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Technical Article

Uncertainty Quantification in Computational Electromagnetics: The

stochastic approach

Abstract — Models in electromagnetism are more and more
accurate. In some applications, the gap betweeaxperience
and the model comes from the deviation on inpua dditthe
model which are not perfectly known. The stochaatiproach
can be used to quantify the effect of these inpatad
uncertainties on the outputs of the model. In trigcle, the
application of such approach in  computational
electromagnetics is presented. The four steps dpewent of
the model, characterization and modeling of theutingata
variability,  uncertainty  quantification,  postprose®
(sensitivity analysis) are described and illustlatey an
example of electrical machine with uncertain diniens.

|. INTRODUCTION

Applying a numerical method (FEM, FIT...) to solveeth
Maxwell equations leads to valuable tools for ustherding
and predicting the features of electromagnetic akssi With
the progress in the fields of numerical analysi®\DCand
postprocessor tools, it is now possible to repriesed to mesh
very complex geometries and also to take into aticowre
realistic material behavior laws with non linead]
hysteresis..... Besides,
capabilities that it is customary to solve problemih
millions of unknowns. The modeling error due to the
assumptions made to build the mathematical motel gét of
equations) and the numerical errors due especiallythe
discretisation (by a Finite Element method for egbeh can

be negligible.

Consequently, in some applications, if a gap exigtsveen
the measurements, assuming them perfect, and thédtse
given by the numerical model, it comes from dewiagi on
input parameters which are not in the “real worétjual to
their prescribed values. The origins of these dmrna are
numerous and are related to either a lack of kndgde
(epistemic uncertainties) or uncontrolled variatiqaleatoric
uncertainties). For example, mechanical parts are
manufactured with dimensional tolerances whereaseso
dimensions, such as air gaps in electric machiamescritical

as they strongly influence performance. Besidesetamties

in material composition, the material charactessstivhich
change with uncontrolled environmental factors (ldity,
pressure, etc.) are also often unknown. Even if the
environmental factors are perfectly known, in saiteations,
the behavior law parameters can't be identified alee
measurements are not possible under the right expetal
conditions.

In practice, if the uncertainties on some paramsetan’t be
neglected, the normal process of increasing theigiom of
the deterministic model becomes futile. Modelsirtgkinto
account the uncertainties on the input parameteesrne then
essential.

Applications of such kind of models are numerousr F
example, it can be very helpful to improve the aacy of a
model by orienting the measurement campaign. Indéesd
input parameters which have the most influencehenautput
variability can be identified [37]. Then, with new
measurements, these most influential input parasegn be
better characterized, and so less uncertain, inpgothe

accuracy the model. Reversely, it can avoid measemées
campaign on input parameters which variability absost no
effect on the outputs. These models can be alstuluse

evaluate the impact of the variability introduced Ia

manufacturing process of an electrical machine
performances [53]. The influence of the differetatges such
as assembling, punching, welding... can be comparéd.
most influential stages can be segregated and, ttean be
modified or better controlled in order to reduceithimpact on
the performance variability of electrical machiffd$ From

these models, tools can be derived to increaseothastness
during the process of design. Since we are abéwatuate the
effect of the variability of the input parameters the output,
the design can be oriented to meet the productifgfaions

and also to be almost insensitive to the input mpatar

variabilities [51]. These models can be appliedeeample to
determine the tolerances on the dimensions [49,50].

To take into account the uncertainties, severatgguhes are
proposed in the literature. The first one is basedhe worst
case scenario (the uncertain input data are sugptsée

bounded in intervals). The second one is basecherfuzzy
logic. The last one is the stochastic approach evhe

computers have nowadays suchuncertain input parameters are modeled by randamablas

or fields. This last approach is richer than the tprevious
ones in terms of information embedded by the stsiha
model. However, this approach can require more data
represent the variability of the input parameterd also more
numerical resources.

Since the early 90’s, numerous researches in thd fof
engineering have addressed the development of asgtich
models, mainly in mechanical and civil engineering
[42,43][46]. In the field of computational electragnetics,
the development and the application of such mothelge
started in the early 2000’'s and know a growingrggein the
community [1-3][6,7][22].

This technical article aims at giving an overviehoat the
stochastic approach in computational electromagaédti is
mainly dedicated to static and quasi-static proklein the
first part, the four different steps to implemenstachastic
model are briefly presented. Then, these four staps
described in detail and especially their numerical
implementation. The example of an electrical maghivith
uncertain dimensions (introduced by the process of
fabrication) is proposed to illustrate the stocttagpproach.

Il. STOCHASTIC APPROACH

The development of a model accounting for uncetitsn
requires four steps which are the following (Fig. 1
A-Development of the mathematical model linking the
input data (deterministic or uncertain) with theaqtities of
interest (outputs of the model). The model canrzdygical or
based on the numerical solution of Partial Diffeian
Equations (PDE) like such as the Maxwell equations.
B-Characterization and modeling of the variabilitly the
uncertain input parameters. The parameters can laave
physical meaning such that material parametersdfeivity,
permeability..) and dimensions (diameter,...) or cha
coefficients used in a non-linear behavior lawdgample. In



the stochastic approach, based on expertise ansunezaents,
each uncertain parameter is modeled by a randoiabler

C-Propagation of the variability of the input paraers
through the model developed in the step A. Thip steables
to quantify the variability of the quantities otémest (outputs
of the model).

D-Characterization of the uncertain outputs fromrémsults
obtained at the end of the step C. The statistinga(,
standard deviation, correlation between the outpiitsan be
calculated. Global sensitivity of the outputs versie inputs
can be also analyzed. This sensitivity analysisbiesato
determine the most influential input parameterg thiiuence
the most the variability of the output parameters.

