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Technical Article 
 

Uncertainty Quantification in Computational Electromagnetics: The 
stochastic approach  
 
Abstract — Models in electromagnetism are more and more 
accurate. In some applications, the gap between the experience 
and the model comes from the deviation on input data of the 
model which are not perfectly known. The stochastic approach 
can be used to quantify the effect of these input data 
uncertainties on the outputs of the model. In this article,  the 
application of such approach in computational 
electromagnetics is presented. The four steps development of 
the model, characterization and modeling of the input data 
variability, uncertainty quantification, postprocessing 
(sensitivity analysis) are described and illustrated by an 
example of electrical machine with uncertain dimensions. 
 

I. INTRODUCTION 

Applying a numerical method (FEM, FIT…) to solve the 
Maxwell equations leads to valuable tools for understanding 
and predicting the features of electromagnetic devices. With 
the progress in the fields of numerical analysis, CAD and 
postprocessor tools, it is now possible to represent and to mesh 
very complex geometries and also to take into account more 
realistic material behavior laws with non linearities, 
hysteresis….. Besides, computers have nowadays such 
capabilities that it is customary to solve problems with 
millions of unknowns. The modeling error due to the 
assumptions made to build the mathematical model (the set of 
equations) and the numerical errors due especially to the 
discretisation (by a Finite Element method for example) can 
be negligible.  
Consequently, in some applications, if a gap exists between 
the measurements, assuming them perfect, and the results 
given by the numerical model, it comes from deviations on 
input parameters which are not in the “real world” equal to 
their prescribed values. The origins of these deviations are 
numerous and are related to either a lack of knowledge 
(epistemic uncertainties) or uncontrolled variations (aleatoric 
uncertainties). For example, mechanical parts are 
manufactured with dimensional tolerances whereas some 
dimensions, such as air gaps in electric machines, are critical 
as they strongly influence performance. Besides uncertainties 
in material composition, the material characteristics which 
change with uncontrolled environmental factors (humidity, 
pressure, etc.) are also often unknown. Even if the 
environmental factors are perfectly known, in some situations, 
the behavior law parameters can’t be identified because 
measurements are not possible under the right experimental 
conditions.  
In practice, if the uncertainties on some parameters can’t be 
neglected, the normal process of increasing the precision of 
the deterministic model becomes futile.  Models taking into 
account the uncertainties on the input parameters become then 
essential. 
Applications of such kind of models are numerous. For 
example, it can be very helpful to improve the accuracy of a 
model by orienting the measurement campaign. Indeed, the 
input parameters which have the most influence on the output 
variability can be identified [37]. Then, with new 
measurements, these most influential input parameters can be 
better characterized, and so less uncertain, improving the 

accuracy the model. Reversely, it can avoid measurements 
campaign on input parameters which variability has almost no 
effect on the outputs. These models can be also useful to 
evaluate the impact of the variability introduced by a 
manufacturing process of an electrical machine on its 
performances [53]. The influence of the different stages such 
as assembling, punching, welding… can be compared. The 
most influential stages can be segregated and, then, can be 
modified or better controlled in order to reduce their impact on 
the performance variability of electrical machines [4]. From 
these models, tools can be derived to increase the robustness 
during the process of design. Since we are able to evaluate the 
effect of the variability of the input parameters on the output, 
the design can be oriented to meet the product specifications 
and also to be almost insensitive to the input parameter 
variabilities [51]. These models can be applied for example to 
determine the tolerances on the dimensions [49,50]. 
To take into account the uncertainties, several approaches are 
proposed in the literature. The first one is based on the worst 
case scenario (the uncertain input data are supposed to be 
bounded in intervals). The second one is based on the fuzzy 
logic. The last one is the stochastic approach where the 
uncertain input parameters are modeled by random variables 
or fields. This last approach is richer than the two previous 
ones in terms of information embedded by the stochastic 
model. However, this approach can require more data to 
represent the variability of the input parameters and also more 
numerical resources. 
Since the early 90’s, numerous researches in the field of 
engineering have addressed the development of stochastic 
models, mainly in mechanical and civil engineering 
[42,43][46]. In the field of computational electromagnetics, 
the development and the application of such models have 
started in the early 2000’s and know a growing interest in the 
community [1-3][6,7][22].  
This technical article aims at giving an overview about the 
stochastic approach in computational electromagnetics It is 
mainly dedicated to static and quasi-static problems. In the 
first part, the four different steps to implement a stochastic 
model are briefly presented. Then, these four steps are 
described in detail and especially their numerical 
implementation. The example of an electrical machine with 
uncertain dimensions (introduced by the process of 
fabrication) is proposed to illustrate the stochastic approach.  

II.  STOCHASTIC APPROACH 

The development of a model accounting for uncertainties 
requires four steps which are the following (Fig. 1): 

A-Development of the mathematical model linking the 
input data (deterministic or uncertain) with the quantities of 
interest (outputs of the model). The model can be analytical or 
based on the numerical solution of Partial Differential 
Equations (PDE) like such as the Maxwell equations. 

B-Characterization and modeling of the variability of the 
uncertain input parameters. The parameters can have a 
physical meaning such that material parameters (conductivity, 
permeability..) and dimensions (diameter,…) or can be 
coefficients used in a non-linear behavior law for example. In 



the stochastic approach, based on expertise and measurements, 
each uncertain parameter is modeled by a random variable.  

C-Propagation of the variability of the input parameters 
through the model developed in the step A. This step enables 
to quantify the variability of the quantities of interest (outputs 
of the model).   

