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Abstract
The polyethylene terephthalate near the glassitiam$emperature highlights a strongly non

linear elastic and viscous behaviour when biaxistitgtched at high strain rates representative
of the injection stretch blow moulding process. @nrinear visco-hyperelastic model, where
characteristics are coupled to the temperaturebbas identified from equi-biaxial tension
experimental results. The weak form of this modgbresented and implemented into a finite
element code and validated by comparing numericalilation of equi-biaxial testing with
the analytical solution in the isothermal case. Siaering the thermal aspects, an
experimental study, where PET sheets are heateg usrared (IR for short) lamps is also
presented. The modeling of the IR radiation of #imeet helps to identify the thermal
properties of the PET. The thermal model is theplémented in the finite element code,
coupled to the 2D visco-hyperelastic model. A déston is made to justify the accuracy of
the assumption made on homogeneity of the temperdieid through the thickness. The
simulation of the 2D plane stress equibiaxial ségiws the important influence of the thermal
aspects and the coupled thermo-mechanical softvgaresed to quantify the self-heating

phenomenon in the case of the biaxial elongations.

Keywords
Viscoelastic properties, thermal properties, simaoites, nonlinear polymer



Numerical Simulation of the Thermodependant Visco-
hyperelastic Behaviour of PET near the Glass Transi tion
Temperature: prediction of the self-heating during biaxial
tension test

1. Introduction

The injection stretch blow moulding (ISBM) proceskich is managed at a temperature
near or slightly above the glass transition temipeealy involves multiaxial large strains at
high strain rate of the polyethylene terephthatatgerial (PET). The performance of a PET
bottles produced by the ISBM process depends onynpamameters. During the ISBM
process, the PET behaviour exhibits a highly eddgtia strain hardening effect and a strong
viscous and temperature dependency. Therefore, neaegrches have been conducted on the
rheological behaviour of PET: Marckmaret al. [1] proposed and used a hyperelastic
modelling approach which could not take into ace¢dbe strain rate effect. Gorliet al. [2,

3] also used the hyperelastic type models, howal#ugh these models have demonstrated
some success in representing the PET behaviopeaifis strain rates, they have been found
to be unstable in the numerical simulation. Chevatind Marco [4] have managed biaxial
tension tests nedry with a range of strain rates from 0.02 to™2 $hey proposed a simple
viscoplastic model [4] identified from these temsitests. This model has been used by
Bordival et al. [5] in a numerical procedure based on simulatioinge heating and blowing
phases performed to optimise the stretch blow mioglghrocess. Cossoet al. [6], then
developed this viscoplastic model into an anisatrofersion. The strain hardening effect

observed during tension can be related with thairstinduced modifications of the



microstructure of PET but this viscoplastic modgpm@ach fails to represent the relaxation
stage after tension which Chevalier and Marco Bffied out from the relaxation tests. In
their work, the relaxation time has been identifiemm these tests and clearly demonstrates
the contribution of a viscous part in a highly é@asnacromolecular network. This stress
relaxation behaviour is the main characteristicsoaigted with viscoelastic materials.
Therefore, the viscoelastic model which take intocant the strain hardening and strain rate
effects have been used for ISBM process [8,9]. Hewethe classical viscoelastic models
such as the Upper Convected Maxwell model [9] @ Giesekus model [10] do not
adequately demonstrate the strain hardening efBaatkley and Jones [11, 12] proposed a
non linear viscoelastic model which is physical§sbed on molecular network theory. Lately,
Menary et al. [13] have examined three different constitutivedels: hyperelastic model,
creep model and a viscoelastic model (Buckley njookekthe ISBM simulation using the
finite element package ABAQUS/standard. They fothmat the Buckley model (viscoelastic
model) gave a better result than the others twoatsoth terms of predicting thickness
distribution in the bottle. Inspired from Figiel darBuckley's work [14], Chevalieet al.
[15,16] have recently proposed a non linear incasgible visco-hyperelastic model to
represent the complex constitutive behaviour of PEdperimental uniaxial and biaxial tests
performed on PET were carried out by Menatyal. [17] in Queen’s University of Belfast.
These tension tests were managed with variousoerssieeds (from I'sto 325", which are
higher than in Chevalier and Marco’s work [4]. Tihenlinear forms of elastic and viscous
characteristics were proposed. Here, we implemist domplex visco-hyperelastic model
into a finite element code in the matlab environmehhe weak form of this 4 field model

(velocity V, the elastic left Cauchy Green tendgy and the related pressypeandq for the

incompressibility assumptions) is presented inZDespecific plane stress case. It enables to

reduce the number of field to 2 (velocity, the akeft Cauchy Green tensor). Simulations of



biaxial tests are managed in order to compare thighanalytical solution in the isothermal
conditions.

Effects of temperature, initial heating conditiasself-heating during the process, are of
fundamental importance during the injection strdtldw moulding process of PET bottles. In
the ISBM process, an initial preform is heatednroaen to the process temperature, which is
near or slightly abové&,. Over this temperature Tg, the mobility of the emllar chains in
material PET affects the orientation and the micuasure (crystallization). The mechanical
properties of PET are dependent on the microstralctnorphology of the PET and strongly
depend on the process temperature as well as ostrdie rates. On the other hand, the low
mobility of micromolecules and the high viscositly the material generate dissipation of
energy which leads to a self-heating phenomenois. §dif-heating effect must be taken into
account in the simulation. In contrast, many emgtnumerical studies of ISBM [14, 18]
neglect heat transfer: the temperature has beemasisto be constant during the process and
the deformation induced heat was neglected. Thesearches show that a numerical
simulation neglecting the effect of temperatureiryistretch-blow moulding process could
not accurately predict or model the orientation argstallization, which are highly
temperature dependent during the process. Thereforie essential to incorporate heat
transfer to represent the mechanical propertieshef final bottles. Schmidet al. [19]
developed their work [8] in ISBM simulation by déweing a non-isothermal finite element
simulation to embed heat transfer during the defdion process. However it did not show
the significant improvement in terms of predictthgckness distribution and the force exerted
by the stretch rod. Yangt al. [20, 21] continued the work of Menaet al. [13] in a 2D
isothermal simulation to a 2D non-isothermal sirtiala by using the Buckley model to
represent the PET behaviour. Significant nonlineidferentials have been found in

