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Abstract. One of the important basic issues of bifurcation theory is the determination

of the set of the fixed points of non-linear evolution equations as a function

of its parameters. The branching of branches of solutions rarely occurs in

real applications for which imperfections tend to distort these sharp tran-

sitions. Furthermore, bifurcation theory may a priori indicate that there

are disjoint branches of solutions. In the present work, the truss arch sys-

tem is considered and described. The bifurcation diagram is carried out

numerically. It is shown that the truss arch system is a simple example

of coexistence of disjoint branches. Moreover, it is shown that the emer-

gence of the subcritical bifurcations of the non-shallow configuration is the

result of the connection of these disjoint branches. The analytic solutions

are derived and the connection of the branches is studied.

Keywords:

1 Introduction

One of the important basic issues of bifurcation theory is the determination of the set of
the equilibrium points of non-linear evolution equations as a function of its parameters.
As a first approach, the bifurcation theory may be seen as the study of the branching of
the solutions of the corresponding set of equations:

A(u, µ) = 0

where u ∈ R
n and µ ∈ R

p are the vectors of the unknowns and parameters respectively,
A : Rn×R

p → R
n is a nonlinear operator with n ≤ +∞. From this point of view, one may

see the branching as a perfect bifurcation. Infinitesimal changes in a control parameter of
such a nonlinear system may yield large and sudden changes of the behaviour of the system.
For example, the snap buckling of the elastic rods or shells are well known examples of
jump phenomena (See e.g. [1]). We refer to [2] for an up-to-date state of the art.
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Nevertheless, the branching of solutions rarely occurs in real applications for which
imperfections tend to distort these sharp transitions [3]. A typical example is the imper-
fect pitchfork bifurcation occurring in the wind-driven ocean flows [4, 5]. Furthermore,
bifurcation theory may a priori indicate that there are disjoint branches of solutions [6].
It seems relevant to distinguish between the branching or local bifurcations which can be
entirely analysed through the stability properties of equilibria as parameters cross through
critical thresholds and the global bifurcations which often occur when larger invariant sets
collide with each other or with equilibria of the system. The latter cannot be detected
purely by a local stability analysis of the fixed points. Examined in a larger parameter
space, the catastrophe theory reveals that such bifurcation points tend to occur as part
of well-defined qualitative geometrical structures [7]. The most complete set of the fixed
points is thus desirable.

In the present paper, the truss arch system is considered and described in section
§2. The bifurcation diagram carried out numerically [10, 9, 8] is described in §3. It is
shown that the truss arch system is a simple example of coexistence of disjoint branches.
Moreover, it is shown that the emergence of the subcritical bifurcations of the non-shallow
configuration is the result of the connection of these disjoint branches. In section §4, the
analytic solutions of the equilibria of the truss arch system are derived while in §5 the
connection of the branches is modelized and analysed.

2 Formulation

Let us denote E and A the Young moduli and the area of the sections of the elastic rods
of the truss arch system. Let (xi, yi) for i = 1, 2, 3, be the coordinates of the left and right
hinge supports and of the upper point before loading F = 0. We denote by (x, y) the
coordinates of the point 3 for a given vertical load |F | > 0. Without any loss of generality,
we set: x3 = y3 = 0 and we note: x2 = a, x1 = −a, y1 = y2 = h. According to dimensional
analysis (See e.g. [11]), we define the dimensionless unknowns and parameters:

U (X ≡ x/h, Y ≡ y/h) , Λ (t ≡ a/h, f ≡ EAF/EA) and r = t−1.

The equilibria of the arches are the fixed points of the following
dimensionless operator A(U,Λ) such that:









(

1

L̂1

− 1

L1

)

(X+t) +

(

1

L̂2

− 1

L2

)

(X−t)

f +

(

1

L̂1

− 1

L1

)

(Y −1) +

(

1

L̂2

− 1

L2

)

(Y −1)









(1)

where the dimensionless lengths of the rods at rest and for a given vertical load f respec-
tively are:
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L=L1=L2=
√

t2+1,(2a)

L̂1=

√

(X+t)2+(Y −1)2,(2b)

L̂2=

√

(X−t)2+(Y −1)2.(2c)

The system is conservative and the potential V is such that:

∀K ∈ R, V (U,Λ) =

2
∑

i=1

(
L̂2
i

2Li
− L̂i)− fY +K.(3)

Given (U0,Λ0) a fixed point of a branch of the operator A, let δU be a perturbation
with respect to U. The potential V (U0+δU,Λ0) is such that:

V (U0 + δU,Λ0) ≃ V (U0,Λ0)−
1

2
δUt DUA (U0,Λ0) δU.

Let (vi)i=1,2 be a eigenvectors basis of the symmetric jacobian matrix DUA . For each
δU = εvi, it follows :

V (U0 + δU,Λ0) ≃ V (U0,Λ0)−
1

2
ε2σivi

tvi

where σi is the eigenvalue corresponding to the eigenvector vi. Hence, an equilibrium is
unstable if one of the eigenvalues of the jacobian matrix DUA is positive.

3 Bifurcation Diagrams

The behavior of truss arches depends on the aspect ratio r. The bifurcation diagram of
shallow and non-shallow truss arches is numerically computed [10, 9, 8] and studied. In
order to carry out the set of the fixed points as comprehensively as possible, a unified
computational approach is used. Starting from a known fixed point, a branch is carried
out with Newton–Raphson algorithm with continuation (See e.g. [12, 13, 14]). The disjoint
branches are reached using residue continuation [10, 9].

The leading eigenvalues associated with the bifurcations and loss of stability are com-
puted using QR algorithm [15] (See e.g. [16]) as a stable (resp. unstable) state correspond
to negative (resp. positive) value of the eigenvalue of the jacobian matrix or, equivalently,
a minimum (resp. maximum) of the energy (See §2). In the bifurcation diagrams, the solid
and the dashed lines denote the stable and unstable parts of a branch respectively. For the
latter case, only one real mode is stable. A critical value of a parameter is labeled with the
corresponding bifurcation name. For example, fb1 is the critical load at the bifurcation
b1.

This paragraph shows that the set of the equilibria of the truss arch system is com-
posed of two subsets: the snap-through and the conchoidal solutions. Below the critical
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threshold rrs, the two subsets are disjoint as illustrated in §3.1. The two subsets collide
and connect at the threshold as illustrated in Figure 2 in §3.2. Above the threshold, the
corresponding connection leads to the creation of four subcritical bifurcations and the
split and recombination of both conchoidal branches into a inner and an outer snap with
rotation toward or around the hinge support as briefly described §3.3.