D-Characterization of the uncertain outputs from the results 
obtained at the end of the step C. The statistics (mean, 
standard deviation, correlation between the outputs…) can be 
calculated. Global sensitivity of the outputs versus the inputs 
can be also analyzed. This sensitivity analysis enables to 
determine the most influential input parameters that influence 
the most the variability of the output parameters. 
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Fig. 1. Description of the four steps required to develop a model accounting 

for uncertainties (Stochastic approach) 

In the following, we will present in more details the steps A, 
B, C and D. To illustrate our approach, we will consider a 
model based on the solution of the magnetostatic equations 
using the Finite Element Method. However, most of the 
methods present in the following can be applied in Quasi 
Statics or Wave Propagation problems solved numerically by 
various methods (FIT, FD…). 

III  STEP A : DEVELOPMENT OF THE MODEL 

We will consider an electromagnetic device which can be 
modeled by the magnetostatic equations on a domain D. The 
equations to be solved are: 

curl  H(x) = J(x)       (1) 

           div B(x) = 0    (2) 

with H the magnetic field, B the magnetic flux density and J 
the current density that is assumed to be known. In addition, 
boundary conditions on H and B are added. To solve the 
problem, the vector potential formulation can be used: 

curl  [ν(x) curlA (x)] = J(x)  (3) 

with A(x) the vector potential and ν(x) the reluctivity.  To find 
an approximate solution of this equation, the Finite Element 
method can be used. We seek for an approximation A(x) of the 
vector potential in the edge element space such that: 
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with N the number of Degrees of Freedom (DoF’s), wi(x) the 
edge shape functions and ai unknown real coefficients. By 
applying the Galerkin method to a weak form of (3): 
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the coefficients ai can be obtained by solving the linear system 
of equations: 

S A = F    (6) 

with S the stiffness matrix (NxN), F the source vector (Nx1) 
and A the vector of the coefficients ai. The coefficients sij of S 
and fi of F satisfy: 
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The model of the electromagnetic device is now available. 
From the solution (6), quantities of interest such as torque or 
flux can be determined in a postprocessing step. The solution 
(6) depends on the input parameters which are the shape of the 
boundary of D, the shapes of inner interfaces between 
different materials and the reluctivity. If the inputs of the 
model are subject to variability, the solution (4) will be also 
subject to variability. The stochastic approach enables to 
quantify this variability of the output.   
  

STEP B: CHARACTERIZATION AND MODELING OF THE INPUT 

DATA VARIABILITY  

In the stochastic approach, the input data are modeled with 
random fields or random variables which pdf are identified 
from measurements and expertise. In this section, we will 
present first a general approach proposed in the literature to 
determine the pdf. We will illustrate this approach with an 
example related to the modeling of uncertainty on the 
geometry.   

A. General consideration 

In the literature, several papers in various fields of 
engineering deal with the development of stochastic models 
for representing random material behaviors. A relatively vast 
literature dealing with such approaches can be found in the 
field of the fatigue of materials [8-9,56-58]. Recently, 
stochastic models of ferromagnetic material behavior have 
been proposed to take into account the variability introduced 
by the process of fabrication [10-13]. As example, the 
evolution of the iron losses in the yoke as a function of the 
magnetic field for 28 stators is presented in Fig.2.. We can see 
that the variability is significant with a gap between the 
minimum and the maximum of the loss value at 2500 A/m 
more than 25%. The stators under test have been issued from a 
production chain, the variability is introduced mainly by the 
manufacturing process which is not perfectly repeatable. 
Stochastic models have been proposed to take into account the 
variability of the B(H) curve and also of the losses.  
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Fig. 2. Evolution of the Iron losses measured on 28 stators as a function of the 
magnetic field. 



 
In all these works, the approach is almost the same and is 

decomposed in 4 main steps which are the following: 

• Model selection: the first step consists in comparing 
existing deterministic models which are suitable to 
describe correctly the phenomenon (behavior law, 
dimension)[11][14]. This can be done based on available 
experimental data. The parameters of the different 
models are identified and the model which fits the better 
the experimental data is chosen. For example, to 
represent a B(H) curve, several mathematical expressions 
are proposed in the literature. Let consider different 
expressions B=fi(H,pi) with pi a vector of real parameters 
and a collection of experimental points (Hexp

k,B
exp

k)1≤k≤L 
measured on a sample. The parameters pi are identified 
using the least square method: 
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The “best” model will be the one which yields the lowest 
criterion Ri.  

• Stochastic modeling of input parameters: with the 
selected model, the next step consists in splitting the data 
into two subsets (chosen randomly): a Modeling Subset 
(MS) that is used to develop the probabilistic model, and 
a Test Subset (TS) to test the prediction of the model. Let 
consider a MS of R experimental B(H) curves, by 
minimizing  (8) using the chosen model B=f(H,p), we 
determine R realizations of the parameter vector p. This 
sample of size R is then used to determine the probability 
distribution functions (pdf) of the random vector p(θ). 
This can be achieved in the context of a parametric 
approach for which a classical pdf (uniform, Gaussian, 
lognormal…) can be tested according to the Kolmogorov 
Smirnov (KS) statistical test. The test enables to select 
the most suitable marginal distribution for each 
parameter of p(θ).  

• Correlation analysis: once the marginal distribution of 
each parameter of the model is identified, the next step 
deals with the analysis of the inter-dependence of the 
input parameters.  If they are all distributed according to 
a Gaussian distribution, and only in this case, one can 
quantify the intensity of the dependency using the 
Pearson coefficient calculated from the experimental 
data (MS). If it is not the case, it may be useful to 
identify the intensity of this dependence using the rank 
correlation method [3]. At the end of these three steps, a 
stochastic model is then available. Considering our 
previous example, the stochastic model can be written in 
the form B(θ)=f(H,p(θ)).  