temperature and strain in the bottle thicknesseHee first identify the thermal properties



from IR heating tests of PET sheets. The identifogdameters are compared to classical
values of the literature. Especially, the IR heafiix coming from IR lamps is studied using
radiative laws adapted to the test geometry. A goodelation is discovered. Then, the
thermal part coupled with the viscohyperelastic elddr the mechanical part are used to
perform the simulation. The simulation enableguantify the self-heating during the biaxial
tests.

In the first section of this work, we present thgplementation of the proposed non linear
incompressible visco-hyperelastic model into atéirelement code developed with Matlab.
We present a two-field finite element formulatigifobal velocityV and elastic Cauchy Green

tensor B, . Rectangular finite elements with quadratic anedrr interpolations are employed

for velocity and elastic left Cauchy Green tengonumerical simulation of 2D plane stress
case is performed. It reproduce well the strainéaing effect.

In the second section, a procedure is proposedthferidentification of the thermal
parameters from experimental results of a test /T sheets are heated using IR lamps.
Sheets used in this study are made with the PETeADD0301 from DSM industrie¥he IR
heating with IR camera is widely used in the expental set-up for the heat transfer [22, 23].
The Monte Carlo method is used to identify the paaters from the temperature evolution
measured on the front face (in regard of the lanaps) the rear face of the sheet. The heat
capacityC, is considered as a function of the temperaturéewthe other parameters (thermal
conductivity, emmisivity, convection coefficienf.are assumed to be independent of the
temperature. A large section is devoted to the @ispn of the identified parameters with
classical values of the literature, especiallytfor IR heating modelling. Moreover, the weak
form describing thermal behaviour adapted to pktness case is presented in the end of this

section..



In the third section, in order to accurately sinbelléhe ISBM process, the thermal and
mechanical parts are put together. Non-linear n@achbhand thermal equilibrium equations
are solved with implicit schemes on the currenbdegd configuration, which is updated at
each time step. Finally, the parameters identifirethe proposed model have to be adjusted
because the self-heating effect is not negligibke lzas an important effect on the viscous part
of the model. Therefore, an optimization procedsnmanaged to adjust the characteristics of
the PET for these visco-hyperelastic model expoessto represent conveniently the biaxial

experimental tension tests [17].

2. Numerical simulation of the model in plane stress case

2.1 Model presentation

Inspired from Figiel and Buckley [14], we proposedl15, 16] a non linear incompressible
visco-hyperelastic model for both elastic and visc@arts to represent the mechanical
behaviour. In order to represent the strain hardgmind strain rate effect and temperature

dependency, we choose two rheological functionsefastic and viscous part&(&,) and
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wheregis the Cauchy stress tens@, is the symmetric part of the viscous velocity gesad)

D is the symmetric part of the global velocity gradjd is the identity matrix,e, is the

equivalent elastic strairg, is the equivalent viscous straig), is the equivalent viscous strain

rate, T is the temperature, the subscript “*” denotesding@atoric part of the tensoyy is the

small value of the viscosity of the Newtonian btawnc the Zener like model used in order to



solve the ill-conditioned problenz, is the elastic part of the Eulerian strain measigfened
by:

£ =%(Be -] @

where B, is the elastic left Cauchy Green tengors a Lagrange multiplier associated to the

global incompressibility condition, arglis the multiplier associated to the incompressipili
of the elastic part. Since the elastic and glolzatspare incompressible, the viscous part is

supposed to be also incompressible:

detB, =1, diw =traceD=0, diw, =traceD, =0 (3)

whereV is the global velocity an¥f, is the viscous velocity.

The assumption of an additive decomposition ofteleend viscous velocity gradient is

adopted to describe the kinematic structure ofrtioslel:

o

=D, +D, (4)
where D, is the symmetric part of the elastic velocity geadi
Combining Eq. 1, 2 and 4 in the Oldroyd derivatodrthe elastic left Cauchy-Green tensor

leads to:
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whereG is the elastic shear moduugis the viscosity and the Oldroyd derivatid'tBe/d is

defined by:

oB,
= =B+ eg—gBe—a(Beg+QBe) witha = 1. (5b)

where isQ the global spin.



2.2 ldentification of the material’s properties

Both the elastic and the viscous parts of the modedt contribute to the strain rate effect.
We first focus on the elastic part. One can idgntiife initial shear modulu&, from the
initial slope of the global experimental strainests curves which were carried out by Menary
et al. [17], because there is no viscous strain at thmg eginning of the test. Table 1 show
thatGy does not vary much from one strain rate to another.

As the biaxial tests are conducted at constant malnstrain rate, the global strain rate
decreases versus time. If the shear modG@ugmains constant, it leads to a contradiction
because the viscous strain rate may become negatingefore, we consider a Hart-Smith

like model to represent the elastic part:

Gle,) =G, expA(1, -3)), 1, =traceB, (6)
where Ais a dimensionless parameter.

For the non-linear viscous part of the model wéfelthe same method as in Cosstral.

