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Abstract  
The polyethylene terephthalate near the glass transition temperature highlights a strongly non 

linear elastic and viscous behaviour when biaxially stretched at high strain rates representative 

of the injection stretch blow moulding process. A non linear visco-hyperelastic model, where 

characteristics are coupled to the temperature, has been identified from equi-biaxial tension 

experimental results. The weak form of this model is presented and implemented into a finite 

element code and validated by comparing numerical simulation of equi-biaxial testing with 

the analytical solution in the isothermal case. Considering the thermal aspects, an 

experimental study, where PET sheets are heated using infrared (IR for short) lamps is also 

presented. The modeling of the IR radiation of the sheet helps to identify the thermal 

properties of the PET. The thermal model is then implemented in the finite element code, 

coupled to the 2D visco-hyperelastic model. A discussion is made to justify the accuracy of 

the assumption made on homogeneity of the temperature field through the thickness. The 

simulation of the 2D plane stress equibiaxial test shows the important influence of the thermal 

aspects and the coupled thermo-mechanical software is used to quantify the self-heating 

phenomenon in the case of the biaxial elongations. 
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Numerical Simulation of the Thermodependant Visco-

hyperelastic Behaviour of PET near the Glass Transi tion 

Temperature: prediction of the self-heating during biaxial 

tension test  

1. Introduction 

The injection stretch blow moulding (ISBM) process which is managed at a temperature 

near or slightly above the glass transition temperature Tg involves multiaxial large strains at 

high strain rate of the polyethylene terephthalate material (PET). The performance of a PET 

bottles produced by the ISBM process depends on many parameters. During the ISBM 

process, the PET behaviour exhibits a highly elasticity, a strain hardening effect and a strong 

viscous and temperature dependency. Therefore, many researches have been conducted on the 

rheological behaviour of PET: Marckmann et al. [1] proposed and used a hyperelastic 

modelling approach which could not take into account the strain rate effect. Gorlier et al. [2, 

3] also used the hyperelastic type models, however, although these models have demonstrated 

some success in representing the PET behaviour at specific strain rates, they have been found 

to be unstable in the numerical simulation. Chevalier and Marco [4] have managed biaxial 

tension tests near Tg with a range of strain rates from 0.02 to 2 s-1. They proposed a simple 

viscoplastic model [4] identified from these tension tests. This model has been used by 

Bordival et al. [5] in a numerical procedure based on simulations of the heating and blowing 

phases performed to optimise the stretch blow moulding process. Cosson et al. [6], then 

developed this viscoplastic model into an anisotropic version. The strain hardening effect 

observed during tension can be related with the strain induced modifications of the 



microstructure of PET but this viscoplastic model approach fails to represent the relaxation 

stage after tension which Chevalier and Marco [7] carried out from the relaxation tests. In 

their work, the relaxation time has been identified from these tests and clearly demonstrates 

the contribution of a viscous part in a highly elastic macromolecular network. This stress 

relaxation behaviour is the main characteristics associated with viscoelastic materials. 

Therefore, the viscoelastic model which take into account the strain hardening and strain rate 

effects have been used for ISBM process [8,9]. However, the classical viscoelastic models 

such as the Upper Convected Maxwell model [9] or the Giesekus model [10] do not 

adequately demonstrate the strain hardening effect. Buckley and Jones [11, 12] proposed a 

non linear viscoelastic model which is physically based on molecular network theory. Lately, 

Menary et al. [13] have examined three different constitutive models: hyperelastic model, 

creep model and a viscoelastic model (Buckley model) in the ISBM simulation using the 

finite element package ABAQUS/standard. They found that the Buckley model (viscoelastic 

model) gave a better result than the others two models in terms of predicting thickness 

distribution in the bottle. Inspired from Figiel and Buckley's work [14], Chevalier et al. 

[15,16] have recently proposed a non linear incompressible visco-hyperelastic model to 

represent the complex constitutive behaviour of PET. Experimental uniaxial and biaxial tests 

performed on PET were carried out by Menary et al. [17] in Queen’s University of Belfast. 

These tension tests were managed with various tension speeds (from 1s-1 to 32s-1), which are 

higher than in Chevalier and Marco’s work [4]. The nonlinear forms of elastic and viscous 

characteristics were proposed. Here, we implement this complex visco-hyperelastic model 

into a finite element code in the matlab environment . The weak form of this 4 field model 

(velocity V, the elastic left Cauchy Green tensor eB  and the related pressure p and q for the 

incompressibility assumptions) is presented in the 2D specific plane stress case. It enables to 

reduce the number of field to 2 (velocity, the elastic left Cauchy Green tensor). Simulations of 



biaxial tests are managed in order to compare with the analytical solution in the isothermal 

conditions. 

