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Abstract

This paper focuses on the identification of nonlinear dynamic models for physical systems such as electrostat-
ically actuated micro-electro-mechanical systems (MEMS). The proposed approach consists in transforming,
by means of suitable global operations, the input-output differential model in such a way that the new equiv-
alent formulation is well adapted to the identification problem, thanks to the following properties: first, the
linearity with respect to the parameters to be identified is preserved, second, the continuous dependence on
noise measurements is restored. Consequently, a simple least-square resolution can be used, in such a way
that some of the difficulties classically encountered with identification methods are by-passed. The method
is implemented on real measurement data from a physical system.

Key words: Dynamic Models; Parameters Identification; Least-squares Identification; Time-continuous
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1. Introduction

This paper focuses on the identification of non-
linear dynamic models for physical systems such
as MEMS from measurement data associated with
known inputs. One of the main reasons which
makes identification an important step when work-
ing with such micro-systems is that physical mod-
elling in general does not permit to get very reliable
models, useful for example for control (Zhu et al.
(2007); Liao et al. (2004); Sane et al. (2005); Daqaq
et al. (2006); Bryzek et al. (2003); Vagia et al.
(2008)) or even dimensioning purposes. Indeed,
due to the very small size of these systems, many
parameter values cannot be directly measured and
dynamic underlying phenomena are difficult to cor-
rectly be described from the only physical analysis;
in this case, identification process can be the only
way to get reliable models. Several informations
and techniques about identification of dynamic sys-
tems will be found in (Ljung (1987); Garnier and
Young (2004)).
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In this paper, parameters, initial conditions and
functional components of a dynamic model present-
ing a dynamic bifurcation are identified. First the
differential model of the system, elaborated from
physical analysis, is transformed in order to get
a new equivalent model, well adapted to continu-
ous time identification method (Garnier and Wang
(2008)). The so-obtained model is linear with re-
spect to the parameters to be identified, and contin-
uously depends on noise measurements, what is not
the case with the initial form of the model in which
derivative operators are involved. Consequently, a
simple least-squares resolution can be used to iden-
tify the unknown parameters, in such a way that
some of the difficulties classically encountered with
identification methods, like the non convexity of the
cost function for example, are by-passed. Moreover,
with such a method, and thanks to the equivalence
of the dynamic model and the derived identification
one, the identified model remains of continuous-
time type, with a clear physical meaning of any of
its components, what is not the case when using,
for example, black-boxes approaches.

This paper being devoted to practical implemen-
tation, the report is mainly formal: some math-
ematical questions which would have necessitated
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sophisticated tools of functional analysis are simply
mentioned and justified by intuitive physical argu-
ments only.

The paper is organized as follows. In section 2
the physical system and its dynamic model are de-
scribed. In section 3 a new equivalent formulation
devoted to identification is established, and the as-
sociated identification problem is given. The solu-
tion of this problem is expressed in terms of op-
eratorial pseudo-inversion and the bias reduction
method used is presented. Then the numerical res-
olution of the problem from a discrete set of mea-
surement data is described in section 4 and vali-
dated on simulated data in section 5. Finally, the
method is implemented on real measurement data
and the obtained results are given in section 6.

2. The physical system under consideration

The experimental system is an electrostatically
actuated micro-mirror, a view of which1 is given in
Fig. 1 (the system is in fact made up of four mir-
rors). The system is composed in two assembled
parts. The upper one is a thin plate, the mirror,
linked to a thick external rigid frame by two thin
and narrow arms, the springs. This part is tai-
lored in the same micro-crystalline silicon layer of
a SOI (silicon on insulator) wafer. The lower one
comprises a balance-knife-edge with two electrodes
distributed on both sides of it. The two parts are
assembled in such a manner that the axis of the
springs and balance-knife-edge are identical. So the
electrodes are located underneath the mirror induc-
ing its rotation (left or right) when a voltage V is
applied. The physical limit angle the mirror can
reach is denoted α, whereas θ(t) denotes the angle
of the mirror at a given time (see Fig. 3).

The development of those micro-mirrors has been
conducted with Tronics Microsystems (France), a
manufacturer of custom MEMS components. Sev-
eral configurations of the electrodes can be envis-
aged, namely the case where electrodes are flat or
inclined (cf. Fig. 2 and 3 for flat electrodes config-
uration).

During the rotation of the mirror, several forces
are involved:

• Electrostatic forces : the associated electro-
static moment Me(θ, V ), whose expression de-
pends on the configuration of the system, is

1The picture is published with courtesy of Tronics Mi-
crosystems (France).

Figure 1: View of the physical system made up of
4 micromirrors.

Figure 2: Schematic drawing of the MEMS with
flat electrodes

supposed to be of the form (Camon et al.
(2008)):

Me(θ, V ) = V 2k(θ). (1)

• Spring forces: the associated moment is sup-
posed to be proportional to the angle θ, with
stiffness constant K > 0.

• Viscous friction forces : the associated moment
Mf (θ, θ̇) is supposed to be of the form:

Mf(θ, θ̇) = −(µ0 + v(θ)) θ̇, (2)

with v(0) = 0.

Remark 1. For simplicity, θ̇ is supposed to
remain sufficiently small, in such a way that
v only depends on θ. This will be sufficient
for the physical problem under consideration in
this study. More general nonlinear situations
(such as Mf (θ, θ̇) = −µ0θ̇ − v(θ, θ̇)) could also
be treated, up to suitable adaptations involv-
ing slightly more sophisticated techniques out
of scope in this paper.
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Figure 3: Cross section of the MEMS with flat elec-
trodes

A dynamic model of such a system is obtained by
application of the fundamental principle of dynam-
ics:

I θ̈ + (µ0 + v(θ)) θ̇ + K θ = V 2k(θ), (3)

with the constraint : |θ| 6 |α| , (4)

where I is the moment of inertia of the system.

Remark 2. In the model, θ is a negative angle.

The system (3) of input V and output θ, is com-
pleted by the initial conditions:

θ(0) = θ0 and θ̇(0) = θ1. (5)

Note that the expression of the terms v(θ) and k(θ)
will depend on the configuration of the physical sys-
tem, its geometry, the materials used etc. (see sec-
tion 6 for a particular example).

The structure of model (3,4,5) proved reliable; it
enables to get accurate approximations of the dy-
namic behavior of the micro-mirror. Nevertheless,
due to the fabrication process, essentially the glu-
ing process of the two parts of the mirror, it is re-
alistic to consider that the physical parameters and
functions (v and k) implied in the model are sig-
nificantly different from the ideal ones. So, in the
sequel, the problem of identification, from real (dis-
crete time) noisy measurement data, of the parame-
ters (for example the moment of inertia), and func-
tions (the electrostatic moment function k, etc.) is
considered; the initial conditions (5) of model (3)
can also be identified. The aim is to get a reliable
model of the system with good predictive proper-
ties, suitable for example for control purposes such
as in Zhu et al. (2007); Liao et al. (2004); Sane et al.
(2005); Daqaq et al. (2006); Bryzek et al. (2003).

