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Abstract We present a general method for dynamic
correction of biases induced by temperature variations.

This method is simple to implement and useful when
very high precision is required: it indeed allows signifi-
cant improvements compared to standard static correc-

tions. It is mainly based on a universal dynamic model
allowing to describe macroscopic effects of complex un-
derlying thermal phenomena inside the device. Some

experimental results related to a MEMS with high pre-
cision pull-in voltage are presented in order to highlight
the efficiency of the approach.

Keywords Temperature bias correction · Dynamic
correction · Nonlinear correction · Dynamic thermal

transfer · Diffusive representation · Least-square
identification

1 Introduction

In general, high precision devices, such as MEMS de-
voted to metrology applications for example, need to

include algorithms allowing to correct biases resulting
from variations of the ambient temperature. Most of
time, static corrections are involved, which means that

the ambient temperature (measured by means of a sen-
sor) is supposed to be also the temperature at any point
of the system under consideration in its whole, in par-

ticular at any point of the MEMS device itself.
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This is of course not exactly true because the ambi-
ent temperature is never strictly constant and so, due

to the complex distributed nature of physical objects,
the temperature inside the devices evolves following a
complex diffusion equation. So, when measuring any

physical quantity (for example a voltage), small resid-
ual fluctuations due to temperature variations remain
in spite of the static correction, because dynamic ther-

mal phenomena are involved, which cannot be exactly
described by means of a static correspondence only.

In some cases, when very high precision is required,
it can be judicious to envisage to build some dynamic

corrections, elaborated from a suitable dynamic treat-
ment of the temperature data, in such a way that the
macroscopic effects resulting from the distributed evo-

lution of the temperature inside the involved devices
can be taken into account, and then corrected.

In this paper, we present a method devoted to such
a dynamic correction. This method is mainly based on
a universal dynamic model allowing to describe macro-

scopic effects of complex underlying thermal phenom-
ena. It is simple to implement and useful when very
high precision is required: it indeed allows significant

improvements compared to standard static corrections.

The paper is organized as follows. In section 2, we
recall some notions about the standard method, that is

the static correction. In section 3, the principle of the
proposed dynamic correction is presented in a general
way. The presentation is mainly technical and formal,

allowing concrete implementation of the proposed algo-
rithms. In section 3, experimental results related to a
MEMS with high precision pull-in voltage are presented

and discussed.
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2 Recalls on standard (static) polynomial

correction

Consider a quantity U (to be measured), linked to the

ambient temperature T through a static relation of the
form:

U = f(T ). (1)

The aim is to correct the effect of the temperature T ,
that is to get an estimation (if possible optimal in some

suitable sense) of the quantity U0 = f(T0), where a
particular value T0 is chosen a priori as the reference
temperature.

2.1 Static correction formulation

If the function f is regular enough (which is in general

the case in concrete situations), U can be expressed
following the Taylor expansion around T0:

U = f(T0)+f
′(T0)(T−T0)+

1

2
f ′′(T0)(T−T0)2+..., (2)

that is, if we suppose that terms beyond the nth order
can be neglected, we can consider the following static
model of the quantity U :

U = U0 +

n∑
i=1

ai (T − T0)
i. (3)

So, if the coefficients ai have been previously ac-
curately estimated (from experimental measurements)

and T is known, the bias induced by sufficiently slow
temperature variations around T0 can be corrected ac-
cordingly to the following relation deduced from (3):

U0 = U −
n∑

i=1

ai (T − T0)
i. (4)

Indeed, when U is measured N times with some addi-

tive zero mean noise w, we then have Ũk = Uk + wk,
k = 1 : N and so, we get the correction relation:

Ũ0,k = Ũk −
n∑

i=1

ai (Tk − T0)
i

= Uk −
n∑

i=1

ai (Tk − T0)
i + wk (5)

= U0 + wk, k = 1 : N.