Effects of temperature, initial heating conditions or self-heating during the process, are of 

fundamental importance during the injection stretch blow moulding process of PET bottles. In 

the ISBM process, an initial preform is heated in an oven to the process temperature, which is 

near or slightly above Tg. Over this temperature Tg, the mobility of the molecular chains in 

material PET affects the orientation and the microstructure (crystallization). The mechanical 

properties of PET are dependent on the microstructural morphology of the PET and strongly 

depend on the process temperature as well as on the strain rates. On the other hand, the low 

mobility of micromolecules and the high viscosity of the material generate dissipation of 

energy which leads to a self-heating phenomenon. This self-heating effect must be taken into 

account in the simulation. In contrast, many existing numerical studies of ISBM [14, 18] 

neglect heat transfer: the temperature has been assumed to be constant during the process and 

the deformation induced heat was neglected. These researches show that a numerical 

simulation neglecting the effect of temperature during stretch-blow moulding process could 

not accurately predict or model the orientation and crystallization, which are highly 

temperature dependent during the process. Therefore, it is essential to incorporate heat 

transfer to represent the mechanical properties of the final bottles. Schmidt et al. [19] 

developed their work [8] in ISBM simulation by developing a non-isothermal finite element 

simulation to embed heat transfer during the deformation process. However it did not show 

the significant improvement in terms of predicting thickness distribution and the force exerted 

by the stretch rod. Yang et al. [20, 21] continued the work of Menary et al. [13] in a 2D 

isothermal simulation to a 2D non-isothermal simulation by using the Buckley model to 

represent the PET behaviour. Significant nonlinear differentials have been found in 

temperature and strain in the bottle thickness. Here, we first identify the thermal properties 



from IR heating tests of PET sheets. The identified parameters are compared to classical 

values of the literature. Especially, the IR heating flux coming from IR lamps is studied using 

radiative laws adapted to the test geometry. A good correlation is discovered. Then, the 

thermal part coupled with the viscohyperelastic model for the mechanical part are used to 

perform the simulation.  The simulation enables to quantify the self-heating during the biaxial 

tests. 

In the first section of this work, we present the implementation of the proposed non linear 

incompressible visco-hyperelastic model into a finite element code developed with Matlab. 

We present a two-field finite element formulation: global velocity V and elastic Cauchy Green 

tensor eB . Rectangular finite elements with quadratic and linear interpolations are employed 

for velocity and elastic left Cauchy Green tensor. A numerical simulation of 2D plane stress 

case is performed. It reproduce well the strain hardening effect. 

In the second section, a procedure is proposed for the identification of the thermal 

parameters from experimental results of a test where PET sheets are heated using IR lamps. 

Sheets used in this study are made with the PET Arnite D00301 from DSM industries. The IR 

heating with IR camera is widely used in the experimental set-up for the heat transfer [22, 23]. 

The Monte Carlo method is used to identify the parameters from the temperature evolution 

measured on the front face (in regard of the lamps) and the rear face of the sheet. The heat 

capacity Cp is considered as a function of the temperature while the other parameters (thermal 

conductivity, emmisivity, convection coefficient...) are assumed to be independent of the 

temperature. A large section is devoted to the comparison of the identified parameters with 

classical values of the literature, especially for the IR heating modelling. Moreover, the weak 

form describing thermal behaviour adapted to plane stress case is presented in the end of this 

section.. 



In the third section, in order to accurately simulate the ISBM process, the thermal and 

mechanical parts are put together. Non-linear mechanical and thermal equilibrium equations 

are solved with implicit schemes on the current deformed configuration, which is updated at 

each time step. Finally, the parameters identified in the proposed model have to be adjusted 

because the self-heating effect is not negligible and has an important effect on the viscous part 

of the model. Therefore, an optimization procedure is managed to adjust the characteristics of 

the PET for these visco-hyperelastic model expressions to represent conveniently the biaxial 

experimental tension tests [17]. 