3.1 Shallow truss arches

For shallow configuration, there is not one branch (see e.g. [1, 17, 9]) but three disjoint
branches which connect for non-shallow case. For example, Figure 1 depicts the bifurcation
diagram for an aspect ratio equal to one.

Branch #1, along which X = 0, is the well known catastrophic snap-through phe-
nomenon described as it follows. Starting from rest (f= 0) on Branch #1, the rods are
compressed as a function of a vertical load (f > 0). At the critical load fb1, the saddle-
node point b1 is eventually reached. The corresponding equilibrium is half-stable. The
system snaps down towards the stable point c. From the equilibrium c, the decrease of the
load yields to the critical value fb2. Again, from the saddle-node b2, the system jumps up
towards the stable equilibrium d. One highlights that the two saddle-node bifurcations b1
and b2 lead to a hysteretic behavior as a function of the load f .

Disjoint Branches #423-2 and, symmetrically, #423-1 are unstable. We named these
branches in accordance with the split in three parts (4, 2 and 3) that will emerge from
connection in non-shallow configuration (See 3.2, 3.3 and 5). Furthermore, we labeled
”-1” the left branch that is for X < 0 and symmetrically ”-2” the right branch that is for
X > 0. Both disjoint Branches straddle the horizontal line between the hinge supports:
Y =1. The apparent ”cusp” points (X=±t, Y=1) are the positions of the hinge supports for
which the two rods are horizontal and either the left or right one is infinitely compressed.
At the fold points (X=±L, Y=1), the compression of one horizontal rod counterbalances
the traction of the other.

3.2 Connection

Figure 2 depicts the evolution of Branch #423-2 as a function of the aspect ratio r within
the range [0.7, 2.5]. As the aspect ratio increases, the curve #423-2 (symmetrically #423-

1) becomes closer to Branch #1 (X=0) as the abcissa of the fold point equal to L=
√

1 + t2

tends towards one. It is a part of a continuously deformed conchoid that straddles the
horizontal line (Y =1). Eventually, for rrs, disjoint Branch #423-2 (and symmetrically
#423-1) collapses on Branch #1 throught two cusps. The connection of Branches #423-2
and #423-1 give rise to the three unstable branches #4, #2 and #3 and four subcritical
bifurcations, which will be described in the next paragraph. As a matter of fact, Branch
#2 is the result of the connection of the collapsed parts of Branches #423-1 and #423-2
turning round the hinge supports. Branch #3 (resp. #4) is the result of the connection
of the collapsed parts of Branches #423-1 and #423-2 for which f>0 (resp. f<0) turning
towards the hinge supports.
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Figure 1: Shallow truss arches for r = 1: in (a) and (c), Y and X are plotted versus
the load f , respectively while in (d) the parametric curve (Y (f), X(f)) is shown.
The three graphs are the left, top and front points of view of the three dimensionnal
graph (b) respectively. A solid and dashed linestyle denote the stable and unstable
parts of the branches respectively. For the latter case, only one real mode is stable.
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Figure 2: Shallow truss arches evolution of Branch #423-2 for r ∈ [0.7, 2.5]: in
(a) and (c), Y and X are plotted versus the load f , respectively while in (d) the
parametric curve (Y (f), X(f)) is shown. The three graphs are the left, top and front
points of view of the three dimensionnal graph (b) respectively. The increment of
the aspect ratio between two dashed curves is 0.2. For emphasis, bold dashed curve
is used for r=2.5. The dashed dotted linestyle is used for the critical aspect ratio
r∼2.4≡rrs.

6



3.3 Non-shallow truss arches

We first consider r = 2.4 in the vicinity of the critical aspect ratio (See Figure 3). There
are the four branches #1, #2, #3 and #4 and the six bifurcations: r1, s1 and b1 for
the positive loads and r2, s2 and b2 for the negatives ones. Branch #1 is stable except
between the subcritical bifurcations r1-s1, r2-s2 and between the saddle node bifurcations
b1-b2.

Firstly, the perfectly vertical snap-through can not be observed if one loads from rest.
Indeed, before the saddle-node bifurcation b1, Branch #1 is partly unstable between r1
and s1. The parametric diagram 3(d) shows that the subcritical Branch #2 is a rotation.
The blowing-up behavior induced could be described as it follows. One loads the system
from rest (f=0). At the critical load fr1, the subcritical point r1 is eventually reached.
The corresponding equilibrium is half-stable. While turning round the hinge supports, the
system snaps shortly up and then down, towards the stable point c. From the equilibrium
c, the decrease of the load yields the critical value fr2. Again, from the subcritical pitchfork
r2, the system jumps shortly down and then up to the stable equilibrium f while turning
round the hinge supports. As the vertical snap-through, the so-called outer snap-through
is an hysteresis as a function of the load f .

Secondly, if one increases or decreases the load starting from a value in the range
[fs1, fb1], the hysteretic cycle of the outer snap-through eventually occurs after a perfectly
vertical or inner snap-through towards the hinge supports respectively.

Both vertical and inner snap-through before the outer hysteresis coexist in the range
r ∈ [2.4, 2.7] as soon as the subcritical pitchfork s1 occurs before b1 in this range. Increas-
ing the aspect ratio from rrs, the s1 bifurcation tends towards b1 and the limit is r=2.7
is a catastrophic cusp point [18, 7]. For higher values, both subcritical bifurcations s1
and s2 are between the saddle node bifurcations b1 and b2 and tend to each other. The
corresponding physical behavior is the outer hysteresis alone as it is described hereafter.

