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Abstract. Treatment coronary arteries endovascular involves catheter
navigation through patient vasculature. The projective angiography guid-
ance is limited in the case of chronic total occlusion where occluded ves-
sel can not be seen. Integrating standard preoperative CT angiography
information with live fluoroscopic images addresses this limitation but
requires alignment of both modalities.
This article proposes a structure-based registration method that intrin-
sically preserves both the geometrical and topological coherencies of the
vascular centrelines to be registered, by the means of a dedicated curve-
to-curve distance pairs of closest curves are identified, while pairing
their points. Preliminary experiments demonstrate that the proposed ap-
proach performs better than the standard Iterative Closest Point method
giving a wider attraction basin and improved accuracy.

Keywords: registration, curvilinear structure, ICP, chronic total occlu-
sion, CTO, coronary, X-ray, computed tomography angiography, CTA

1 Introduction

Percutaneous Coronary Intervention (PCI) is a minimally invasive procedure
where a catheter is navigated through the patient vasculature in order to gain
access to the pathology location. X-ray projective angiographic images allow
the interventional cardiologists to visualize the vessels and devices and guide
the endovascular intervention. In the case of Chronic Total Occlusion (CTO)
contrast agent could not go through the occluded vessel which remains invisible
in the angiography. Moreover, projective images do not allow 3D perception
of the vessels whose local orientation may not be estimated correctly from the
projective images, especially when the vessel is curved along the direction of the
X-ray beam. On the other hand, preoperative CT angiography (CTA) provides
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a static map of the entire vasculature, including occluded vessels and potential
calcifications. Moreover, ambiguities due to the projective nature of angiography
are not present in CTA. CTA acquisition is now standard in clinical practice
before starting a difficult CTO case, due to the obtained understanding of the
anatomical and lesion geometry is of unique value [12].

Integrating information extracted from CTA into fluoroscopic 2D images may
facilitate guidance but necessitate a preliminary step of registration. The reg-
istration of the pre-operative data shall reach an accuracy of few millimeters
at maximum in order to bring improved guidance to the operator. We explore
feature-based registration approaches for their potential to bring the level of ac-
curacy that we look for and also because the considered images present salient
features to be used. Indeed the vessels are curvilinear structures which can be
conveniently segmented in both CTA and fluoroscopic images made during an
injection of contrast agent.

Features are represented by centerlines, which correspond to the curves fol-
lowing the vessel center, sometimes with radius information or perpendicular
vessel cross-section. Leveraging curvilinear structures for solving registration
problems has been tested in multiple medical fields: coronary [8] or cerebral
[13] angiograms, liver images [3], [6] or in other applications [11], for diagnosis,
planning and guidance purposes.

Several methods can be used to match two sets of features. Besl and McKay
developed the Iterative Closest Point (ICP) algorithm [2] that is applicable to
large frameworks, considering features as set of points. The algorithm is formed
of three consecutive steps which are iterated: (i) Pair each point of a data to
its closest in the model; (ii) Compute the transformation minimizing the mean
square error between the paired points; (iii) Apply the transformation to the data
and go back to (i). The success of the algorithm depends a lot on pairing and
therefore on initial pose estimation. Thus, many variants have been introduced
to improve the pairing construction. In [5], ICP is embedded into an expectation
maximization framework, which allows multiple correspondences. Several other
variants are compared in [10], all aiming to better build the pairings in order to
improve registration robustness and accuracy.

Another class of methods, such as [13], formulate this problem as a matching
measure optimization process in the set of admissible transformations. However,
the energy measure to be optimized may have multiple local minima. Hierar-
chical approaches (gradually increasing searched transformation complexity) or
combination of different optimization methods [9] partially help dealing with this
issue. These local minima of the matching metric mainly come from the underly-
ing point-to-point distance, and are thus due to pairing done without respecting
the structural coherency. To improve this, [8] propose a hybrid metric between
augmented points, including local structural information such as local direction,
involving Euclidean distance from point to point and similarity properties of
the iconic features. This improves the similarity of matched points, but is still
inefficient to ensure a global coherency between the structures to be matched.
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Global coherency has been addressed in [3], [6] and [11] as a graph matching
problem, where graph nodes (corresponding to vessel bifurcations or endpoints)
are matched. However, such information may be unreliable in the aimed ap-
plication because of the inherent characteristics of the 2D projective images
(projection may induce error in bifurcation localization and introduces spurious
ones by superposition of two vessels) and the potential segmentation errors.