• Validation of the model: the validation of the model 
consists in implementing Monte Carlo Simulation 
Method (MCSM) and applying the two samples KS test 
to check whether our stochastic model represents 
“correctly” the phenomenon. The sample generated by 
the MCSM is compared either with the MS data (to 
check the adequacy of the model with the data used for 
the identification) or with the TS data (to analyze the 
capability of prediction of the model). The correlation 
structure between the parameters has also to be taken into 
account in the MCSM. When all the parameters are 
Gaussian distributed, one can define a Multivariate 
Gaussian Distribution (MGD) to account for the marginal 
distribution and the correlation between the parameters. 
If it is not the case, the Iman and Conover method may 

be implemented, and aims at approximating the desired 
rank correlation between the input parameters, when 
each marginal distribution remains intact [3]. 

An example of application of the previous methodology is 
given in [11] to develop stochastic models to describe the 
random behavior of soft magnetic electrical steels. To apply 
this methodology, experimental data sample should be of large 
size. In practice, experimental data are not so numerous 
because engineers don’t need a large sample of experimental 
data to deal with deterministic models. To compensate this 
lack of information, expertise and additional assumptions (on 
the dependency between the random parameters) are required 
to develop the stochastic model. Moreover, models are not 
necessarily available to describe the random phenomenon and 
need to be developed. In the following section, we will give an 
example to illustrate this case.  

 B. Example 

We are interested in the dimension modeling of the stator 
presented in the Fig.3 [64]. Due to the variability of the 
fabrication process, the dimensions are not equal to their 
nominal dimension fixed by the designer. The question of the 
effect of the dimension dispersion on the performances of the 
electrical machine is then posed.  In the following, we are 
interested in modeling of the variability of the interior surface 
of the stator and we will consider the radii of the 36 stator 
teeth. Measurements have been done on 5 stators. On each 
stator, we have measured 36 radii on 30 layers distributed 
along the depth (Fig. 4.). For each stator, we obtain finally 
36*30=1080 values.  

 
Fig. 3. Stator studied. 

 
Fig. 4. Distribution of the measured points along each layer (red lines) 

We present in Fig.5., the histogram of the measured radii for 
each stator. We can see that the radius values are randomly 
distributed and the distributions are different from a stator to 
another. In Fig.5., the two vertical straight lines represent the 
tolerance interval and we can see that some values are outside 
this interval.  
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Fig. 5. Histogram of the measured radii for the 5 stators. The two vertical lines 
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The interior surface of the stator is represented by 1080 radius 
values. A model with 1080 random variables is suited to 
represent the variability of the interior surface of the stator. 
However, this probabilistic model, with a very high number of 
random variables, may cause excessive computation time 
during the step C of propagation of uncertainties. We seek for 
a model with a reduced number of random variables. The idea 
is then to express the 1080 random radii with a limited number 
of random variables. A model reduction approach based on a 
Principal Component Analysis (PCA) [45] can be used to 
approximate these 1080 random variables in terms of N 
mutually uncorrelated random variables (N can be fixed 
arbitrarily but lower than 1080). This method is optimal in the 
L2 sense. However, with this approach, it can be difficult to 
link the N random variables obtained with PCA to the actual 
measured dimensions. This link with the actual dimensions is 
necessary since it enables to establish a relationship with the 
steps of the fabrication process which are the sources of 
uncertainty. A more "physical" representation for the 30 layers 
using a Discrete Fourier Transform (DFT) has been chosen 
and the radius of the tooth i (1≤i≤36) on the layer j (1≤j≤30) 
can be written under the form: 
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With R1 the nominal radius of the teeth, τ0j(θ), αkj(θ) and 
βkj(θ) random coefficients to determine and n the total number 
of harmonics equal in our case to 17. To reduce the number of 
random variables, we select the random variables  τkj(θ) and 
ϕkj(θ) corresponding to the harmonic ranks k which contribute 
the most to the variability. To select these harmonics, we 
consider rij

m(θ) the truncated expression of rij(θ) up to the 
order m (1≤m≤n) and the random variable y(m,θ): 
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The random variable y(m,θ) lies in the interval [0,1]. For a 
given realization θ (a stator), the closer to 1 y(m,θ) is, the 
better the approximation rij

m(θ) of rij(θ).  From the 
measurements made on the five stators, we have five 
realizations of each random variables rij(θ) which enables to 
determine five realizations rij

m(θ) using the least square 
method for each value of m.  We have then determined the 
evolution of five realizations of y as a function of m.  In 
Fig.6., from the measurements made on the stator S0, one 
realization of y(m,θ) is given. We can verify that the function 
y is increasing. When the variation of y is sudden between the 
index m-1 and the index m, it means that the harmonic mth 
have a significant contribution. For the stator S0, we can see 
that the harmonic 2nd and 6th have the most impact on the 
variation of y as a function of m.  
The evolutions of y obtained with the other stators are similar 
except that the contribution of the harmonic 4th can be 
sometimes significant. Finally, the model retained to describe 
the interior surface of the stator is written under the form: 
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Once the model is selected, the pdf of the random variables 
τ0j(θ), τ2j(θ), ϕ2j(θ), τ4j(θ), ϕ4j(θ), τ6j(θ) and ϕ6j(θ) are 

determined. If the size of the sample is sufficiently large, then 
the procedure described in the previous section can be applied. 
In our case, the number of realizations is equal to 5 so testing 
random variable is almost useless. Then, we assumed that the 
random variables are independent and Gaussian. The mean 
and the standard deviation have been estimated by calculating 
the sample mean and the sample standard deviation. In Tab.1., 
we have reported the mean and the standard deviation for the 
layer j=15. We can see that the harmonics 0, 2, 4 and 6 have 
the same order of variability.  

 
Fig. 6. Evolution of y as a function of m for the stator S0. 