2. Numerical simulation of the model in plane stress case 

2.1 Model presentation 

Inspired from Figiel and Buckley [14], we proposed in [15, 16] a non linear incompressible 

visco-hyperelastic model for both elastic and viscous parts to represent the mechanical 

behaviour. In order to represent the strain hardening and strain rate effect and temperature 

dependency, we choose two rheological functions for elastic and viscous parts: G( eε ) and 

η( vε , vε& , T). 
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where σ is the Cauchy stress tensor, vD is the symmetric part of the viscous velocity gradient, 

D  is the symmetric part of the global velocity gradient, I is the identity matrix, eε  is the 

equivalent elastic strain, vε  is the equivalent viscous strain, vε&  is the equivalent viscous strain 

rate, T is the temperature, the subscript “^” denotes the deviatoric part of the tensor, ηN is the 

small value of the viscosity of the Newtonian branch of the Zener like model used in order to 



solve the ill-conditioned problem, eε  is the elastic part of the Eulerian strain measure defined 

by:  

( )IBee −=
2

1ε                                                           (2) 

where eB  is the elastic left Cauchy Green tensor. p is a Lagrange multiplier associated to the 

global incompressibility condition, and q is the multiplier associated to the incompressibility 

of the elastic part. Since the elastic and global parts are incompressible, the viscous part is 

supposed to be also incompressible: 

0,0,1det ===== vve DtraceVdivDtraceVdivB
vv

                   (3) 

where V
v

 is the global velocity and vV
v

 is the viscous velocity. 

The assumption of an additive decomposition of elastic and viscous velocity gradient is 

adopted to describe the kinematic structure of this model: 

ve DDD +=                                (4) 

where eD is the symmetric part of the elastic velocity gradient. 

Combining Eq. 1, 2 and 4 in the Oldroyd derivation of the elastic left Cauchy-Green tensor 

leads to: 
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where G is the elastic shear modulus, η is the viscosity and the Oldroyd derivation tBe δδ  is 

defined by: 
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where is Ω  the global spin. 



2.2 Identification of the material’s properties 

Both the elastic and the viscous parts of the model must contribute to the strain rate effect. 

We first focus on the elastic part. One can identify the initial shear modulus G0 from the 

initial slope of the global experimental strain-stress curves which were carried out by Menary 

et al. [17], because there is no viscous strain at the very beginning of the test. Table 1 show 

that G0 does not vary much from one strain rate to another. 

As the biaxial tests are conducted at constant nominal strain rate, the global strain rate 

decreases versus time. If the shear modulus G remains constant, it leads to a contradiction 

because the viscous strain rate may become negative. Therefore, we consider a Hart-Smith 

like model to represent the elastic part: 

( ) ( )( )2
10 3exp −Λ= IGG eε , ( )eBtraceI =1                        (6) 

where Λ is a dimensionless parameter. 

For the non-linear viscous part of the model we follow the same method as in Cosson et al. 

[6] to represent macroscopically the strain hardening effect, but we choose a Carreau type law 

instead of the power law to describe the influence of the strain rate: 
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where λ, m, a are parameters in the Carreau type law and refε&  is a reference strain rate that 

can be taken equal to 1 s-1 for sake of simplicity. The strain hardening effect is related to the h 

function which increases continuously withvε . We detailed the identification procedure for 

the h function in [15,16], here we slightly changed the form of the function. Since the strain 

hardening effect is influenced by the temperature, h is a function of T too: 
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According to the form of the lines of h showed in the Fig. 1, we propose the function in the 

Eq. 9, where η0 is related to the level of the function on the ‘plateau’, K is a constant related 

to the initial slope of the curve, εvlim is the strain value corresponding to the vertical asymptote 

of the h curve and N an exponent that fits the "beginning" of the quick increase of the curve. 

Parameters K and N do not vary much with the temperature; at the contrary, variables η0(T) 

and εvlim(T) show a significant dependence on temperature. We choose the Williams-Landel-

Ferry (WLF) model for the evolution of η0(T): 
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where C1 and C2 are the WLF parameters, Tref =90 oC. We propose the evolution of εvlim(T) in 

the following way: 
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where 
Cvrefv o90lim_lim_ εε = . Finally, the characteristics of the PET for these visco-hyperelastic 

model expressions to represent conveniently the experimental are listed in table 2. 

2.3 Weak form of the plane stress 2D visco-hyper-el astic problem 

In the equi-biaxial elongation plane stress case, before deriving the weak form, we can 

establish a relation between the pressures, the velocity and the elastic left Cauchy Green 

tensor: 
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The visco-hyperelastic model is implemented in the Matlab environment using a finite 

element approach. A 2 fields (global velocity V and the elastic left Cauchy Green tensor eB ) 



variational formulation is proposed for plane stress incompressible problem. Some 

manipulations of Eq. 5, 6 and 12 lead to the following weak form: 
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where the superscript * designates test quantities and Fd the prescribed traction field over the 

boundary FΩ∂  where the loads are imposed. The integral equations are studied on the entire 

volume Ω. 