For an aspect ratio equals to five units, Figure 4 depicts Y and X versus the load
f and the parametric diagram Y (f) versus X(f). The double dotted lines denote the
unstable parts of the branch for which the two real modes are stable. There are the four
branches #1, #2, #3 and #4 and six bifurcations: r1, b1 and s1 for f > 0 and r2, b2
and s2 for f < 0. As previously described, the perfectly vertical snap-through would not
be observed loading from rest. The outer-snap through occurs. Nevertheless, neither the
vertical nor inner snap-through are physically realized. Along branch #1, the subcritical
pitchfork bifurcation s1 occurs after b1. The fold point b1 and the subcritical point s1
induce successively one mode and two modes to be stable. Hence, there is no longer a range
of stability after r1. The asymptotic solution [8] highlights the behavior of non-shallow
truss arch system.
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Figure 3: Non-shallow truss arches for r = 2.4: in (a) and (c), Y and X are plotted
versus the load f , respectively while in (d) the parametric curve (Y (f), X(f)) is
shown. The three graphs are the left, top and front points of view of the three
dimensionnal graph (b) respectively. A solid and dashed linestyle denote the stable
and unstable parts of the branches. For the latter case, only one real mode is stable.
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Figure 4: Non shallow truss arches for r = 5: in (a) and (b), Y and X are plotted
versus the load f , respectively while in (c) the parametric curve (Y (f), X(f)) is
shown. The dashed and double dotted linestyles denote the unstable parts of the
branch for which one and two real modes are stable respectively.
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4 Analytic solutions

The numerical picture of the bifurcation diagram described in the previous section is
completed by the analytic expression of the branches: (4) for X = 0 and (5) for X 6= 0
within range of f depending on the value of the aspect ratio stated in Proposition 4.2. The
details of the derivation of the solutions are in appendix §7.

4.1 The vertical snap-through

The case X = 0 deserves the straightforward analysis 7.2. The corresponding analytic
expression of Branch #1 is such that:

X = 0,(4a)

f =
2r

√

1 + r2
(Y − 1)

(

1−
√
1 + r2

√

r2(Y − 1)2 + 1

)

.(4b)

4.2 The conchoidal solutions

The case X 6= 0 is detailed in 7.3. The corresponding analytic expression of Branch #423-1
(X < 0) and Branch #423-2 (X > 0) are such that:

Y − 1 =
λ

r

(

1− r2 + 1

(1 + λ2)2

)

≡ Ŷ ,(5a)

X = ±
√

1 + r2

r
√
1 + λ2

(

1− λ2(r2 + 1)

(λ2 + 1)3

)1/2

≡ X±,(5b)

where

λ ≡ rfL

2
=

f
√
1 + r2

2
.(6)

Following Lemma 7.3 and the solution (5), the definition range of λ depends on the value
of the aspect ratio as stated in the following proposition proved in §7.4.

The definition of range of the solution is such that

If r < rrs then f ∈ ]−fc, fc[,

If r = rrs then f ∈ ]−fc,−frs] ∪ [−frs, frs] ∪ [frs, fc[,

If r > rrs then f ∈ ]−fc,−fs] ∪ [−fr, fr] ∪ [fs, fc[ ,

where

f =
2

√

r2 + 1
λ =

2
√

r2 + 1

√

1− v

v
, v ≡

(

1 + λ2
)−1
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and with

λc =

√

−1 +
√

1 + r2,(7)

rrs =

√
23

2
, vrs =

25− 2r2rs
3 (1 + r2rs)

,(8a)

r > rrs, vs =
2

3
cos

1

3

(

arccos

(

2r2 − 25

2 (r2 + 1)

)

− 2π

)

+
1

3
,(8b)

vr =
2

3
cos

1

3
arccos

(

2r2 − 25

2 (r2 + 1)

)

+
1

3
.(8c)

5 Connection scenario

The present section intends to complete the global bifurcation diagram carried out with
numerical tools in §3. The critical values of the parameters are explicitly derived in
§5.1 from the conchoidal solution in §4. The scenario of connection is studied where a
connection refers to the emergence of the separatrices of two families of curves depending
on a control parameter. The connection scenario in §5.3 will result from the construction
of the Ehresmann Connection [19] (See [20]) naturally associated with the problem in §5.2
and which is such that:

dsa = −Aa
αdr

α(9)

where sa and rα denote the vertical and horizontal components of the connection respec-
tively, namely:

(

s1

s2

)

≡
(

X
f

)

,

(

r1

r2

)

≡
(

t

Ŷ

)

.

5.1 Critical values

Following Proposition 4.2, rrs defined in (8-a) is the critical value of the aspect ratio of the
connection of Branches #423-1 and #423-2 with Branch #1. The branches respectively
correspond to the analytic solutions (X−, Y ), (X+, Y ) and (X=0, Y ) defined in (4) and
(5). The so-called connection aspect ratio rrs is a global critical value of the parameter.
Below the connection threshold, the three branches #1, #423-1 and #423-2 exist and are
disjoint.

The C1 connection is realized for r = rrs with |λ| ∈ [0, λrs] ∪ [λrs, λc[. As defined in
(56-b), the polynomial θ is null at λrs=

√
2/2, that is X± = 0. Hence, Branches #423-1

and #423-2 both connect on Branch #1 through two points corresponding to the critical
loads such that

f±
rs = ± 2λrs

√

1 + rrs2
= ±2

√
6

9
,

11



as it is depicted in Figure 2.
Using the parametrization (r, λ) 7→ (X(r, λ), Y (r, λ)), the expressions (56) and (57)

lead to

∂λX
± = ∓1 + r2

r

√

v3(1− v)
ζ(v)
√

vθ(v)
(10a)

with ζ(v) ≡ 4v3 − 3v2 +
1

1 + r2
= θ(v) + vθ′(v)(10b)

∂λY =
v3

r
F

(

1

v

)

(10c)

where v ∈]0, 1] at the most. The functions X± and ∂λX
± (resp. Y and ∂λY ) are even

and odd (resp. odd and even). Elementary computations show that ζ has positive roots
if and only if r ≥ rkp =

√
3 such that :

vk =
1

2
cos

Ψ− 2π

3
+

1

4
< vc,(11a)

vp =
1

2
cos

Ψ

3
+

1

4
,(11b)

with Ψ = arccos
r2 − 7

(r2 + 1)
.

In a nutshell, the classification of the roots of θ and ζ is

0 < vk < vc =
1√

1 + r2
< vs ≤ vp ≤ vr ≤ 1.(12)

As far as the behaviour of X±(r, λ) at the critical value λ = λrs is under focus and as
long as vrs is a root for both ζ(v) and θ(v), the roots of these functions should be studied.
Precisely:

θ(v) = 0 ⇐⇒ τ2 = f(v) ≡ v2(1− v)(13a)

ζ(v) = 0 ⇐⇒ τ2 = g(v) ≡ v2(3− 4v)(13b)

where τ2 ≡ 1

1 + r2
.