In this new model, the number of random variables has been 
reduced to 210. It can be expected to reduce again this number 
by applying the same approach described above along the 
depth of the stator. It is worth mentioning that the harmonics 
of deformation can be related to different steps of fabrication. 
For example, the harmonic 2 is due to the clamping of the 
stator during the pressing, the harmonic 6 is directly related to 
the 6 welding lines on the exterior side of the stator. After the 
step C of quantification of uncertainties, it will be possible to 
evaluate the influence of each harmonic on the performances 
of the electrical machine (the variability of the torque for 
example). It is then possible to determine which stages are the 
most influential (see step D: sensitivity analysis). These stages 
of the process can be modified in order to reduce their impact. 
For example, in our case, if the 6th harmonic has a significant 
influence, the first solution consists in having a deeper insight 
on the origin of the variability introduced by the welding 
process in order to reduce it. Changing the number of welding 
lines is a second solution in order to create a harmonic of 
stator deformation which has a fewer effect. 
 
Harmonic τ0 τ2 τ4 τ6 
Mean (µm) 1.93 5.16 1,77 3.74 
Std (µm) 3.86 3.93 1.18 1.59 

Tab.2. Mean and standard deviation (std) of the random variables τk 
associated to the layer j=15.  

STEP C: UNCERTAINTY QUANTIFICATION 

At this point, the input parameters are modeled using random 
variables p(θ) with known probability density functions. The 
outputs of the electromagnetic model ((1)-(3)) become then 
random and should be characterized. The model based on 
stochastic PDE is generally numerically solved. If we consider 
the model based on (3) with the random input parameters p(θ). 
The input parameters p(θ) of the model are related either to 
the geometry or to the behavior laws of the material or to the 
sources. Taking into account randomness on the source is 
quite straightforward especially when the deterministic 
problem is linear [41]. In the following we will assume that 
the sources are deterministic. For the other kinds of 
randomness, the problem is more complicated. The processing 
of uncertain geometries is slightly different than the 
processing of uncertain behavior laws and requires additional 
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treatments. In the appendix I, we give a short overview of 
methods that are available in the literature. In the following, 
we will assume that we have only uncertainties on the 
behavior laws. However, the quantification methods presented 
in the following can be applied to solve problems with random 
geometries as mentioned in the Appendix I. Under that 
condition, the reluctivity can be written in the form: 

[ ] [ ])(p,, θν=θν xx   (12) 

Expressing permeability as a sum of separable functions will 
be very useful (see section Approximation Method-Galerkin 
method): 
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The model proposed in the step A can be rewritten by taking 
into account the random reluctivity and applying a semi 
discretization in space. It leads to a linear system of equations 
with random coefficients sij(p(θ)) and fj(p(θ)) (see (7)) : 

S[p(θ)] A[p(θ)] = F[p(θ)]  (14) 

The vector of DoF’s  A is now a random vector we need to 
characterize. The solution A of (14) for a given realization pd 
of  p(θ) is equal to the solution of the problem (6), so-called 
deterministic in the following, with pd as input parameters.  In 
the following we will present the most popular methods used 
for the characterization of the random output data. Some of 
them are based on the solutions of a set of deterministic 
problems and are quite simple to implement from an existing 
FE package.  

Perturbation Method 

The mean-centered perturbation method consists in expanding 
the unknown field around its mean. This approach is very 
useful in determining the first and second order statistical 
moments (mean and variance) of the unknown field. However, 
the extension to moments of higher orders is very difficult and 
time consuming. In addition, it lacks of accuracy for problems 
with input data with large deviations. 

 Monte Carlo Simulation Method 

Among the available techniques, the Monte Carlo Simulation 
method (MCSM) is probably the best-known and widely used 
in different scientific areas (financial mathematics, 
biostatistics, mechanics, etc.) [44][48]. MCSM is robust and 
simple but very time consuming especially when coupling 
with a numerical model such as a FE model. The crude 
MCSM consist in: 

-generating randomly a sample (p1,…,pR) of size R of the 
inputs, 

-performing the solution of R deterministic FE problems 
(14) with pi (1≤i≤R) as inputs. At the end of this step a sample 
(A1,…,AR) is available, 

-aggregating the results in order to calculate statistics of 
quantities of interest.  
If we denote G the quantity of interest function of the vector 
potential A, the mean mG of G can be estimated by: 
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  If  σG denotes the standard deviation of G, the 95 % 
confidence interval (where the mean mG has a great chance to 

be) is given by [ Gm̂ -1.96 RG /σ , Gm̂ +1.96 RG /σ ]. It 

means that improving by one order the precision the estimator 
(15) (by reducing the confidence interval by 10) requires one 
hundred times more model evaluations. Even though methods 

like stratified sampling, importance sampling… are available 
to reduce the standard deviation of the estimator, the 
convergence speed remains low. We can see that the speed of 
convergence does not depend on the size of p(θ). 

Approximation methods  

The idea here is to find an approximation of the quantity of 
interest G in a finite dimension functional space of p(θ) that is 
to say: 
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with gi coefficients to determine. The approximation functions 
can be chosen in different spaces [39][47]. If the output G has 
a finite variance and is sufficiently “smooth”, polynomial 
expansions are well fitted. If it exists some singularities (for 
example in the case random geometry – see Appendix I), other 
approximation spaces should be introduced [39].  
Approximations based on ThePolynomial Chaos Expansion 
(PCE) are currently the most used in engineering. PCE was 
first introduced by Wiener [59] to represent Gaussian 
processes using an expansion of Hermite polynomials. In [38], 
Xiu et al. proposed a more general approach by referring to the 
Wiener-Askey scheme. A  PCE requires that the random 
components pi(θ) of the vector p(θ) be independent. If it is not 
the case, alternatives are proposed in the literature either to 
modify the approximation space or to express the vector p(θ) 
as a function of a vector p’ (θ) of independent random 
variables (isoprobabilistic transformation). In the following, 
we will assume the random variables pi(θ) independent of pdf 
f i(y). The size of the vector p(θ) will be equal to K. We 
introduce now the monovariate orthogonal polynomials ψj(y) 
with respect to the pdf  f i(y). It means that: 

