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Formulation différentielle dissipative d'un modèle de paroi absorbante en aéroacoustique

On considère un modèle de matériau poreux dédié à la réduction de bruit des moteurs d'avions par absorption aux parois. Les paramètres de l'équation de propagation dans un tel milieu dépendent de la fréquence, ce qui se traduit, dans le domaine temporel, par la présence d'opérateurs de convolution. A partir de leurs symboles, on établit une nouvelle formulation de ces opérateurs à la fois locale en temps et dissipative. Le couplage du modèle ainsi obtenu avec un modèle standard d'aéroacoustique conduit à un système local en temps dont l'analyse et la simulation sont simplifiées, notamment par l'existence d'une fonctionnelle énergie garantissant la dissipativité globale.

Abridged English version

Aircraft motor noise reduction is currently an important challenge for aerospace industry. In [START_REF] Gasser | Etude des propriétés acoustiques et mécaniques d'un matériau métallique poreux modèle à base de sphères creuses de nickel[END_REF], a specific porous wall was proposed for absorption of a wide part of the incident energy of acoustic waves. The frequency model of such a material is given by [START_REF] Casenave | Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations[END_REF], where u and P denote the Fourier transform of the velocity and the pressure in the porous medium, e(x) denotes the thickness of the porous wall and the parameters ρ eff (iω) and χ eff (iω), expressed by [START_REF] Gasser | Etude des propriétés acoustiques et mécaniques d'un matériau métallique poreux modèle à base de sphères creuses de nickel[END_REF], are respectively the so-called effective density of Pride et al. and the effective compressibility of Lafarge [START_REF] Pride | Drag forces of porous-medium acoustics[END_REF]. Boundary conditions (3) complete the model which is linked to the fluid medium by the following relations on the interface Γ: P fluid |Γ = P |z=0 and u fluid

|Γ

• n = φ u |z=0 , where n denotes the outgoing unit normal on Γ, and φ > 0 is the porosity coefficient. The terms w = u |z=0 and y := P |z=0 can be interpreted as the input and the output of system (1) respectively, while the mapping w → y defines the impedance operator of the porous wall. Because the parameters ρ eff and χ eff are frequency dependent, their inverse Fourier transform are convolution operators, denoted ρ eff (∂ t ) and χ eff (∂ t ). Then the time-model of such a medium is not time-local. We present a new formulation of such operators based on an approach introduced in [START_REF] Montseny | Représentation diffusive[END_REF].

Consider a causal operator defined, on any continuous function w : R + → R, by w → t 0 h(t-s) w(s) ds. As H is causal, we have (H(∂ t )(w -w t )) (t) = 0, where w t (s) := 1 ]-∞,t] (s) w(s). From this relation, we obtain the formulation (5) of H(∂ t )w, which can be equivalently expressed under the form (8) with Ψ w (t, p) := e pt (Lw t ) (p). It can be shown that for any p in the analiticity domain of H, Ψ w (t, p) is solution of the differential equation (7). From this result and by using standard techniques of complex analysis, we have: Proposition 0.1 If H is analytic on C R -with a discrete set of singularities in R -, if in addition these singularities are either simple poles -ξ k or branching points such that |H| is locally integrable, and if H(p) → 0 when p → ∞, then:

(H(∂ t )w) (t) = +∞ 0 µ c (ξ) ψ(t, ξ) dξ + k α k ψ(t, ξ k )
where:

µ c ∈ L 1 loc (R + ), µ c (ξ) = 1 2iπ lim ε→0 + [H(-ξ -εi) -H(-ξ + εi)] ξ-ae, α k = Res(H, -ξ k ); Furthermore, ψ(t, ξ) = Ψ w (t, -ξ) is the unique solution of the following Cauchy problem on (t, ξ) ∈ R * + ×R + : ∂ t ψ(t, ξ) = -ξ ψ(t, ξ) + w(t), ψ(0, ξ) = 0. Corollary 0.1 By denoting µ := µ c + k α k δ ξ k , the operator w → y = H(∂ t )w admits the input-output differential formulation:      ∂ t ψ = -ξ ψ + w, (t, ξ) ∈ R * + ×R + , ψ(0, ξ) = 0 y = +∞ 0 µ ψdξ.
We then consider the convolution operators H 1 (∂ t ) and H 2 (∂ t ) defined by the respective symbols H 1 (p) := 