[6] to represent macroscopically the strain handgmffect, but we choose a Carreau type law

instead of the power law to describe the influeoicéhe strain rate:
nle,.&,.7)=nonle. ) 1) ™

with: £ (£,) = LI ()

‘gref

whereA, m, aare parameters in the Carreau type law &pdis a reference strain rate that

can be taken equal to T for sake of simplicity. The strain hardening effiscrelated to thé
function which increases continuously wath We detailed the identification procedure for

the h function in [15,16], here we slightly changed them of the function. Since the strain

hardening effect is influenced by the temperathtis,a function ofT too:
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According to the form of the lines bfshowed in the Fig. 1, we propose the functiorhe t
Eq. 9, wherey, is related to the level of the function on theatplu’ K is a constant related
to the initial slope of the curveym is the strain value corresponding to the vertisgimptote
of the h curve antll an exponent that fits the "beginning" of the quinkrease of the curve.

Parameter& andN do not vary much with the temperature; at the reoyt variableg;o(T)
andeyim(T) show a significant dependence on temperature. Ndese the Williams-Landel-
Ferry (WLF) model for the evolution gb(T):

_ - Cl(T _Tref )

- C2+T_Tref ’”O(T):aTno(Tref) (10)

in(a,)

whereC; andC, are the WLF parameter§,: =90°C. We propose the evolution &fim(T) in

the following way:

B(T, -T
‘gvlim = ‘gvlim_ ref [1+ z-l(—_—fB))J (11)
2
where g, o =€, .o FiNally, the characteristics of the PET for theseo-hyperelastic

model expressions to represent conveniently theraxental are listed in table 2.
2.3 Weak form of the plane stress 2D visco-hyper-el  astic problem

In the equi-biaxial elongation plane stress caséork deriving the weak form, we can
establish a relation between the pressures, thaciteland the elastic left Cauchy Green

tensor:

Gle, 2
03=0= p+q=_2’7N(D11+D22)+ (3 )(BellBezz_Beiz _Bell_BeZZJ (12)

The visco-hyperelastic model is implemented in khatlab environment using a finite

element approach. A 2 fields (global velocityand the elastic left Cauchy Green tengg)



variational formulation is proposed for plane sresicompressible problem. Some

manipulations of Eq. 5, 6 and 12 lead to the folf@ywveak form:

R, =27, D :DdQ +G[ D" :B,dQ +27, | D" :1(D,; +D,,)dQ

_Sip ! de—j V' EYdS=0;
Q¢

3= "= BellBeZZ - Belz

R =1 B,

€ Q_—

* {50% N ”(f(‘z_)T ) B, EJdQ =0 (13)
where the superscript * designates test quantities=® the prescribed traction fielver the
boundaryoQ_. where the loads are imposed. The integral equatoa studied on the entire
volumeQ.

This strongly nonlinear problem (finite elasticmlscements, elastic left Cauchy Green tensor

B., non constant shear modul@® and viscosityy), is solved using a classical Newton-

e’

Raphson iterative procedure. The consistent linaaon must be done with Gateaux

operators and the linear form of the problem fer ithcrementAV and AB, is written in the
following system:
DR [DwfRI1[IAV]] (IR,
bt bl R oo
where D, {R, }, DABE{R,}, DAv{RBJ and DABS{RBS} are the Gateaux derivatives related to

the increments:
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Fig. 2 shows the geometry of the PET specimen dutire tension tests, boundary
conditions on symmetry axis and the load appliedhenedge of the sheet. The PET sheet is
submitted to a velocity on X-axis and Y-axis. This case represents thaldgjaxial tension
case:oxx = oyy. According to the axis of symmetry, the equal Ebtension case can be
simulated using one-quarter of the specimen. lemia compare the experimental results, the
length and width of the 2D domain simulated aren88 and the thickness is 1.5 mm, which
is representative of the PET specimen size (76 neémxnx1.5 mm) of the test [17].

As showed in the Fig. 2, the domdnis discretized by a set of 8-nodes isoparametric
rectangles elements. The simulation is managedifi@rent elongation ratel obtained from

the derivative of stretch ratibwith respect to timé so ¢=4/1, & varies from 13 to 325",

2.4 Simulation the biaxial plane stress testing

In the case of the classical incompressible probleth a mixed velocity - pressure
formulation the finite element calculations cande@ locking problem if velocity and
pressure spaces are not chosen carefully. To lesta mixed formulation must verify
consistency. The well-known inf-sup condition oe thadyzenskaia-Babushka-Brezzi (LBB)
condition [24] guaranties the stability of a fineéement velocity - pressure calculation as a
guadratic interpolation for velocity and linear fmessure. By analogy, we choose a quadratic

interpolation for velocity and linear interpolation foB, .



The finite elements result matches perfectly whid analytic results. Fig. 3a and 3b show a
substantially good representation of the experialemsults. The mean difference does not

exceed 10%.

3. Numerical simulation of athermo-mechanical model

3.1 Experimental procedure

Mechanical properties of polymer are strongly iaflated by small variation of
temperature. On the other hand, the high viscositypolymers generates important
dissipation that impacts the temperature evolutiQuhsequently, thermal properties are to be
taken into account in the ISBM modeling in orderachieve accurate simulation of the
process. It is necessary to:

(i) define accurately the initial temperature dizition of the preform at the beginning of
the blowing operation;

(i) identify the thermal properties of the PETadrder to model the behaviour law of PET
coupled to the thermal laws;

(i) provide, by coupling the thermal equationgtwihe mechanical equations, the history
of the temperature field during the simulation.

In the following, a procedure is proposedtfee identification of the thermal parameters.
According to Fig. 4, the experimental apparatuscWhtonsists in measuring, by thermal
imaging, a PET sheet heating by infrared lamps. LARFB250 infrared camera with the
wavelength range 7.5 — 18n is used to evaluate the surface temperaturakdison. The
surface dimension of the 1 mm thickness sheet iBx125 mmSheets used in this study
are injected from the PET Arnite DO0301 followingM industries recommendations.