Step C: propagating the uncertainties through the
mathematical model

Actual device

Maxwell’s Equations
+
Boundary conditions
+
Behaviour laws

Geometry (0)

Quantities of interest
(flux, magnetomotive

Behaviors law of force, electromotive

materials (permeability,

conductivity....) (6) force...) (8)

Sources (voltages, flux...) (8)

‘ N J N J
e ~ -

Step B : modelling of uncertain ~ Step A : construction of
input data with random fields or mathematical model of the
variables

Step D : postprocessing
physical process

Fig. 1. Description of the four steps required ¢oelop a model accounting
for uncertainties (Stochastic approach)

In the following, we will present in more detailset steps A,
B, C and D. To illustrate our approach, we will smer a

model based on the solution of the magnetostatiatéans

using the Finite Element Method. However, most bé t
methods present in the following can be appliedQuasi

Statics or Wave Propagation problems solved numyity

various methods (FIT, FD...).

Il STEPA : DEVELOPMENT OF THE MODEL

We will consider an electromagnetic device which dze
modeled by the magnetostatic equations on a doMaifhe
equations to be solved are:

curl H(x) =J(x) (1)
divB(x) =0 (2)
with H the magnetic fieldB the magnetic flux density antl
the current density that is assumed to be knowradufition,
boundary conditions ol and B are added. To solve the
problem, the vector potential formulation can bedis
curl [v(x) curlA (X)] = J(X) 3)

with A(x) the vector potential ang(x) the reluctivity. To find
an approximate solution of this equation, the Eirilement
method can be used. We seek for an approximét{@hof the
vector potential in the edge element space suc¢h tha

N
Ax)=3"aw;(x) (4)
i=1

with N the number of Degrees of Freedom (DoRg)x) the
edge shape functions ang unknown real coefficients. By
applying the Galerkin method to a weak form of (3):

[v(x)curlA (x) CGuriw, (x)dx = [ I(x)w; (x)dx Di O[LN], (5)
D D

the coefficients acan be obtained by solving the linear system
of equations:

SA=F (6)
with S the stiffness matrix (NxN)E the source vector (Nx1)

andA the vector of the coefficients. & he coefficients;sof S
and f of F satisfy:

55 = [v(x)curlw (x) urlw ; (x)dx

" )
f, = _[J(x)curlwi (x)dx
D

The model of the electromagnetic device is now latéa.
From the solution (6), quantities of interest sashtorque or
flux can be determined in a postprocessing step. Sdiution
(6) depends on the input parameters which arehtapesof the
boundary of D, the shapes of inner interfaces betwe
different materials and the reluctivity. If the g of the
model are subject to variability, the solution @il be also
subject to variability. The stochastic approach bégsm to
quantify this variability of the output.

STEPB: CHARACTERIZATION AND MODELING OF THE INPUT
DATA VARIABILITY

In the stochastic approach, the input data are taddweith
random fields or random variables which pdf arenidied
from measurements and expertise. In this secticm,wil
present first a general approach proposed in theature to
determine the pdf. We will illustrate this approaefth an
example related to the modeling of uncertainty dwe t
geometry.

A. General consideration

In the literature, several papers in various fieldk
engineering deal with the development of stochastorlels
for representing random material behaviors. A ieddy vast
literature dealing with such approaches can be douanthe
field of the fatigue of materials [8-9,56-58]. Ratlg,
stochastic models of ferromagnetic material behabiave
been proposed to take into account the variabiitoduced
by the process of fabrication [10-13]. As exampthe
evolution of the iron losses in the yoke as a fiamcbf the
magnetic field for 28 stators is presented in Fig/2e can see
that the variability is significant with a gap betwn the
minimum and the maximum of the loss value at 25060 A
more than 25%. The stators under test have beeeddsom a
production chain, the variability is introduced migi by the
manufacturing process which is not perfectly replelat
Stochastic models have been proposed to take écmuat the
variability of the B(H) curve and also of the losse

Iron losses Ps [W/kg]

500 1000
Maximum excitation field level Hmax [A/m]

1500 2000 2500

Fig. 2. Evolution of the Iron losses measured ostadrs as a function of the
magnetic field.



In all these works, the approach is almost the santeis

decomposed in 4 main steps which are the following:

Model selection: the first step consists in comparing
existing deterministic models which are suitable to
describe correctly the phenomenon (behavior law,
dimension)[11][14]. This can be done based on abéel
experimental data. The parameters of the different
models are identified and the model which fits begter

the experimental data is chosen. For example, to
represent a B(H) curve, several mathematical exfes

are proposed in the literature. Let consider déffier
expressions BxfH,p;) with p; a vector of real parameters
and a collection of experimental points®{B®®) 1<
measured on a sample. The paramegberare identified
using the least square method:

B AT i
k=1

The “best” model will be the one which yields tlosvest
criterion R.

Sochastic modeling of input parameters. with the
selected model, the next step consists in splittiegdata
into two subsets (chosen randomly): a Modeling 8ubs
(MS) that is used to develop the probabilistic mpdad

a Test Subset (TS) to test the prediction of thdehd_et
consider a MS of R experimental B(H) curves, by
minimizing (8) using the chosen model B=f{i{, we
determine R realizations of the parameter veptorhis
sample of size R is then used to determine thegtmibty
distribution functions (pdf) of the random vectp{0).
This can be achieved in the context of a parametric
approach for which a classical pdf (uniform, Gaassi
lognormal...) can be tested according to the Kolmogor
Smirnov (KS) statistical test. The test enablesdtect
the most suitable marginal distribution for each
parameter op(0).

Correlation analysis. once the marginal distribution of
each parameter of the model is identified, the rstep
deals with the analysis of the inter-dependencéhef
input parameters. If they are all distributed adow to

a Gaussian distribution, and only in this case, cae
quantify the intensity of the dependency using the
Pearson coefficient calculated from the experimental
data (MS). If it is not the case, it may be usetful
identify the intensity of this dependence using taek
correlation method [3]. At the end of these threps, a
stochastic model is then available. Considering our
previous example, the stochastic model can beenritt

the form B@)=f(H,p(8)).