An estimate of the unknown quantity U0 can then
be obtained by filtering the corrected data Ũ0k, for ex-
ample by:

Û0 =
1

N

N∑
k=1

(
Ũk −

n∑
i=1

ai (Tk − T0)
i

)
. (6)

We then have from (5) and thanks to the law of large

numbers (E designates the mathematical expectation):

E(Û0) = U0, (7)

with Û0 =
1

N

N∑
k=1

(U0 + wk) → U0 when N → ∞, (8)

the convergence being in the quadratic mean sense, that

is E
(

1
N

∑N
k=1 (U0 + wk)− U0

)2
→ 0. So, the estimate

Û0 is convergent and unbiased : in that sense, the effects
of temperature variations have been corrected.

Finally, the unknown quantity U0 can be pursued
(for example if Ũ is a voltage reference generated by
a physical system) by means of the following moving

average estimate based on the corrected data Ũ0,k:

Ū0,k =
1

N

N−1∑
q=0

[
Ũk−q −

n∑
i=1

ai (Tk−q − T0)
i

]
, (9)

with the following residual estimation noise (inherited

from the measurement noise):

εk =
1

N

N−1∑
q=0

wk−q. (10)

2.2 Preliminary estimation of the correction

coefficients from experimental data

The correction coefficients ai are estimated from ex-

perimental data, whose number must be sufficiently
large to make the residual estimation error negligible.
In practice, this step can be rather long, particularly if

measurement data are significantly corrupted by noise.
The classical estimation of coefficients ai from data
Ũk, k = 1 : K is in general obtained from the classical
least squares method, that is by solving the problem:

find a ∈ Rn+1 such that:

K∑
k=1

(
Ũk − a0 −

n∑
i=1

ai (Tk − T0)
i

)2

= min . (11)

With Q the matrix defined by:

Q =

 1 (T1 − T0) · · · (T1 − T0)
n

...
. . .

...

1 (TK − T0) · · · (TK − T0)
n

 , (12)

this problem can be rewritten under matrix form1:

min
a∈Rn+1

(Qa− Ũ)T (Qa− Ũ), (13)

1 XT designating the transpose of the matrix X.
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the solution of which is classically given by:

a = (QTQ+ εI)−1QT Ũ (14)

with I the identity matrix and ε & 0 a small param-

eter devoted to numerical conditioning of the matrix
inversion.

Remark 1 Coefficient a0 is simply the (optimal) esti-
mate of the unknown quantity U0 deduced from the set
of measurement data (Tk)16k6K under consideration:

due to measurement noise, it is not exactly equal to
U0.

3 Precise correction of bias from identified

dynamic thermal transfer

3.1 Dynamic influence of the ambient temperature on
a physical quantity

In practice, a physical system such as a MEMS with its
environment is a complex distributed system: when the
ambient temperature T is not constant, the tempera-

ture of the system cannot be a simple scalar: it becomes
a scalar field θ(t, x), where each (vector) value of the
spatial variable x is associated with a particular phys-

ical point of the system. If the variations of T remain
small, it can be reasonably supposed that the evolution
of the field θ is governed by a complex but linear par-

tial differential equation with input T (t) of the abstract
form2:

∂θ(t, x)

∂t
= A(∇) θ(t, x) +B(x)T (t), (15)

where A(∇) is a second order linear differential operator

(for example A(∇) = ∆ for the classical heat equation
in a given 3D domain), associated with suitable bound-
ary conditions, and B is the input operator, which de-

scribes how the exterior temperature T acts on the evo-
lution of θ. Because equation (15) is in general defined
on t > t0 = 0, the initial condition must be added in

order to make the problem complete:

θ(0, x) = θ0(x). (16)

Except in some ideal simple cases, such an equation

is in practice very difficult or even impossible to for-
mulate explicitly. Because temperature evolution is of
diffusive nature, this equation however presents some

specific features which will be used in the following sec-
tion in order to built simple and efficient dynamic cor-
rection algorithms.

2 This abstract form will not be used by itself.

Similarly, a quantity U relating to the physical sys-

tem under consideration and depending at first sight
on T only, depends in general on the whole field θ. As
in the ideal static cases, even if the evolution of θ is

governed by a linear dynamic model, this dependence
can be nonlinear. For example, the quantity U can de-
pend nonlinearly on material dilatation, namely when

devices with critical equilibrium states are involved, for
example when pull-in behaviours are present (S. Krylov
et al., 2008; M. Suhonen et al., 1998; A. Kärkkäinen et

al., 2005; J. Kyynäräinen et al., 2001; C. Casenave et
al., 2010).