We have tested three different distances betweetathps and the PET sheet: 11 cm, 12
cm and 13 cm. The thermal properties are identifdeach distance: we can ensure the

values of the heat conductivity, the specific masise heat capacity and the convective heat



transfer parameters. Moreover, the relation betwherheating flux and the distance can be
estimated. For a constant heating IR flux, we aaiica that the temperature decreases while
this distance increases. This is a logical resettalise the intensity of the radiation decreases
when the distance increases [25].
3.2 Identification of the thermal properties

The software FLIR quick report is used to measoreiately the temperature. In the work
of Schmidtet al. [26], they have found that the polymer materialopaque under the
wavelength in the range of 8 — L. This range matches the one of the IR camer&eso t
PET may be considered like an opaque medium. Thekbbaint used is assumed to be
opaque which means that only the radiation emftia the PET sheet surface is captured by
the camera’s sensor. To evaluate the temperatat@é fiom the IR camera, we need the
emissivity value of the PET sheet. However, becauseare not able to quantify it precisely,
the identification is managed from thermocouple sneas. From thermal imaging by camera,
the temperature field visualization shows that soemeperature heterogeneities only appear
on the edges of the sheet surface. According tsethresults, we can assume that the
temperature is homogeneous in the plane of thet siree only varies in the thickness
direction. Therefore, the identification can be eééom a one dimensional model.
The heat transfer equation in the 1D case withrakdétive source term can be written in the
following way:

‘;Z =—dilg,) (16)

pCp(T)T —k

where:p the specific mas€;, the specific heat capacitk the material's conductivity amTi

is the internal radiative heat flux.
In Cossoret al. [27], the convective heat transfer coefficient fioe face in front is little

larger than the one on the rear face, but in otlwrks [28], it is the opposite. Therefore, we



choose to take into account the convection via wuhberent coefficients. T, is the

surrounding bulk temperatuig; for the air in front of the lamps is higher thahe one in

the backT,, . Consequently, we write the boundary conditionthenfollowing way:
-kOT.n = h, (T =T, ) on the face in front of the lamps; (17a)

-kOT.n=nh, (T —Tmr) on the rear face. (17b)
whereh; and h, are the convective heat transfer coefficient anftte in front of the lamps
and the one on the rear face.

The heat conductivityk, the specific mass and the convective heat transfer coefficient
are assumed independent of temperature while @echpacityC, is considered as a function
of the temperature, since heat capacity increagesfisantly with the temperature (see Fig.
5). According to the values referenced in [29],pwepose the following function to represent
the evolution of the specific capacity:

C, =AC, arctaria(T -T,))+C,, (18)
where ACis a constant related to the amplitudetio¢ increased of th€, value when

passing from the glassy state to the rubber st@tes the more or less the glass transition

temperatureC,; is a specific capacity value corresponding to tlessy state of the material
and a isa factor that fits the roughness of the jump ofdheve.

Since the heat transfer is assumed as a 1D cash Wig temperature varies only in the
thickness direction, the internal radiative intéynsabsorption CTr is taken also as one

dimensional and is managed by the Beer—Lambert law:

—_— -

d, = @€z (19)



where: ¢,, is the incident radiationk,is the spectral absorption coefficient of PET and

represent the path between the current positidghegancident surface. From Fig. 8, s can be
calculated as=z-d.

The heat equation (Eq. 16) with a non lirgaecific capacity (Eq. 18) and the equation of
the internal heat flux (Eg. 19) are solved usirafinite element method. The implicit time
integration scheme is chosen to solve this timesddpnt problem. Due to the non linear
specific capacity, a Newton Raphson method is ts@dtain the temperature field.

The Monte Carlo method is used to identify the peirs that best fit the experimental
results. The domain of each parameter is definenh fihe reference [29]. We generate the
parameters randomly over the domain. On each dzasgmputation is carried out and the
numerical results are compared with the experimhaetaperatures. After drawing 10000
random inputs, we obtain the parameters, with withehnumerical results best matches the
experimental data. The thermal properties are eafsxd in table 3. This identification shows
that by is smaller than the rear coefficieht. The specific masg and the absorption

coefficient k, have the same order of magnitude with reference. idat conductivitk is

smaller than the reference.

Fig. 6 represents for each distance, the experahé&smperature evolution on the surface
in front of the lampd; (the blue one) and the one on the rear Tad¢ehe red one). With the
identified parameters, the curves obtained havebstantially good representation of the
experimental results (dots).

The evolution ofC, for PET Arnite DO0301 are illustrated in Fig. Bdngparing with the
one of material PET T4F9. They have the same amteragnitude except some differences at
the lower temperature. The convective heat transefficienth can be estimated from the

relation proposed by Churchill and Chu in [30]:



%
h:% o8+ DOTRE
(1+ (0.492/P )%6%

wherelL is the height of the shed®, is the Rayleigh number arR] is the Prandtl numbel;

(20)

= 0.688andR, = 1.6x16 when the temperature of PET reaches’C0@9], we can obtain the
value ofh using Eq. 20h =11 W/nf.K. The identifiedh, (16 W/nf.K) is a little higher than
this value estimated while (7 W/nf.K) is a bit lower than this one.

Since we tested three different distances mtwibe IR lamps and the PET sheet, the
intensity of the incident radiation depends ondisance. In the following, we estimate this

absorbed infrared radiatiom,, from a simple modelling based on the principlespéctral

energy relation [29,31]. Four identical IR lampadiusr = 2 mm and length= 185 mm) are
modelled as cylinders separated by a distansel5 mm (Fig. 8b).