Figure 5 depicts the roots of θ and ζ leaning on the curves f(v) and g(v) respectively.
For example, let us consider the primary ordinate τ2 on the left side of Figure 5-a. The
polynomial ζ has two roots: vk and vp and θ has no real positive roots. As τ2 = v2c , the
corresponding abscissa on the curve k(v) is vc and the interval where X± is not defined is
hatched. Eventually, the corresponding value of the aspect ratio is the secondary ordinate
of this abscissa vc on the curve h(v) on the right edge of the figure. The corresponding
propositions and proofs are detailed in appendix 8.

One may remark that the map (r, v) 7→ X±(r, v) is not C1 in the vicinity of (rrs, vrs),
that is

lim
v→v±rs

∂λX
±(r(v), v) = 0 6= ∂λX

±(λrs, v
±
rs).
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(a) rkp < r < rrs

(b) r = rrs
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Let us consider the shallow configuration. If r < rrs, v ∈]vc, 1] equivalently reads
λ ∈ [0, λc[. The curves (X+(λ), Y (λ)) and (X−(λ), Y (λ)) are C1 distinct branches. They
are maximal curves. Taking into account the symmetries of (56), we focus on X+ and
λ > 0. There are obviously two cases: if the value of λ is either greater or lower than√
2/2. The corresponding critical aspect ratio is such that:

ri ≡
√
5

2
.

The critical value ri is the limit between concave and corbelled X±-curves. Therefore,
we may distinguish three caracteristic subsets of the aspect ratio (See Fig. 6). In the
range 0 < r < rkp, X

+′(λ) > 0. X+ is a concave or corbeled curve if r is less or more
than ri. It has been already described in §3.1 where Figure 2-c depicts X > 0, i.e. X+, as
a function of the load f for values of the aspect ratio within the range r ∈ [0.7, 2.5]. We
focus on the east quadrant: λ > 0, that is f > 0. The critical value ri is the limit between
concave and corbelled X-curves. Equivalently, it is the threshold of invagination of the
parametric curve (See Figure 2-d). In the range rkp < r < rrs, the polynomial ζ(v) has
one real root vp within the range of definition of v. Thus, X+′(λ) has two roots {0, λp}
and X+ is still a corbeled curve as illustrated in Figure 6-c.

Based on the previous asymptotic analysis, the conchoidal solutions are in the set of
piecewise C1 curves depending on the value of the aspect ratio. For all aspect ratio, the
curve (X(λ), Y (λ)) is piecewise C1 and the set where it is C1 is kwown. Therefore, it
remains to glue the C1 branches together.

Firstly, let us focus on the shallow case, that is if r < rrs or λ ∈ [0, λc[. There are
three C1 disjoint branches: #423-1 #423-2 and #1. They respectively correspond to the
analytic solutions (X−, Y ), (X+, Y ) and (X=0, Y ) defined in (4) and (5) that we shortly
denote: X−, X+ and (X=0) with

X+(−λc<λ<+λc) ≡ #423−2
≡ #4−2 ∪ #2−2 ∪ #3−2,

X−(−λc<λ<λc) ≡ #423−1
≡ #4−1 ∪ #2−1 ∪ #3−1.

Secondly, let us consider the connection for which r=rrs. The tangent (X ′(λ), Y ′(λ))
is continuous on the definition range λ ∈ [0, λrs] ∪ [λrs, λc[. Thus, X±(λ) are not C1 on
[0, λc[. Rather, we have six C1 pieces such that

X+ (−λc<λ<−λrs) , X+ (−λrs<λ<λrs) , X+ (λrs<λ<λc) ,

X− (−λc<λ<−λrs) , X− (−λrs<λ<λrs) , X− (λrs<λ<λc) .

Respectively, they could be equivalently denoted

#4−2, #2−2, #3−2, #4−1, #2−1, #3−1.
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(a) r < ri

(b) ri < r < rkp

(c) rkp < r < rrs

(d) r = rrs
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Moreover,

lim
λ7→λrs

−
X+′

(λ) = lim
λ7→λrs

+
X−′

(λ)

X+(λrs) = X−(λrs).

The same holds for λrs replaced by −λrs. Thus X
+ and X− are glued together at λ = λrs

and λ = −λrs as a C1 curve on ]−λc, λc[. Exchanging the roles played by X+ and X−,
X+ and X− are glued together at λ = λrs and λ = −λrs as C1 curve on ]−λc, λc[ which is
the symmetric of the previous one with respect to X = 0. Eventually, there are three C1

connected branches: X = 0, and the separatrices S+ and S− such that

S+ ≡ X+(−λc<λ<−λrs) ∪ X−(−λrs<λ<λrs) ∪ X+(λrs<λ<λc)
≡ #4−2 ∪ #2−1 ∪ #3−2,

S− ≡ X−(−λc<λ<−λrs) ∪ X+(−λrs<λ<λrs) ∪ X−(λrs<λ<λc)
≡ #4−1 ∪ #2−2 ∪ #3−1.

Thirdly, if r > rrs there are four C1 connected branches: X = 0 and

#4 ≡ X+(−λc<λ<−λs) ∪ X−(−λc<λ<−λs)
≡ #4−2 ∪ #4−1,

#2 ≡ X+(−λr<λ<λr) ∪ X−(−λr<λ<λr)
≡ #2−2 ∪ #2−1,

#3 ≡ X+(λs<λ<λc) ∪ X−(λr<λ<λc)
≡ #3−2 ∪ #3−1,

This achieves the description of the connection of the disjoint branches and thus, of the
bifurcation diagram.