We can then write (formally):

U = F(θ), (17)

where F is a spatial operator. Under this form, the quan-
tity U explicitly appears as an output of (15) and the

dynamic (in general nonlinear) transfer T 7−→ U is then
resulting from the input-output correspondence defined
by (15,17). This is the starting point of the approach.

In most of cases, the evolution of T (t) is slow enough,
in such a way that and it can be considered that the

difference |θ(t, x) − T (t)| remains negligible and then,
the static approach previously described is sufficient to
get accurate corrections. In some cases however, namely
when very high precision is required, small differences

between θ(t, x) and T (t), which result from the dynamic
and distributed nature of model (15), can generate some
significant residual biases which cannot be suppressed

by static correction. In such cases, the static model (3)
is no longer sufficiently accurate and a dynamic correc-
tion is needed.

3.2 Dynamic correction of bias resulting from
temperature variations

The correction method described here-after is mainly
based on an explicit and universal differential input-
output model of the dynamic transfer (15,17). This

model is closely related to the so-called diffusive rep-
resentation: more details about this theory and its ap-
plications in identification of nonlinear complex models

or other various fields can be found for example in (C.
Casenave and G. Montseny, 2010; G. Montseny, 2005;
C. Casenave, 2009).

3.2.1 Exact theoretical formulation

First, thanks to the linear and diffusive nature of equa-
tion (15), a generic 1D diffusive input-state equation is
considered in order to generate a family of terms ψ(t, ξ),

each one associated with a pulsation ξ, and which will
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be able to describe in some sense the underlying thermal

dynamics. By assuming for simplicity that the mean
ambient temperature is

T0 = 0,

this model is:
∂ψ(t, ξ)

∂t
= −ξ ψ(t, ξ) + T (t), ξ > 0, t > 0

ψ(0, ξ) = 0.
(18)

On the other hand, from linearity, the contribution of
the initial condition θ0 is separately expressed from the

following exponential family associated with a family of
terms ψ0(ξ):

ψ0(t, ξ) = e−ξt ψ0(ξ). (19)

It can be noted that the function (t, ξ) 7→ ψ(t, ξ) +
ψ0(t, ξ) is solution of (18) with initial condition ψ0(ξ)

in place of 0.

We then define the function:

Ψ(t, ξ) := ψ(t, ξ) + ψ0(t, ξ)− T (t) (20)

which expresses the difference between the instanta-
neous ambient temperature T (t) and the field ψ(t, ξ) +
ψ0(t, ξ). It is that function which will be devoted to

dynamic correction.

Then, it can be shown that under very weak hy-
pothesis, the unknown dynamic transfer T 7→ U can
be expressed under the form U = G(T, Ψ) with G a

suitable nonlinear operator with generic formulation:

U(t) = U0 +
∑
i>0

ai T (t)
i

+

∫
µ1(ξ)Ψ(t, ξ) dξ

+

∫∫
µ2(ξ1, ξ2)Ψ(t, ξ1)Ψ(t, ξ2) dξ1 dξ2 (21)

+

∫∫∫
µ3(ξ1, ξ2, ξ3)Ψ(t, ξ1)Ψ(t, ξ2)Ψ(t, ξ3) dξ1 dξ2 dξ3

+

∫∫∫∫
... ;

in other words, U(t) is synthesized from the ambient

temperature T (t) and the previously defined field Ψ(t, ξ),
via a family of ”parameters” ai and µi. This expression
involves a new family of fields directly deduced from

Ψ(t, ξ) and which are denoted:

Ψ⊗i(t, ξ) := Ψ(t, ξ1)Ψ(t, ξ2)...Ψ(t, ξi).

Remark 2 In some sense, each of these fields is seen as

an elementary (nonlinear) dynamic component possibly
generated by the underlying thermal transfer T 7→ θ.
Note however that the fields Ψ⊗i have no direct physi-

cal interpretation; from the mathematical point of view,
these fields are simply functional analogous of the quan-
tities T i involved in (2): they relate to the Taylor expan-

sion based on the ”operatorial” formulation (17) (rather
the standard ”functional” one (1)).