Validation of the model: the validation of the model
consists in implementing Monte Carlo Simulation
Method (MCSM) and applying the two samples KS test
to check whether our stochastic model represents
“correctly” the phenomenon. The sample generated by
the MCSM is compared either with the MS data (to
check the adequacy of the model with the data fmed
the identification) or with the TS data (to analythe
capability of prediction of the model). The cortala
structure between the parameters has also to ba tato
account in the MCSM. When all the parameters are
Gaussian distributed, one can define a Multivariate
Gaussian Distribution (MGD) to account for the nmaad
distribution and the correlation between the patarse

If it is not the case, theman and Conover method may

(8)

be implemented, and aims at approximating the eesir
rank correlation between the input parameters, when
each marginal distribution remains intact [3].

An example of application of the previous methodglds
given in [11] to develop stochastic models to diéscrthe
random behavior of soft magnetic electrical ste&ls.apply
this methodology, experimental data sample shoeldfdarge
size. In practice, experimental data are not so emaus
because engineers don't need a large sample ofimeeal
data to deal with deterministic models. To comptnghis
lack of information, expertise and additional asptions (on
the dependency between the random parametersgguead
to develop the stochastic model. Moreover, modeds reot
necessarily available to describe the random phenomand
need to be developed. In the following sectionwilegive an
example to illustrate this case.

B. Example

We are interested in the dimension modeling of stegor
presented in the Fig.3 [64]. Due to the variabildy the
fabrication process, the dimensions are not eqoatheir
nominal dimension fixed by the designer. The qoestf the
effect of the dimension dispersion on the perforoeanof the
electrical machine is then posed. In the followinge are
interested in modeling of the variability of thedrior surface
of the stator and we will consider the radii of tB@ stator
teeth. Measurements have been done on 5 statorgaCmn
stator, we have measured 36 radii on 30 layersilolised
along the depth (Fig. 4.). For each stator, we inbfiaally
36*30=1080 values.

i 2

Fig. 4. Distribution of the measured points aloagtelayer (red lines)

We present in Fig.5., the histogram of the measuaed for

each stator. We can see that the radius valuesaagdomly
distributed and the distributions are differentnfra stator to
another. In Fig.5., the two vertical straight linepresent the
tolerance interval and we can see that some valgesutside
this interval.

120

—stator SO
stator S1

—stator S2
stator S7

—stator S20

Number of

100+ .
realisations

Radius (mm)

N

. I
49.52 4954 4956 49.58

48.42 49.44 49.46 49.48

49.5

Fig. 5. Histogram of the measured radii for théaimss. The two vertical lines
represent the tolerance interval.



The interior surface of the stator is represented 80 radius
values. A model with 1080 random variables is slite
represent the variability of the interior surfadetloe stator.
However, this probabilistic model, with a very highmber of
random variables, may cause excessive computatioe t
during the step C of propagation of uncertaintit/e. seek for
a model with a reduced number of random varialdles. idea
is then to express the 1080 random radii with @didinumber
of random variables. A model reduction approactetam a
Principal Component Analysis (PCA) [45] can be uded
approximate these 1080 random variables in termsNof
mutually uncorrelated random variables (N can bedi
arbitrarily but lower than 1080). This method igiojal in the
L2 sense. However, with this approach, it can bgcdlt to
link the N random variables obtained with PCA te tictual
measured dimensions. This link with the actual disiens is
necessary since it enables to establish a reldiipngith the
steps of the fabrication process which are the cssurof
uncertainty. A more "physical” representation fog 80 layers
using a Discrete Fourier Transform (DFT) has beleosen
and the radius of the tooth i{ik36) on the layer j &<30)
can be written under the form:

n
60)= R, 1o )+ SrelogiiT ay0)] @
k=1
With R, the nominal radius of the teetly(6), ay(6) and
Bi(8) random coefficients to determine and n the totahber
of harmonics equal in our case to 17. To reducentimber of
random variables, we select the random varialig®) and
¢;(8) corresponding to the harmonic ranks k which dbuote
the most to the variability. To select these haricgnwe
consider §"(8) the truncated expression qf(8) up to the
order m (¥m<n) and the random variable y@,

55k @)-r6)f
y(m,6)=1- =L (10)
;;[ru (6)- Ry

The random variable y(®) lies in the interval [0,1]. For a
given realizationd (a stator), the closer to 1 y@,is, the
better the approximation ;6) of r;(6). From the
measurements made on the five stators, we have five

determined. If the size of the sample is suffidietarge, then
the procedure described in the previous sectiorbeaapplied.
In our case, the number of realizations is equé s testing
random variable is almost useless. Then, we asstina¢dhe
random variables are independent and Gaussian.nidan
and the standard deviation have been estimatedlbylating
the sample mean and the sample standard deviatidiab.1.,
we have reported the mean and the standard devifiche
layer j=15. We can see that the harmonics 0, Z)dd@have
the same order of variability.

1 ———

y 0.95f
0.9r
0.85

o.8f

Fig. 6. Evolution of y as a function of m for thater SO.

In this new model, the number of random variables leen
reduced to 210. It can be expected to reduce dlgaimumber
by applying the same approach described above aloag
depth of the stator. It is worth mentioning thag tharmonics
of deformation can be related to different step$abfication.
For example, the harmonic 2 is due to the clammhghe
stator during the pressing, the harmonic 6 is tiyeelated to
the 6 welding line®n the exterior side of the stator. After the
step C of quantification of uncertainties, it Wik possible to
evaluate the influence of each harmonic on theoperdnces
of the electrical machine (the variability of therque for
example). It is then possible to determine whicyss are the
most influential (see step D: sensitivity analysid)ese stages
of the process can be modified in order to redhe& impact.
For example, in our case, if th& Barmonic has a significant
influence, the first solution consists in havindeeper insight
on the origin of the variability introduced by theelding
process in order to reduce it. Changing the nurberelding
lines is a second solution in order to create anbaic of
stator deformation which has a fewer effect.

realizations of each random variablg@) which enables to
determine five realizations;"{(6) using the least square

method for each value of m. We have then detemnthe

Harmonic To 1, Ty Ts
Mean (um) 1.93 5.16 1,77 3.74
Std uim) 3.86 3.93 1.18 1.59

evolution of five realizations of y as a functiof m. In
Fig.6., from the measurements made on the statpro8@®
realization of y(m) is given. We can verify that the function
y is increasing. When the variation of y is sudetween the
index m-1 and the index m, it means that the haicna’
have a significant contribution. For the stator @, can see
that the harmonic " and &' have the most impact on the
variation of y as a function of m.