( ) ( ) ( )∫ ≠=ψψ
R

iml mlifdyyfyy 0   (17) 

Introducing the expectation E() (the expectation E[X(θ)] of a 
random variable X(θ) is equal to its mean), the previous 
equation can be written: 

E(ψl[pi(θ)] ψm[pi(θ)])=0 if l≠m              (18) 

If pi(θ) is a standard normal random variables, the ψj(y) are 
Hermite polynomials. If pi(θ) is uniform in [-1,1], ψj(y) are 
Legendre polynomials. More generally, if the pdf of pi(θ) is 
known, it is easy to calculate the polynomials ψj(y) iteratively 
applying the Gram Schmidt process.  We define now the set of 
multivariate orthogonal polynomials Ψαααα[ p(θ)] with αααα a K-
tuple such that: 
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Since p(θ) is a vector of independent random variables, the 
multivariate polynomials Ψαααα[p(θ)] are orthogonal with respect 
to the joint probability measure: 
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That is to say: 

[ ] [ ]( ) βα)(p)(p βα ≠=θΨθΨ ifE 0    (20) 

If G[p(θ)] has a finite variance, the PCE refers to the 
representation of the random variable G[p(θ)] as a linear 
combination of multivariate polynomials Ψαααα[p(θ)]: 
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In practice, the expansion (21) is truncated up to the 
polynomials of order p. If we denote by ZP

K the space of the 
K-tuples αααα which satisfy: 
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The total number of polynomials in the truncated PCE is equal 
to: 

  
K!p!

p)!(K
P

+=   (23) 

Later, we denote by CP
K the space of multivariate polynomials 

Ψαααα[p(θ)] such that αααα∈ZP
K. In Tab.3, we have reported the 

dimension P of the space of approximation CP
K as a function 

of the polynomial order p and the number of input random 
variables K. We can see that P increases exponentially with 
the dimension which is usually so-called the “curse of 
dimensionality”.  
 
 p=1 p=2 p=3 p=4 
K=2 3 6 10 15 
K=5 6 21 56 126 
K=10 11 66 286 1001 

Tab.3. Example of the dimension P of the approximation space CPK as a 
function of the polynomial order p and the number of random inputs K. 

In the following, to simplify the notation, the multivariate 
polynomials Ψαααα[p(θ)] will be indexed by an integer i (1≤i≤P) 
instead of the K-tuple αααα. The function G[p(θ)] is 
approximated by a truncated expansion given by (16) of 
orthogonal multivariate polynomials defined by (18).  
After applying the semi discretisation in space, the coefficients 
ai(θ) of the vector A(θ) are random (see (14)). Each ai(θ) is 
approximated using a truncated PCE (16). Finally, the vector 
potential A[x,p(θ)] is approximated by the expression: 
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The number of coefficients aij is equal to NxP. In a 
postprocessing step, quantities of interest (energy, flux,…) can 
be also expressed using (16). Several methods are available in 
the literature to determine these coefficients like the 
collocation method, the regression method, the projection 
method, the Galerkin method…..  
Approximation methods have been already applied in 
computational electromagnetics to study EEG Source Analysis 
[55], Eddy Current in human body [54], Eddy Current Non 
Destructive Testing [15,16], Accelerator Cavities [1], 
Dosimetry [7]….In the following we will present the 
projection method and the Galerkin method. 

Projection method 

Since the polynomials Ψj[p(θ)]  are orthogonal (see (20), the 
coefficients aij satisfy: 
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The determination of aij  yields the calculation of 
multidimensionnal integrals. The denominator of (24) can be 
calculated generally analytically but not the numerator. 
Different methods can be used to approximate the 
multidimensional integral: MCSM, Gauss quadrature method, 

sparse grid method, adaptive integration scheme...[16][23] All 
of them yield the following expression for the approximation: 
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where ωk are the weights and pk the evaluation points (Gauss 
points). The model (14) is solved for Q realisations of the 
input parameters pk to determine ai(p

k). So, the deterministic 
model (6) has to be solved Q times with pk as input data. One 
should notice that Q can increase dramatically with the 
dimension K. Let consider for example a Gauss quadrature of 
order q along each random direction pm. We denote by 
(pm

l)1≤l≤q the gauss points and (ωm
l)1≤l≤q the associated weights. 

The gauss points are the roots of the polynomial ψj(y) of order 
q introduced in (17). A multidimensional quadrature can be 
obtained by tensorizing the monodimensionnal gauss 
quadratures along each random dimension that is to say that 
the gauss points pk in (25) satisfy: 
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with the index k such that: 
k∈[1,qK] (k1,…,kK)∈[1,q]K  such that   

 
k=k1+(k2-1)q+…+(ki-1)qi-1+(kK-1)qK-1 
                        (26) 

In that case the number of evaluation points Q is equal to qK 
and so increases exponentially with the dimension. The 
number of evaluation points can be reduced by using sparse 
grids like Smolyak cubature [62]. Even though the number of 
evaluations decreased dramatically, models with a high 
number K of input parameters cannot be practically solved. In 
that case, adaptive methods coupled with sparse grid and 
nested quadrature scheme is an interesting alternative [16]. 
With a high dimension problem, the truncated PCE can be too 
large (see (23)). To limit the number of terms, a sparse basis 
should be constructed which can be determined from the 
adaptive scheme or directly from a random sampling of the 
inputs [60].  
Other methods like regression method, collocation method are 
also based on evaluations of the deterministic model [63]. One 
should note that nonlinearities on the behavior laws are 
naturally taken into account in the deterministic model. These 
methods are often called “non intrusive” because they consist 
in embedding the deterministic model in a “stochastic” 
procedure. With the Galerkin approach, the link with the 
deterministic model is not as straightforward as we will see in 
the following. 