This strongly nonlinear problem (finite elastic displacements, elastic left Cauchy Green tensor 

eB , non constant shear modulus G and viscosity η), is solved using a classical Newton-

Raphson iterative procedure. The consistent linearization must be done with Gâteaux 

operators and the linear form of the problem for the increment V∆  and eB∆ is written in the 

following system: 
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where { }VV RD∆ , { }VB RD
e∆ , { }

eBV RD∆  and { }
ee BB RD∆  are the Gâteaux derivatives related to 

the increments: 
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Fig. 2 shows the geometry of the PET specimen during the tension tests, boundary 

conditions on symmetry axis and the load applied on the edge of the sheet. The PET sheet is 

submitted to a velocity V on X-axis and Y-axis. This case represents the equal biaxial tension 

case: σxx = σyy. According to the axis of symmetry, the equal biaxial tension case can be 

simulated using one-quarter of the specimen. In order to compare the experimental results, the 

length and width of the 2D domain simulated are 38 mm and the thickness is 1.5 mm, which 

is representative of the PET specimen size (76 mm×76 mm×1.5 mm) of the test [17].  

As showed in the Fig. 2, the domain Ω is discretized by a set of 8-nodes isoparametric 

rectangles elements. The simulation is managed for different elongation rate λ&  obtained from 

the derivative of stretch ratio λ with respect to time t: so λλε && = , ε&  varies from 1s-1 to 32s-1. 

2.4 Simulation the biaxial plane stress testing 

In the case of the classical incompressible problem with a mixed velocity - pressure 

formulation the finite element calculations can lead to locking problem if velocity and 

pressure spaces are not chosen carefully. To be stable, a mixed formulation must verify 

consistency. The well-known inf-sup condition or the Ladyzenskaia-Babushka-Brezzi (LBB) 

condition [24] guaranties the stability of a finite element velocity - pressure calculation as a 

quadratic interpolation for velocity and linear for pressure. By analogy, we choose a quadratic 

interpolation for velocity V and linear interpolation for eB . 



The finite elements result matches perfectly with the analytic results. Fig. 3a and 3b show a 

substantially good representation of the experimental results. The mean difference does not 

exceed 10%. 

3. Numerical simulation of a thermo-mechanical model 

3.1 Experimental procedure 

Mechanical properties of polymer are strongly influenced by small variation of 

temperature. On the other hand, the high viscosity of polymers generates important 

dissipation that impacts the temperature evolutions. Consequently, thermal properties are to be 

taken into account in the ISBM modeling in order to achieve accurate simulation of the 

process. It is necessary to:  

(i) define accurately the initial temperature distribution of the preform at the beginning of 

the blowing operation;  

(ii) identify the thermal properties of the PET in order to model the behaviour law of PET 

coupled to the thermal laws;  

(iii) provide, by coupling the thermal equations with the mechanical equations, the history 

of the temperature field during the simulation.  

     In the following, a procedure is proposed for the identification of the thermal parameters. 

According to Fig. 4, the experimental apparatus which consists in measuring, by thermal 

imaging, a PET sheet heating by infrared lamps. A FLIR B250 infrared camera with the 

wavelength range 7.5 – 13 µm is used to evaluate the surface temperature distribution. The 

surface dimension of the 1 mm thickness sheet is 60 mm×125 mm. Sheets used in this study 

are injected from the PET Arnite D00301 following DSM industries recommendations. 

We have tested three different distances between the lamps and the PET sheet: 11 cm, 12 

cm and 13 cm. The thermal properties are identified for each distance: we can ensure the 

values of the heat conductivity, the specific masse, the heat capacity and the convective heat 



transfer parameters. Moreover, the relation between the heating flux and the distance can be 

estimated. For a constant heating IR flux, we can notice that the temperature decreases while 

this distance increases. This is a logical result because the intensity of the radiation decreases 

when the distance increases [25].  

3.2 Identification of the thermal properties 

The software FLIR quick report is used to measure accurately the temperature. In the work 

of Schmidt et al. [26], they have found that the polymer material is opaque under the 

wavelength in the range of 8 – 12 µm. This range matches the one of the IR camera so the 

PET may be considered like an opaque medium. The black paint used is assumed to be 

opaque which means that only the radiation emitted from the PET sheet surface is captured by 

the camera’s sensor. To evaluate the temperature field from the IR camera, we need the 

emissivity value of the PET sheet. However, because we are not able to quantify it precisely, 

the identification is managed from thermocouple measures. From thermal imaging by camera, 

the temperature field visualization shows that some temperature heterogeneities only appear 

on the edges of the sheet surface. According to these results, we can assume that the 

temperature is homogeneous in the plane of the sheet and only varies in the thickness 

direction. Therefore, the identification can be done from a one dimensional model.  