We propose then to introduce a structure-based registration method, inspired
by the ICP algorithm. It is dedicated to curvilinear structures, hence called Iter-
ative Closest Curve, or ICC. Its main feature is that the built pairings conform
with the vasculature structure of the images to be matched.

2 Iterative Closest Curve Method

The ICC-algorithm mimics the ICP algorithm introduced in [2], but with curves
being considered instead of points. An intuitive notion of a curve allows one to
understand the ICC framework and its capacity to preserve topological coherency
during the registration process. Let the data C be a set of curves that can be
registered to a model X . The internal representation of C and X can be of any
form but must allow one to extract curves from it.

The closest curve definition of an individual data curve C ∈ C in a model X
is based upon a curve-to-curve distance d. We denote XC the closest curve of C
in X that satisfies

XC = argmin
X∈X

d(C,X). (1)

Contrary to standard closest point pairing, the resulting pairings insure topo-
logical and geometrical coherence since a curve is paired to another one.

Following the ICP framework we now define the best transformation T̂ in a
sense of least square curve registration:

T̂ = argmin
T∈Ω

∑
C∈C

d2 (T (C), XC) (2)

where Ω is the set of admissible transformations.
The ICC algorithm consists of the iteration of three steps:

1. Pair each curve C in the set C to its closest curve XC in the set X (Eq. 1)
2. Compute the transformation T̂ minimizing the mean square error between

the paired curves (Eq. 2)
3. Apply the transformation T̂ to the set C and go back to 1 until convergence.

Now we have provided a framework for general curvilinear structure regis-
tration, some steps must be described to implement the ICC algorithm.

Data and model. The data C is defined as a set of NC curves (Ck)k=1..NC of
R3 representing the centerlines of a coronary vessel tree. These curves are traced
from distal points to a common root point insuring a global coherence along an
entire vessel during pairing. Concerning the model X , curvilinear features are
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obtained from a 2D image by using a Hessian-based method [7] and then con-
nected to obtain a non-directed graph structure. Therefore, X is composed of
edges (centerline curves in R2) and nodes that are either extremities or bifurca-
tions. Because of the projective nature of the image, detected bifurcations may
be due to either a 3D bifurcation projection or a superimposition of two distinct
vessels. No attempt to distinguish those cases has been attempted which may
lead the graph to contain cycles.

Curve-to-curve distance. In the case of 3D/2D registration, the distance
d in Eq. 1 deals with curves in different spaces (R3 and R2). This problem can
be overcome by applying a projective operator P (given by system calibration)
to the 3D curves when it is necessary. In practice, it is convenient to work with
polygonal curves C : [1, n] → R3 and XC : [1,m] → R2, constructed by linking
n points {C(p), p ∈ {1...n}} (resp. m and {XC(p), p ∈ {1...m}}). A generic set-
to-set distance based on these construction points, e.g. the Hausdorff distance,
can be considered but does not take into account the curvilinear structure of
the data. The Fréchet distance between continuous polygonal curves, which has
been addressed in [1], intrinsically takes into account the topological structures of
curves. This distance respects the ordering of points along curves but is computa-
tionally expensive. A faster discrete version presented in [4] called the ”coupling
distance” gives an upper bound of the Fréchet distance by minimizing the dis-
tance between coupled points for all possible couplings. A coupling is a sequence
of Q pairs of points (C(γ(1)), XC(λ(1))), . . . , (C(γ(Q)), XC(λ(Q))) where the
dummy variable Q is ranged between max(n,m) and (n + m) and γ (resp. λ)
is a non-decreasing surjection from 1 . . . Q to 1 . . . n (resp. to 1 . . .m) called a
reparameterization mapping.