The identification of the model of such a phys-
ical system presents various difficulties frequently
encountered in practice:

◮ The nonlinear dependence of the electrostatic
moment on θ is both ill known and rather sin-
gular in the sense that it considerably increases
when the angle θ goes to its maximum value α.

◮ The analysis of this dynamic system reveals
the existence of a threshold voltage, called the
”pull-in voltage” (Cichalewski et al. (2003))

and denoted V dyn
pullin, below which θ stabilizes

to an angle θstab(V ) (see Fig. 9a), whereas be-
yond this voltage the system becomes unsta-
ble and θ quickly switches to α (see Fig. 9b).
In the case of neglected friction moment, this
behavior can be highlighted by a phase por-
trait analysis (cf. Annex A). The existence

of such a bifurcation value V dyn
pullin of the in-

put voltage, which separates two regions with
quite different dynamic behaviors, contributes
to make the identification problem difficult.

◮ As often with small size mechanical systems,
due to the smallness of the moment of inertia,
the dynamic contribution of this term is quite
dominated by the viscosity one (that is |I θ̈| ≪
|(µ0 +v(θ)) θ̇|), except at the very beginning of
the motion (when the speed |θ̇(t)| is very low).
Consequently, identification of the moment of
inertia from measurement data is a tricky task.

3. Formulation, analysis and resolution of
the identification problem

In this section is stated and studied the identifi-
cation problem under consideration, whose aim is
to estimate the parameters of model (3,4,5) from
measurements of trajectory θ. For mathematical
questions, refer for example to Adams and Fournier
(2003); Yosida (1980).

3.1. On the identification technique used

The aim of system identification is to get a reli-
able model of the system under consideration from
both experimental data and physical knowledge.
The identified model can be either discrete (Ljung
(1987)) or continuous (Garnier and Young (2004);
Young and Garnier (2006); Bingulac and Sinha
(1989)).
In this paper, a continuous-time identification
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method (Garnier and Wang (2008)) is considered,
for several reasons:

• The knowledge-model (3,4,5) on which the
identification is based is naturally formulated
in continuous-time domain.

• The aim is here to get a reliable continuous-
time model of the system, with the same struc-
ture as model (3,4,5), in order to validate
the modelling. Continuous-time identification
methods directly provide such a model, which
then can be used for simulation, prediction or
control purposes.

• Here, the identification process is also used to
estimate the physical parameters and charac-
teristic functions of the system. In such cases,
identification methods based on a continuous-
time model are often used, because the ob-
tained estimates are strongly linked to the
physical parameters of the system. In other
words, the identified model has a clear phys-
ical meaning, what is not the case with tra-
ditional discrete-time identification methods
(Ljung (1987)).

The knowledge-model (3,4,5) has the particular-
ity to be linear with respect to parameters I, µ0,
K, and functions k and v. To take advantage to
this linearity, an identification method based on
the minimization of the equation error (Mahata and
Garnier (2006); Garnier and Wang (2008)) will be
used. To apply such a method, the model has first
to be transformed by means of suitable global oper-
ations, in such a way that the new equivalent model
formulation is specifically adapted to the identifi-
cation problem, thanks to the following essential
properties: first, the linearity with respect to the
parameters to be identified is preserved, and sec-
ond, the continuous dependence on noise measure-
ments is restored, this last property being impossi-
ble to get in the initial form of the model because
of the presence of derivative operators.

3.2. Transformation of the model for identification
purposes

3.2.1. Electrostatic and viscous friction moments

As said previously, the expression of electrostatic
and viscous friction moments depends on the physi-
cal system. Even if in some ideal cases their expres-
sion can be evaluated (see Appendix A), in general

they may not be accurately known, and it can be
interesting to also identify the functions k and v. In
this paper, k and v are identified under the form:

k(θ) =
∑

l

cl kl(θ), (6)

v(θ) =
∑

q

µq vq(θ), (7)

where the basis functions kl and vq are all known;
the parameters to be identified are then the real
coefficients cl and µq. Concretely, kl and vq are
chosen in such a manner that k and v can be ap-
proximated by finite sums with few terms. From
the theoretical point of view, these sums can be fi-
nite or not and implicitly refer to functional Hilbert
spaces generated by kl and vq (supposed orthonor-
mal for simplicity), to which belong k and v.

In the sequel, the following notations are used:

c := (c1, c2, ...)
T ∈ ℓ2 , (8)

k(θ) := (k1(θ), k2(θ), ...), (9)

µ := (µ1, µ2, ...)T ∈ ℓ2, (10)

v(θ) := (v1(θ), v2(θ), ...), (11)

and
w(θ) := (w1(θ), w2(θ), ...) (12)

where wi is the antiderivative of vi such that
wi(0) = 0. Then, it can be written under a con-
densed form:

k(θ) = k(θ) c, (13)

v(θ) = v(θ)µ. (14)

3.2.2. Initial conditions

The system (3), defined on t > 0 and with initial
conditions (5), can be equivalently replaced by the
following one defined on t ∈ R with θ|R− = 0 (see
Annex B):

I ∂2
t θ +µ0 ∂t θ+∂tw(θ)µ+K θ = V 2 k(θ) c+a δ+b δ′,

(15)
where the coefficients a and b are biunivocally
linked with initial conditions θ0 and θ1. The in-
terest of this formulation lies in the fact that a and
b are linearly involved, and so initial conditions can
be easily deduced from the estimates of a and b if
necessary.

Remark 3. The time derivative operator in the
sense of distributions is denoted ∂t, or simply (.)′.
Its right-inverse is defined on any function u with
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support in [t0, +∞[ (that is u(t) = 0 ∀t < t0) by

u 7→
∫ t

−∞
u(τ) dτ and is denoted ∂−1

t . The nota-
tion u̇ designates the derivative of u in the sense of
functions. In particular, for a function u continu-
ous except at t = 0 with right and left limits at 0
(Yosida (1980)):

∂tu = u̇ + (u(0+) − u(0−)) δ, (16)

where δ designates the Dirac impulse.

3.2.3. Prefiltering with an invertible convolution
operator

Under constraint (4), model (15) can be trans-
formed by composition with any causal convolu-
tion operator H := H(∂t) with impulse response
h = L−1H , in order to get an equivalent equation
well adapted to identification problems:

(H ◦ ∂2
t ) θ I + (H ◦ ∂t) θ µ0 + H( ∂tw(θ))µ

+(Hθ)K = V 2H(k(θ)) c + h a + h′ b.
(17)

Such a transformation is indeed often used to
mitigate the problem of ill-conditioning of the com-
putation of derivatives from sampled noisy data
(Young (1965b); Mahata and Garnier (2006)) (see
paragraph 3.4).