The amount of the radiation heat energy, that cofres the surface elemendiA’ at a
collocation pointv’ (x =rcosg+h,y ,z =rsing) and reaches the surface elenthat a
collocation pointM (x, y, z=g with the path vectorw (Fig.8a), can be written in the

following way:

otk p ¢=r py'=l/2 . dA .
dQux_an = Ll £,i%(1)d EL:O jy,:_l/zcosecose W g_% | (22)

whered is a given wavelength between 0.2 and 10 and &, is the spectral tungsten

emissivity equal to 0.26 [29]. The emissive powar doblackbodyi® is given by Planck’s

law:

b T (22)

i 2C,
A
/15 (G%Tm _ 1]



where: C, = 1190110° W.m2.um?, C, =14388:m.K. We assume that the filament temperature

is a uniform source af; =1700K. W is a vector which represents the path of the tadia

from M’ toM:
MM _x-X — y-y—. z=7—_ % h—. y y— d —
= T ] S ] & ] € ] um] S ] £ 2

The last approximation is related to the conditior< d. The two anglesd and 8
represent respectively, the angle between the ratle lamp surface' at point M" and the
path directionw; the angle between the normal at the PET sheat point M and the path
direction w:

cosd =WiE = (x—h)cosg , dsing (24)

cosd=wlg, = : :
M| mim|

_d
™|

whereM M| :\/(x—h)2 wly-yf+d>.

Once again, because the radius r is negligdompared to the distance d, Eq. 21

combining with Eq. 24 leads to:

y=/2 dAdy

_ (% . b 2
deA‘ﬂdA - J-/ll 5/1 I/\ (A )d/‘ Qrd y'=-1/2 HM ,M HZ (25)
Finally, the intensity per unit area of theident radiation can be written as follow:
anm S A . =l/ d '
aul)= S etz B[ “
' i=1

wheren = 4 stands for 4 lamps.
We can see, from Fig. 9, that the intensityhef incident radiation reaching the PET sheet
is not uniform. The maximum difference can reachodietween the central zone of the PET

sheet and the corners. Nevertheless, in the ceegain of study where the identification is



done, the heterogeneity is less than 10% whicldatds the 1D approach used to manage the
identification.

From Fig. 9d, one can also notice that the incidadiation g,, calculated in the central

zone decreases with increasing distance. This valugose to the one identified from
temperature measurements: both are listed in table

3.3 Implementation of the heat part of the thermo-v  isco-hyper-elastic

model
We consider a thermo-mechanical model to simulage @quibiaxial stretching of PET
sheets in order to evaluate the self heating phenom The mechanical part is shown in Eq.

13-15. The weak form of the heat part can be writtethe following way:

J.QT 'OCpTdQ+ k.[QQTQTd?:JQ T(g=|? @- hﬂaﬂq T( F J) ‘ (27)
T=T, at t=0
0Q, is the union of the top and bottom face of thecspen. The process temperature is

slightly above the temperature Tg. Under this ctowlj based on the evolution of the heat
specific capacityC, shown in Fig. 7, it can be assumed as constab0(1/kg.K). Because the
sheet specimen is heated on both sides, the laeafdr coefficienh can be chosen equal to
he (7 W/nf.K). No thermal exchange is assumed between theirspa and the grips. To be
consistent with the plane stress assumpfias,chosen as a function of the plane coordinates
x,y and time (i.e.,T is representative of the mean value of the temperathrough the
thickness). Consequently, the weak form writes:

E(,OCp T ‘Z—Ids+ k[ OT"Ords-[T° (g:g)jsj =2[ T°(-h(T-T,)ds (28)

wheree is the thickness of the speciméi2 = 0Qq = S is the area of the 2D plane domain

that represents the specimen. Since we assuméhéhtiermal exchange only occurs on the



top and bottom face of the PET sheet, the factbb&ore convective heat transfer term
represents the total flux exchange from these twiases.

The dimension of the PET specimen during the ®36mmx76mmx1.5mm. The length
and width are large with respect to thickness: e ls<Under this condition, the most
convective heat exchange is on the top and botifiaces. The dissipated power density

g:D is about 10Pa.s" and is almost uniform in the specimen. This vaeads to the
Brinkman numbeB; equals around 10:

e

B = kT, -T) L2

r

(29)

That means the viscous dissipation is 10 timesefatigan the heat conduction through the
thickness.
Furthermore, the biaxial stretching processoissidered fast enough in regard of the time

needed to propagate the temperature through tlokngss. The characteristic time for
diffusion ist, =pCpe2/k =57sand the characteristic time for capacitytis= oC e/h =132s.
The time for the process is about 2s. If we comfia@enean value of the temperature through
the thickness‘l_':'l_'(x, y,t) in the plane stress case with th&,y,z,} in the axi-symmetric
case, the difference between the mean value akthperatureT obtained by Eq. 28 and the
temperature T calculated from the weak form with dtefinite integral over the thickness is

nearly 0.58C. This difference causes an error on viscosity ithéess than 3%. Therefore, in

the following, we use Eq. 28 to simulate the thdmpaat.
3.4 Optimization of the mechanical parameters of th e thermo-visco-
hyper-elastic model

Mechanical and thermal balance equations are fudly-linear and solved together with
implicit schemes on the current deformed configamatwhich is updated at each time step.

The thermal parameters are identified from the ewpmntal infrared heating and the



mechanical ones are identified from the assumiotihemal equi-biaxial elongation. Both are
listed in the table 2 and 3.

We implement the thermal part in the finite elemaoproach together with the mechanical
part. Therefore, a three fields (global veloditythe elastic left Cauchy Green ten&and
the temperaturd) formulation has been performed. We choose theafinnterpolation for
temperature. The Eq. 13-15 which solve only thehaecal part has to also add the heat
equations. The Newton-Raphson residual for the pedts:

R =pC,[ T %—Ids+ k[ O OTds- jag*(g:g)js—%jmq T'(-h(T-T.)ds  (30)

The consistent linearization leads to the lineamfof this problem for the incremeiV ,

AB, and AT which can be given in the following way:

Pu{RY [PuARY o] Jlav]) ([R]
[DAV{RB}] [DAB{RB}] [DAT{RB}] [AB] =~ [RB] (31)
PufrRYl [o]  [Pu{RHaT])  ([R]

The adding Gateaux derivatives of nonlinear operatoresponding to the residuaRy(

Rs andRy) can be written:

Dy{R} =] ToCATQ+ | OTO(A ) @ (32)

Fig. 10 shows that stresses obtained from thisrtbenechanical simulation are lower
than the experimental data. Because the temperaitneases during the biaxial elongation,
the self-heating effect affects the mechanical erigs, especially the viscosity which
decreases. Consequently, the parameters idenéifisdming an isothermal elongation must

be modified to take into account this.



