + R′2

cotan 2β

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (C.4)

where 2β′ = π− (θ′ −θ) = 2π−2β. The potential is then given by

ψ(r) = − 1
R
G∂2

Rθ

∫
Ω′
κRθdm′. (C.5)

Under axial symmetry, we have

κR=2

[
−π|ζ |ε′+δE(k)+

R2 − R′2

δ
K(k)+

ζ2

δ

R − R′

R + R′
Π(m2, k)

]
,(C.6)

where E, K and Π are the complete elliptic integrals of the first,
second, and third kinds, respectively.

Appendix D: Hyperkernel for the meridional sector
(spherical coordinates)

The notations are those of Fig. 2. Up to a factor −G, the potential
of a meridional sector defined by θ′ = const., is found from the
double integral�

r′dr′dφ′

|r − r′| · (D.1)

with convenient bounds. We can calculate this expression di-
rectly from the formula for the polar sector in cylindrical coor-
dinates (see Appendix C). First, we write the relative separation
|r − r′| in the following form

|r − r′|2 = (r′ + rν)2 + r2(1 − ν2) − 4r′rν sin2 τ, (D.2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν =

√
1 − sin2 φ′ sin2 2β

2β = π − (θ′ − θ)
2τ = π − (φ0 − φ)
tanφ0 = − tanφ′ cos 2β.

(D.3)

Then, we notice that the similarity between Eqs. (C.1) and (D.1)
is perfect if we make the following substitutions⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R′ ↔ r′

R↔ rν
(z − z′)2 ↔ r2(1 − ν2)
β↔ τ,

(D.4)

and then⎧⎪⎪⎨⎪⎪⎩
δ2 = r2 + r′2 + 2rr′ν,
k2 = 4rr′ν

δ2 ,m2 = 4rr′ν
(r′+rν)2 · (D.5)

From Eq. (C.3), we see that Eq. (D.1) becomes
�

r′dr′dφ′

|r − r′| = δE(τ, k) +
r′2 − (rν)2

δ
F(τ, k)

+
r′ − rν
r′ + rν

r2(1 − ν2)
δ

Π(τ,m2, k)

− rν sin 2τ asinh
r′ + rν cos 2τ

r
√

1 − ν2 cos2 2τ

− r
√

1 − ν2 atan

√
1 − ν2(r′ + rν cos 2τ)
ν sin 2τ |r − r′| , (D.6)

We then derive κrφ =
�

rdrdφ
|r−r′ | from Eq. (C.4) by making the same

substitutions, and the potential is given by

ψ(r) = −1
r
G∂2

rφ

∫
Ω′
κrφdm′· (D.7)

Appendix E: Central symmetry

When ∂r′ρ = 0, we can derive an hyperkernel by considering the
potential of a spherical shell with unity surface density. From the
Gauss theorem, we easily find (still up to −G)∫
π

sin φ′dφ′
∫

2π

dθ′

|r − r′| =
4π
r′

H(r′ − r) +
4π
r

H(r − r′), (E.1)

where H is the Heaviside function. The hyperkernel κshell is then
obtained by exchanging r and r′ in this expression. In this case,
we have simply ψ = H with

H = −G
∫

r′
ρ(r′)r′2κshelldr′ (E.2)

=−4πG
∫

ρ(r′)r′H(r′ − r)dr′− 4πG
r

∫
ρ(r′)r′2H(r − r′)dr′,

where the integral bounds are the inner radius and outer radius
of the sphere. This result is well known (e.g. Binney & Tremaine
1987).
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