3.2.4. Case of multiple trajectories

Consider a set of trajectories θj , j = 1 : J ob-
tained with input voltages Vj . The associated ini-

tial conditions are denoted θj
0 and θj

1, and the coef-
ficients defined in section 3.2.2 are denoted aj and
bj. Then, without any change of notations, model
(17) can be extended to the general case of multiple
trajectories simply by defining:

θ = (θ1, ..., θJ)T ,

θ0 = (θ1
0, ..., θ

J
0 )T , θ1 = (θ1

1 , ..., θ
J
1 )T ,

a = (a1, ..., aJ)T , b = (b1, ..., bJ)T ,

w(θ) =







w1(θ
1) w2(θ

1) · · ·
...

...
w1(θ

J ) w2(θ
J ) · · ·






,

k(θ) =







k1(θ
1) k2(θ

1) · · ·
...

...
k1(θ

J ) k2(θ
J ) · · ·






,

and V =







V1 0
. . .

0 VJ






.

(18)

3.2.5. Synthetic formulation

In model (17), parameters are linearly involved
and can be identified up to a multiplicative constant
(model with one degree of freedom): it is necessary
to know one of the parameters to be able to fix the
other ones. So in the sequel, the coefficients to be
identified will be I, µ, K, c (and possibly a, b for
initial conditions) while, for simplicity:

µ0 = 1. (19)

The vector:

λ := (I, µ, K, c, aT , bT )T ∈ E (20)

with E := R×ℓ2 × R×ℓ2×R
2J , is the vector of pa-

rameters to be identified. The exact (but unknown)
value of λ will be denoted λ0.
For convenience, the following operators will be
used:

H1 := H ◦ ∂t and H2 := H ◦ ∂2
t . (21)

Thus, the vector operator Aθ : E −→ L2(0, T ; RJ)
will be defined by:

Aθ =
[

H2θ H1 (w(θ)) Hθ −V 2H (k(θ)) −h −h′
]

(22)
and:

bθ := −H1θ ∈ L2(0, T ; RJ). (23)

So under constraint (4), model (17) can be equiva-
lently written under the linear regression form:

Aθλ = bθ. (24)

Remark 4. Note that obviously:

Aθ λ0 = bθ. (25)

Remark 5. For simplicity, all the trajectories θj

are defined on the same [0, T ]. For a more general
formulation, simply take ΠJ

j=1L
2(0, T j) instead of

L2(0, T ; RJ).

3.3. Formulation and resolution of the identifica-
tion problem

The problem is to estimate λ from experimental
data of the form:

θm = θ + η, (26)

with η some additive measurement noise.
5



Such a problem can be expressed as the following
ordinary least squares problem:

min
λ∈E

‖Aθm
λ − bθm

‖
2
L2(0,T ;RJ ) , (27)

whose solution λ∗ is classically given by:

λ∗ = A†
θm

bθm
, (28)

where A†
θm

designates the pseudo-inverse of op-
erator Aθm

, defined by (Ben-Israel and Greville
(2003)):

A†
θm

= (A∗
θm

Aθm
)−1A∗

θm
. (29)

The statistical properties of estimator λ∗ are well
known (Ljung (1987)):

• When the data are noise-free, the estimator λ∗

is exact (thanks to (25)):

A†
θbθ = λ0. (30)

• When the data are corrupted by additive mea-
surement noise, the estimator λ∗ is biased
(Ljung (1987)) because the regressor Aθm

de-
pends on the measurement noise. In this pa-
per, a method of bias estimation is proposed
and described in paragraph 3.5. Several others
methods can be found for example in (Mahata
and Garnier (2006); Young (1970); Söderström
and Mahata (2002); Welsh et al. (2007); Ma-
hata and Garnier (2005)).

3.4. On the prefiltering operator H

The numerical computation of estimator λ∗ ne-
cessitates to compute estimations of Aθm

and bθm

from sampled noisy data. Because some derivatives
are involved in model (3), the composition by a
suitable convolution operator H is in general nec-
essary to identify the system. Different kind of fil-
ters can be considered (Young (1965a); Saha et al.
(1982); Sagara and Zhao (1990); Jemni and Trige-
assou (1996)). In this paper, a state variable fil-
ter (Young (1965b); Mahata and Garnier (2006);
Garnier and Wang (2008)), namely (in this case)
a second order filter (because the maximal degree
of derivatives involved in model (17) is two) ob-
tained by composition of identical first order filters,
is used:

H(p) =
σ2

(p + σ)2
, (31)

with σ > 0 the cutoff frequency. With such a filter-
ing, high frequencies are attenuated (|H(iω)|

2
∼

H.F
1

ω2 ), without low ones being amplified (|H(iω)|
2

∼
L.F

1): thus, the measurement noise is not amplified by
terms (H◦∂t) θ, (H◦∂2

t ) θ and H(∂tw(θ)) in model
(17).

In practice, the cutoff frequency σ > 0 of the
filter is chosen in such a way that ‖Aθm

λ − bθm
‖2

is as ”small” as possible. This value, or even the
transfer function H(p) could also be optimized in
order to minimize the equation error.

Remark 6. If H(∂t) is the filter defined by (31),
then:

(H(∂t)u)(t) = σ2

∫ t

0

(t − s) e−σ(t−s)u(s) ds, (32)

h(t) = σ2te−σt, h′(t) = σ2(1 − σt) e−σt. (33)

3.5. Bias reduction

As said previously, the estimator λ∗ is biased in
presence of noise. A simple empirical methodol-
ogy (useful when the measurement noise is small
enough) is presented here to improve the identifi-
cation accuracy by estimating the bias of λ∗. For
that, the following hypothesis are made:

1) the bias depends continuously on the parame-
ters to be identified;

2) in the identification error λ0−λ∗, the bias term
ελ∗ is dominant;

3) the bias ελ∗ has a small variance compared to
the one of the identification error λ0 − λ∗; in
other words, the bias is little dependent on the
particular trajectory of the measurement noise
(it mainly depends on the noise statistical char-
acteristics).

Hypothesis 1) is physically reasonable and in fact
necessary to get robust identification. Hypothesis
2) can appear rather questionable; but note that if
it is not satisfied, the process described here-after
will be neutral: no improvement will be obtained,
and the identification error will not significantly be
increased. Finally, hypothesis 3) involves some sub-
tle underlying ergodic properties, in general delicate
to state, but which are most of time satisfied in
practice.
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Based on the above properties, a simple method
to estimate the identification bias (and then sub-
tract it from the identified parameter λ∗) is pro-
posed:

• First the identification process is applied on the
available experimental measured data. Thanks
to hypothesis 2), the relation between the exact
parameter λ0, the identified one λ∗ and the
associated bias ελ∗ can be reduced to:

λ∗ ≃ λ0 + ελ∗ . (34)

• Then consider a set of data numerically simu-
lated from the identified model (defined by λ∗),
with the same noise level as the measured ones
(on which the identification process is imple-
mented). The parameters are identified from
this simulated set of data: the new identified
vector of parameters is denoted by λ1.

• Now, thanks to hypothesis 2), the following es-
timation of the bias of λ1 (in fact the opposite
of identification error) can be considered:

ε∗λ1
:= λ1 − λ∗ (35)

which, thanks to hypotheses 1) and 3), is sup-
posed to be close to the unknown value ελ∗ if
the noise level is small enough.