= -H 1 (∂ t ) ∂ z P e(x) , P = -H 2 (∂ t ) ∂ z u e(x)
and by using the above results, we deduce the time-local model (15), defined on (t, z, x, ξ) ∈ R * + ×]0, 1[×Γ × R + and equivalent to [START_REF] Casenave | Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations[END_REF][START_REF] Mazet | Control of Aero-acoustic Propagations with Wall Impedance Boundary Conditions : Application to a Porous Material Model[END_REF][START_REF] Montseny | Représentation diffusive[END_REF] from the input-output point of view (e.g. w → y).

Thanks to the positivity of measures µ 1 and µ 2 , the functional (

ψ 1 , ψ 2 ) → (ψ 1 , ψ 2 ) µ,x = [ (µ 1 |ψ 1 | 2 + µ 2 |ψ 2 | 2 ) dξ dz]
1 2 defines a seminorm and then the functional

E x (ψ) = 1 2 (ψ 1 , ψ 2 )
2 µ,x satisfies the balance (16) on any solution of (15). In ( 16), the two first terms of the right member are negative: they express the instantaneous dissipation of (15) for any given value of x, whereas the last term expresses the instantaneous exchanged power. Moreover, thanks to the property ψ(t = 0) = 0, we deduce from (16) the positiveness of the quadratic form w → Q T (w) := T 0 wy dt: the passive feature of the absorbent wall is restored by model (15). Then, coupling this model with any passive dynamic one (in particular the aero-acoustic model studied in [START_REF] Mazet | Control of Aero-acoustic Propagations with Wall Impedance Boundary Conditions : Application to a Porous Material Model[END_REF]) leads to a globally dissipative system in the sense of an energy functional defined from E x (ψ) and the energy E m of the model under consideration, in such a way that exchanges between the two systems are balanced.

Time local estimates deduced from ( 16) can be useful for mathematical analysis as well as for the construction of stable numerical schemes (see for example [START_REF] Casenave | Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations[END_REF]). Also note that, thanks to its time-local nature, this new time-local formulation of the fluid medium -porous medium coupling enables to tackle control and identification problems.

Introduction

Le bruit des moteurs constitue une part importante des nuisances sonores produites par les aéronefs et sa réduction est à l'heure actuelle un enjeu important. Pour les zones chaudes comme les tuyères soumises à l'écoulement des gaz d'échappement, S. Gasser propose dans [START_REF] Gasser | Etude des propriétés acoustiques et mécaniques d'un matériau métallique poreux modèle à base de sphères creuses de nickel[END_REF] de recouvrir les parois d'un matériau cellulaire de porosité semi-ouverte formé d'empilements de billes creuses de nickel soudées entre elles. Ce matériau présente de nombreux avantages : une bonne adaptation aux hautes températures, une bonne résistance aux chocs thermiques, un faible poids, une bonne tenue mécanique et une bonne absorption de l'énergie acoustique incidente. Une étude précise des propriétés acoustiques d'un tel matériau lui a permis d'obtenir par homogénéisation le modèle fréquentiel suivant, décrivant la propagation d'ondes acoustiques à l'intérieur du milieu poreux d'interface Γ = {z = 0}×]0, X[ avec le milieu fluide et d'épaisseur e(x) :

   e(x) iω ρ eff (iω) û + ∂ z P = 0 e(x) iω χ eff (iω) P + ∂ z û = 0 sur (ω, z, x) ∈ R×]0, 1[×]0, X[ . ( 1 
)
Les paramètres ρ eff (iω) et χ eff (iω) désignent respectivement la densité effective de Pride et al et la compressibilité effective de Lafarge [START_REF] Pride | Drag forces of porous-medium acoustics[END_REF] ; ils sont donnés par1 :