Finally, by use of the convenient scalar product no-

tation:

〈f, g〉i =
∫

· · ·
∫
Ri

f(ξ) g(ξ) dξ,

(21) can be rewritten under the compact and quite sim-

ple form (we have omitted the t variable for simplicity):

U = U0 +
∑
i>0

ai T
i +
∑
i>0

〈
µi, Ψ

⊗i
〉
i

(22)

with Ψ deduced from T via the dynamic relations (18,19,20)
(involving ”initial condition coefficients” ψ0); in the
above expression, the static and dynamic parts are re-

spectively
∑

i ai T
i and

∑
i

〈
µi, Ψ

⊗i
〉
i
, associated with

respective ”coefficients” ai and µi.

3.2.2 Numerical formulation

Now recall that Ψ(t, .) and µi are real functions defined
on the respective variables ξ ∈ R and ξi = (ξ1, ξ2, ..., ξi) ∈
Ri; so, to get implementable algorithms, a numerical

approximation of the dynamic model of U previously
introduced must be derived in order to get only a fi-
nite number of involved real coefficients (G. Montseny,

2005).

Because equation (18) is a diagonal system of ordi-

nary first order differential equations, an efficient ap-
proximation of its solution ψ(t, ξ) is deduced simply by
considering a finite number of terms ψj(t) := ψ(t, ξj),

with {ξj} covering the band of useful frequencies as-
sociated with the dynamic transfer T → U . Similarly,
the associated approximation of Ψ(t, ξ) is deduced by

taking:

Ψj(t) := Ψ(t, ξj) = ψ(t, ξj) + ψ0(t, ξj)− T (t), (23)
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and so, a discrete equivalent of (21) is gotten under the

form:

U(t) = U0 +

ns∑
i=1

ai T (t)
i

+
∑
j′

µj′

1 Ψj′(t)

+
∑
j′,j′′

µj′j′′

2 Ψj′(t)Ψj′′(t)

+... (24)

+
∑

j′,j′′,...,j(nd)

µj′j′′...j(nd)

nd
Ψj′(t)Ψj′′(t)...Ψj(nd)(t).

By use of the notations:

µi : = (µj′j′′...j(i)

i ),

Ψ : = (Ψj), Ψ⊗i := (Ψj′ Ψj′′ ...Ψj(i)),

µi ·Φ : =
∑

j′,j′′,...j(i)

µj′j′′...j(i)

i Φj′j′′...j(i) ,

and omitting the t variable for simplicity, we get the
quite simple and expressive equivalent formulation, well

adapted to modern softwares devoted to numerical com-
puting:

U = U0 +

ns∑
i=1

ai T
i +

nd∑
i=1

µi ·Ψ⊗i (25)

with Ψj(t) = ψ(t, ξj)+ψ0(t, ξj)−T (t) and ψ,ψ0 given by
(18,19); the µi and Ψ⊗i are real valued tensors of rank

i, with dimension3 J ′
i × J ′′

i × ...× J
(i)
i to be chosen, as

usual, to realize the best compromise between accuracy
and numerical cost. Note that clearly, as in the static

case (3), all the (tensor) coefficients ai and µi of this
model are linearly involved.

Remark 3 In most of practical situations, thanks to the

rapid convergence of the series (25) when ns, J
(k)
i →

+∞, only a small number of tensor coefficients µj′j′′...j(i)

i will
be sufficient to get very accurate approximations of the

dynamic nonlinear transfer T 7→ U . Such questions will
be studied in a further paper devoted to mathematical
and numerical analysis.

