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Appliquées, Université de Poitiers, Poitiers, France

Ship detection from remote sensing imagery is a crucial application for maritime

security, which includes among others traffic surveillance, protection against illegal

fisheries, oil discharge control and sea pollution monitoring. In the framework of a

European integrated project Global Monitoring for Environment and Security

(GMES) Security/Land and Sea Integrated Monitoring for European Security

(LIMES), we developed an operational ship detection algorithm using high spatial

resolution optical imagery to complement existing regulations, in particular the

fishing control system. The automatic detection model is based on statistical meth-

ods, mathematical morphology and other signal-processing techniques such as the

wavelet analysis and Radon transform. This article presents current progress made

on the detectionmodel and describes the prototype designed to classify small targets.

The prototype was tested on panchromatic Satellite Pour l’Observation de la Terre

(SPOT) 5 imagery taking into account the environmental and fishing context in

French Guiana. In terms of automatic detection of small ship targets, the proposed

algorithm performs well. Its advantages are manifold: it is simple and robust, but

most of all, it is efficient and fast, which is a crucial point in performance evaluation

of advanced ship detection strategies.

1. Introduction

Ship detection from satellite imagery is a valuable tool for the identification of illegal

oil spills and monitoring maritime traffic in the fisheries, and the commercial trans-

portation sector. Fishing, shipping and export of oil and natural gas are some of the

world’s largest industries. To ensure a sustainable development and the safety of

people, a control system must be in place. The vessel monitoring system (VMS) that

relies on a ship-borne component provides the authorities with a continuous mon-

itoring of vessels’ location and movements in real time. However, many ships are not

equipped with these systems, for example smaller fishery vessels and passenger boats

do not have to apply with the existing directives (e.g. European Commission (EC)

directive 2002/59/EC). Remote sensing using EarthObservation can potentially detect

all vessels, that is those with shipboard VMS units, those without VMS units and
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those with faulty VMS units. Satellite imaging might be also useful for remote

monitoring of areas or fisheries where traditional surveillance methods and VMS

are not feasible. Also, the combined use of a VMS and satellite imaging could be more

effective than a VMS alone.

Space-based imaging for ship detection and maritime traffic surveillance has often

formed part of major research efforts in the fields of automatic target detection and

recognition. Basically two remote sensing techniques have been employed for ship

detection: synthetic aperture radar (SAR) with capacity to image day and night

under most meteorological conditions became the state-of-the-art technique for ship

detection (Crisp 2004). Several papers in the open literature treat methods for the

detection of ship targets on SAR data. Inggs and Robinson (1999) investigated the

use of radar range profiles as target signatures for the identification of ship targets and

neural networks for the classification of these signatures. Tello et al. (2004) used

wavelet transform by means of the multiresolution analysis to analyse multiscale

discontinuities of SAR images and hence detected ship targets in a particularly noisy

background. The relative improvement in ship detection performance of polarimetric

SAR was evaluated in comparison with single-channel SAR by Liu et al. (2005). Given

the long history and ongoing interest, there is an extensive literature on algorithms for

ship detection in the literature. However, in terms of operational performance, Zhang

et al. (2006) reported limitations of SAR in identifying smaller ships in inland waters.

Besides, because of the presence of speckle and the reduced dimensions of the targets

compared with the sensor spatial resolution, the automatic interpretation of SAR

images is often complex even though vessels undetected are sometimes visible to eye.

The second technique for ship detection lies on optical remote sensing, which has been

explored since the launch of Landsat in the 1970s. McDonnel and Lewis (1978)

demonstrated the possibility to detect ships of 100-m length using Landsat Multi-

Spectral Scanners (MSS). Burgess (1993) applied Landsat Thematic Mapper (TM)

and Satellite Pour l’Observation de la Terre (SPOT) data to identify smaller ships. In a

recent work, Corbane et al. (2008) developed an approach based on genetic algorithms

and neural networks for the detection and classification of small fishing boats on 5-m

resolution SPOT 5 imagery. Increased false alarm rates (FARs) were obtained when

using this approach on particular types of images with a high percentage of cloud cover

and a cluttered sea background.

Compared to the large amount of investigations on the feasibility of satellite-based

SAR for ship detection purposes, far less research and development activity has taken

place in automatic detection and classification of vessels using optical imagery than

using SAR imagery. This is a consequence of the novelty of high-resolution optical

satellite sensors, the problem of clouds and the fact that the swath of high-resolution

imagery is relatively small, making it less suitable for surveillance over the oceans.

However, high spatial resolution can complement SAR because it is most suitable for

ship classification and it permits the detection of small ships and wooden and fibreglass

boats, which are more difficult to detect with radar (Greidanus et al. 2004). This topic is

at the heart of operational capabilities targeted by several French and European projects

(Implementation of Boat Information System (IBIS), Detection and Classification of

Marine Traffic from Space (DECLIMS), Land and Sea Integrated Monitoring for

European Security (LIMES)). Thus, in the framework of a European integrated project

GlobalMonitoring for Environment and Security (GMES)/LIMES, we have developed

a pre-operational tool for automatic ship detection on high spatial resolution optical

imagery to complement existing fishery control measures, in particular the VMS. The
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particularity of the system is its ability to dealwith images with high percentages of cloud

cover and cluttered background arising in particular meteorological situations. The

approach consists of three main steps: (1) a preprocessing stage involving cloud masking

and local contrast enhancement, (2) a prescreening stage including automatic threshold

estimation and connected filtering using component trees for the detection of potential

ship targets and (3) a postprocessing stage where membership probabilities to the ‘ship’

category are estimated using a logistic model based on the variables obtained from

wavelet transform and Radon transform (RT). The following section of this article is

dedicated to the algorithm’s description. The third section addresses the validation of the

system on SPOT 5, 5-m resolution images. The validity of the developed procedure for

operational ship detection is discussed in the last section along with some directions for

future work.