The heat transfer equation in the 1D case with the radiative source term can be written in the 

following way: 

( ) ( )rp qdiv
z

T
kTTC −=

∂
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2

2
&ρ                                                                                              (16)     

where: ρ the specific mass, Cp the specific heat capacity,  k the material's conductivity and rq
uur

 

is the internal radiative heat flux. 

In Cosson et al. [27], the convective heat transfer coefficient for the face in front is little 

larger than the one on the rear face, but in other works [28], it is the opposite. Therefore, we 



choose to take into account the convection via two different coefficients. ∞T  is the 

surrounding bulk temperature:fT∞  for the air in front of the lamps is higher than  the one in 

the back rT∞ . Consequently, we write the boundary conditions in the following way: 

( )ff TThnTk ∞−=∇− .               on the face in front of the lamps;                                   (17a) 

( )rr TThnTk ∞−=∇− .             on the rear face.                                                                (17b) 

where hf and hr are the convective heat transfer coefficient on the face in front of the lamps 

and the one on the rear face.  

The heat conductivity k, the specific mass ρ and the convective heat transfer coefficient h 

are assumed independent of temperature while the heat capacity Cp is considered as a function 

of the temperature, since heat capacity increases significantly with the temperature (see Fig. 

5). According to the values referenced in [29], we propose the following function to represent 

the evolution of the specific capacity: 

( )( ) 1arctan pgpP CTTCC +−∆= α                                                                                     (18) 

where pC∆ is a constant related to the amplitude of the increased of the Cp value when 

passing from the glassy state to the rubber state, gT  is the more or less the glass transition 

temperature, Cp1 is a specific capacity value corresponding to the glassy state of the material 

and α  is a factor that fits the roughness of the jump of the curve. 

Since the heat transfer is assumed as a 1D case which the temperature varies only in the 

thickness direction, the internal radiative intensity absorption rq
uur

 is taken also as one 

dimensional and is managed by the Beer–Lambert law: 

zeq sk
r

λ
λφ −= 0                                                                                                                   (19) 



where: 0λφ  is the incident radiation, λk is the spectral absorption coefficient of PET and s 

represent the path between the current position to the incident surface. From Fig. 8, s can be 

calculated as: dzs −= . 

      The heat equation (Eq. 16) with a non linear specific capacity (Eq. 18) and the equation of 

the internal heat flux (Eq. 19) are solved using a 1D finite element method. The implicit time 

integration scheme is chosen to solve this time-dependent problem. Due to the non linear 

specific capacity, a Newton Raphson method is used to obtain the temperature field. 

The Monte Carlo method is used to identify the parameters that best fit the experimental 

results. The domain of each parameter is defined from the reference [29]. We generate the 

parameters randomly over the domain. On each draw, a computation is carried out and the 

numerical results are compared with the experimental temperatures. After drawing 10000 

random inputs, we obtain the parameters, with which the numerical results best matches the 

experimental data. The thermal properties are referenced in table 3. This identification shows 

that hf is smaller than the rear coefficient hr. The specific mass ρ and the absorption 

coefficient λk have the same order of magnitude with reference. The heat conductivity k is 

smaller than the reference.  

Fig. 6 represents for each distance, the experimental temperature evolution on the surface 

in front of the lamps Tf  (the blue one) and the one on the rear face Tr (the red one). With the 

identified parameters, the curves obtained have a substantially good representation of the 

experimental results (dots). 

The evolution of Cp for PET Arnite D00301 are illustrated in Fig. 7, comparing with the 

one of material PET T4F9. They have the same order of magnitude except some differences at 

the lower temperature. The convective heat transfer coefficient h can be estimated from the 

relation proposed by Churchill and Chu in [30]: 
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where L is the height of the sheet, Ra is the Rayleigh number and Pr is the Prandtl number. Pr 

= 0.688 and Ra = 1.6×106 when the temperature of PET reaches 100oC [29], we can obtain the 

value of h using Eq. 20: h =11 W/m2.K. The identified hr (16 W/m2.K) is a little higher than 

this value estimated while hf (7 W/m2.K) is a bit lower than this one. 

    Since we tested three different distances between the IR lamps and the PET sheet, the 

intensity of the incident radiation depends on the distance. In the following, we estimate this 

absorbed infrared radiation 0λφ  from a simple modelling based on the principle of spectral 

energy relation [29,31]. Four identical IR lamps (radius r = 2 mm and length l = 185 mm) are 

modelled as cylinders separated by a distance dl = 15 mm (Fig. 8b).  