The evolutions of y obtained with the other statanmes similar
except that the contribution of the harmonit dan be
sometimes significant. Finally, the model retainedlescribe
the interior surface of the stator is written untier form:

r; (6) = Ry +1¢;(6) + 15, (G)CO{%T +y; (9)}
(11)

+ Ty (e)cos{%n +y (9)} +Tg) ((B)COS{%T +0g; (9)}

Once the model is selected, the pdf of the randanables
T0/(0), T4(0), 92(0), 14(8), $4(8), T6i(6) and ¢g(0) are

Tab.2. Mean and standard deviation (std) of thdoanvariablesi
associated to the layer j=15.

STEPC: UNCERTAINTY QUANTIFICATION

At this point, the input parameters are modeledgisandom
variablesp(6) with known probability density functions. The
outputs of the electromagnetic model ((1)-(3)) bmeeothen
random and should be characterized. The model based
stochastic PDE is generally numerically solvedvéf consider
the model based on (3) with the random input patarsp(6).
The input parametens(6) of the model are related either to
the geometry or to the behavior laws of the maltenidgo the
sources. Taking into account randomness on thecsoisr
quite straightforward especially when the deterstioi
problem is linear [41]. In the following we will ssme that
the sources are deterministic. For the other kirafs
randomness, the problem is more complicated. Theggssing
of uncertain geometries is slightly different thathe
processing of uncertain behavior laws and requadstional



treatments. In the appendix |, we give a short vdeer of
methods that are available in the literature. l& fbllowing,
we will assume that we have only uncertainties be t
behavior laws. However, the quantification methpossented
in the following can be applied to solve problenithwandom
geometries as mentioned in the Appendix |. Undeat th
condition, the reluctivity can be written in therriu

v[x,8]=v[x,p(8)] (12)
Expressing permeability as a sum of separable ifumtwill
be very useful (see section Approximation Methode@dn
method):
M
vix.68]=vlx,p(@®)]=> vip@)xi(x) (13
i=1
The model proposed in the step A can be rewritteitaking
into account the random reluctivity and applyingsemi
discretization in space. It leads to a linear systé equations
with random coefficients;§(6)) and f(p(8)) (see (7)) :

SIp(8)] Alp(8)] = F[p(8)] (14)
The vector of DoF's A is now a random vector we need to
characterize. The solutioh of (14) for a given realizatiopy
of p(B) is equal to the solution of the problem (6), stlexl
deterministic in the following, witlpy as input parameters. In
the following we will present the most popular meth used
for the characterization of the random output d&@ame of
them are based on the solutions of a set of detéstiti
problems and are quite simple to implement fromexzisting
FE package.

Perturbation Method

The mean-centered perturbation method consistggareling
the unknown field around its mean. This approaclvasy
useful in determining the first and second ordetigtical
moments (mean and variance) of the unknown fietdvéver,
the extension to moments of higher orders is véficdlt and
time consuming. In addition, it lacks of accuraoy problems
with input data with large deviations.

Monte Carlo Smulation Method

Among the available techniques, the Monte Carloufition
method (MCSM) is probably the best-known and widedgd

in different scientific areas (financial mathematic
biostatistics, mechanics, etc.) [44][48]. MCSM abust and
simple but very time consuming especially when tiogp
with a numerical model such as a FE model. The erud
MCSM consist in:

-generating randomly a sampley,(..,pr) of size R of the
inputs,

-performing the solution of R deterministic FE plerhs
(14) with p; (1<i<R) as inputs. At the end of this step a sample
(A4,...,AR) is available,

-aggregating the results in order to calculateistied of
guantities of interest.

If we denote G the quantity of interest functiontioé vector
potentialA, the mean of G can be estimated by:
N 18
Mg == G(A) (15)
Ria
If og denotes the standard deviation of G, the 95 %
confidence interval (where the meag has a great chance to

be) is given by fng -1.9606/\/E ,Mg +1.9606/\/E]. It

means that improving by one order the precisioretitenator
(15) (by reducing the confidence interval by 1Qjuiees one
hundred times more model evaluations. Even thougthods

like stratified sampling, importance sampling... armailable
to reduce the standard deviation of the estimatbg
convergence speed remains low. We can see thapted of
convergence does not depend on the sizé@®f

Approximation methods

The idea here is to find an approximation of thargity of
interest G in a finite dimension functional spate@®) that is
to say:

P
Glp(e)]= Yo [o(e)]
i=

with g coefficients to determine. The approximation fioms
can be chosen in different spaces [39][47]. If tkiput G has
a finite variance and is sufficiently “smooth”, gobmial
expansions are well fitted. If it exists some siagties (for
example in the case random geometry — see Appéhdither
approximation spaces should be introduced [39].
Approximations based on Th&olynomial Chaos Expansion
(PCE) are currently the most used in engineerir@E Rvas
first introduced by Wiener [59] to represent Gaassi
processes using an expansion of Hermite polynomial88],
Xiu et al. proposed a more general approach byriefeto the
Wiener-Askey scheme. A PCE requires that the rando
components ;f0) of the vectoip(8) be independent. If it is not
the case, alternatives are proposed in the literagither to
modify the approximation space or to express theove(0)
as a function of a vectop’'(8) of independent random
variables (isoprobabilistic transformation). In tfa&lowing,
we will assume the random variablgépindependent of pdf
fi(y). The size of the vectop(B) will be equal to K. We
introduce now the monovariate orthogonal polynosnia(y)
with respect to the pdfi(y). It means that:

[uiwn)i(y=0 if T#m

(16)