As the self-heating effect is not negligible andduces an important effect on the viscous
part of the model, the first estimation of the paeters obtained from our isothermal

identification must be adjusted.
The parameters in the viscosix;(gv,é_v,T) are needed to optimize. The purpose is to

minimise the mean difference between the experiahgasults and the numerical ones. The
function ‘fminunc’ in the Matlab Optimization Toad is then chosen for the optimisation
procedure. The characteristics identified fromidwhermal elongation in table 2 are applied
as the starting point of each parameter. Findtly,dharacteristics of the PET for these visco-
hyperelastic model expressions to represent coamdyithe biaxial experimental tension
tests are listed in the table 5.

Comparing with the values of table 2, one can olesthrat only the values of the WLF like
coefficients are influenced by this adjustment. étlcoefficients, that appear in the
mechanical part of the model vary very few: théiahidentification makes finally sense even

if an adjustment is needegasterior.
4. Results

With these parameters identified from the optim@at we can obtain the stress-strain
curves from the thermo-viscohyperelastic model. Ely shows the comparison between the
stresses obtained from this thermo-mechanical sitimnl and from the experimental data.
The mean difference does not exceed 10% for edonndation rate showed in table 6.

We can notice that the increasing evolution of theperature versus strain is nearly
linear. The increase of the temperature is the saher of magnitude but little lower than the
one observed in the experimental test present¢ti7in Furthermore, the self-heating of the
specimen increases regularly for strain rates wgrfiom 18" to 328" where the temperature

increases nearly of 6°C (see Fig.11b). It confithat at very high deformation rate observed



during ISBM process, the adiabatic heating duehto tiscous dissipation may generate a
significant temperature rises.

We can see in the Fig. 11c, the effect of tempegatin the viscosity evolution. For
example, the final slope of the viscosity curvetfoe strain rate 32'sis much lower than the
one for lower strain rates, therefore the straimléaing effect is not so considerable at 32 s

If we examine the high strain rate case, for examal 328 for 9¢°C, the coupled themo-
visco-hyperelastique model simulation gives thesstrevolution plotted on Fig. 11a which
have 9.25% errors with the experimental data.

One can see that the stress evolution measureagdine experiment saturates and doesn't
increase as the lower strain rate case when agpnsatche 1.8 elongation. This may be
explained by the higher temperature level comimgnfthe self-heating of the specimen for
this test. Our model does not predict the decrgasivape but gives a pretty good estimation

on the evolution with nearly no strain hardeninig@&ffor this case.
5. Conclusions

A visco-hyperelastic model identified from the eguaxial tests performed at conditions
close to ISBM process strain rate and temperatues wnplemented for numerical
simulations. This finite elements model was usedsitoulate the plane stress test. It
reproduces successfully the experimental results gan be used to simulate uniaxial or
sequential biaxial tests to predict the PET behavior isothermal conditions.

Experiments have been conducted to characteristhénmal properties of the PET in the
range of the ISBM temperature. Thermal imaging basn used to determine the surface
temperature distribution of the PET sheets which legated by infrared lamps. The Monte
Carlo method is used to provide the parameters [iesthe temperature evolution.
Comparison between the obtained values and vabhragg from the literature, especially for

the infrared heating radiation flux, validates ithentification approach.



The coupled thermo-visco-hyperelastic model propdsas been used to manage a finite
element simulation of the equi biaxial elongatiestt The weak form of the model has been
implemented in Matlab. It shows that the therm& @t have an important influence on the
viscous part of the model and WLF like parametergehto be adjusted by non-isothermal
simulations. With the adjusted parameters, we obthi (i) that stress-strain curves from this
thermo-visco-hyperelastic model fit well with theperimental data; (ii) that self-heating of
the specimen is not negligible and can reach nd®¢ for the highest strain rate which is
conform (slightly lower) to the temperature meamgnts made on the specimen.

In further works, we intend to implement an axi-syetric version of the visco-
hyperelastic model coupled to temperature in otdermulate accurately the ISBM process.

Acknowledgement

This work could not possible without IR lamps givey Sidel Company and without
injection of the PET sheets made by the LIM at Asttdviétiers ParisTech. Special thanks to
G. Menary of QUB for his experimental study from igfh the identification has been

possible.

References

[1] G. Marckmann, E. Verron, B. Peselqlymer Eng Sci41(3), 426—439 (2001).

[2] E. Gorlier, J.F. Agassant, J.M. Haudin, N. &i| Plast Rubber Compos Process Appl.,
30(2), 48-55 (2001) .

[3] E. Gorlier, J.M. Haudin, J.F. Agassant, J.Lephge, G. Perez, D. Darras, N. Billdihe
14th International ESAFORM Conference on MateriafrRing Liege, 345-348 (2001).

[4] L. Chevalier, Y. Marcolnt. J. Mech. Mater.39(6), 596—609, (2006).



[5] M. Bordival, F.M. Schmidt, Y. Le Maoult, V. Vay, Pol. Eng. Sci.49(4):783—-793
(2009).

[6] B. Cosson, L. Chevalier, J. Yvonn#tt. Polymer Proces24(3), 223—-233 (2009).

[7]. L. Chevalier, Y. Marco, G. Regnidylec. Ind.,2, 229-248 (2001).