• Then, the identification of vector λ is expected
to be improved by considering the following es-
timator of λ:

λ∗
1 := λ∗ − ε∗λ1

= 2λ∗ − λ1. (36)

This process can possibly be iterated from the new
value λ∗

1, and so on until ελn
stabilizes around 0.

Such a bias reduction will be implemented on
simulated data in order to highlight its efficiency
(see paragraph 5.3).

Remark 7. Because mathematical models used
for identification in general cannot describe all the
complex phenomena involved in physical situations,
in many cases, the bias error can be drowned
in larger errors resulting from such ”structural2”
model imperfections. In such cases, bias reduction
is irrelevant.

2Note that when the model presents some ”structural im-
perfection”, λ∗ 6= λ0 even for noise-free measurements.

4. Numerical Formulation

In the previous section, the continuous time (in-
finite dimensional) identification problem has been
introduced. Now, its numerical resolution is tack-
led.

4.1. Numerical resolution of (27)

First of all, if (13) and (14) are not finite sums,
they must be replaced, for numerical implementa-
tion, by truncations at finite orders L and Q:

k(θj) c ≃
L
∑

l=1

clkl(θ
j) (37)

v(θj)µ ≃

Q
∑

q=1

µqvq(θ
j). (38)

The numbers L and Q must be chosen according
to the best compromise between errors generated
by truncation and errors generated by the presence
of measurement noise, or even by some structural
lacks of the model (which cannot describe the phys-
ical system in its whole complexity). In practice,
such a choice is achieved empirically.

So, k(θ) and w(θ) will now designate the respec-
tive finitedimensional matrices:







w1(θ
1) · · · wQ(θ1)

...
...

w1(θ
J ) · · · wQ(θJ )






(39)

and







k1(θ
1) · · · kL(θ1)

...
...

k1(θ
J ) · · · kL(θJ )






. (40)

The problem (27) is then discretized. Let
{tn}n=1:N be a time discretization3. For any tn:

(Aθλ)(tn) = bθ(tn). (41)

Let E := R × R
Q×R × R

L×(R
J
)2 and Am : E −→

(

R
J
)N

be the block-matrix:

Am: =







Aθm
(t1)
...

Aθm
(tN )






, (42)

3Here again, the same N has been chosen for simplicity.
Possible different Nj associated with θj can be considered
with ad-hoc adaptations.
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where Aθm
(tn) : E −→ R

J is the matrix defined by:

Aθm
(tn) :=

[

(H2θm) (tn) (H1(w(θm))) (tn) (Hθm) (tn)

−V 2(tn) (H(k(θm))) (tn) −h(tn) −h′(tn)
]

.
(43)

Let also define:

bm :=







− (H1θm) (t1)
...

− (H1θm) (tN )






∈
(

R
J
)N

. (44)

Remark 8. The computation of the components
of Am and bm is detailed in Appendix C in the
case where a continuous-time equivalent of θm is
derived from discrete data by means of cubic spline
interpolation (see section 4.2).

The identification problem (27) is then approx-
imated by the following discrete-one (obtained by
application of the rectangles method to the integral
which defines the norm ‖.‖2

L2(0,T ;RJ )):

min
λ∈E

||Amλ − bm||2
(RJ )N , (45)

where ‖c‖
2
(RJ )N =

∑N×J
i=1 |ci|

2
(here the time-step

∆t is supposed to be constant). Its solution is clas-
sically given by:

λ∗ = (AT
mAm)−1AT

mbm. (46)

Remark 9. The dimension of the square matrix
AT

mAm is rather small (equals to the number of co-
efficients to be identified).

Remark 10. If the matrix AT
mAm is ill-

conditioned, standard methods as preconditioning
matrix or penalization parameter can be used (see
section 5).

4.2. Discrete data interpolation

In practice, for any j = 1 : J , a discrete set of
data {θj,k

m }k=1:K is available, where θj,k
m is a mea-

surement (with possible additive noise) of θj(tk) =
θ(tk, Vj) with tk+1 = tk + ∆t. The computation of
the components of Am and bm from these discrete
data is important: depending on the way computa-
tions are made, an error or a deterministic bias can
be generated. To avoid this bias, the filter H has
to be simulated by means of the exponential matrix
method (see Sinha and Rao (1991) and Appendix

C), which depends on the assumption made on the
inter-sample behavior of the signals. Most often,
the sampled signal is assumed to remain constant
or to vary linearly between the sampling instants.
In this paper, a cubic spline interpolation of the set
of data is considered: as cubic splines are both reg-
ular (twice differentiable) and optimal in the sense
of a quadratic functional (see Schumaker (2007) for
details), it makes them robust and efficient for in-
terpolation. So between the sampling instants, the
signals are assumed to be polynomial functions of
degree 3. The computation of the components of
Am and bm with such an assumption is detailed in
Appendix C.

Denote θj
m : t 7→ θj

m(t) the cubic spline interpola-
tion of the set {(tk, θj,k

m )}
k
. Then, the so-obtained

interpolated measured trajectories can be written:

θj
m = θj + ηm + ηi, (47)

where θj is the exact (unknown) trajectory solu-
tion of (17) (with V = Vj), ηm is the (interpolated)
measurement noise and ηi is an additional noise re-
sulting from interpolation errors. In the sequel the
following notation will be used:

η = ηm + ηi. (48)

In the same way, spline interpolations of the sets
{(tk,wq(θ

j,k
m ))}k, and {(tk,kl(θ

j,k
m ))}k are consid-

ered. Then, it follows a continuous-time identifi-
cation problem of the form (27), whose numerical
solution is obtained as described in the previous
section.

Remark 11. The discretization introduced in the
previous section can be different from the set
{tk}k=1:K of measurement times.

5. Application to simulated data

In this section, the method previously described
is implemented on data built from numerical simu-
lations of model (3). The coefficients and functions
have been chosen in the same order of magnitude
than the ones of the experimental system studied
in section 6.

The system of model (3) is considered, with4:

k(θ) =
∑6

l=1
cl kl(θ) where kl(θ) = −θl−1,

v(θ) = µ1 θ3,
(49)

4These choices will be explained in section 6.
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and the following parameters (normalized values,
i.e. µ0 = 1):

I = 3.7 × 10−5,
µ1 = −2.0 × 105,
K = 3.6 × 103,
c = (0.02, −0.7, 304, 2.8 104, 2.2 106, 3.6 107)T .

(50)
The identification method is implemented on sets

of measured data derived from two simulated5 tra-
jectories θj , j = 1, 2 with θj

0 = 0, θj
1 = 0 and

V ∈ {27.4, 28.0} (see Fig. 4); note that 27.4 <

V dyn
pullin < 28.0. The discrete measured data are :

θj,k
m = θj(k∆t) + ηj

k (51)

with ∆t = 2 × 10−5 and {ηj
k}k an additive numer-

ical noise.