The amount of the radiation heat energy, that comes from the surface element dA’ at a 

collocation point M’  ( hrx += ϕcos' , 'y , ϕsin' rz = ) and reaches the surface element dA at a 

collocation point M (x, y, z=d) with the path vector w
r

 (Fig.8a), can be written in the 

following way: 
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whereλ  is a given wavelength between 0.2 and 10 µm and λε  is the spectral tungsten 

emissivity equal to 0.26 [29]. The emissive power for a blackbody biλ  is given by Planck’s 

law: 











−

=
1

2
2

5

1

filT
C

b

e

C
i

λ
λ

λ
                                 (22) 



where: 8
1 1019.1 ⋅≈C W.m-2.µm4, 143882 ≈C µm.K. We assume that the filament temperature 

is a uniform source at Tfil  =1700K. w
r

 is a vector which represents the path of the radiation 

from M’  to M: 
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   (23) 

The last approximation is related to the condition r << d. The two angles 'θ  and θ  

represent respectively, the angle between the normal at the lamp surface 'n  at point M' and the 

path direction w
r

; the angle between the normal at the PET sheet n  at point M and the path 

direction w
r

: 

MM

d
ew z '

cos ≈⋅= rrθ , 
( )
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d
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hx
ew r ''

' sincos
cos

ϕϕθ +−=⋅= rr
                                   (24) 

where: ( ) ( ) 22'2' dyyhxMM +−+−= . 

     Once again, because the radius r is negligible compared to the distance d, Eq. 21 

combining with Eq. 24 leads to: 
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     Finally, the intensity per unit area of the incident radiation can be written as follow: 
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where n = 4 stands for 4 lamps. 

     We can see, from Fig. 9, that the intensity of the incident radiation reaching the PET sheet 

is not uniform. The maximum difference can reach 21% between the central zone of the PET 

sheet and the corners. Nevertheless, in the central region of study where the identification is 



done, the heterogeneity is less than 10% which validates the 1D approach used to manage the 

identification.  

From Fig. 9d, one can also notice that the incident radiation 0λφ calculated in the central 

zone decreases with increasing distance. This value is close to the one identified from 

temperature measurements: both are listed in table 4. 

3.3 Implementation of the heat part of the thermo-v isco-hyper-elastic 

model 

We consider a thermo-mechanical model to simulate the equibiaxial stretching of PET 

sheets in order to evaluate the self heating phenomenon. The mechanical part is shown in Eq. 

13-15. The weak form of the heat part can be written in the following way: 
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                     (27) 

qΩ∂  is the union of the top and bottom face of the specimen. The process temperature is 

slightly above the temperature Tg. Under this condition, based on the evolution of the heat 

specific capacity Cp shown in Fig. 7, it can be assumed as constant (1750 J/kg.K). Because the 

sheet specimen is heated on both sides, the heat transfer coefficient h can be chosen equal to 

hf (7 W/m2.K). No thermal exchange is assumed between the specimen and the grips. To be 

consistent with the plane stress assumption, T is chosen as a function of the plane coordinates 

x,y and time (i.e., T is representative of the mean value of the temperature through the 

thickness e). Consequently, the weak form writes: 
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where e is the thickness of the specimen. ∂Ω = ∂Ωq = S is the area of the 2D plane domain 

that represents the specimen. Since we assume that the thermal exchange only occurs on the 



top and bottom face of the PET sheet, the factor ‘2’ before convective heat transfer term 

represents the total flux exchange from these two surfaces. 

The dimension of the PET specimen during the test is 76mm×76mm×1.5mm. The length 

and width are large with respect to thickness: e << L. Under this condition, the most 

convective heat exchange is on the top and bottom surfaces. The dissipated power density 

: Dσ  is about 106 Pa.s-1 and is almost uniform in the specimen. This value leads to the 

Brinkman number Br equals around 10: 
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TTk
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                                                                                                              (29) 

That means the viscous dissipation is 10 times larger than the heat conduction through the 

thickness.  

     Furthermore, the biaxial stretching process is considered fast enough in regard of the time 

needed to propagate the temperature through the thickness. The characteristic time for 

diffusion is skeCt pd 572 == ρ and the characteristic time for capacity is sheCt pc 132== ρ . 

The time for the process is about 2s. If we compare the mean value of the temperature through 

the thickness ( )tyxTT ,,=  in the plane stress case with the T(x,y,z,t) in the axi-symmetric 

case, the difference between the mean value of the temperature T obtained by Eq. 28 and the 

temperature T calculated from the weak form with the definite integral over the thickness is 

nearly 0.55oC. This difference causes an error on viscosity that is less than 3%. Therefore, in 

the following, we use Eq. 28 to simulate the thermal part.  