5.2 Connection

The present paragraph shows that the connection previously described is actually an
Ehresmann connection [19]. In this appropriate framework, the admissible scenarii will
be modelized in §5.3 . The conchoidal solutions of (1,2) are locally a smooth function of
(

t, Ŷ
)

if

δ ≡ Ŷ 2

(

1

L̂3
1

+
1

L̂3
2

)

− 2

L
6= 0
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where Ŷ was defined in (5).Proof. The system (1,2) equivalently reads:

R̂1

√

(X + t)2 + Ŷ 2 − 1 = 0,(14a)

R̂2

√

(X − t)2 + Ŷ 2 − 1 = 0,(14b)
(

R̂1 −R
)

(X + t) +
(

R̂2 −R
)

(X − t) = 0,(14c)
(

R̂1 −R
)

Ŷ +
(

R̂2 −R
)

Ŷ + f = 0,(14d)

R
√

t2 + 1− 1 = 0,(14e)

with

R̂1 ≡
1

L̂1

, R̂2 ≡
1

L̂2

, R ≡ 1

L1
=

1

L2
.(15)

Let us consider the vector of the unknowns Ū and of the parameters Λ such that

Ū t ≡
(

R̂1, R̂2,X, f,R
)

≡ (U1, U2, R) ,(16a)

Λt ≡
(

t, Ŷ
)

,(16b)

with U ≡ (U1, U2) ∈ R
2 × R

2 and Λ ∈ R
2 and the general form of the system (14):

B(U,R,Λ) = 0.(17)

Following the Implicit Funtion Theorem, the system (14) is a local diffeomorphism if
dB is non-singular. Direct computation yields the following reduced form of the block
decomposition of the differentiated identity:

dB ≡ JdU +KdΛ(18)

=

(

J11 J12
J21 J22

)(

dU1

dU2

)

+

(

K1

K2

)

dΛ = 0.

Notice that
L̂1L̂2 = 0 ⇐⇒ Ŷ = 0 and X2 = t2.

Substituting Ŷ = 0 and X = t (resp. Ŷ = 0 and X = −t) in equation(14-a) (resp. (14-b)),
leads to a contradiction. Thus, J11 is invertible and the solution of (18) is such that

dU1 = −J−1
11 (K1dΛ + J12dU2) ,(19a)

J̃dU2 = −K̃dΛ,(19b)

where δ the determinant of J̃ is such that

δ ≡ Ŷ 2
(

R̂3
1 + R̂3

2

)

− 2R.(20)
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According to the implicit function theorem, if δ is not zero then the solution of the system
is locally a smooth function of (t, Y ). This achieves the proof.

The conchoidal solutions of (1,2) are locally smooth functions of (t, Y ) for X → 0 if
r < rrs. The system exhibits one or two singular points if the value of the aspect ratio r
is equal or greater than the threshold rrs respectively. Proof. Let us focus on the plane
X = 0 where:

L̂ ≡ L̂1 = L̂2 =

√

Ŷ 2 + t2,

R̂ = L̂−1,

δ = −2
(

t2R̂3 − R̂+R
)

≡ −2σ(R̂).

The variations of σ(R̂), immediatly imply that

σ(R̂) = σ′(R̂) = 0 ⇐⇒ r =

√
23

2
≡ rrs and R̂ =

1

trs
√
3
=

rrs√
3
≡ R̂rs.

Thus, system (14) exhibits none, one or two singular points as a function of (t, Ŷ ) in the
plan X = 0 if the value of the aspect ratio r is lower, equal or greater than the threshold
rrs. This achieves the proof.

The singular points as X → 0 of any parametrization of the conchoidal solutions with
f ′(s) 6= 0, are such that

dX

df
=

1

f ′
±(srs)

dt′

dX
(X = 0) if r = rrs ≡ r(srs)

where the index ± denotes the two symmetrical values of the derivative f ′(s). Proof. For
t= trs and R̂= R̂rs, we focus on the vicinity of the connection point (X=0) for which

Ū t ≡
(

R̂rs, R̂rs,X → 0, frs, Rrs

)

,(21a)

Λt ≡
(

trs, Ŷrs

)

.(21b)

with

Rrs ≡
1

√

t2rs + 1
, frs ≡ 2

√
2trs

(

1
√

1 + t2rs
− 1

trs
√
3

)

, Ŷrs ≡
√
2trs.

Following corollary 5.2, the singularity is a point. Thus, the vicinity, without singularity
other than that considered, does exist. Consider a parametrization of a branch of (14):
s 7→ (U(s),Λ(s)). Differentiating (14) with respect to s yields:

J (U(s),Λ(s)) U ′(s) +K (U(s),Λ(s)) Λ′(s) = 0

and, specifically:

J̃ (U(s),Λ(s))

(

X ′(s)
f ′(s)

)

+ K̃ (U(s),Λ(s))

(

t′(s)

Ŷ ′(s)

)

= 0.(22)
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Given any function, vector or matrix g(X), let g(X) = ge(X) + go(X) denotes the de-
composition of g into even and odd parts respectively. The differential equality (22) leads
to

J̃e

(

X ′
e

f ′
e

)

+ J̃o

(

X ′
o

f ′
o

)

+ K̃e

(

t′e
Y ′
e

)

+ K̃o

(

t′o
Y ′
o

)

= 0,(23a)

J̃e

(

X ′
o

f ′
o

)

+ J̃o

(

X ′
e

f ′
e

)

+ K̃e

(

t′o
Y ′
o

)

+ K̃o

(

t′e
Y ′
e

)

= 0.(23b)

As δ is even with respect to X, in the vicinity of the critical value s = srs, we have

J̃e ∼
(

X2σ1(X) 0
0 1

)

for some function σ1 that does not vanish. Therefore, the equation (23-a) equivalently
reads for s=sc:

σ1(X)X ′
e ∼ 2trs

(

3Ŷ 2
rsR̂

5
rs − R̂3

rs

) dt′o
dX

∣

∣

∣

∣

X=0

+ 2R̂rs

(

R̂2
rs − 3t2rsR̂

4
rs

) dŶ
′

o

dX

∣

∣

∣

∣

∣

X=0

=
2

3
√
3t2rs

dt′o
dX

∣

∣

∣

∣

X=0

(24a)

f ′
e ∼ 2 trs Ŷrs

(

R̂3
rs −R3

rs

)

t′e + 2
(

Rrs − t2rsR̂
3
rs

)

Ŷ
′

e

= ±2
√
2 t2rs

(

R̂3
rs −R3

rs

)

t′e + 2
(

Rrs − t2rsR̂
3
rs

)

Ŷ
′

e ≡ f ′±
e .(24b)

The same holds for the equation (23-b) substituting the index o by e and e by o. Therefore,
there results

X ′(srs)

f ′(srs)
=

dX

df
(frs) ∼

X ′
e

f ′±
e

Notice that if X → 0 and t 6= trs, then, δ 6= 0 implies

δX ′
e ∼ −X2

(

Ŷ 2 d

dX

(

R̂3
1 − R̂3

2

)∣

∣

∣

X=0
+ 2tR3

)

dt′o
dX

(0)+

+X2

(

2R̂3
1 + t

d

dX
(R̂3

1 − R̂3
2)
∣

∣

∣

X=0

)

dŶ
′

o

dX
(0) = O(X2),

and thus:

X ′

f ′
=

dX

df
∼ X ′

e

f ′
e

=
O(X2)

f ′
e

→ 0(25)

as lim
X→0

f ′
e|s=srs 6= 0 because the both coefficients with respect to t′e and Ŷ

′

e are not null.