Remark 12. Here, the initial conditions are not
identified, that is the components a and b have been
removed from λ, with ad-hoc adaptations.
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Figure 4: Simulated trajectories θ used for identifi-
cation

The identification model is of the form (17) with
v and k defined by (49) and the prefiltering operator
H of the form (31) with σ = 9.0 × 103; this value
has been chosen to be compatible with the problem:

1
tmax

≪ σ ≪ 1
2∆t

.

Because some terms of the model are dominated
by the others (especially the moment of inertia as
explained previously), a preconditioning matrix is
necessary to solve the problem. So instead of (45),
the following least squares problem is considered:

min
Λ∈E

||AmDΛ − bm||2
(RJ )N , (52)

5For simulation, a high precision scheme has been used
in such a way that numerical integration errors remain very
small.

where λ = DΛ, with D a symmetric matrix adapted
to the problem. Its solution is given by:

λ∗ = DΛ∗ = D(DAT
mAmD)−1DAT

mbm. (53)

The matrix D which was used in practice is given
by:

D = diag(10−7, 10−5, 10−2, 10−6, 10−4, 10−2, 1, 1, 1).
(54)

These values have been chosen empirically in order
to make the matrix DAT

mAmD well-conditioned.

In order to globally estimate the identification
quality , the following quantity is considered:

E =

∑

j,k

∣

∣θj∗(k∆t) − θj,k
m

∣

∣

∑

j,k

∣

∣

∣
θj,k
m

∣

∣

∣

(55)

≃

∑

j

∫K∆t

0

∣

∣θj(t) − θm(t)
∣

∣ dt
∑

j

∫ K∆t

0
|θm(t)| dt

; (56)

it represents the cumulated relative error on all the
trajectories used for identification.

5.1. Identification without measurement noise

The case where simulated data are noise-free
(ηk = 0) is first considered; the set of measured
trajectories is then:

θm = {θ1(k∆t), θ2(k∆t)}, (57)

with V1 = 27.4, V2 = 28.0 (that is θj
m are exact

solutions of (3) up to numerical simulation errors).
In this case, as expected, the results are very good:
all the parameters are identified with a maximal
relative error less than 0.5% (note that this identi-
fication error is only due to numerical errors). The
value of the corresponding quantity E is:

E = 1.815 × 10−5. (58)

5.2. Identification with measurement noise

Now, data used are:

θm = {θ1,k
m , θ2,k

m }
= {θ1(k∆t) + η1

k, θ2(k∆t) + η2
k},

(59)

with {ηj
k}k some measurement noises of the form

{εηj
k}k with {ηj

k}k some unity gaussian white noise
sequences and ε = 10−5 (such a value has been
chosen to get {ηj

k}k comparable with the real data
9



case, presented in section 6). Then, the following
identified values are obtained:

I∗ = 3.348 × 10−5,
µ∗

1 = −1.113 × 105,
K∗ = 3.469 × 103;

(60)

the identified electrostatic function k∗(θ) is shown
in Fig. 5. The value of the corresponding quantity
E is in this case:

E = 1.527 × 10−3. (61)

−0.02 −0.015 −0.01 −0.005 0
0

0.05
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0.2
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|k
|

 

 

exact
identified

Figure 5: Exact and identified functions |k|.

The difference between θj and the trajectories θj∗

simulated from the identified model is given in Fig.
6. In spite of the identification bias, this difference
remains small: the identified model closely behaves
like the exact one.

In order to highlight the statistical behavior of
the estimator λ∗, this identification algorithm has
been implemented 12 times with data {θ1,k

m , θ2,k
m },

V1 = 27.4, V2 = 28.0, and 12 times with data
{θj,k

m }j=1:20, Vj610 = 27.4, Vj>10 = 28.0, the noise

{ηj
k}k being different for each j. The dispersion of

the collection of estimates in the two cases is given
in Fig. 7, where one can see the experimental con-
fidence intervals for the components I, µ1 and K of
the estimator λ. As expected, the bigger the data
set, the smaller the intervals.

5.3. Reduction of identification bias

First note that the previous results (cf. namely
Fig. 7) experimentally validate the hypotheses 2)
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x 10
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(a) V = 27.4 V(= V1)
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1

1.5

2
x 10

−5
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(b) V = 28V(= V2)

Figure 6: Error (difference) between θj and the tra-
jectories θj∗ simulated from the identified model.

and 3) of section 3.5. Various numerical results (not
presented here) with different choices of parameter
λ0 validate hypothesis 1) also.

Because the exact value λ0 is known, an estimate
of the identification bias can be determined from
(50), (60) and by using the relation (34), in partic-
ular for parameters I, µ1, K:

εI∗ = −0.35 × 10−5,
εµ∗

1
= 0.887 × 105,

εK∗ = −0.131 × 103,
(62)

and for function k:
∫ 0

α

|k(θ) − k∗(θ)| dθ = 1.921 × 10−4. (63)

Following the process described in section 3.5, a
new identification from data simulated with the
previously identified λ∗ gives:

I1 = 3.080 × 10−5,
µ11

= −1.140 × 105,
K1 = 3.326 × 103,

(64)

10



3.35 3.4 3.45 3.5 3.55 3.6 3.65 3.7
I (x10−5)
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1
 (x105)
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K (x103)

Figure 7: Estimates of I, µ1 and K when the identification is made with 2 or 20 data trajectories (top or
bottom of each figure); the ∗ represents the value to be identified.

and the following bias estimates are:

ε∗I1 = −0.268 × 10−5,
ε∗µ11

= 0.9732 × 105,

ε∗K1
= −0.1424 × 103,

(65)

which, as expected, are clearly close to the values
(62). It gives the following new estimates of param-
eters I, µ1, K:

I∗1 = I∗ − ε∗I1 = 3.616 × 10−5,
µ∗

11
= µ∗

1 − ε∗µ11
= −2.086 × 105,

K∗
1 = K∗ − ε∗K1

= 3.612 × 103.

(66)

The new estimate of function k, denoted k∗
1 , is given

in Fig. 5. As expected, these estimates are much
more precise than I∗, µ∗

1, K
∗, and k∗, the error of

this improved identification being now (with δλ :=
λ − λ∗

1):

δI = 0.0839 × 10−5,
δµ1 = −0.0862 × 105,
δK = 0.0118 × 103,

∫ 0

α
(k(θ) − k∗

1(θ))dθ = 1.191 × 10−4,

(67)

that is more than 10 times smaller than the initial
ones (62). Finally, the relative identification errors
on the system parameters are:

| δI
I
| = 0.0227,

| δµ1

µ1
| = 0.043,

| δK
K

| = 0.0033,
∫

0

α
(k(θ)−k∗

1 (θ))dθ
∫

0

α
k(θ)dθ

= 0.0781.

(68)

6. Application to real measurement data

In this section, the method is implemented on
real data measured on a MEMS like described in

section 2. First the physical system and the model
used for identification are presented. Then the
available measurement data are described. Finally,
the obtained results are presented and commented.