         ρ eff (iω) = ρ (1 + a (1 + b iω) 1 2 iω ) χ eff (iω) = χ (1 -c iω iω + a (1 + b iω) 1 2 ), (2) 
avec :

ρ = ρ 0 α ∞ , χ = 1 P0 , a = 8µ ρ0Λ 2 , a = 8µ ρ0Λ 2 , b = 1 2a , b = 1 2a , c = γ-1 γ
, les paramètres physiques ρ 0 , P 0 , µ, γ, α ∞ , Λ, Λ désignant respectivement la densité et la pression au repos, la viscosité dynamique, le rapport des chaleurs spécifiques, la tortuosité, la longueur caractéristique à haute fréquence du problème visqueux incompressible et la longueur caractéristique à haute fréquence du problème thermique.

Le modèle (1) est complété par les conditions aux limites : Les paramètres ρ eff et χ eff dépendant de la fréquence ω, le modèle équivalent à (1) obtenu par transformation de Fourier inverse ne peut être local en temps du fait de la présence d'opérateurs de convolution (causaux) associés à ρ eff et χ eff , respectivement notés ρ eff (∂ t ) et χ eff (∂ t ). Dans de telles situations, on peut envisager d'utiliser par exemple des approximations de Padé de ρ eff (iω) et χ eff (iω) dans le but de construire des lois différentielles approchées pour la réalisation de schémas numériques. Cependant, ce type de construction de nature purement formelle n'offre en pratique aucune garantie de stabilité, en particulier lorsque l'ordre d'approximation est élevé.

On propose en section 2 une formulation exacte de tels opérateurs au moyen d'un système différentiel entrée-sortie indexé par une variable auxiliaire continue ξ ∈ R + . Cette formulation permet ensuite, en section 3, l'obtention d'un nouveau modèle de paroi poreuse équivalent à (1,3,4) du point de vue de l'opérateur entrée-sortie w → y et de nature temps-locale. On montre que ce modèle est en outre consistant du point de vue de la dissipation au sens d'une fonctionnelle énergie explicitement connue.

Formulation différentielle d'opérateurs convolutifs causaux

Dans cette section est succinctement présenté un cas particulier, suffisant pour le problème considéré, d'une méthodologie introduite et développée dans [START_REF] Montseny | Représentation diffusive[END_REF] dans un cadre général.

On considère un opérateur causal défini, sur toute fonction continue w : R + → R, par w → t 0 h(ts) w(s) ds, la fonction (réelle) h étant en outre supposée à croissance modérée. On note H la transformée de Laplace de h, appelée symbole de l'opérateur ainsi défini, noté H(∂ t ).

Soit w t (s) := 1 ]-∞,t] (s) w(s) la restriction de w à son passé et w t (s) := w t (t -s) l'histoire de w à l'instant t. De la causalité de H(∂ t ), on déduit : (H(∂ t )(w -w t )) (t) = 0 pour tout t ; on a alors pour toute fonction w continue et à support borné : 

(H(∂ t )w) (t) = L -1 (H Lw) (t) = L -1 H Lw t (t). ( 5 
∂ t Ψ(., p) = p Ψ(., p) + w, t > 0, Ψ(0, p) = 0. (7) 2. Pour tout b > 0, (H(∂ t )w) (t) = 1 2iπ b+i∞ b-i∞ H(p) Ψ w (t, p) dp. ( 8 
)
Au moyen de techniques standard de l'analyse complexe (contour de Bromwich, théorème de Cauchy, lemme de Jordan), on montre à partir du lemme 2.1 : Proposition 2.1 Si la fonction H est holomorphe dans C R -et ne présente que des singularités isolées dans R -; si ces singularités sont soit des pôles simples en -ξ k , soit des points de branchement au voisinage desquels |H| est intégrable et si H(p) → 0 quand p → ∞, alors :

(H(∂ t )w) (t) = +∞ 0 µ c (ξ) ψ(t, ξ) dξ + k α k ψ(t, ξ k ) (9)
où :