Galerkin method – Stochastic Finite Element Method 

The Galerkin approach was first introduced in the early 90’s 
by Ghanem et al in mechanics [43]. It consist in searching the 
solution in a tensorial space W(D)⊗CP

K with W(D) the 
standard finite element space used in the deterministic case 
and CP

K  the space of approximation of random function 
G[p(θ)] introduced previously [40]. In magnetostatics, the 
vector potential is sought for example in the form (24). The 
solution should satisfy a weak form of the initial problem. Let 
consider again our magnetostatic problem, a weak form of the 
problem can be written [17,18,21]: 
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The NxP test functions wi(x)Ψj[p(θ)] belong to the space of 
approximation W(D)⊗CP

K. Replacing A[x,p(θ)] by its 
expression (24), we get the following system to solve: 

Ss As = Fs    (28) 

With As the 1x (NxP) vector of (ask)1≤k≤NP with: 
as

k=aij with k=i+(j-1)N with (i,j)∈[1,N]x[1,P], 
Fs the 1x(NxP) vector with the coefficients (fs

k)1≤k≤NP such 
that: 
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and AS the matrix with the coefficients (alm)1≤l≤NP, 1≤m≤NP such 
that: 
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The size of the product NP can be extremely large preventing 
the storage of the matrix As and so the resolution of the 
problem. If the reluctivity can be written as a sum of separable 
functions (13), the system can be rewritten taking advantage of 
the kronecker product. This representation of the reluctivity as 
a sum of separable functions can be obtained either during the 
process of modeling of the input data (step B) by imposing 
this representation or by applying a model reduction technique 
(Karuhnen-Loeve expansion for example). Considering the 
expression (13) for the reluctivity, the matrix As can be written 
in the form [19]: 
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The memory space requires can be significantly reduces by 
storing only the 2M matrices Ci and Di. One can also notice 
that the matrices Di can be easily extracted from a standard 
magnetostatic finite element code. Indeed, these matrices are 
equal to the stiffness matrices of deterministic problems where 
the reluctivity is equal to χi(x). The matrices Ci can be 
determined by a standalone external procedure. Indeed, if it is 
not possible to calculate analytically, the terms ci

lm can be 
estimated by a MCSM or approximated by a quadrature 
method (see (25)). It should be mentioned that the calculation 
can be highly sped up by splitting νi[p(θ)] in the PCE because 
the coefficient cilm can be expressed as a linear combination of 
the terms djlm=[E(Ψj[p(θ)]Ψl[p(θ)]Ψm[p(θ)])] with 1≤j≤Pin (Pin 
is the polynomial number of the truncated PCE of νi[p(θ)]). 
The terms djlm can be calculated exactly either analytically or 
using a Gauss quadrature. The matrices Dk of the coefficients 
dk

lm are generally sparse. To save memory, the matrices Cj can 
be expressed in function of the matrices Dk which are the only 
one stored. The determination of the matrix As does not 
require a high modification of the deterministic code and so 

the “intrusivity” of the Galerkin approach can be highly 
reduced using expression based on separable functions for the 
reluctivity. This approach can be extended in the quasistatic 
case [13]. Dedicated solvers can be employed to solve the 
equation (28) by taking advantage the expression (29) based 
on Kronecker products. Non linearities can be taken into 
account in the Galerkin approach [5], it requires some 
additional developments and it is not so straightforward as it is 
with the projection method or the sampling method. We 
should mention that the Galerkin method, for given 
approximation spaces, minimizes the error of approximation in 
the “L2” sense which is not the case with other approximation 
method based on the evaluations of the deterministic model 
(projection method, collocation method…). However, when 
double orthogonal polynomial expansion is used, the 
collocation and the Galerkin methods are equivalent [18].   

Error estimation 

At the end of the step C, an approximate of the exact solution 
is available. The error of approximation depends on the choice 
of the approximation basis. In our magnetostatic example, the 
error is function of: 

-the mesh of the domain D, 
-the order p of truncation of the PCE, 
-the method (Galerkin, Projection…). 

The error should be estimated to evaluate the quality of the 
solution and if desired to improve it by adaption of the 
approximation spaces by remeshing the domain D or by 
increasing the order of the truncated PCE. A-priori and a-
posteriori error estimators have been proposed in the literature 
[30-33][47][52].   

STEP D : POSTPROCESSING 

General context 

At the end of the step C, the available results depend on the 
method used to solve the problem: 

-the perturbation method will give information on the 
mean and the standard deviation of the quantities of interest, 

-the MCSM enables to estimate any statistical 
moment, pdf, probability of failure… 

-the approximation methods yield a surrogate model 
of the quantity of interest that is expressed in a finite 
dimension space (see (16)) [20]. From this expression, it is 
possible to approximate either analytically or numerically any 
statistical moments, pdf… if the latter don’t have an analytical 
expression, a numerical determination is very fast because 
only a polynomial expressions have to be handled.  
Besides statistical information related to the quantities of 
interest, it is also often interesting to evaluate the influence of 
the input parameters p on the output G(p). In the deterministic 
case, the sensitivity is usually determined “locally” by 
calculating the partial derivatives ∂G/∂pi