In particular, if the variations of T (t) are small enough,
the contributions of the nonlinear terms Ψj′ Ψj′′ , Ψj′ Ψj′′ Ψj′′′ ,
etc., can be neglected and the following simplified syn-

thesis with nd = 1 (that is linear in the dynamic part)

3 That is the number of coefficients; in the particular case

J
(k)
i = J for any i, k, this dimension is simply Ji.

can be yet sufficient to get significant improvement com-

pared to the static model (3):

U(t) = U0 +

ns∑
i=1

ai T (t)
i

+

J∑
j=1

µj Ψj(t), (26)

in such a way that (26) can be rewritten, from (19)

and with νj := µj ψ0(ξj), under the following form in
which all the parameters (including the ”initial condi-
tion” ones), that is ai, µj , νj , are linearly involved:

U(t) = U0 +

ns∑
i=1

ai T (t)
i

+

J∑
j=1

µj (ψ(t, ξj)− T (t))

+
J∑

j=1

νj e
−ξjt. (27)

3.2.3 Algorithm for dynamic correction

Similarly to the static case, when U is measured at

times tk = k∆t with some additive zero mean noise wk,
that is Ũk = Uk + wk, and because e−ξj tk → 0 when
k → +∞, we finally get the following asymptotic dy-

namic correction formula deduced from (25), suitable
for k large enough (i.e. is in such a way that the quan-
tities e−ξj tk are quite negligible):

Ũ0,k = Ũk −
ns∑
i=1

ai (Tk)
i −

nd∑
i=1

µi · Ψ̄⊗i
k (28)

where the vectors

Ψ̄k := (Ψj,k − ψ0(ξj) e
−ξj tk) = (ψj,k − Tk), (29)

on which is based the dynamic correction, are computed
from the temperature data Tk := T (tk) via the follow-
ing discrete-time dynamic relation deduced from inte-

gration of (18):

ψj,k+1 = e−ξj∆t ψj,k +
1− e−ξj∆t

ξj
Tk, ψj,0 = 0.

(30)

In the simplified case nd = 1 (that is the correc-
tion is linear with respect to the dynamic part), (28)
becomes:

Ũ0,k = Ũk −
ns∑
i=1

ai (Tk)
i −

J∑
j=1

µj (ψj,k − Tk). (31)
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Exactly as in the static case, Ũ0,k = U0 + wk and

so, estimates Û0 or Ū0,k of the quantity U0 can yet be
taken as:

Û0 =
1

N

N∑
k=1

Ũ0,k, Ū0,k =
1

N

N−1∑
q=0

Ũ0,k−q (32)

and we have yet, from (28) and the law of large num-

bers:

E(Û0) = U0, (33)

Û0 =
1

N

N∑
k=1

(U0 + wk) → U0 when N → ∞. (34)

Finally, the unknown quantity U0 can be pursued

by means of the following moving average estimate:

Ū0,k =
1

N

N−1∑
q=0

[
Ũk−q −

n∑
i=1

ai (Tk−q)
i −

nd∑
i=1

µi · Ψ̄⊗i
k

]
,

(35)

with the following residual estimation noise:

εk =
1

N

N−1∑
q=0

wk−q. (36)

3.2.4 On the practical choice of the pulsations ξj

As stated in section 3.2.2, for concrete implementation

of dynamic corrections, the first (and essential) step is
to correctly chose the pulsations ξj , j = 1 : J . The
number J must of course be as small as possible. From

(18), it clearly appears that Ψj(t) = Ψ(t, ξj) results from
simply filtering T (t) by a low-pass filter with cut-off
frequency fi =

ξj
2π . By assuming that ξ1 = ξmin < ξ2 <

... < ξJ = ξmax, the frequency band covered by the
set of fi (that is [f1, fJ ]) as well as the number J is
empirically chosen from analysis of the behaviour of

the residual estimation noise (36).

A simple method consists in implementing, on a

given set of stored data {Ũk, Tk}, an iterative process
initiated with the standard static correction. The be-
haviour of the residual estimation noise then suggests

to introduce some ξj and the linear dynamic correction
based on these ξj is implemented, etc. At each step, the
variance of the residual noise must decrease; otherwise

the process is ended.

3.3 Preliminary estimation of the correction

coefficients from experimental data

The correction tensors ai, µi are to be firstly estimated
from experimental data whose number must be suffi-

cient to get negligible estimation errors. This number
is all the larger as the number of scalar coefficient to be
identified is large. Furthermore, because it is desirable

that contributions of possible non null initial conditions
are negligible (in order to avoid biases induced by such
contributions), data are to be stored only after a suffi-

ciently long time tk0 = k0∆t. This leads in general to
very long times for data acquisition and for this reason,
the dynamic model of U must be chosen with as few co-

efficients as possible, in particular in the dynamic part
which involves tensors, whose dimension increases very
quickly.