[8] F.M.Schmidt, J.F. Agassant, M. Bellet, L. Detet; Journal of Non-Newtonian Fluid
Mechanics64 (1), 19-42 (1996).

[9] G. Barakos, E. Mitsoulis]. Non-Newt. Fluid Mech58, 315-329 (1995).

[10]. B. Debbaut, B. Hocq, and J. M. MarchSRPEANTEC Tech. Paper’9, 1870-1872
(1993).

[11] C.P. Buckley, D.C. JoneBplymer,36, 3301-3312 (1995).

[12] C.P. Buckley, D.C. Jones, and D.P. Joredymer 37, 2403 -2414 (1996).

[13] G.H. Menary, C.G. Armstrong, R.J. CrawforddahP. McEvoyRubber and Composites
Processing and Application29, 360-370 (2000).

[14] L. Figiel, C.P. Buckley]nternational Journal of Non-linear Mechanijc44, 389-395
(2009).

[15] Y.M. Luo, L. Chevalier, E. MonteiraThe 14th International ESAFORM Conference on
Material Forming Queen’s University , Belfast, Irlande du Nord,rih@7-29, (2011).

[16] L. Chevalier, Y.M. Luo, E. Monteiro, G. Menarylechanics of Material52, 103-116,
(2012).

[17] G.H. Menary, C.W. Tan, E.M.A. Harkin-JonesC Armstrong, P.J. MartirRolymer
Engineering & Sciengé2(3), 671-688 (2012).

[18] K. Chung,Journal of Materials Shaping Technolqggy4), 229-239, (1989).

[19] F.M. Schmidt, J.F. Agassant, and M. Belfd)ym. Eng. Sci38(9), 1399 (1998).

[20] Z.J. Yang, E. Harkin-Jones, G.H. Menary, an& CArmstrong,Polym. Eng. Sci.44,

1379 (2004).



[21] Z.J. Yang, E. Harkin-Jones, G.H. Menary, and @rmstrong,Journal of Materical
Processing Technologyp3(154), 20-27, (2004).

[22] F.M. Schmidt, Y. Le Maoult, S. Monteidpurnal of Materials Processing Technology,
143(144), 225-231 (2003)

[23] S. Andrieu,Etude expérimentale et numérique du chauffage rofige de plaques
thermoplastiques pour le thermoformad@ese de Doctorat, ENSMP, (2005).

[24] F. Brezzi, M. FortinMixed and hybrid Finite Element MethodSpringer :New York,
(1991).

[25] R.Siegel and J.R.HowellThermal Radiation Heat TransfeBrd Edition, Hemisphere
Publishing Corporation, (1992).

[26] F.M. Schmidt, Y. Le Maoult, S. Monteidpournal of Materials Processing Technology,
143(144), 225-231 (2003).

[27] B. Cosson, F. Schmidt, Y. Le Maoult, M. Bordiynt. J. Mater. Form.4, 1-10, (2011).
[28] J. Sacadurdnitiation aux transferts thermiquekavoisier, France. (1973).

[29] M. Bordival, Modélisation et optimisation numérique de I'étameathauffage infrarouge
pour la fabrication de bouteilles en PET par injeatsoufflage Thése de doctorat, Mines
Tech Paris, (2009).

[30] S. W. Churchill, H. S. Chunternational Journal of Heat and Mass TransféB, 1323-
1329 (1975).

[31] Michael F. ModestRadiative heat transfesecond edition. McGraw-Hill, Inc, (1993).



List of tables

Table (1). The numerical value 0§ G

Table (2). The characteristics of the PET

Table (3). The value of thermal properties

Table (4). The values of incident heat flux

Table (5). The characteristics of the PET

Table (6). Errors between the experimental andrésellts of the model
List of figures

Figure 1: The h evolution versus the equivalent viscousrstgaiwhen m=0.25. [15,16]

Figure 2: The 2Drectangular domain with the boundary conditions

Figure 3: (a) The experimental data (+) and the finite eletsamsults of the visco-elastic
model (lines) at 90°C under different strain rat@s) The experimental data (+) and the finite

elements results of the visco-elastic model (lime$) s' under different temperatures.
Figure 4: (a) Experimental heating set-up; (b) IR lamps and RE&et
Figure 5:Heat capacity gversus the temperature and the illustration of@éunction

Figure 6: The experimental results (dots) and the numeriesuits (curves) with optimal
thermal properties: (a) d=11cm; (b) d=12cm; (c) d3dm.
Figure 7: The evolution of Gwith the parameters identified

Figure 8: (a) Geometrical configuration of the lamps and P&fieet; (b) position of the

lamps.

Figure 9: The intensity of the incident radiation calculateg Eq.26 (a) d=11cm; (b)
d=12cm; (c) d=13cm. (d The incident heat fluxg,,identified (the points) compared to

@,, calculated in the central zone (the line)

Figure 10:The experimental data (the points) and the thermnackranical results

Figure 11: (a) The experimental data (the points) and thertfteemechanical results; (b) The
evolution of temperature under different strainesit () The calculated evolution of the
viscosity under different strain rates during thaxmal test including the temperature effect.