17

Introducing the expectation E() (the expectatioX(B]] of a
random variable X) is equal to its mean), the previous
equation can be written:

EWpi(0)] Wnlpi(B)])=0 if I7m (18)

If pi(6) is a standard normal random variables, ¢hg) are
Hermite polynomials. If §§0) is uniform in [-1,1],;(y) are
Legendre polynomials. More generally, if the pdfg®) is
known, it is easy to calculate the polynomidg|éy) iteratively
applying the Gram Schmidt process. We define nenset of
multivariate orthogonal polynomiald,[ p(8)] with a a K-
tuple such that:

b= Juo O] witn o=(ey.nai) a9

Sincep(0) is a vector of independent random variables, the
multivariate polynomial$d,[p(8)] are orthogonal with respect
to the joint probability measure:

fo = M1

IsisK

(19)

That is to say:
E(w, @)W p®))=0 if azp

If G[p(B)] has a finite variance, the PCE refers to the
representation of the random variablep®)] as a linear
combination of multivariate polynomiat,[p(6)]:

Glp@)]= X 9.¥.[p(O)]

aONK

(20)

(21)



In practice, the expansion (21) is truncated up the
polynomials of order p. If we denote by Zthe space of the
K-tuplesa which satisfy:

K
D G <p (22)
i=1
The total number of polynomials in the truncatedEHEequal
to:

p= (K+p)!

Klp!

Later, we denote by« the space of multivariate polynomials
W,[p(0)] such thatalZs". In Tab.3, we have reported the
dimension P of the space of approximatiost @s a function
of the polynomial order p and the number of inpathdom
variables K. We can see that P increases expotigntiah
the dimension which is usually so-called the “cursk
dimensionality”.

(23)

p=1 p=2 p=3 p=4
K=2 3 6 10 15
K=5 6 21 56 126
K=10 11 66 286 1001
Tab.3. Example of the dimension P of the approximatpace & as a

function of the polynomial order p and the numbferamdom inputs K.

In the following, to simplify the notation, the ntiwariate
polynomialsWq[p(8)] will be indexed by an integer i {i<P)
instead of the K-tuplea. The function Gj(0)] is
approximated by a truncated expansion given by (G6)
orthogonal multivariate polynomials defined by (18)

After applying the semi discretisation in space, ¢befficients
&(0) of the vectorA(B) are random (see (14)). Eaclibais
approximated using a truncated PCE (16). Finalig, wector
potentialA[x,p(0)] is approximated by the expression:

Alp(e)] =33 8 b(e)w )

i=1j=1

(24)

The number of coefficientsais equal to NxP. In a
postprocessing step, quantities of interest (endhgy,...) can
be also expressed using (16). Several methodsvailalae in
the literature to determine these coefficients likiee
collocation method, the regression method, the egtimn
method, the Galerkin method.....

Approximation methods have been already applied
computational electromagnetics to study EEG SoAredysis
[55], Eddy Current in human body [54], Eddy Currén
Destructive Testing [15,16], Accelerator Cavitiedl], [
Dosimetry [7]....In the following we will present the
projection method and the Galerkin method.

Projection method

Since the polynomial®¥/;[p(6)] are orthogonal (see (20), the
coefficients a satisfy:

_Hal@WpE)) _ Jox aP)¥ie)o Pl
R 70 I R RN
_ RKai(pli""pK)ij(pl'“'*pK)fl pu)--Fic (P Jdpy ..y
) re ¥ (P1,- P ) ()T (pic )l ..y

(24)

The determination of ja yields the calculation of
multidimensionnal integrals. The denominator of)(2dn be
calculated generally analytically but not the nuater.
Different methods can be used
multidimensional integral: MCSM, Gauss quadraturethnod,

to approximate the

sparse grid method, adaptive integration scherh&][d3] All
of them yield the following expression for the agximation:

- 2ab b

wherew are the weights anpf the evaluation points (Gauss
points). The model (14) is solved for Q realisagiaof the
input parameterp to determine §"). So, the deterministic
model (6) has to be solved tfnes withp* as input data. One
should notice that Q can increase dramatically wiile
dimension K. Let consider for example a Gauss catade of
order g along each random directiop. pVe denote by
(Pm)121<q the gauss points andx);«<, the associated weights.
The gauss points are the roots of the polynomigl) of order

g introduced in (17). A multidimensional quadratwan be
obtained by tensorizing the monodimensionnal gauss
quadratures along each random dimension that gayothat
the gauss points® in (25) satisfy:

pk :(pkl,..,piki ,...,p:zK)
o :(cu'l‘l,..,co,ki ,...,mﬁK)

with the index k such that:
kO[1,94] (Ky,....ko)O[1,9]¢ such that

(25)

(26)

k=ko+(ke-1)0+ ..+ (k-1)f (k- )
(26)

In that case the number of evaluation points Qqisaéto ¢
and so increases exponentially with the dimensithe
number of evaluation points can be reduced by uspayse
grids like Smolyak cubature [62]. Even though thenber of
evaluations decreased dramatically, models with igh h
number K of input parameters cannot be practicsilyed. In
that case, adaptive methods coupled with sparsg gmd
nested quadrature scheme is an interesting alieenft6].
With a high dimension problem, the truncated PCit lwa too
large (see (23)). To limit the number of termsparse basis
should be constructed which can be determined fthen
adaptive scheme or directly from a random samptighe
inputs [60].
Other methods like regression method, collocati@thod are
also based on evaluations of the deterministic mj@®. One
should note that nonlinearities on the behavior slagre
naturally taken into account in the deterministiodal. These
methods are often called “non intrusive” becauss ttonsist
in embedding the deterministic model in a “stocicést
procedure. With the Galerkin approach, the linkhwthe
deterministic model is not as straightforward aswilesee in
the following.