µ c ∈ L 1 loc (R + ), µ c (ξ) = 1 2iπ lim ε→0 + [H(-ξ -εi) -H(-ξ + εi)] ξ-pp, ( 10 
)
α k = Res(H, -ξ k ), (11) 
et ψ(t, ξ) = Ψ w (t, -ξ) est solution (unique) du problème d'évolution :

∂ t ψ(t, ξ) = -ξ ψ(t, ξ) + w(t), (t, ξ) ∈ R * + ×R + , ψ(0, ξ) = 0. ( 12 
) Corollaire 2.2 En notant µ := µ c + k α k δ ξ k , l'opérateur w → y = H(∂ t )w admet la formulation différentielle entrée-sortie 2 :      ∂ t ψ = -ξ ψ + w, (t, ξ) ∈ R * + ×R + , ψ(0, ξ) = 0 y = +∞ 0 µ ψ dξ. ( 13 
)

Modèle local en temps de la paroi absorbante

On considère les opérateurs convolutifs H 1 (∂ t ) et H 2 (∂ t ) définis par les symboles respectifs H 1 (p) := 

√ 17) 4 }) et C ([-∞, -2a [∪{ a (1- √ (1+16(1-c) 2 )) 4(1-c) 2
, 0}). Du fait de la présence de pôles d'ordre 1 de H 1 et H 2 sur R -, les objets µ 1 et µ 2 associés respectivement à H 1 (∂ t ) et H 2 (∂ t ) sont des mesures. Après calculs conformément à la proposition 2.1, on obtient :

µ 1 (ξ) = a π ρ √ b ξ -1 ξ 2 + a ξ 2 -a 2 1 ξ>2a + k 1 δ ξ1 (ξ), µ 2 (ξ) = a c π χ √ b ξ -1 ξ 2 (1 -c) 2 + a 2 ξ -a 2 1 ξ>2a + 1 χ δ 0 (ξ) + k 2 δ ξ2 (ξ), (14) 
où

ξ 1 = a( √ 17-1) 4 > 0, ξ 2 = a ( √ 1+16(1-c) 2 -1) 4(1-c) 2 > 0, k 1 = √ 17-1 ρ √ 17 > 0 et k 2 = c( √ 1+16(1-c) 2 -1) χ(1-c) √ 1+16(1-c) 2 > 0. En réécrivant le système (1) sous la forme : u = -H 1 (∂ t ) ∂zP e(x) , P = -H 2 (∂ t ) ∂zu e(x)
et en utilisant les résultats de la section 2, on en déduit le modèle suivant, défini sur (t, z, x, ξ) ∈ R * + ×]0, 1[×]0, X[×R + et équivalent du point de vue entrée-sortie3 au système [START_REF] Casenave | Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations[END_REF][START_REF] Mazet | Control of Aero-acoustic Propagations with Wall Impedance Boundary Conditions : Application to a Porous Material Model[END_REF][START_REF] Montseny | Représentation diffusive[END_REF] :

                               ∂ t ψ 1 = -ξ ψ 1 - 1 e(x) ∂ z P ∂ t ψ 2 = -ξ ψ 2 - 1 e(x) ∂ z u u(t, 1, x) = 0 P (t, 0, x) = w(t, x) y(t, x) = u(t, 0, x), avec :          u := +∞ 0 µ 1 ψ 1 dξ P := +∞ 0 µ 2 ψ 2 dξ. ( 15 
)
Par ailleurs, les mesures µ 1 et µ 2 sont clairement positives ; par conséquent, la fonctionnelle (

ψ 1 , ψ 2 ) → (ψ 1 , ψ 2 ) µ,x = [ (µ 1 |ψ 1 | 2 + µ 2 |ψ 2 | 2 ) dξ dz] 1 2
est une semi-norme. On a alors :