Set the following vectors after the coefficients of (24):

K11 =

(

2

3
√
3t2rsσ1(0)

)

K22 =





±2
√
2 t2rs

(

R̂3
rs −R3

rs

)

2
(

Rrs − t2rsR̂
3
rs

)



(26)
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and consider any connection defined by the differential equality:

dΛ = −





bT1 (X) cT1 (X)

bT2 (X) cT2 (X)





(

dU2

dΛ

)

(27)

where ba ∈ R
2 and ca ∈ R

2 are vector fields on R
2. The following corollary states the

Ehresmann connection naturally associated with the problem.
Consider the connection (27) and assume that

ba(X) = ba(0) +O(X2), a ∈ {1, 2}.(28)

Then, the connection (19-b) is (dX, df)T such that:

−J̃−1K̃

(

dt

dŶ

)

if X 6= 0,(29a)

(

KT
11 0
0 KT

22

)(

c′(0)
I2

)(

dt

dŶ

)

as X → 0,(29b)

where we have set

c(X) =





cT1 (X)

cT2 (X)



 ∈ R
2×2

with c′(0) the derivative of the matrix c with respect to X and I2 ∈ R
2×2 denotes the

identity matrix. Proof. With the notations (16), the identity (27) equivalently reads:

dΛ = −η(X; dU2, dΛ)(30)

where the right hand side of (30) is a differential form with coefficients depending on X.
Then, (24) equivalently reads:

dU2 ∼
(

KT
11 0
0 KT

22

)

(

− ∂η

∂X
(0; dU2, dΛ)

dΛ

)

as X → 0.(31)

Taking into account the hypothesis (28), direct computation yields:
(

− ∂η

∂X
(X; dU2, dΛ)

dΛ

)

=

(

O(X)
0

)

dU2 +

(

−c′(0) +O(X)
I2

)

dΛ.

We conclude after substitution into (31).

The existence of the connection (29) cöıncides with the occurence of two values of the
derivative X ′/f ′ as X → 0, that is,

lim
X→0+

X ′

f ′
=

X ′
e

f ′
e
+

6= lim
X→0−

X ′

f ′
=

X ′
e

f ′
e
−
.

This can be interpreted as the emergence of separatrices at X = 0 between the two families
of curves: Branches #423-1 and #423-2 before connection and Branches #2, #3 and #4
after connection.
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5.3 Scenario

Taking into account of (25), the connection scenarii can be described as it follows.
If
∣

∣X ′/f ′
∣

∣ has a finite positive limit as X → 0 then, the connection links two partner
curves of the family of Branches #423-1 and #423-2. Indeed, the equation (29) yields:

lim
X→0

X ′

f ′
=

K11ac
′
a(0) · Λ′

K22 · Λ′
= ± X ′

e

f ′
e
±

which means that the slope X ′/f ′ is finitely nonzero at the connection on the branch #1
if c′(0) 6= 0. Therefore, the initial curve is transformed through the connection into its
partner curve.

If the limit of
∣

∣X ′/f ′
∣

∣ is zero as X → 0 then the connection links Branch #423-1 or
#423-2 either with Branch #1 or with a partner curve in the family #2, #3 and #4. As
a matter of fact, the same arguments as in the proof of (29) show that, if c(X) = O(X2),
then,

X ′

f ′
∼ XmK11ac

(m+1)
a (0) · Λ′

m! K22 · Λ′
→ 0 as X → 0.

Hence, the initial curve is linked to either Branch #1 or a partner branch in the family
#2, #3 and #4. Initial values at X = 0 are necessary to discriminate between both
possibilities.

6 Conclusion

All or part of bifurcations, singularities and control theories on one hand, and of ho-
mogeneization and catastrophe theories on the other hand, enable to highlight the fun-
damental characteristics of nonlinear dynamics. For a system under focus, one of the
first fundamental step is the determination of the most complete picture possible of the
connected and disjoint subsets of the stable and unstable equilibria. In this work, the
prototype of the truss arch system is considered and studied. The coexistence of disjoint
subsets of equilibria is shown. The corresponding analytical solutions are derived. More-
over, it is shown that the emergence of the subcritical bifurcations of the non-shallow
configuration is the result of a transcritical connection of these disjoint branches in the
sense of Ehresmann [19].

This preliminary work suggests that the present approach might be used in future
works on real systems for which the coexistence of disjoint subsets of equilibria have been
identified or suspected. For example, three well-known cases could be considered. Firstly,
one would may use the present approach for the study of identified isolated branches
of steady states as in the parallel flow (e.g. [22, 23, 24, 25, 26, 27, 28, 29]). Secondly,
the methodology of the present work is likely to be a good candidate for the treatment
of imperfect bifurcation problems, as for example, those of the cylindrical shells or the
reticulated truss shells (e.g. [1, 2, 17, 30]). Eventually, well-known examples of suspected
isolated branches of steady states of industrial interest might be considered as for example,
thermocapillar or rotating flows (e.g. [31, 32, 33]).
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7 Details on the analytic solution

7.1 Preliminary definitions

For Y 6= 1, the system under focus can be seen as the equivalent linear system:

(

X +
1

r

)(

1

L̂1

− 1

L

)

+

(

X − 1

r

)(

1

L̂2

− 1

L

)

= 0,(32a)

(Y − 1)

(

1

L̂1

− 1

L

)

+(Y − 1)

(

1

L̂2

− 1

L

)

= −f,(32b)

where L is such that

L = L1 = L2 =

√

r2 + 1

r
,(33)

and considered together with the geometrical constraints:

L̂1 =

√

(

X +
1

r

)2

+ (Y − 1)2, L̂2 =

√

(

X − 1

r

)2

+ (Y − 1)2.(34)

Direct computation of the linear system (32) yields:

L̂1 =
L

1 + λa
, L̂2 =

L

1− λb
,(35)

where we set

a ≡
(

X − 1
r

)

Y − 1
, b ≡

(

X + 1
r

)

Y − 1
, λ ≡ rfL

2
=

f
√
1 + r2

2
.(36)

There results equivalently:

L̂1 =
L(Y − 1)

Y − 1− λ

r
+ λX

, L̂2 =
L(Y − 1)

Y − 1− λ

r
− λX

.(37)

From the geometrical constraints (34) and from the solution (35) of the linear system,
λ must satisfy the following second order equation:

(a2 − b2) λ2 + 2(a+ b)(1 + ab) λ+ b2 − a2 = 0.(38)
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7.2 The vertical snap-through

The case X = 0 deserves a straightforeward analysis. From the solution (37) of the linear
system on one hand and of the contitutive constraints (34) on the other hand, we get:

λ

r
= (Y − 1)

(

1−
√
1 + r2

√

r2(Y − 1)2 + 1

)

.