Galerkin method — Stochastic Finite Element Method

The Galerkin approach was first introduced in theye90’s

by Ghanem et al in mechanics [43]. It consist iarsking the
solution in a tensorial space W(DE with W(D) the
standard finite element space used in the detestitincase
and G* the space of approximation of random function
G[p(0)] introduced previously [40]. In magnetostatiche t
vector potential is sought for example in the fof2d). The
solution should satisfy a weak form of the inifimbblem. Let
consider again our magnetostatic problem, a weak fif the
problem can be written [17,18,21]:



E{icurlA [x,p(6)[x,p()|curiw; (x)w, [p(e)]dx} -

(27)

E{ i J[x,p(6)}w; (x)w [p(6) dx} 0(,1) 01, NJx[1,P]

The NxP test functionsy;(x)¥;[p(6)] belong to the space of
approximation W(DJC:*. Replacing A[x,p(8)] by its
expression (24), we get the following system tosol
SA;=Fs

With A the 1x (NxP) vector of {8 i<ine With:

a=a; with k=i+(j-1)N with (i,j)0[1,N]x[1,P],
Fs the 1x(NxP) vector with the coefficients’Jfa«ne Such
that:

(28)

Ok k=i+{-DN (i,j)0[LN]x[1P|
=8 [abealeh o |

and As the matrix with the coefficients j(gu<i<np, xmeve SUCH
that:

Ok k=i+G-DN (,j)0[LN]xLP]
O 1=i+G-DN {.7)0RN[LP]

s =61 oo ol b G

The size of the product NP can be extremely largegnting
the storage of the matridg and so the resolution of the
problem. If the reluctivity can be written as a safrseparable
functions (13), the system can be rewritten talkidgantage of
the kronecker product. This representation of glectivity as
a sum of separable functions can be obtained eitinéng the
process of modeling of the input data (step B) toypadsing
this representation or by applying a model reductexhnique
(Karuhnen-Loeve expansion for example). Considetfting
expression (13) for the reluctivity, the matAxcan be written
in the form [19]:

M
A= COD,
i=1

cin = E(W[p(e)l¥u[p(@)vi[p(e)) with . m)D[1PP
L= jcurlwm(x)xi(x)curlw,(x)dx with (I,m)D[l,N]2

(29)

The memory space requires can be significantly cesllby
storing only the 2M matrice€; andD;. One can also notice
that the matrice®; can be easily extracted from a standard
magnetostatic finite element code. Indeed, theskicea are
equal to the stiffness matrices of deterministigygms where
the reluctivity is equal toxj(x). The matricesC; can be
determined by a standalone external procedureethdéit is
not possible to calculate analytically, the terms can be

estimated by a MCSM or approximated by a quadrature

method (see (25)). It should be mentioned thattieulation
can be highly sped up by splitting p(8)] in the PCE because

the coefficient §, can be expressed as a linear combination of

the terms Gh=[E(W|[p(8)]Wi[p(6)] Wrlp (B)])] with 1<j<Pi, (Py,

is the polynomial number of the truncated PCEv§p(0)]).
The terms 4, can be calculated exactly either analytically or
using a Gauss quadrature. The matribg®f the coefficients
d¥, are generally sparse. To save memory, the maigcean

be expressed in function of the matriégswhich are the only
one stored. The determination of the matAx does not
require a high modification of the deterministicdeoand so

the “intrusivity” of the Galerkin approach can béghily
reduced using expression based on separable foadto the
reluctivity. This approach can be extended in thasistatic
case [13]. Dedicated solvers can be employed teestie
equation (28) by taking advantage the expressi®y k2ased
on Kronecker products. Non linearities can be takaio
account in the Galerkin approach [5], it requiresme
additional developments and it is not so straightéod as it is
with the projection method or the sampling methdde
should mention that the Galerkin method, for given
approximation spaces, minimizes the error of apipnaion in
the “L* sense which is not the case with other approsonat
method based on the evaluations of the deterndniatidel
(projection method, collocation method...). Howeveshen
double orthogonal polynomial expansion is used,
collocation and the Galerkin methods are equivdtEsit

the

Error estimation

At the end of the step C, an approximate of theesalution
is available. The error of approximation dependshenchoice
of the approximation basis. In our magnetostat@nexle, the
error is function of:

-the mesh of the domain D,

-the order p of truncation of the PCE,

-the method (Galerkin, Projection...).
The error should be estimated to evaluate the tyuafi the
solution and if desired to improve it by adaptioh the
approximation spaces by remeshing the domain D yr b
increasing the order of the truncated PCE. A-prammd a-
posteriori error estimators have been proposeladiterature
[30-33][47][52].

STEPD : POSTPROCESSING

General context

At the end of the step C, the available resultseddpon the
method used to solve the problem:

-the perturbation method will give information dret
mean and the standard deviation of the quantifieserest,

-the MCSM enables to estimate any statistical
moment, pdf, probability of failure...

-the approximation methods yield a surrogate model
of the quantity of interest that is expressed infirdte
dimension space (see (16)) [20]. From this expoessi is
possible to approximate either analytically or ntioaly any
statistical moments, pdf... if the latter don’t hareanalytical
expression, a numerical determination is very fastause
only a polynomial expressions have to be handled.

Besides statistical information related to the djiti@s of
interest, it is also often interesting to evalu#e influence of
the input parameters on the output Gi). In the deterministic
case, the sensitivity is usually determined “logallby
calculating the partial derivativé$s/0p;at a given poinp. In

the stochastic case, the sensitivity is determitggdbally”.
The question to answer in that case is “How does th
variability of the input parameter mfluence the variability of
the output G ?". Let consider a problem with twogmaeters

p, and p which are uniformly distributed on the interval
[a;,b1] and [a,b,] and independent. Let consider the simple
linear model G=pt4p,. In the deterministic case, wvill be
considered as the most influential variable. In shechastic
case, the influence will depend not only on thdatam of G
versus p and p but also on the pdf of;pand p. Thus, to
characterize the variability of G, the variance asgood
candidate. In the example, the variance of G isaktu (b-
a)4/12+4(p-a,)2%/3. In that case, we can see that if the width of