An optimal estimation from (noised) measured data

Ũk, k = k0 : K is obtained again by means of a least
square method, for example by minimizing (with re-

spect to the scalar parameters ai, µ
j′j′′...j(i)

i ∈ R) the
quantity:

J =

K∑
k=k0

(
Ũk − a0 −

ns∑
i=1

ai (Tk)
i −

nd∑
i=1

µi · Ψ̄(Tk)
⊗i

)2

;

this problem can be rewritten under matrix form4, with

(a, µ∗)T the column vector with terms all the scalar

coefficients ai, µ
j′j′′...j(i)

i :

min
a,µ∗

[
Q ·

(
a

µ∗

)
− Ũ

]T
·
[
Q ·

(
a

µ∗

)
− Ũ

]
; (37)

the solution is then classically given by:(
a
µ∗

)
=
[
QTQ+ εI

]−1
QT Ũ . (38)

In the particular case nd = 1, it results from (27)
that the ”initial condition parameters” νj = µj ψ0(ξj)

can easily be identified together with ai and µj , which
allows to avoid undesirable biases on ai and µj even if
the data are stored from the beginning of the measure-

ment process. In this case, the quantity to be minimized
becomes:

J =

K∑
k=1

(
Ũk − a0 −

ns∑
i=1

ai (Tk)
i

−
J∑

j=1

µj (ψj,k − Tk)−
J∑

j=1

νj e
−ξtk

2

; (39)

4 The terms of the matrix Q are constituted by the ones of

(Tk)
i and Ψ̄(Tk)

⊗i.
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this problem is rewritten under matrix form with (a, µ, ν)
T

∈ R(n+1) × RJ × RJ :

min
a,µ,ν

Q ·

 a

µ
ν

− Ũ

T

·

Q ·

 a

µ
ν

− Ũ

 , (40)

the solution of which is given by: a

µ
ν

 =
[
QTQ+ εI

]−1
QT Ũ . (41)

4 Application to a high precision voltage
reference based on an electrostatically actuated

MEMS

In the sequel, we present some experimental results ob-

tained by use of the method described above. The phys-
ical system under consideration is an electrostatically
actuated MEMS devoted to the construction of a volt-

age reference of high precision and stability. From the
electrical point of view, it is simply a variable capaci-
tance in which the electrostatic force is opposed to the

one of a mechanical spring between the two electrodes.
So, there exists a so-called pull-in voltage, beyond which
the mechanical force is no more able to balance the elec-

trostatic one: this defines the reference voltage, which is
determined by the only mechanical design of the MEMS
(M. Suhonen et al., 1998; A. Kärkkäinen et al., 2005;

J. Kyynäräinen et al., 2001).

For stability tests, the electrical environment of the
MEMS is shown (in a simplified form) in Fig. 2. The DC

voltage applied between the MEMS electrodes is chosen
slightly less than the pull-in voltage. Variations of the
ambient temperature generate variations of the electri-

cal capacitance of the MEMS5 and therefore variations
of the measured AC voltage.

4.1 A preliminary analysis of thermal dynamics and
their consequences

To get a low pull-in voltage (about 10V), the MEMS un-

der consideration needs to satisfy some specific features,
namely a large mobile Silicon electrode with complex
design, in order to get a great electrical capacitance,
suspended by 4 very thin Silicon springs, which allows

to get a low stiffness (see Fig. 1). This particular ge-
ometrical situation suggests that thermal transfers to
the mobile electrode will be significantly slowed due to

the high thermal resistance of the suspension springs.

5 NB: this capacitance is around 10 pF.

By considering that the mobile electrode has a ther-

mal capacitance C and the springs has an equivalent
thermal resistance R, we can perform a simplified anal-
ysis of the resulting characteristic time constant and of

its consequences according to variations of the ambient
temperature.