This is equivalent to the analytical expression of Branch #1.

7.3 The conchoidal solutions

Firstly, the following lemma is shown. For X 6= 0, the solutions belong to the two horn
surface defined by the following expression :

(Y − 1− d)2 +X2 = ρ2,(39)

where ρ =
f

|f |
1

2r

(

λ+
1

λ

)

and d =
1

2r

(

λ− 1

λ

)

. Proof. Taking the trivial condition

a − b 6= 0 into account and, assuming that a + b 6= 0, that is, X 6= 0, the second order
equation (38) also reads:

λ2 + 2λ

(

1 + ab

a− b

)

− 1 = 0(40)

where ith roots are such that:

λ± = −1 + ab

a− b
±

√

1 +

(

1 + ab

a− b

)2

.

According to the definitions (36) on one hand and, the second order equation (40) on the
other hand, we have:

1 + ab

a− b
= −r

2

(

Y − 1 +
X2 − 1

r2

Y − 1

)

=
1− λ2

2λ

which yields:

(Y − 1)2 +
1− λ2

rλ
(Y − 1) +X2 =

1

r2
,

or, equivalently, the proof of lemma 7.3 is achieved.

Secondly, it is shown that for X 6= 0, the solutions are defined in the following propo-
sition. For X 6= 0, the solutions are such that:

Y − 1 =
λ

r

(

1− r2 + 1

(1 + λ2)2

)

,(41a)

X = ±
√
1 + r2

r
√
1 + λ2

(

1− λ2(r2 + 1)

(λ2 + 1)3

)1/2

≡ X±,(41b)
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where λ ≡ rfL

2
=

f
√
1 + r2

2
. Proof. According to Lemma 7.3, a suitable parametrization

the unknown vector (X,Y ) is such that

X = ρ cos θ, Y − 1 = ρ sin θ + d,

where ρ is a parameter and θ is thus the unique unknown.
On one hand and, noticing that the following relation holds:

ρ2 =
1

r2
+ d2,

the geometrical constraints (34) induce:

L̂2
1 − L̂2

2 = 4ρ
cos θ

r
(42a)

L̂2
1 + L̂2

2 = 4ρ2
(

1− f

|f |

(

1− λ2

1 + λ2

)

sin θ

)

(42b)

where the following identity holds:

d

ρ
=

f

|f |

(

λ2 − 1

λ2 + 1

)

.(43)

On the other hand, from the direct solution (37) of the linear system we get:

L̂2
1 − L̂2

2 = −4L2(ρ sin θ + d)2
(ρ sin θ + d− λ

r )λρ cos θ
(

(ρ sin θ + d− λ
r )

2 − (λρ cos θ)2
)2(44a)

L̂2
1 + L̂2

2 = 2L2(ρ sin θ + d)2
(

ρ sin θ + d− λ
r

)2
+ (λρ cos θ)2

(

(ρ sin θ + d− λ
r )

2 − (λρ cos θ)2
)2(44b)

Taking the identities (33,43) into account, we find that (42-a) and (44-a) induce:

ρ

(

f

|f | − sin θ

)

=
λ

(1 + λ2)2
r2 + 1

r
,(45)

because cos θ 6= 0, that is, X 6= 0. Noticing that

rρ =
f

|f |
(1 + λ2)

2λ
,

thus (45) equivalently reads:

f

|f | − sin θ =
f

|f |
8λ4

f2(1 + λ2)3
.(46)

Furthermore, (42-b) and (44-b) imply:

1 +
λ2(cos θ)2

(

sin θ − f
|f |

)2 = 2(1 + λ2)
( ρ

L

)2
(

2λ2 +
f

|f |
(

1− λ2
)

(

sin θ − f

|f |

))

.
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From the relation:
ρ2

L2
=

(1 + λ2)2

4(r2 + 1)λ2
,

we immediately infere that the left hand side also reads:

1 +

(

f
|f | + sin θ

)

(

f
|f | − sin θ

) .

Hence, we conclude that
f

|f | − sin θ ≡ Z solves the second order polynomial:

1

4

(1 + λ2)3(1− λ2)

(1 + r2)λ2
Z2 +

f

2|f |

(

(1 + λ2)3

(1 + r2)
+ λ2 − 1

)

Z − λ2 = 0.(47)

Considering both cases f > 0 and f < 0 separately, the roots of (47) are compatible with
(46) if and only if:

Z± = Z f

|f |
.

Notice that

Y − 1 = ρ sin θ + d = −ρ

(

f

|f | − sin θ

)

+ ρ
f

|f |

(

2λ2

1 + λ2

)

.

After substitution of (45) and according to the definition of ρ, we get

Y − 1 =
λ

r

(

1− r2 + 1

(1 + λ2)2

)

,(48)

that is (5-a).
Eventually, let us consider the straightforward computation of X2:

X2 = ρ

(

f

|f | − sin θ

)(

2ρ
f

|f | − ρ

(

f

|f | − sin θ

))

,

that is (5-b).

Thirdly, preliminary Lemmas 7.3 and 7.3 enable Proposition 4.2 of the definition range
for λ as it follows. The solution of the linear system satisfies the following constraints:

(Y − 1)

(

Y − 1− λ

r
+ λX

)

> 0 and (Y − 1)

(

Y − 1− λ

r
− λX

)

> 0.(49)

Proof. This is an obvious consequence of the preliminary result:

L̂1 > 0 and L̂2 > 0,(50)

and of the geometrical constraints (37). Indeed, assume that L̂1 = 0 without loss of
generality. Thus, (37) yields that

Y − 1 = 0(51)
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as it is easily shown that the formulas for the linear system extend to Y − 1 = 0. Hence,
according to the definition (34-a) of L̂1, we infer

X = −1

r
.(52)

Substituting the equality (51) in the expression (37) of L̂2, we find that L̂2 = 0. Then,

the definition (34-b) of L̂2 induces: X =
1

r
, which contradicts (52), and (50) holds true.