Theorem 3.1 La fonctionnelle E x (ψ) = 1 2 (ψ 1 , ψ 2 )
2 µ,x vérifie, sur toute solution de (15) :

dE x (ψ) dt = - 1 0 +∞ 0 ξ µ 1 |ψ 1 | 2 dξ dz - 1 0 +∞ 0 ξ µ 2 |ψ 2 | 2 dξ dz + 1 e(x) w y. ( 16 
) Preuve. dE x (ψ)/dt = -i 1 0 +∞ 0 ξ µ i |ψ i | 2 dξ dz -1 e(x) 1 0 P ∂ z u dz -1 e(x) 1 0 ∂ z P u dz = -i 1 0 +∞ 0 ξ µ i |ψ i |
2 dξ dz -1 e(x) P (t, 1, x) u(t, 1, x) + 1 e(x) P (t, 0, x) u(t, 0, x). Dans le bilan (16), les deux premiers termes, négatifs, représentent la dissipation instantanée de (15) à x fixé. Le dernier terme exprime la puissance instantanée échangée avec l'extérieur, dont découle en particulier (du fait que ψ(t = 0) = 0) la positivité de la forme quadratique w → Q T (w) := T 0 w y dt pour tout T > 0 et tout x : la nature passive de la paroi absorbante est ainsi restituée par le modèle (15). Le couplage de ce dernier avec tout modèle dynamique de type passif (en particulier le modèle aéroacoustique étudié dans [START_REF] Mazet | Control of Aero-acoustic Propagations with Wall Impedance Boundary Conditions : Application to a Porous Material Model[END_REF]) conduit par conséquent à un système globalement dissipatif pour une fonctionnelle énergie définie à partir de E x (ψ) et de l'énergie E m du modèle considéré de telle sorte que les transferts entre les deux sous-systèmes soient équilibrés. Plus précis que la simple positivité de l'opérateur Q T , le bilan (16) permet ainsi des estimations fines utiles tant pour l'analyse que pour la construction de schémas numériques stables [START_REF] Casenave | Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations[END_REF]. Par sa nature locale en temps, cette formulation du système couplé milieu fluidemilieu poreux permet par ailleurs d'aborder les problèmes de contrôle et d'identification par les méthodes classiques.

A noter que concernant le problème (15), des approximations convergentes peuvent aisément être construites par discrétisation de la variable ξ et quadratures standard. On obtient ainsi des réalisations dynamiques approchées de la forme entrée-sortie : Ẋ = A X + Bw, ỹ = CX où X(t) ∈ R N , de telle sorte que ỹ y en un sens convenable [START_REF] Montseny | Représentation diffusive[END_REF].

u 3 )

 3 |z=1 = 0 (réflexion totale en z = 1) u |z=0 = w. (Par ailleurs, le couplage avec le milieu fluide nécessite deux conditions de raccord à l'interface Γ : P fluide |Γ = P |z=0 et u fluide |Γ • n = φ u |z=0 où n est la normale unitaire sortante sur Γ et φ > 0 est le coefficient de porosité du matériau poreux. Les termes w = u |z=0 et y := P |z=0 (4) peuvent donc s'interpréter respectivement comme l'entrée et la sortie du système (1), définissant un opérateur (d'impédance de la paroi poreuse) : w → y.

1 p

 1 ρ eff (p) et H 2 (p) := 1 p χ eff (p) . Ces fonctions sont décroissantes à l'infini et holomorphes respectivement dans C ([-∞, -2a[∪{ a(1- 

  eff (p) . These functions are analytic in C R -and decreasing at infinity, and H 1 and H 2 have simple poles on R -; then µ 1 and µ 2 respectively associated to H 1 (∂ t ) and H 2 (∂ t ) are measures. By rewriting (1) under the form: u

	1 p ρ eff (p) and H 2 (p) :=	p χ	1

La racine carrée est déterminée par la coupure standard R -.

Le terme +∞ 0 µ ψ dξ désigne ici le produit µ, ψ dans la dualité fonctions continues -mesures.

Le modèle (15) est une "réalisation d'état" de l'opérateur w → y caractérisant la paroi en tant qu'impédance.