the intervals of definition of pand p is of the same size,p
remains the most influential but if the intervalditi of p, is of
two orders lower than the parameter ill be the most
influential.
Sobol has proposed a method to undertake a glebaltivity
analysis based on an Analysis Of Variance (ANOV3J][
The idea is to decompose the variance of the gyanofi
interest Gp(0)] as:
K K K
varlGlp(6)]] = ZDi +ZZD” +
=1 i=1j=2
1>l
The terms R (U=(uy,..u) a k-tuple, ¥k<K, with u<u,<..<u
and y[1,K]) are positive and are the fraction of variarmd G
explained by the inputs,p...px. The Sobol indices are
defined such that:
S, = Du/Var(G[p(6)]) (31)
The Sobol indices are positive and their sum isabtu1. A
significant value of a Sobol index, S8ersus the others means
that the interaction between the parameterg,..Pu
contributes significantly to the variability of @®)]. The
number of Sobol indices is very largé-2. In practice, only
the K Sobol indices of first ordet (s a singleton) and the K
total Sobol indices defined by $TX4,S, are calculated.
From, these both sets of indices, we can conclodeit S is
significant, the influence of;ps also significant. If STis
small, p has no significant influence. The calculation loé t
Sobol indices can be easily estimated using a M®@Msing
two distinct samples for the inputs. If an approaiion
method is used, from the truncated PCE, it is gittéorward
to approximate the Sobol indices from the coeffitieg (see
(16)) [35-37].

Example

We consider now a synchronous machine with a wadinde
rotor supplied by a current I. We want to evaluate effect of
the uncertainties on the dimensions of the statodeted
previously (see step B) on the torque at no loamhding
torque). We assume that geometric uncertaintiedare only
by the 7 random variableg(0), 7,(0), 74(0), 7(0), @2(0),
94(8), ¢6(0) (see (11)). The other dimensions are considered
deterministic. The machine is modeled using a EiRiement
Model. The uncertainties on the geometry are takeo
account using the transformation method [see AppehdA
truncated Polynomial Chaos Expansion (PCE) based on
Legendre polynomials is used to approximate thedoem
torque. The coefficients of the PCE are determiosithg a
projection technique [see Step C — Approximationtiidds].
First, we have studied the effect of each harmonic
independently assuming the other were constantegndl to
their mean. The variation coefficients of the tarqare
reported in Tab. 4. First, we can notice that theticbution of
each harmonic to the variability of the RMS valuk tiee
torque is very small (less than 1.2%). Even thoutite
variabilities of the harmonics of the deformationtlwe stator
are of the same order (Tab.2), we can see alshatmonic 0
has the most significant effect. Moreover, the afaifity
induced by the harmonics 2, 4 and 6 are almosigibigl due

to an auto compensation effect of the force distidm inside
the machine. Considering simultaneously severaldaan
input parameters, a sensitivity analysis has beeiertaken by
calculating the Sobol Indices. It confirms that theost
influential variable is the random paramete(6). The
contribution of the magnitude(0), 74(0), () represents less
than one per cent. The contribution of the phasalnsost
negligible as well as the joint effect of the inparameters.

This study shows that even though we have radsidetthe
tolerance interval the influence on the torque Imost
negligible. If we had considered that the radiieach tooth
were equal to the minimum and the maximum valuethef
tolerance interval, the gap between the minimum &rel
maximum RMS value of the torque would have been
estimated equal to 10%. This example was presdotstdow
how the stochastic approach can be used to quahgfeffect
of the dispersion introduced by a process of falion. On
the example, the variability of the outputs (thegte) remains
small. The most influential stage of fabricationmeétated to the
harmonic O relating to the fabrication stage ofimgl If we
were interested by vibrations may be another haieneould
have had a more significant effect. Researchesragoing to
study the influence of uncertainties induced byfimication
processes like assembling of the stator and thar,rédrging
of ferromagnetic parts on the behavior laws and the
dimensions. The aim is to propose a methodologgdas a
stochastic approach to assess the influence ofdtiability of
the fabrication process on the performances ofetketrical
machines.

Harmonic order
Variation coefficient
(%)

To 1] Iy Ts

13 0.02 0.00 0.01

Tab.4. Variation coefficient of the RMS value oétbogging torque in
function of the harmonic order.

CONCLUSION

In this technical article, an overview on the apgtion of the
stochastic approach in computational electromagsetias
been presented. It has been illustrated by an ebeanmp
magnetostatics of a stator with uncertain dimerssiddintil
now, research in engineering has mainly focusedthten
propagation of the uncertainties through the mddedp C).
Even though these models can be still improvederms of
accuracy and computation time (model reductionnegkerror
estimation, adaptive basis, dedicated solvers...y giart to
reach the required maturity to be applied to treal world
applications. In the stochastic approach, an ateunathod of
uncertainty quantification (Step C) is required higo a fine
probabilistic representation of the uncertain ingata (Step
B). The Step B has been few addressed until novthén
domain computational electromagnetics. The maificdity is
to collect a representative measurement samplenpfiti
parameters. In practice, only few measured values a
available which are not sufficient to identify arid test
efficiently the probabilistic model. In order, tievelop more
realistic models, a solution consists either inradticing
expertise in the model or in undertaking measurémen
campaigns in order to collect more representatat@ @f the
variability of the input parameters.