First, the dimensions of the springs are 265µm ×
4µm × 60µm, that gives a resulting thermal resistance
about R = 7.5×103K/W. Second, the dimensions of the

mobile electrode are about 2000µm × 150µm × 60µm,
which leads to a mass about 40µg; so, its thermal ca-
pacitance is about C = 4 × 10−5J/K. Consequently,

the time constant of the associated thermal transfer is
about τ = RC = 2× 103 × 4× 10−5 ' 10−1s.

By denoting Tm the temperature of the mobile elec-
trode (supposed to be uniform for simplicity) and T the
temperature of the substrate (also supposed to be uni-

form and equal to the ambient temperature), we there-
fore get the following differential equation:

dTm
dt

=
1

τ
(T − Tm). (42)

Consequently, if the ambient temperature variation dT
dt

is supposed to be constant in some time interval much
larger than 0.1 s, then we can consider that in this time

interval, dTm

dt = dT
dt and so the difference ∆T := T −Tm

is constant and equal to:

∆T = τ
dT

dt
. (43)

As an example, with |dTdt | = 10−3K/s, we have |∆T | =
10−4K: in most of situations, this difference is quite
negligible. However, recall that our ultimate goal is

to build high quality voltage references based on such
MEMS, with expected stability about 1 ppm; taking
into account that for the device under consideration,

the coefficient σ := ∆U
∆T is about σ = 4 × 10−3V/K

(cf. Fig. 3,7), then, the resulting relative variation of

the measured voltage should be about |∆U |
U = |σ∆T |

U '
4×10−3×10−4

0.1 = 4ppm, which is quite excessive accord-
ing to the expected precision.

In addition, some biases resulting from such dy-
namic components not taken into account in the iden-

tification process could in practice generate erroneous
estimations of the correction coefficients. So, given an
expected relative precision ε, the static correction can

be considered as quite inappropriate if:

|σ| τ
U

|dT
dt

| > ε. (44)

In the present case (i.e. ε = 10−6), we can conclude

that dynamic correction is needed if |dTdt | can exceed 2×
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10−4K/s ' 1K/h. Such ambient temperature variations

are frequent in standard environments.

Finally, note that beyond the MEMS itself, other de-
vices (including the temperature sensor and the whole

measurement equipment) possibly involve thermal time
constants that cannot be neglected. Due to the large
size of some of these devices, time constants about 1s or

even much more cannot be excluded: in such a case, the
maximal admissible |dTdt |, beyond which static correc-
tion is no longer appropriate, is less than 0.1K/h: such a

constraint is widely incompatible with the standard en-
vironments in which the measurements have been made
and so, we can expect that a dynamic correction should

bring significant improvements versus the static one.
This will be confirmed in the next section where the
dynamic correction presented above is implemented on

real data.

4.2 Experimental results

The measured AC voltage is shown in Fig. 3; the sample
period is ∆t = 15s. Significant variations visible: they

mainly result from variations of the ambient tempera-
ture T (t), given in Fig. 7. For static correction, we have
taken n = 1 (linear correction) or n = 2. For dynamic

correction, J = 6 time constants 1/ξj have been used.

In Fig. 4, we can see both the measured data and a

dynamic correction of the form:

a0 −
2∑

i=1

ai (Tk)
i −

6∑
j=1

µj (ψj,k − Tk) (45)

(where a0 is the estimate of the unknown AC voltage
U0).

The correction is then subtracted to the measured
data to get the so-called residual voltage variations.

These residual variations are shown in Fig. 5, 6, either
non smoothed, or smoothed by use of a standard mov-
ing average filter. Clearly, a significant improvement is

gotten when dynamic correction is implemented.

Evolutions of the temperature T and the ”auxil-
iary temperatures” ψj + ψ0,j are shown in Fig. 7,8,9.
In Fig. 10, we can see the contribution to these evo-

lutions of the terms inherited from initial conditions,
that is: ψ0,j(tk) =

νj

µj
e−ξjtk (recall that, as mentioned

in section 3.2.2, the so-identified initial conditions are

ψ0,j(0) =
νj

µj
).

Finally, Fig. 11 shows the differences between the
auxiliary temperatures and T , that is the functions Ψj =

ψj + ψ0,j − T .