An equivalent conclusion comes if one considers L̂2 = 0.

The solution of the linear system (32) is defined for λ within the range such that

λ ∈ ]−λc, 0[ ∪ ]0, λc[

where λc =

√

−1 +
√

1 + r2. It extends to λ ∈ ]−λc, λc[ as a solution of (32) for the most.
Proof. First, notice that the analytic expression of Y (48) induces:

Y − 1 = 0 ⇐⇒ λ = 0 or λ = ±λc

where

λc =

√

−1 +
√

1 + r2.

Hence, the solution of the linear system is defined for λ ∈ I1 ∪ I2 ∪ I3 ∪ I4 where we set

I1 = ]−∞,−λc[ , I2 = ]−λc, 0[ ,

I3 = ]0,+λc] , I4 = ]λc,+∞[ .

Furthermore, (49) of Lemma 7.3 holds true in the equivalent form:

(Y − 1)

(

Y − 1− λ

r
± λ|X|

)

> 0(53)

Direct computation yields

Y − 1− λ

r
= −λ

r

(r2 + 1)

(λ2 + 1)2

|X| =
√
r2 + 1

r

1√
λ2 + 1

(

1− λ2(1 + r2)

(λ2 + 1)3

)1/2

.

Substitution in the second term of the inequality (53) yields:

Y − 1− λ

r
± λ|X| = −λ

r

√

1 + r2

1 + λ2

( √
r2 + 1

(λ2 + 1)3/2
∓
(

1− λ2(1 + r2)

(λ2 + 1)3

)1/2
)

(54)

Firstly, consider the case: Y − 1 − λ

r
− λ|X|. Substitution into (53) is equivalent to the

condition
−(Y − 1)λ > 0
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that is,

1− r2 + 1

(λ2 + 1)2
< 0,

which equivalently reads

|λ| < λc =

√

−1 +
√

r2 + 1.(55)

As the right hand side of (5-a) vanishes if and only if λ = 0 or λ = ±λc, the solution
(5) of the linear system actually reduces to λ ∈ I2 ∪ I3. Moreover, direct computation
shows that the resulting (X = ±L, Y − 1 = 0, f = 0) is a solution of (32) as well, while
(Y − 1 = 0, λ = ±λc) yields no solution.

Secondly, the case: Y − 1− λ

r
+ λ|X| yields no extra constraint. Indeed, the identity (54)

is of the form

Y − 1− λ

r
+ |X| = C(Y − 1)

where C is some positive constant depending on λ and r. Therefore, the second case
equivalently reads

(Y − 1)2 > 0

which is automatically realised by definition of a linear system.
This achieves the proof.

7.4 Proof of Proposition 4.2

Proof. The expression of X (5-b) is equivalent to :

X± = ±1 + r2

r

√

v θ(v),(56a)

with θ(v) ≡ v3 − v2 +
1

r2 + 1
(56b)

and where θ must be positive. Moreover, taking into account the symmetry, we focus on
λ > 0. The discriminant of the cubic polynomial θ is such that

∆rs =
1

(1 + r2)2
23− 4r2

27
.

Hence, the critical value of the aspect ratio rrs is defined in (8-a). Straightforward compu-
tations shows that θ has positive roots (8) for r ≥ rrs. Furthermore, taking into account
that the function θ must be positive for λ ∈ [0, λc[ for the most, the proof is achieved
because Y does not induce any constraint as detailed in the following paragraph.

From (5)-a, we deduce that

Y ′(f) =

√
1 + r2

2r

F (u)

u3
(57a)

F (u) ≡ u3 + 3(r2 + 1)u− 4(r2 + 1)(57b)
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where u = λ2 +1. According to Proposition 4.2, the definition range of u is, for the most,
such that

u ∈ [1, uc[ with uc =
√

1 + r2.

The polynomial equation F has one real root um such that

um =
(

r2 + 1
)1/3

[

(
√

r2 + 5 + 2
)1/3

−
(
√

r2 − 5− 2
)1/3

]

.

As Ŷ is an odd function with respect to λ, we consider λ ∈ [0, λc[, that is f ∈ [0, fc[ with:

fc =
2√

r2 + 1

√

−1 +
√

r2 + 1.

Let us consider the example r=1. The analytic expressions of the critical values are
such that

(fm = 0.46, Ym = 0.79) , (fc = 0.91, Yc = 1) ,

as already computed (See Figure 1).

8 Details of the description of the definition range

of f of the conchoidal Branches

The graphs of f and g intersect at v = vrs. Proof. The intersection is defined as the
solutions of the following system

θ(v) = 0 and ζ(v) = 0.

Taking into account that ζ(v) = θ(v) + vθ′(v) and v 6= 0, we find that the set under
consideration reduces to

θ(v) = θ′(v) = 0

which corresponds to double roots for θ(v). Previous results show that this occurs if and
only if r = rrs, that is if and only if v = vrs (See (8)). This achieves the proof.

There exists a mapping v 7→ r(v) such that

lim
v→vrs
v>vrs

r(v) = rrs and lim
v→vrs
v>vrs

X±(r(v), v) = 0.(58)

This result is based on the diagonalization argument which is proved in [21] and stated
as it follows.

Let ε, δ > 0 and f : R
+ × R

+ → R = R ∪ {−∞,+∞}. Then, there exists a mapping
ε → δ(ε), such that lim

ε→0
δ(ε) = 0 and

lim sup
ε→0

f(δ(ε), ε) ≤ lim sup
δ→0

lim sup
ε→0

f(δ, ε).
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As ∂λX
± is of class C0 in some neighbourhood of (rrs, vrs) and the roots vp are con-

tinuous functions of the parameter r, we have :

lim
r→rrs
r<rrs

lim
v→vp(r)

∂λX
±(r, v) = lim

r→rrs
r<rrs

∂λX
±(r, vp(r)) = 0

Proof. The last equality results from the fact that vp is a root of ζ and of (10-a). Thus,
Lemma 8 yields the existence of a mapping v 7→ r(v) that satisfies (58).
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