We should also emphasize that the steps B and € mouse
treated independently one of the other. In facthatend of the
step B the probabilistic model of the input parametshould
be perfectly compatible with the numerical modelo N
numerical process should be added in order to hawe
discrepancy between the outputs of the step B hednputs
of the step C. Finally, few real world examples daeen
treated in computational electromagnetics up to.reey it is
difficult to explicit the strength and the weaknesk the
stochastic approach. Nethertheless, this approaokides
definitely powerful tools to undertake global seingly
analysis which engineers can take advantage to:



-determine the most influential input parametersgaantities
of interest enabling to focus the measurement campan
those parameters,

-evaluate the impacts of the dependency betweeimplgs,
-identify the inter dependency between the outpuameters,
-to increase the robustness in an optimizationgore...
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APPENDIX| : UNCERTAINTIES ON THE GEOMETRY

The uncertainties on the geometry can be modelagidom
interfaced’, between two sub-domains &nd D). In each sub-
domain, the reluctivity; is assumed to be constant in each
subdomain P We suppose also that these interfaces can be
parameterized by known random variable$d) and a
parameter ¢, we have:

x=g{p(8),c] with EAJIR (A1)
where x are the coordinates of the points located on this
interface. The parameterbelongs toA, a subset of R(R in
the 2D case). For each realizationp§), there is a bijective
map betweenA, and I'y. Even though the reluctivity is

assumed to be constant on each subdomain, it dementhe
positionx and also on the realization of the random inte$ac



Indeed, for a point located close to a random interfdgethe
value of the permeability depends on which sidel'pfthe
point x is located. Thus, in a poixif D which can be located
on both sides of a random boundafy (between the
subdomains Pand 0) the permeability switches from the
valuesv; tov;. If we denotedi(x,), the function associated to
the domain B (Ip[x,p(6)]=1 if xOD; and 0 elsewhere), the
reluctivity on the domain D can be written in tloerh:
M
v[x,8]=v[x,p(8)] =X vi1;[x,p(6)] (A.2)
i=1
where M is the number of subdomains. Since thectieity is
a random field, the magnetic field and the magnetic flux
densityB are also random fields.
The quantity of interest @[B8)] is calculated in a
postprocessing step after solving numerically ttextsstic
vector potential formulation. To deal with problemsth
random domains, an easy way consist in remeshimt) ea
geometry corresponding to a new evaluation pefrisee step
C — MCSM and approximation methods). However, this
approach has some drawbacks. First, since we baesrtesh,
the stiffness matrix and the source vector have b
recalculated for each evaluatiopl point which is time
consuming. Remeshing the domain D adds a numeraiaé
on the output data because the mesh (the connedivi
between elements, the number of elements...) chafnges
an evaluation point to another. Moreover, the esgioe of the
shape functions changes as well. Consequentlys indt
obvious to obtain an explicit expression of thetoepotential
as (24) so the distribution of the fieldlsandB. Finally, as we
will see in the following part, the magnetic field certain
fixed points could have some discontinuities alotige
stochastic dimension. Therefore, the approximatioh
magnetic field at this point using a polynomial cba
expansion is no longer appropriate. To avoid themé
drawback, one possibility is to introduce additiohactions
(enrichment basis method) that can account for ethes
discontinuities. This technique has been propossd ttie
stochastic finite element method in [28-29]. Anothe
possibility consists in using the transformation tmoel
proposed in [25].
Enrichment basis method

We suppose that the discontinuity poiptp’ is a priori
known. The main idea consists in adding éirichment
functions to the space of approximation defined the

truncated PCE (16) in the stochastic dimension2@_8,The
approximation of G becomes:

clp(@] = o o]+ X0 o]

whereW; orthogonal polynomials defined in (18) ahklis a
discontinuous function at the poiptp® and g and h real
coefficients. Since the discontinuities of g&)] can then be
taken into account by the functiohf, the accuracy of the
approximation is better. We can use of the follapiorm:

Hi[p(6)] =tlp(e)]w:[p(e)] i=1toK (A4)

where 1[p(6)] = {1 ifl r;(lz)es p°

The coefficients gand h of the expansion can be calculated
using either a Galerkin approach or a projectiothio (see
Step C)

(A.3)

Transformation method

The main idea of this method consists in using rdoa

mapping that transforms the original domain D wiéimdom

inner interfaces into a deterministic reference dionj24,26].

The original problem is transposed into a new probtiefined
on a reference domain E with modified behavior latvat

become random fields. Actually, the reluctivities the

subdomains of E are not constant anymore but deperttie

position and also on the random variab¢8). If it exists a

one to one random mapping X=X[g(0)] that transforms the
domain Dp(B)) into a deterministic domain E, we obtain:

Alx, p(B)]=A'IX, p(B)] (A.5)
whereA'’ is the solution of the vector potential formuéati of

the problem defined on the domain E with the medifi
reluctivity:

v[x.p(e)] =
M X, p(e)v[x.p(e)] M L[x p(8)]' de(M[X ,p(6)])

with M[X, p(0)] the Jacobian matrix of the random mapping.
This reference problem, defined on the determmidtimain E
with a random reluctivitw'[X, p(B)] can be solved by using
the method of quantification described in Step Cabee the
uncertainties are only bore by the behavior law aoidby the
geometry anymore. The degrees of freedojip@)] of the
vector potential A'[X, p(8)] can be approximated using a
polynomial chaos expansion on E given by (16) withany
additional functions. Then, the potentiél[x,p(8)] can be
calculated on the domain D.

With the transformation method, the discontinuitiegth
respect t@(0) can be taken into account naturally without any
enrichment basis technique. In the transformatie@thod, the
main difficulty is the determination of the randamapping
that transforms the original domain D to a deterstin
reference domain E. In [27], two methods to detaarthis
random mapping have been proposed and compared.

(A.6)

ACKNOWLEDGEMENTS

I thank Roman Gaignaire, Karim Beddek, Rindra
Ramarotafika and Hung Mac who have contributed Heac
his field) to the research developments in thedfielf
uncertainty quantification in our research grouggP). | am
grateful for their support to the companies VALE&ectrical
machines) and EdF R&D (Eddy current NDT) and atsthe
Nord Pas de Calais Region and the European Comynunit
through the institution MEDEE. Special thanks toiviar
Moreau (EdF R&D) and Jean-Claude Mipo (VALEO) foet
very helpful and insightful discussions and also rty
colleague T. Coorevits (LML).

AUTHOR NAME AND AFFILIATION

Stéphane Clénet

L2EP

Arts et Métiers ParisTech

8, Bd Louis XIV, 59046 Lille cedex
Tel : 33-(0)3-20-62-15-63

E-mail : stephane.clenet@ensam.eu
Web :http://12ep.univ-lillel1.fr/

Web :http://www.ensam.fr/en/