Strain viscous

Figure 1: The h evolution versus the equivalent viscousrstgai [15,16]

<1~ 1
>
[ 1%
" e —4—t i e F——k Tt tr +
(e}
«— + £ £ +* + 15
L 1=
-k ¥ + A # # 4 A # + .
e * #* * * 3 .wmm
- " 1 4 & " I & & I I hass
+ ¥ ¥ + * ¥ * * * * + !
.y * * #* #* -3 .Unm“m
4 " 4 & 4 i " & i 4
¥ ¥ * ¥ ¥ * ¥ ¥ * L Py
o * * - - . E I=]
4 4 4 & 4 + & & + +
¥ ¥ ¥ ¥ ¥ * ¥ ¥ * %
- * * E 3 * -3 1o
= -+ . I 4 & % & & & & + 15
= | * ¥ * ¥ * * ¥ ¥ * *
-+
* * #* * * 3 E
D e e e
+— e
=
* * #* * * 3 E
-+
D e o B e e A e o
L i =]
«—F * #* E * 3 IS
& 4 4 & & - " & - -
P ¥ * # # # * # # + &
P -+ S e £ 3 E
3 1=
4 ¥ + 4 4 e 4 4 e 4o
i 3 + 3 e - .oé
- -+ ¥ Fi—r—#+ He ¥ 7 4 1 L A—t=
- ) el ] — L [=1
.ﬁ =1} =] _ =1 =]
o . [=] = 5 =
! ! t =1 t
= = =

-

|

i

L

Figure 2: The 2Drectangular domain with the boundary conditions



0,
» Model__1/s Model 90°C
+  Experimental_1/s 20)  + Experimental 90°C - — — — — — ————mmm — e —
18 Model__2/s 18 Model 95°C | __
+  Experimental__2/s +  Experimental 95°C
16 Model_4/s 16 Model 100°C "~~~ —
+  Experimental__4/s n ) | "
14 Model_8/s 14 Experimental 100°C
T +  Experimental__8/s = Model 105°C
s Model__16/s L 12)  + Experimental 105°C - ~ ~
@ +  Experimental__16/s e 0,
§ 10 P o g 10 Model 110°C |
s ;
L 8- —'-=-= = o g - - - T T le=1__ L _
El 3
= : +1 =
Cy = T - el e i
| |
L iy “aToT I I A o T T T S i
| | | | | | | | |
2 [ e T e e e R e S 2 4
| | | | | | | | | | | | | |
o I I I I I I I I I | o I I I I I I I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Nominal Strain (a) Nominal Strain (b)
Figure 3: (a) The experimental data (+) and the finite eletagasults of the visco-elastic
model (lines) at 90°C under different strain ratés} The experimental data (+) and the finite
elements results of the visco-elastic model (lime®) s' under different temperatures.

Uniform
temperature

(b)
Figure 4: (a)Experimental heating set-up; (b) IR lamps and PEdes



Temperature (1]

CpMg. K)

3801 Ts 370

Tf
) e
380 Tr Tr
380
Z 350 <
= =m0
5
E 3w Eﬁ
E 2 330
2 330 2
320
320
0, L
300 L . L L . n . . ) 300 300
0 @ 1m 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 SO0 0 50 100 150 200 230 300 350 400 450 300
Time @) a Time (5) Time ) C

Figure 6: The experimental results (dots) and the numerieslits (curves) with optimal
thermal properties: (a) d=11cm; (b) d=12cm; (c) d3dm.

1800
1750
1700

1650

C_(IkgK)

= 1600

Figure 7: The evolution of Svith the parameters identified



Vertical position (mm)

x|

125 mm

(b)

Figure 8:(a) Geometrical configuration of the lamps and PiiEet; (b) position of the

40}

20t

20¢

40k

B0

Distribution of the incident heat flux Y/m2
GO F 3

-40 20 0 20 40

Harizontal position (mm)

(@)

1650

1600

1550

1500

1450

1400

1350

1300

Yertical position (mm)

a0k

B0

20F

lamps.

Distribution of the incident heat flux W2

GO F

40+

20+

-40

1450

1400

1350

1300

1250

1200

=20 0 20 40
Horizontal position {rrrm)

(b)

“ertical postion (mm)

G0

40

20+

=20

-40

B0
-0

Distribution of the incident heat flux W/m2

il 40
Horizontal position (mrm)

()

20 0 2

1300
1280
1260
1240
1220
1200
1180
1160
1140
1120
1100
1080

Figure 9: The intensity of the incident radiatioalculated by Eq.26 (a) d=11cm; (b)
d=12cm; (c) d=13cm.

Incident heat flux (Wlmz)

22001

2000

1800+

1600

1400 -

1200+

1000 -

+  flux identified

flux calculated

800
9

11 12 13 14 15 16
d (m)



Figure 9d:The incident heat flug,, identified(the points) compared t@,, calculated in the
central zone (the line)
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Table (1). The numerical value Gf

Strain Rate 1 2 4 8 16
(/s)
Go (MPa) 7.2 8.1 7.7 7.9 8.9
Min Gy (MPa) 7.2
Max Gy (MPa) 8.9
Table (2). The characteristics of the PET
G(&,) Go 4
8 MPa 0.001
f(g_v) A a m
9.91 2 0.2
77(£V,$_V , 1) h(?v) No K ho N E viim_ref
8.4MPa.s| 3.2 -0.21 0.42 1.83
n(™, |G Co B1 B,
evim(T) | 1.88 25.81C 0.07 111.8%
Table (3). The value of thermal properties
p Cp k h k
Parametel g/ (I/kg.K) WimK) | (W/m2K) (,rﬁ])
Cor | Ty ACp a b hr
Value 1400 | 120, 87 165D 0.1 0.07 7 16 3.70
Table (4). The values of incident heat flux
d(cm 11 12 13
o 1650 1450 1300
calculated Wi/nf)
@,, identified 1680 1590 1380
( W/nf)
Table (5). The characteristics of the PET
G( ge) GO A
8 Mpa 0.001
f(g_v) A a m
10.51 2 0.23
17(£V,€_V, T) h(&‘_v) Ho K ho N E vlim_ref
9 Mpa.s 3 -0.21 0.3 1.43
1o(T), G C, B: B,
eviim(T) 0.88 105.8C 0.07 180.8C




Table (6). Errors between the experimental anadhelts of the model

Strain Rate (/s) Relative Error (%)
1 6.72
2 8.4
4 4.97
8 4.45
16 8.55
32 9.25