6.1. About the physical system and the model struc-
ture

The MEMS under consideration has flat elec-
trodes as described in Fig. 3, with:

α = −0.0215 rad,
a1 = 150 µm,
a2 = 280 µm,
a3 = 300 µm.

(69)

The width of the mirror is equal to 600 µm and its
thickness is equal to 10 µm (Camon et al. (2008)).

6.1.1. Electrostatic moment

A simplified physical analysis of the electro-
static moment leads to the expression: Me(θ, V ) ∝
V 2 g(θ) with (Camon and Larnaudie (2000)):

g(θ) = −
1

θ2

[

1

1 − a2

a3

θ
α

−
1

1 − a1
a3

θ
α

+ ln

(

1 − a2

a3

θ
α

1 − a1
a3

θ
α

)]

.

(70)
If this expression is reliable, then the electrostatic

moment can be identified under this form by simply
considering (37) with L = 1 and k1 = g. However,
due to several approximations in the physical analy-
sis, the function (70) in fact reveals itself ill adapted
for large values of θ (see Fig. 11 and 12). So, the
whole electrostatic moment is identified by means
of a classical polynomial approximation, that is a
function of the form (37) with:

kl(θ) = −θl−1, l = 1 : L. (71)
11



After empirical tests, the polynomial order was cho-
sen equal to:

L = 6; (72)

it gives a good compromise between the number of
parameters and the identification quality.

6.1.2. Viscosity moment

A linear viscosity term µ0θ̇ is not sufficient to
correctly describe the viscous moment in its whole,
namely when both |θ| and |θ̇| become large6. So, a
nonlinear viscosity term v(θ) = µ1 θ3 is considered
and identified under the form (38) with Q = 1 and:

v1(θ) = θ3. (73)

6.1.3. Filtering operator and initial condition pa-
rameters

As explained in section 3.4, the prefiltering op-
erator H is chosen under the form (31) with σ =
9.0 × 103.

The expression of parameters a and b (see section
3.2.2) depends on the choice of function v(θ). In the
case where v(θ) = µ1 θ3, a and b are given by (see
Appendix B):

a = I θ1 + θ0 +
µ1

4
θ4
0, and b = I θ0. (74)

6.2. Description of the available measurement data

Data have been elaborated from J = 36 mea-
sured trajectories of θ, sampled at frequency 50 kHz
during 10 ms.

The experimental setup is given in Fig. 8; it is
composed of: a laser source, the array of micro-
mirror, a positioning sensor device (PSD), an oscil-
loscope and a function generator. It is placed on
an optical table, and all optical components (laser,
MEMS, PSD) are mounted on positioning stages
with six degrees of freedom. The function gener-
ator is used to generate a periodic square voltage
signal applied to a micro-mirror with a frequency
low enough to capture the complete response of the
mechanical structure. The PSD is composed of four
diodes (two for the X axis and two for the Y axis)
allowing to measure in both perpendicular direc-
tion. At the point of impact, four photocurrents
are generated and the position is determined by the

6The physical reasons of such a behavior are not yet quite
clear. A possible explanation is that when θ becomes close
to α (see Fig. 3), flow of air compressed between the two
electrodes can widely slow down the movement.

ratio of the difference by the sum of these currents.
All measurements are carried out in dark to avoid
parasitic effects of ambient light in the room. The
surface of the PSD used is equal to 4 cm2. It is
positioned in order to ensure a normal incidence at
the middle of the mechanical trajectory and at the
maximum distance to have the maximum precision
on the location of the impact point. The value of
angle θ is deduced from simple trigonometric trans-
formation of the X and Y coordinates of the impact
point. On the oscilloscope, the voltage step applied
to the micro-mirror and the sensors signal in the X
and Y directions are observed in the same window.
Data are stored in the oscilloscope with 105 points
for each channel during a period.

Finally, 36 sets of data {θj,k
m }k=1:K with K = 501

are available. The associated input voltages are
described here-after. During the first 5 ms, the
voltage between electrodes is fixed at a constant
value Vj ; thus, the system either switches or sta-
bilizes at θj

∞ < α. During the next 5 ms, the two
electrodes are at the same potential: the system
then asymptotically returns to its rest position (say
θ = 0, θ̇ = 0). The 36 voltage values Vj are dis-
tributed from 6.085 V to 97.36 V, with Vj < Vj+1.

Two examples of data trajectories are given in
Fig. 9a and 9b. Note, in Fig. 9b, the saturation
zone [0.0045 s, 0.005 s] where θ = α. For identi-
fication, the corresponding points are simply sup-
pressed because they are not compatible with model
(24) (which cannot describe this saturation phe-
nomenon). In the same way, only dynamic parts
of data are used for identification: for example, the
zone [0.0015 s, 0.005 s] in Fig. 9a has not been taken
into account because poorly representative of dy-
namic behaviors. Finally, because of the probable
presence of residual electrostatic charges not taken
into account in the model, the data of the return
phase obtained after a switch to α (that is, for ex-
ample, the zone [0.005 s, 0.01 s] in Fig. 9b) are not
used for identification.
Then, the sets of data effectively used for identifica-
tion are of the form {θj,k

m }k=1:Kj
, with Kj varying

following the part of the trajectory compatible with
model (24).

6.3. Identification results

The model is identified following two different
ways. A first possibility is to identify all the pa-
rameters as it has been presented in section 4. An-
other one consists in using the fact that, thanks to

12



Figure 8: Experimental setup

the particular form of Vj(t) (constant first and then
switching to 0) the identification process can be
split into two steps: in the first one (return to rest of
the mirror), only the parameters I, K, a, b are iden-
tified, while in the second one (stabilization/switch
of the mirror) µ, c are identified with the previ-
ous parameters considered as known (see paragraph
6.3.2 for detailed explanation). As shown here af-
ter, both identifications give quite similar results.

In both cases, the same preconditioning matrix
D as the one used with simulated data (see section
5) is considered.

As in the case of simulated data, bias reduction
can also be relevant. As the structure of the model
considered for identification is reliable7, and be-
cause the noise level added to simulated data (see
paragraph 5) is similar to the one of real measure-
ment data, the context of identification from real
measurement data is close to the one of identifica-
tion from simulated data. Thus, as verified in the
case of simulated data, the bias error is supposed
to be dominant in the identification error (hypoth-
esis 2) of paragraph 3.5), and hypothesis 1) and 3)
are reasonable. So a one-step bias reduction (as
described in section 3.5) is used. The measure-
ment noise is supposed to be white gaussian, with
standard deviation equal to 4.10−5, this value being
computed from data measured when the mirror is
stabilized (i.e. the angle value is constant).

7Moreover all the uncertain parameters or functions are
identified.

6.3.1. Global identification

The algorithm described in section 4 has been
implemented on the sets of data {θj,k

m }, j = 8 :
20, associated with Vj ∈ [18.25 V, 31.64 V]: only
significant data (see section 6.2) of the first 5 ms are
considered. The initial conditions are not identified
(the system is initially at rest).