We derive from the Fréchet distance [4] the distance d defined as

d(C,XC) =

√
min
Q,λ,γ

∑
i=1...Q

||P (C(γ(i)))−XC(λ(i))||2 . (3)

These surjective mappings ensure that the summation is done over the com-
plete set of points, forming the discrete curves. We imposed them to be non-
decreasing to take into account the order of points along curves and because the
pairing strategy defined below gives a scan sense direction along the curves.

Curves pairing. Eq. 1 requires to compute the Fréchet distance for all
possible curves X in the graph X . A curve in X is defined as a path between
two nodes, if it exists, without visiting twice the same edge. Yet, since the 2D
graph may be noisy or complex the amount of possible curves can lead to a
computationally explosive search. We propose to restrict the set of admissible
curves by selecting candidates having their extremities in a neighborhood of
the data curve extremities C(1) and C(n) projections. In practice, we identify
edges (and nodes) in the vicinity of both P (C(1)) and P (C(n)) and construct
the shortest path between them in the graph. If no 2D structure can be found
close to the vessel distal part, a recursive shortening mechanism of the 3D curve
is implemented to deal with topological differences between the data and the
model. The shortest path is built upon distances along curves as edge weights.
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Transformation computation. Any optimization procedure can poten-
tially be used to solve Eq. 2. Here we choose to take advantage of the underlying
point-to-point pairing induced by the coupling realizing the Fréchet distance in
Eq. 3. Indeed, for each curve Ck we have a couple of reparameterization function
γk and λk and a dummy variable Qk constituting point pairings between C and
X that can be grouped as a single notation γ, λ and Q. Then Eq. 2 can be
rewritten as

T̂ = argmin
T∈Ω

NC∑
k=1

min
Qk,λk,γk

Qk∑
i=1

||P (T (Ck (γk(i))))−XCk
(λk(i))||2. (4)

We propose to solve this least square problem by alternatively optimizing the
transformation T and the coupling variables γ, λ and Q. For a given transfor-
mation T finding the best coupling variables is simply obtained by computing
the Fréchet distance. Coupling variables allows one to construct point pairing
between set C and X . Finding the best transformation is then equivalent to a
least square alignment between two point sets with a given correspondence be-
tween points. We compute iteratively: (a) point-pairing optimization by Fréchet
distance (between paired curves, the curve pairing being unchanged in this trans-
formation computation loop); (b) transformation optimization at a fixed point-
pairing; (c) applying the transformation to paired curves. This transformation
optimization in ICC is thus equivalent to an ”ICP”-like algorithm where closest
point pairing is replaced by the Fréchet pairing at a given curve-to-curve pairing.

CTO handling. One major concern in registration is the topological differ-
ence between the data and the model. In the case of CTO, a part of a vessel or
even the whole vessel is not visible in the 2D image, while it is present in the 3D
CTA. This problem is solved in two different ways in the ICC algorithm. On the
one hand, as mentioned in the curve pairing process, if no compatible curve can
be found in the neighborhood of a vessel extremity we recursively shorten the
3D vessel. This approach can deal with missing parts of a vessel due to either
CTO or lack of contrast leading to misdetection of 2D vessels. On the other
hand, we implemented standard robust transformation estimators based on a
loop of transformation optimization and pairing rejection based on a study of
the residual error distribution. We introduce robust estimators in transforma-
tion computation at the ICC level (step 2.) by rejecting curve-pairings, but also
inside the transformation computation when computing least square alignment
(step b.) by rejecting point-pairings. The curve outlier rejection aims to deal
with entire missing curves and point rejection with noisy detection.

3 Results

The goal of this result section is to give an example of applicability of the Itera-
tive Closest Curve algorithm and prove its potential with respect to the standard
Iterative Closest Point method. To this end we use four real data cases coming
from three patients including one Chronic Total Occlusion (CTO) and one steno-
sis patient. One case is composed of a 3D segmentation of the left coronary tree
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(extracted via a commercial product), a fluoroscopic image and a manual pose
estimation constituting the ground truth. Two cases were built from the CTO
patient at different angulations. The sequences have been collected following
standard clinical procedures and as such did not imply any additional procedu-
ral steps for the patient.