3.4 Optimization of the mechanical parameters of th e thermo-visco-

hyper-elastic model  

Mechanical and thermal balance equations are fully non-linear and solved together with 

implicit schemes on the current deformed configuration, which is updated at each time step. 

The thermal parameters are identified from the experimental infrared heating and the 



mechanical ones are identified from the assuming isothermal equi-biaxial elongation. Both are 

listed in the table 2 and 3. 

We implement the thermal part in the finite element approach together with the mechanical 

part. Therefore, a three fields (global velocity V, the elastic left Cauchy Green tensor B and 

the temperature T) formulation has been performed. We choose the linear interpolation for 

temperature. The Eq. 13-15 which solve only the mechanical part has to also add the heat 

equations. The Newton-Raphson residual for the heat part is: 
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The consistent linearization leads to the linear form of this problem for the increment V∆ , 

eB∆  and T∆  which can be given in the following way: 
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The adding Gateaux derivatives of nonlinear operator corresponding to the residuals (RV, 

RB and RT) can be written: 
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Fig. 10 shows that stresses obtained from this thermo-mechanical simulation are lower 

than the experimental data. Because the temperature increases during the biaxial elongation, 

the self-heating effect affects the mechanical properties, especially the viscosity which 

decreases. Consequently, the parameters identified assuming an isothermal elongation must 

be modified to take into account this. 



As the self-heating effect is not negligible and produces an important effect on the viscous 

part of the model, the first estimation of the parameters obtained from our isothermal 

identification must be adjusted. 

The parameters in the viscosity ( )Tvv ,,εεη &  are needed to optimize. The purpose is to 

minimise the mean difference between the experimental results and the numerical ones. The 

function ‘fminunc’ in the Matlab Optimization Toolbox is then chosen for the optimisation 

procedure. The characteristics identified from the isothermal elongation in table 2 are applied 

as the starting point of each parameter. Finally, the characteristics of the PET for these visco-

hyperelastic model expressions to represent conveniently the biaxial experimental tension 

tests are listed in the table 5. 

Comparing with the values of table 2, one can observe that only the values of the WLF like 

coefficients are influenced by this adjustment. Other coefficients, that appear in the 

mechanical part of the model vary very few: the initial identification makes finally sense even 

if an adjustment is needed a posterior. 

4. Results 

With these parameters identified from the optimization, we can obtain the stress-strain 

curves from the thermo-viscohyperelastic model. Fig. 11 shows the comparison between the 

stresses obtained from this thermo-mechanical simulation and from the experimental data. 

The mean difference does not exceed 10% for each deformation rate showed in table 6.  

We can notice that the increasing evolution of the temperature versus strain is nearly 

linear. The increase of the temperature is the same order of magnitude but little lower than the 

one observed in the experimental test presented in [17]. Furthermore, the self-heating of the 

specimen increases regularly for strain rates varying from 1s-1 to 32s-1 where the temperature 

increases nearly of 6°C (see Fig.11b). It confirms that at very high deformation rate observed 



during ISBM process, the adiabatic heating due to the viscous dissipation may generate a 

significant temperature rises.  

We can see in the Fig. 11c, the effect of temperature on the viscosity evolution. For 

example, the final slope of the viscosity curve for the strain rate 32 s-1 is much lower than the 

one for lower strain rates, therefore the strain hardening effect is not so considerable at 32 s-1. 

If we examine the high strain rate case, for example, at 32s-1 for 90oC, the coupled themo-

visco-hyperelastique model simulation gives the stress evolution plotted on Fig. 11a which 

have 9.25% errors with the experimental data.  

One can see that the stress evolution measured during the experiment saturates and doesn’t 

increase as the lower strain rate case when approaching the 1.8 elongation. This may be 

explained by the higher temperature level coming from the self-heating of the specimen for 

this test. Our model does not predict the decreasing shape but gives a pretty good estimation 

on the evolution with nearly no strain hardening effect for this case. 

5. Conclusions 

A visco-hyperelastic model identified from the equi-biaxial tests performed at conditions 

close to ISBM process strain rate and temperature was implemented for numerical 

simulations. This finite elements model was used to simulate the plane stress test. It 

reproduces successfully the experimental results and can be used to simulate uniaxial or 

sequential biaxial tests to predict the PET behaviour for isothermal conditions. 

Experiments have been conducted to characterise the thermal properties of the PET in the 

range of the ISBM temperature. Thermal imaging has been used to determine the surface 

temperature distribution of the PET sheets which are heated by infrared lamps. The Monte 

Carlo method is used to provide the parameters best fit the temperature evolution. 

Comparison between the obtained values and values coming from the literature, especially for 

the infrared heating radiation flux, validates the identification approach. 