After bias reduction, the following identified pa-
rameters are obtained:

I∗ = 1.944 × 10−5, (75)

K∗ = 3.874 × 103, (76)

µ∗
1 = −5.061 × 105, (77)

c∗ =

















0.0208
−1.0252
217.228

9.950 × 103

3.0043 × 105

−4.2838 × 107

















. (78)

As said previously, the parameters are identified
up to the multiplicative constant µ0. To deduce the
physical parameters from the identified quantities,
the value of one parameter has to be known (or
computed): then all the others physical quantities
will be deduced from this value. For example, from
the dimensions of the MEMS (see Fig. 3) and the
density of silicon (2.33 × 103 kg/ m3), the physical
value Ĩ of inertia moment can be computed:

Ĩ = 2.693 × 10−16 Nms2/ rad (computed); (79)
13



(a) V = 18.25 V < V
dyn

pullin

(b) V = 28.72 V > V
dyn

pullin

Figure 9: Data θj,k
m for different values of Vj

the deduced values of µ̃0 and K̃ are then given by:

µ̃0 =
Ĩ

I∗
µ0 = 1.385×10−11 Nms/ rad, (80)

K̃ =
Ĩ

I∗
K∗ = 5.366 ×10−8 Nm/ rad, (81)

and the same for µ∗
1 and c∗.

The cumulated relative error E on the trajecto-
ries used for identification and the cumulated rela-
tive error Ẽ extended to all the available measure-
ment trajectories (thus including prediction errors)
are:

E = 0.0071 and Ẽ = 0.0095; (82)

it highlights the good precision of the identification
process.

In Fig. 10a and 10b some examples of trajecto-
ries obtained with the identified model for V10 =
20.69 V < V dyn

pullin < V18 = 29.82 V are given. The
trajectories fit well the measured data.

The identified function k∗ is given in Fig. 11 and
compared8 with its physical approximation g (given

8The comparison is made up to a multiplicative coefficient
such that k∗(0) = g(0).

by (70)), which clearly reveals itself inadequate for
deviations of θ close to α. For illustration, an ex-
ample of simulated trajectory when the function k
is under the form (70) is given in Fig. 12: the
model does not fit with the data, contrary to the
case when k is fully identified (see Fig. 10b).
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(a) V = 20.69 V
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(b) V = 29.82 V

Figure 10: Measured trajectories and the associated
θ simulated from the identified model for two values
of V

Finally, in Fig. 13 (respectively in Fig. 14),
the measured and simulated stabilization/switching
times (respectively angles) of the MEMS are com-
pared, depending on the input voltage: the identi-
fied results fit well with the measured ones.

6.3.2. Split identification

The identification is now split into two steps. In
the first one, only the part of the measured tra-
jectories associated with Vj(t) = 0 is considered,
that is the return motion (to the rest position) from
initial conditions reached at time where the input
voltage switches to 0. During this part of the mo-
tion, no electrostatic moment acts on the system
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Figure 11: Absolute values of the identified k(θ∗)
and of its theoretical estimation (70).
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Figure 12: Measured trajectory and the associated
simulated θ when k(θ) is identified under the form
(70) (V = 29.82 V).

and so, due to the weakness of the spring moment
compared to the electrostatic one when θ is close to
α, the velocity θ̇ remains small. Consequently, the
nonlinear component of Mf(θ, θ̇) is not significantly
solicited and the parameter µ1 is not identifiable.
From these sets of data, parameters I, K and, of
course, the initial conditions (through parameters
a and b) can be identified.

In the second step, the other part of the measured
trajectories (associated with Vj(t) > 0 and begin-
ning from the rest position) is used to identify the
other parameters, that is µ1 and c. The previously
identified parameters I and K are now considered
as ”known” parameters.

The results obtained by such a split identification
are presented here-after.
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Figure 13: Stabilization (for V < V dyn
pullin) or switch-

ing (for V > V dyn
pullin) time T for different values of

V

First step: identification of I, K, a, b. Because
V = 0, the identification model reduces to:

(H◦∂2
t )θ I +(H◦∂t)θ µ0 +Hθ K = h a+h b′, (83)

and the vector parameter to be identified is:

λ := (I, K, aT , bT )T . (84)

For this identification, only data associated with
Vj = 18.25 V, 19.47 V and 20.69 V are considered.
The so-identified parameters are:

I∗ = 2.077 × 10−5,
K∗ = 3.894 × 103.

(85)

In Fig. 15, the trajectory obtained with the iden-
tified model (83) for V = 20.69 V is given.

Second step: identification of µ1, c. The initial con-
ditions are now equal to 0. The parameters I and
K are supposed to be known and equal to I∗, K∗

previously determined. The vector parameter to be
identified is now9:

λ := (µ1, c
T )T . (86)

The identified value of µ1 obtained by the identifi-
cation process is:

µ∗
1 = −5.117 × 105. (87)

9ad-hoc transformations of matrix Am and vector bm

must be achieved, that is the components relating to I and
K are now included in bm.
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Figure 14: Stabilization angle for different values of
V
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Figure 15: Measured return trajectory and the
associated θ simulated from the identified model
(V = 20.69 V).

The cumulated relative error is now: E = 0.0072
(similar to section 6.3.1).
The closeness of these new identified values to the
ones obtained in section 6.3.1 highlights some ro-
bustness of the method.

6.3.3. Prediction results

As a validation test, some results obtained in pre-
dictive situation are given here after. In Fig. 16
some data which have not been used for identifica-
tion are compared to their associated trajectories
predicted by the identified model. Here again, all
the trajectories fit measured data with a high accu-
racy.

Note that the input value V 2
max = V 2

36 = 97.362

used for the prediction test is far from the ones
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(a) return trajectory with V = 12.17 V
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(b) V = 13.39 V
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(c) V = 42.60 V
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(d) V = 97.36 V.

Figure 16: Measured trajectories and the associated
θ predicted by the identified model for different val-
ues of V
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used for identification (whose maximal value is

V 2
20 = 31.642); indeed,

V 2
36

V 2
20

≃ 10. In such a situa-

tion, significant identification errors on the system
parameters would generate large prediction errors;
in the present case , the predictive results remain
good and confirm the identification accuracy.

7. Conclusion

In this paper, an identification method for a non-
linear dynamic model of electrostatically actuated
MEMS is proposed, using operatorial prefiltering to
take advantage from the linearity with respect to
the parameters to be identified. This method was
first validated on noised simulated data, and then
applied to real measurement data. In both cases,
the results are quite good, and the identified model
is relevant and accurate, even in prediction situ-
ations. An iterative bias-reduction procedure was
established to enhance the identification quality.

The accuracy of the so-identified model suggests
several applications in the future. Namely, a high
precision tension reference can be built by control-
ling the micro-mirror around its semi-stable bifur-
cation point.