First, we want to highlight the structural coherency brought by the ICC
methodology with respect to ICP in Fig. 1 and 2. For the same initial posi-
tion (projected in blue) pairing are shown by segments linking data projection
points and their paired corresponding points in the image. Fig. 1 presents the
lack of coherence induced by closest point pairing along vessels. A single ves-
sel in 3D presents different ”jumps” in its pairing and is matched to multiple
non-connected 2D detected curves. On the contrary, the ICC approach create
a curve-to-curve pairing and the Fréchet distance imposes order coherence of
the underlying point pairing along the two curves. As shown in Fig. 2, even if
the pairing do not correspond to the expected one it seems more realistic. From
the initial position presented in blue we run both ICC and ICP, leading to the
results presented in Fig. 3. While the ICP algorithm gets stuck at a position
where multiple vessels in 3D are transversally crossing 2D detected curves, the
ICC algorithm converges to an acceptable 3D pose.

Fig. 1. Pairing obtained
with the ICP algorithm

Fig. 2. Pairing obtained
with the ICC algorithm

Fig. 3. ICC (green) and ICP
(red) registration results

Secondly, to confirm the robustness of ICC with respect to rotations we evalu-
ate the registration algorithms on 100 random perturbations of the ground truth
pose (manually determined). The random 3D displacement has been applied to
the coronary tree and a step of alignment between the 3D root node and its de-
tection in the 2D image, i.e. a translation, has been applied. This later step is an
initialization step that seems realistic either in a manual or automatic way, thus
only rotation pertubations have been investigated. We conducted experiments
on three ranges of angular perturbation: 5, 10 and 15 degrees.

We assessed the registration error by the means of the Mean Projective Error
(MPE); that is the average residual distance between projected 3D points after
registration with respect to their ground truth counterparts. Fig. 4 displays the



Iterative Closest Curve 7

Case MPE
5o rotation 10o rotation 15o rotation
ICC ICP ICC ICP ICC ICP

1
mean 1.4 2.1 3.2 5.0 6.9 9.3
90% 3.0 3.7 7.4 10.3 15.6 18.8

2
mean 1.3 2.3 2.0 3.9 4.2 8.3
90% 3.0 4.4 4.3 8.1 9.3 16.8

3
mean 1.7 3.4 4.6 6.9 7.1 10.6
90% 3.9 6.6 8.7 13.9 12.4 21.2

4
mean 1.3 1.8 2.6 4.3 7.5 8.7
90% 3.3 3.6 6.2 8.6 16.5 18.2

Fig. 4. Statistics on Mean Projected Error (MPE). Left: the cumulated MPE for
case 1 obtained with 100 random rotations for 5o of rotation. Right: mean and 90th
percentile of the MPE distribution for ICC and ICP algorithm

cumulative MPE histogram for one patient and one angle (5 degrees). It demon-
strates that the ICC (blue curve) performs better than the ICP (red curve). For
example, a 2 mm MPE is reached in only 50% of tested positions for ICP and
in more than 80% for ICC.

Fig. 4 (right) also shows a table capturing the behavior of ICC and ICP
algorithms for the whole dataset by computing the average and ninetieth per-
centile of MPEs. ICC obtains lower values for both indicators, suggesting that
ICC can be more accurate that ICP, and that point based methods can benefit
from integration of global structural information.

Current implementation runs in around five seconds on an Intel CORE i5
cadenced at 1.5 GHz.

4 Conclusion

We proposed in this paper a general registration method for curvilinear struc-
ture taking into account geometrical and topological coherency of the data. We
exemplified the ICC method with a 2D/3D registration implementation applied
to coronary artery registration. By introducing curve-to-curve pairing and dis-
tance, we showed that ICC algorithm overpassed the standard ICP algorithm and
significantly improved the resulting pairings. The improvement in the pairings
has been visually evaluated in test experiments. We also estimated the improve-
ment by comparing the mean projection error obtained with our approach to
the reference ICP method.

For future work, the capacity of this algorithm to handle transformation
scheme involving non-rigid deformations needs to be evaluated. Indeed, we ob-
served in our test application that the rigid transformation is insufficient to
describe the changes supported by the anatomy between the pre- and the per-
operative imaging situation. Additional outlier rejection mechanisms shall also
be added to extend further the attraction basin.
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