.at a given point p. In 
the stochastic case, the sensitivity is determined “globally”. 
The question to answer in that case is “How does the 
variability of the input parameter pi influence the variability of 
the output G ?”. Let consider a problem with two parameters 
p1 and p2 which are uniformly distributed on the interval 
[a1,b1] and [a2,b2] and independent. Let consider the simple 
linear model G=p1+4p2. In the deterministic case, p2 will be 
considered as the most influential variable. In the stochastic 
case, the influence will depend not only on the variation of G 
versus p1 and p2 but also on the pdf of p1 and p2. Thus, to 
characterize the variability of G, the variance is a good 
candidate. In the example, the variance of G is equal to (b1-
a1)²/12+4(b2-a2)²/3. In that case, we can see that if the width of 



the intervals of definition of p1 and p2 is of the same size, p2 
remains the most influential but if the interval width of p2 is of 
two orders lower than the parameter p1 will be the most 
influential.  
Sobol has proposed a method to undertake a global sensitivity 
analysis based on an Analysis Of Variance (ANOVA) [34]. 
The idea is to decompose the variance of the quantity of 
interest G[p(θ)] as:  
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The terms Du (u=(u1,..uk) a k-tuple, 1≤k≤K, with u1<u2<..<uk 
and ui∈[1,K]) are positive and are the fraction of variance of G 
explained by the inputs pu1,..,puk.  The Sobol indices are 
defined such that: 

Su = Du/Var(G[p(θ)])      (31) 

The Sobol indices are positive and their sum is equal to 1. A 
significant value of a Sobol index Su versus the others means 
that the interaction between the parameters pu1,..,puk 
contributes significantly to the variability of G[p(θ)]. The 
number of Sobol indices is very large 2K-1. In practice, only 
the K Sobol indices of first order (u is a singleton) and the K 
total Sobol indices defined by STi= Σi∈uSu are calculated. 
From, these both sets of indices, we can conclude that if Si is 
significant, the influence of pi is also significant. If STi is 
small, pi has no significant influence. The calculation of the 
Sobol indices can be easily estimated using a MSCM by using 
two distinct samples for the inputs. If an approximation 
method is used, from the truncated PCE, it is straightforward 
to approximate the Sobol indices from the coefficients gi (see 
(16)) [35-37]. 

Example 

We consider now a synchronous machine with a wounded 
rotor supplied by a current I. We want to evaluate the effect of 
the uncertainties on the dimensions of the stator modeled 
previously (see step B) on the torque at no load (cogging 
torque).  We assume that geometric uncertainties are bore only 
by the 7 random variables τ0(θ), τ2(θ),  τ4(θ),  τ6(θ),  φ2(θ),  
φ4(θ),  φ6j(θ) (see (11)). The other dimensions are considered 
deterministic. The machine is modeled using a Finite Element 
Model. The uncertainties on the geometry are taken into 
account using the transformation method [see Appendix I]. A 
truncated Polynomial Chaos Expansion (PCE) based on 
Legendre polynomials is used to approximate the random 
torque. The coefficients of the PCE are determined using a 
projection technique [see Step C – Approximation Methods].  
First, we have studied the effect of each harmonic 
independently assuming the other were constant and equal to 
their mean. The variation coefficients of the torque are 
reported in Tab. 4. First, we can notice that the contribution of 
each harmonic to the variability of the RMS value of the 
torque is very small (less than 1.2%). Even though, the 
variabilities of the harmonics of the deformation of the stator 
are of the same order (Tab.2), we can see also the harmonic 0 
has the most significant effect. Moreover, the variability 
induced by the harmonics 2, 4 and 6 are almost negligible due 
to an auto compensation effect of the force distribution inside 
the machine. Considering simultaneously several random 
input parameters, a sensitivity analysis has been undertaken by 
calculating the Sobol Indices. It confirms that the most 
influential variable is the random parameter τ0(θ). The 
contribution of the magnitude τ2(θ), τ4(θ), τ6(θ) represents less 
than one per cent. The contribution of the phase is almost 
negligible as well as the joint effect of the input parameters.  

This study shows that even though we have radii outside the 
tolerance interval the influence on the torque is almost 
negligible.  If we had considered that the radii of each tooth 
were equal to the minimum and the maximum values of the 
tolerance interval, the gap between the minimum and the 
maximum RMS value of the torque would have been 
estimated equal to 10%. This example was presented to show 
how the stochastic approach can be used to quantify the effect 
of the dispersion introduced by a process of fabrication. On 
the example, the variability of the outputs (the torque) remains 
small. The most influential stage of fabrication is related to the 
harmonic 0 relating to the fabrication stage of rolling. If we 
were interested by vibrations may be another harmonic would 
have had a more significant effect. Researches are on going to 
study the influence of uncertainties induced by the fabrication 
processes like assembling of the stator and the rotor, forging 
of ferromagnetic parts on the behavior laws and the 
dimensions. The aim is to propose a methodology based on a 
stochastic approach to assess the influence of the variability of 
the fabrication process on the performances of the electrical 
machines.   
 

Harmonic order τ0 τ2 τ4 τ6 

Variation coefficient 

(%) 
1.3 0.02 0.00 0.01 

Tab.4. Variation coefficient of the RMS value of the cogging torque in 
function of the harmonic order. 

 CONCLUSION 

In this technical article, an overview on the application of the 
stochastic approach in computational electromagnetics has 
been presented. It has been illustrated by an example in 
magnetostatics of a stator with uncertain dimensions. Until 
now, research in engineering has mainly focused on the 
propagation of the uncertainties through the model (step C). 
Even though these models can be still improved in terms of 
accuracy and computation time (model reduction technic, error 
estimation, adaptive basis, dedicated solvers…) they start to 
reach the required maturity to be applied to treat real world 
applications. In the stochastic approach, an accurate method of 
uncertainty quantification (Step C) is required but also a fine 
probabilistic representation of the uncertain input data (Step 
B). The Step B has been few addressed until now in the 
domain computational electromagnetics. The main difficulty is 
to collect a representative measurement sample of input 
parameters. In practice, only few measured values are 
available which are not sufficient to identify and to test 
efficiently the probabilistic model.  In order, to develop more 
realistic models, a solution consists either in introducing 
expertise in the model or in undertaking measurement 
campaigns in order to collect more representative data of the 
variability of the input parameters.  
We should also emphasize that the steps B and C must not be 
treated independently one of the other. In fact, at the end of the 
step B the probabilistic model of the input parameters should 
be perfectly compatible with the numerical model. No 
numerical process should be added in order to have no 
discrepancy between the outputs of the step B and the inputs 
of the step C. Finally, few real world examples have been 
treated in computational electromagnetics up to now. So, it is 
difficult to explicit the strength and the weakness of the 
stochastic approach. Nethertheless, this approach provides 
definitely powerful tools to undertake global sensitivity 
analysis which engineers can take advantage to: 