A. Analysis of model (3)

When V is constant, by considering the electro-
static and spring moments given in Fig. 17, equilib-
rium states are obtained when the electrostatic and
the spring moments are balanced. As highlighted
in Fig. 17, there exists a ”pull-in” voltage Vpullin

such that:

• if V < Vpullin, there are two equilibrium points.
It can be shown that the first one is stable and
the other is unstable ((θ, θ̇) stabilizes on the
stable one, see Fig. 9a);

• if V = Vpullin, there is one unstable equilibrium
point;

• if V > Vpullin, there is not any equilibrium
point: the system ”switches” (θ goes to the
saturation value α, see Fig. 9b).

In the case where friction moments are neglected,
the three associated phase portraits (that is the tra-
jectories of (θ, θ̇)) are given in Fig. 18.
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Figure 17: Absolute values of spring moment and
electrostatic moment (e.m.) for different values of
V .

In the case where V < Vpullin, three different be-
haviors can occur depending on the initial point
(θ0, θ̇0) (here taken equal to (0, 0)) and the equilib-
rium ones (see Fig. 19). If the stable equilibrium
point is far enough from the initial condition, then
θ goes to α (the system switches), whereas in the
opposite case, θ does not reach the switching value.
In that sense, the limit case is a bifurcation whose
associated ”dynamic pull-in” value of V is denoted
by V dyn

pullin < Vpullin.

Remark 13. The analytical expressions of V dyn
pullin

and Vpullin are in general impossible to compute ex-
actly because they depend on the expression of the
electrostatic moment (non necessarily known), and
so on the configuration of the physical system. In
some cases however, their expressions can be com-
puted. For example, in the case of inclined elec-
trodes (Camon and Larnaudie (2000)), the expres-
sion of the electrostatic moment is fairly simple:

Me(θ, V ) = −
k V 2

(α − θ)2
, (88)

with k > 0 depending on the physical parameters.
When the viscous friction forces are neglected, the
analytical expressions of V dyn

pullin and Vpullin are then
given by:

Vpullin =

√

−
8α3K

27k
, V dyn

pullin =

√

−
α3K

4k
, (89)

and the maximal stabilization angle from initial
condition (0, 0) (reached for V = V dyn

pullin) is equal
to α

2 .

Remark 14. When the viscous friction forces are
neglected, it can be shown that whatever the
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Figure 18: Phase portraits according to the value of V (the viscous friction forces are here neglected).

Figure 19: Trajectories according to the value of V < Vpullin.

electrostatic moment expression is, the ”switching
time” T such that θ(T ) = α can be expressed for

any V > V dyn
pullin by:

Tswitch(V ) =

∫ α

0

1

−
√

V 2 κ(θ) − 1
2Kθ2

dθ, (90)

where κ(θ) is the antiderivative of k(θ) such that
κ(θ0) = 1

2V 2 (Iθ2
1 + Kθ2

0).

B. Equivalence between models (3,5) and
(15)

Consider the two models (3,5) and (15).

Let first suppose θ is solution of (3,5). After two
integrations between 0 and t of equation (3), it fol-
lows:

I θ(t) + µ0 ∂−1
t θ(t) + ∂−1

t w(θ)(t) + K ∂−2
t θ(t) =

V 2 ∂−2
t k(θ)(t) + I θ0 + (I θ1 + µ0 θ0 + w( θ0))t,

(91)
where w is the antiderivative of v such that w(0) =
0 and ∂−2

t := ∂−1
t ◦ ∂−1

t . In the sense of distribu-
tions:

∂t ◦ ∂−1
t = 1, ∂t1R+ = δ and ∂tδ = δ′; (92)

thus, composition of (91) with ∂2
t leads to (15) with:

a = I θ1 + µ0 θ0 + w( θ0) and b = I θ0. (93)
18



Conversely, let show that if θ is solution of (15)
then θ is solution of (3,5).

If θ is solution of (15), then θ obviously verifies
equation (3) for all t > 0. By denoting

θp = ∂tθ −
b

I
δ, (94)

equation (15) can be written under the form:











∂tθp = 1
I
(V 2 k(θ)−µ0θp−Kθ) + 1

I
(a − µ0

b
I
)δ

− 1
I
∂tw(θ),

∂tθ = θp + b
I
δ,

(95)
which gives after composition with ∂−1

t and for
t = 0:

{

θp(0) = 1
I
(a − µ0

b
I
− w(θ(0))),

θ(0) = b
I
,

(96)

that is, with (93): θ(0) = θ0 and θp(0) = θ1. Then

it follows: θp = ∂tθ − θ(0)δ, that is θp = θ̇ and so

θ̇(0) = θ1.

C. Computation of the components of Am

and bm

If θm, w(θm) and k(θm) are assumed to be some
piecewise polynomial functions of degree 3, the
components of Am and bm can be analytically com-
puted. These computations only necessitate to
know how to compute Hu, H ◦ ∂tu and H ◦ ∂2

t u
when u is a cubic spline.

Let denote by G the operator σ(∂t + σ)−1 and
H =σ2(∂t + σ)−2 = G ◦ G. Let u be a piecewise
polynomial function of degree 3, that is a function
of the form:

u(t) =

N−1
∑

n=0

3
∑

k=0

uk,n (t − tn)k1[tn,tn+1[(t). (97)

C.1. Computation of Hu and Gu

For any function u:

(Gu) (t) = σ

∫ t

0

e−σ(t−s)u(s)ds,

(Hu) (t) = σ2

∫ t

0

∫ s

0

e−σ(t−r)u(r) dr ds,

(98)

and so:

(Gu) (tl) = e−σ∆t (Gu) (tl−1)

+σe−σtl

∫ tl

tl−1

eσsu(s)ds,

(Hu) (tl) = e−σ∆t (Hu)(tl−1)

+σ2e−σtl

∫ tl

tl−1

∫ s

0

eσru(r) dr ds.

(99)
If u is defined by (97), then:

∫ tl

tl−1

eσsu(s)ds =
∑3

k=0
uk,l−1 eσ tl−1 Ik(∆t),

∫ tl

tl−1

∫ s

0

eσru(r) dr ds=∆t
l−2
∑

n=0

eσtn

3
∑

k=0

uk,n Ik(∆t)

+eσtl−1

3
∑

k=0

uk,l−1

∫ ∆t

0

Ik(z)dz.

(100)

where Ik(x) =

∫ x

0

eσrrk dr. The expression of

Ik(x) is given by the following induction:
{

Ik(x) = xk eσx

σ
− k

σ
Ik−1(x),

I0(x) = 1
σ
(eσx − 1),

(101)

and so it follows:


















∫ ∆t

0

Ik(z)dz = 1
σ

Ik(∆t) − k
σ

∫ ∆t

0

Ik−1(z)dz,

∫ ∆t

0

I0(z)dz = 1
σ
(I0(∆t) − ∆t).

(102)

C.2. Computation of (∂t ◦ H)u and (∂2
t ◦ H)u

Because Hu = σ(∂t +σ)−1◦G u = σ2(∂t +σ)−2 u,
it follows:

(∂t ◦ H)u = σ Gu − σHu,
(∂2

t ◦ H)u = σ2 u − σ2Hu − 2 σ (∂t ◦ H)u.
(103)
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