The coupled thermo-visco-hyperelastic model proposed has been used to manage a finite 

element simulation of the equi biaxial elongation test. The weak form of the model has been 

implemented in Matlab. It shows that the thermal effects have an important influence on the 

viscous part of the model and WLF like parameters have to be adjusted by non-isothermal 

simulations. With the adjusted parameters, we obtained: (i) that stress-strain curves from this 

thermo-visco-hyperelastic model fit well with the experimental data; (ii) that self-heating of 

the specimen is not negligible and can reach nearly 10°C for the highest strain rate which is 

conform (slightly lower) to the temperature measurements made on the specimen. 

In further works, we intend to implement an axi-symmetric version of the visco-

hyperelastic model coupled to temperature in order to simulate accurately the ISBM process. 
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Figure 1: The h evolution versus the equivalent viscous strain vε . [15,16] 

 

 

Figure 2: The 2D rectangular domain with the boundary conditions 
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Figure 7: The evolution of Cp with the parameters identified 
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Figure 9: The intensity of the incident radiation calculated by Eq.26 (a) d=11cm; (b) 
d=12cm; (c) d=13cm. 
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Figure 9d: The incident heat flux 0λφ identified (the points) compared to 0λφ calculated in the 

central zone (the line)  
 

 
Figure 10: The experimental data (the points) and the thermo-mechanical results 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20

Nominal Strain 

T
ru

e 
S

tr
es

s 
(M

P
a)

 

 
Model__1/s

Experimental__1/s
Model__2/s

Experimental__2/s

Model__4/s

Experimental__4/s
Model__8/s

Experimental__8/s

Model__16/s

Experimental__16/s
Model__32/s

Experimental__32/s

 (a) 



 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
90

91

92

93

94

95

96

97

98

Nominal Strain 

T
em

pe
ra

tu
re

 (o C
)

 

 
strain rate 1/s

strain rate 2/s

strain rate 4/s
strain rate 8/s

strain rate 16/s

strain rate 32/s

 (b)  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-4

-3

-2

-1

0

1

2

3

4

5

Nominal Strain 

lo
g(

V
is

co
si

ty
)

 

 
strain rate 1/s

strain rate 2/s

strain rate 4/s
strain rate 8/s

strain rate 16/s

strain rate 32/s

 (c) 
Figure 11:  (a) The experimental data (the points) and the thermo-mechanical results; (b) The 

evolution of temperature under different strain rates; (c) The calculated evolution of the 
viscosity under different strain rates during the biaxial test including the temperature effect. 

 

 

 
 
 
 
 
 
 
 
 
 



Table (1).  The numerical value of G0 
Strain Rate 
(/s) 

1 2 4 8 16 

G0 (MPa) 7.2 8.1 7.7 7.9 8.9 
Min G0 (MPa) 7.2 
Max G0 (MPa) 8.9 
 
 
Table (2).  The characteristics of the PET 

G0 Λ G( eε ) 
8 MPa 0.001 
λ a m ( )vf ε&  
9.91 2 0.2 
η0  Κ h0 N ε vlim_ref ( )vh ε  
8.4 MPa.s 3.2 -0.21 0.42 1.83 
C1 C2 B1 B2 

 
 
η( vε , vε& , T) 

η0(T), 
εvlim(T) 1.88 25.81oC 0.07 111.88oC 

 
 
Table (3).  The value of thermal properties 

Cp 
 (J/kg.K) 

h 

(W/m2.K) 
Parameter ρ  

(kg/m3) 
Cp1 Tg pC∆  α  

k  
(W/m.K) 

hf hr 

λk  

(/m) 

Value 1400 120 87 1650 0.1 0.07 7 16 3.104 

 
 
Table (4).  The values of incident heat flux 

 
d(cm) 11 12 13 

0λφ  

calculated(W/m2) 

1650 1450 1300 

0λφ  identified 

(W/m2) 

1680 1590 1380 

 
 
Table (5).  The characteristics of the PET 

 
G0 Λ G( eε ) 

8 Mpa 0.001 
λ a m ( )vf ε&  

10.51 2 0.23 
η0  Κ h0 N ε vlim_ref ( )vh ε  

9 Mpa.s 3 -0.21 0.3 1.43 
C1 C2 B1 B2 

 
 
η( vε , vε& , T) 

η0(T), 
εvlim(T) 0.88 105.8oC 0.07 180.8oC 

 
 



Table (6).  Errors between the experimental and the results of the model 
Strain Rate (/s) Relative Error (%) 

1 6.72 
2 8.4 
4 4.97 
8 4.45 
16 8.55 
32 9.25 

 

 

 

 
 