From a more quantitative point of view, we have:

non smoothed smoothed

stat. lin. 9.985× 10−5 4.911× 10−5

stat. nonlin. 9.780× 10−5 4.471× 10−5

dyn. lin. 6.769× 10−5 1.331× 10−5

dyn. nonlin. 6.725× 10−5 1.173× 10−5

Table 1 Standard deviation of the AC voltage after correction
(mV).

stat. lin. −27, 3 dB
stat. nonlin. −27.9 dB
dyn. lin. −38.6 dB
dyn. nonlin. −39.5 dB

Table 2 Reduction of the residual variations of the AC voltage

linear −11.3 dB

nonlinear −11.6 dB

Table 3 Improvement by use of dynamic correction versus static

one.

– mean measured AC voltage: 0.1040mV;
– standard deviation before correction of the AC volt-

age: 1.114× 10−3mV;
– results obtained with static and dynamic corrections

given in tables 1, 2 and 3.

Remark 4 Once the correction coefficients have been
identified from the process described in section 3.3, the
real-time correction algorithms are given by (5) for the

static case and by (30,31) for the dynamic case. By con-
sidering the only linear correction for simplicity, these
algorithm are of the respective forms (N.B. recall that

the reference temperature T0 is taken equal to 0):

Ũ0,k = Ũk − a1 Tk,


ψj,k+1 = αψj,k + β Tk, j = 1 : 6

Ũ0,k = Ũk − a1 Tk −
6∑

j=1

µj (ψj,k − Tk),

and it is easy to deduce the respective numerical costs:

2 ops/∆t for static correction,

6× 6 + 2 = 38 ops/∆t for dynamic correction.

So, although the real time numerical cost of dynamic
correction is much greater, it remains negligible in gen-

eral.
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Fig. 1 The electrostatically actuated MEMS under considera-
tion

Fig. 2 Electrical environment of the MEMS for data acquisition
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Fig. 3 Measured AC voltage

5 Conclusion

As clearly highlighted by the quantitative results pre-
sented above, dynamic correction can in some cases gen-
erate significant improvements. However, in the present

results, some residual variations remain after correc-
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Fig. 4 Measured AC voltage (:), dynamic correction (−)
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Fig. 5 Residual variations: with static correction (top), with dy-
namic correction (bottom); non smoothed (:), smoothed (−)

tion; it is probable that they are not entirely induced

by noises only: indeed, great deviations of Ψj(t) some-
times appear (see Fig. 11), which suggests that the only
linear part of the dynamic correction is no longer suf-

ficient in such cases. So, it will be judicious to involve
higher order (nonlinear) terms of the series (24), in par-

ticular quadratic ones: µj′j′′

2 Ψj′(t)Ψj′′(t).

This will be studied in a further work, with a new set

of data devoted specifically to this problem. As stated
in section 3.3, this new set of data will be much larger,
first because more coefficients are to be identified, but

especially because the data will be stored only after
a long transient phase during which possible non null
(and unknown!) temperature initial conditions inside

the device can generate some excessive estimation bi-
ases.

From the theoretical point of view, the problem of

estimating such initial conditions when the order nd of
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Fig. 6 Smoothed residual variations: static correction (- -), dy-

namic correction (−)
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Fig. 7 Temperatures: T (t) (bold) and ψj(t) + ψ0,j(t).

the dynamic correction is greater than 1 is also cur-

rently under study.

References

H. Camon, C. Ganibal, N. Raphoz, M. Trzmiel, C.
Pisella, C. Martinez, S. Valette, Solving functional
reliability issue for an optical electrostatic switch, Mi-

crosystem Technologies, Vol. 14, N. 7, July 2008.
H. Camon, F. Larnaudie, Fabrication, simulation and
experiment of a rotating electrostatic silicon mir-

ror with large angular deflection, 13th Int. Micro
Electro Mechanical Systems (MEMS 2000), Miyazaki
(Japan), pp. 645-650, Jan. 23-27, 2000.

C. Casenave, Représentation diffusive et inversion
opératorielle pour l’analyse et la résolution de
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A. Kärkkäinen, N. Pesonen, M. Suhonen, A. Oja, A.

Manninen, N. Tisnek, H. Seppä, MEMS based AC
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