-determine the most influential input parameters on quantities 
of interest enabling to focus the measurement campaign on 
those parameters, 
-evaluate the impacts of the dependency between the inputs, 
-identify the inter dependency between the output parameters, 
-to increase the robustness in an optimization procedure… 
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APPENDIX I : UNCERTAINTIES ON THE GEOMETRY 

The uncertainties on the geometry can be modelled by random 
interfaces Γk between two sub-domains Di and Dj. In each sub-
domain, the reluctivity νi is assumed to be constant in each 
subdomain Di. We suppose also that these interfaces can be 
parameterized by known random variables p(θ) and a 
parameter c, we have: 

 x=gk[p(θ),c]    with     c∈∆k⊂R2  (A.1) 

where x are the coordinates of the points located on this 
interface. The parameter c belongs to ∆k a subset of  R2 (R in 
the 2D case). For each realization of p(θ), there is a bijective 
map between ∆k and Γk. Even though the reluctivity is 
assumed to be constant on each subdomain, it depends on the 
position x and also on the realization of the random interfaces. 



Indeed, for a point x located close to a random interface Γk, the 
value of the permeability depends on which side of Γk the 
point x is located. Thus, in a point x of D which can be located 
on both sides of a random boundary Γk (between the 
subdomains Di and Dj) the permeability switches from the 
values νi to νj.  If we denote IDi(x,), the function associated to 
the domain Di (IDi[x,p(θ)]=1 if x∈Di and 0 elsewhere), the 
reluctivity on the domain D can be written in the form: 
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where M is the number of subdomains. Since the reluctivity is 
a random field, the magnetic field H and the magnetic flux 
density B are also random fields.  
The quantity of interest G[p(θ)] is calculated in a 
postprocessing step after solving numerically the stochastic 
vector potential formulation. To deal with problems with 
random domains, an easy way consist in remeshing each 
geometry corresponding to a new evaluation point pk (see step 
C – MCSM and approximation methods). However, this 
approach has some drawbacks. First, since we have to remesh, 
the stiffness matrix and the source vector have to be 
recalculated for each evaluation pk point which is time 
consuming. Remeshing the domain D adds a numerical noise 
on the output data because the mesh (the connectivities 
between elements, the number of elements…) changes from 
an evaluation point to another. Moreover, the expression of the 
shape functions changes as well. Consequently, it is not 
obvious to obtain an explicit expression of the vector potential 
as (24) so the distribution of the fields H and B. Finally, as we 
will see in the following part, the magnetic field at certain 
fixed points could have some discontinuities along the 
stochastic dimension. Therefore, the approximation of 
magnetic field at this point using a polynomial chaos 
expansion is no longer appropriate. To avoid the former 
drawback, one possibility is to introduce additional functions 
(enrichment basis method) that can account for these 
discontinuities. This technique has been proposed for the 
stochastic finite element method in [28-29]. Another 
possibility consists in using the transformation method 
proposed in [25]. 

Enrichment basis method 

We suppose that the discontinuity point p=p0 is a priori 
known. The main idea consists in adding P’ enrichment 
functions to the space of approximation defined by the 
truncated PCE (16) in the stochastic dimension [28,29]. The 
approximation of G becomes: 
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where Ψi orthogonal polynomials defined in (18) and Ηi is a 
discontinuous function at the point p=p0 and gi and hi real 
coefficients. Since the discontinuities of G[p(θ)] can then be 
taken into account by the functions Ηi, the accuracy of the 
approximation is better. We can use of the following form: 
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The coefficients gi and hi of the expansion can be calculated 
using either a Galerkin approach or a projection method (see 
Step C) 

Transformation method 

The main idea of this method consists in using a random 
mapping that transforms the original domain D with random 
inner interfaces into a deterministic reference domain [24,26]. 
The original problem is transposed into a new problem defined 
on a reference domain E with modified behavior laws that 
become random fields.  Actually, the reluctivities on the 
subdomains of E are not constant anymore but depend on the 
position and also on the random variables p(θ). If it exists a 
one to one random mapping X=X[x, p(θ)] that transforms the 
domain D(p(θ)) into a deterministic domain E, we obtain: 

A[x, p(θ)]=A’[X, p(θ)]   (A.5) 

where A ’ is the solution of the vector potential formulation of 
the problem defined on the domain E with the modified 
reluctivity: 
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with M[X, p(θ)] the Jacobian matrix of the random mapping. 
This reference problem, defined on the deterministic domain E 
with a random reluctivity ν’[X, p(θ)] can be solved by using 
the method of quantification described in Step C because the 
uncertainties are only bore by the behavior law and not by the 
geometry anymore. The degrees of freedom a’i[p(θ)] of the 
vector potential A’[X, p(θ)] can be approximated using a 
polynomial chaos expansion on E given by (16) without any 
additional functions. Then, the potential A[x,p(θ)] can be 
calculated on the domain D.  
With the transformation method, the discontinuities with 
respect to p(θ) can be taken into account naturally without any 
enrichment basis technique. In the transformation method, the 
main difficulty is the determination of the random mapping 
that transforms the original domain D to a deterministic 
reference domain E. In [27], two methods to determine this 
random mapping have been proposed and compared.  
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