2. Detection algorithm

The ship detection problem can be considered as a simple detection of bright point

targets against a noisy background. However, the reality is more complicated because

of possible confusions associated with small clouds and wave crests that could be

falsely detected as ships. An optimum detector for this situation should maximize the

probability of detection while minimizing the probability of false alarm. We therefore

adopted a strategy that aims at maximizing the detection of ship targets in a pre-

screening phase and then in minimizing the false alarms by assigning membership

probabilities to the results of the detection in a postprocessing phase. Hence, the final

decision is left to the operator who can then validate the results of the detection based

on his experience. The basic structure of the detection algorithm is summarized in

figure 1. The following sections describe in detail the three major steps of the algo-

rithm: preprocessing, prescreening and postprocessing.

2.1 Preprocessing

The aim of preprocessing is to facilitate the subsequent detection stages by first

decomposing the image into rectangular segments or tiles, and then by using statistical

characteristics of the data in these segments to extract localized information for the

cloud-masking operation.

Input 5-m resolution

optical imagery Prescreened targets

Cloud Masking Connected filtering

Automatic threshold

estimation

Wavelet transform

Radon transform

Prediction of

membership probabilities

with logistic model

Contrast

Enhancement

PREPROCESSING PRESCREENING POSTPROCESSING

Figure 1. Flowchart of the three-phase algorithm for automatic ship detection.
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(a) Image tiling:The average size of SPOT 5 (5-m resolution) image data is around

15,000� 15,000 pixels. The original scene is divided into 25 tiles of 3000� 3000

pixels. This operation results not only in a faster processing time but also in a

more effective handling of local information especially in images with hetero-

geneous sea clutter background.

(b) Cloud masking: The intensity of SPOT 5 image data is coded in 8 bits (256 grey

levels). The presence of brightly reflecting clouds over the sea surface can

detract from the application of contrast enhancement techniques. Besides,

clouds can contaminate the prescreening approach as small clouds can be

easily mistaken for potential ship targets. For the removal of cloud pixels,

we developed a routine based on the assumptions that (i) an image segment has

a Gaussian distribution and (ii) cloud pixels correspond to the brightest pixels.

The modal value of the grey-level histogram corresponds to sea background

pixels. Cloud masking is then tackled using threshold information determined

through histogram method. Typically, the threshold value is empirically

derived from a dataset consisting of 15 SPOT 5 images acquired between

2003 and 2007 at different dates and thus under different sun elevation angles.

This demonstrates that the threshold is not sensitive to the illumination con-

ditions. The cloud threshold value is determined according to the following

equation:

Cloud threshold ¼ Modal valueþ 150ðDNÞ (1)

where DN represents digital number. All pixels greater than or equal to the

cloud threshold value are then masked following this principle.

With this empirically derived value, the cloud masking performed well for

bright and thick clouds. Although thin clouds could not be easily masked, this

is not problematic for the following processing steps that are not affected by

the presence of thin clouds (i.e. the latter are easily differentiable from ship

targets). We recommend, however, the adjustment of this threshold value for

other types of optical images.

(c) Contrast enhancement: A linear contrast stretching is applied on each image

segment. However, instead of computing the lowest pixel intensity, the modal

value of the Gaussian distribution is considered as the minimum value. Hence

the highest (xmax) and the modal intensity values (xmin) are set to 255 (ymax)

and 0 (ymin), respectively, and all other pixel intensities are scaled accordingly.

This yields considerable improvement for subsequent ship target detection.

2.2 Prescreening

At the heart of the algorithm, the prescreening phase consists in searching the image

segments for potential ship pixels. Several classical segmentation techniques have

been attempted, none of which were particularly successful. For example, standard

thresholding techniques did not perform well because of the difficulties in automati-

cally determining threshold values for the various sea state conditions. Even local

thresholding methods did not yield satisfactory results because of the non-bimodal

histograms and because both the ship targets and the sea background assume some

broad range of grey-level values. Neural networks have been attempted for the

detection and classification of ship targets (Corbane et al. 2008); however, because
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of the complexity of the training phase and the high number of false alarms in high sea

clutter situations, this approach was subsequently abandoned. Finally, the approach

that was adopted for the prescreening relies on filtering tools derived from mathema-

tical morphology and particularly from connected component transforms (Salembier

and Serra 1995, Jones 1999, Breen et al. 2000). Using mathematical morphology,

image data can be filtered to either preserve or remove features of interest, sizing

transformations can be constructed and information relating to shape, size and form

can be easily applied (Breen et al. 2000). Besides, the large choice of morphological

operators and their easy implementation offer the possibility of combining them into

more complex operators that can solve a broad variety of sophisticated applications in

image analysis and, in the case of this study, the ship detection problem.

The morphological operators implemented in our application belong to a specific

class of operators called connected operators. These filtering tools interact with the

signal by means of specific regions called connected components of the space where the

image is constant: they eliminate the connected component that would be totally

removed by an erosion with a given structuring element and they leave the other

components unchanged (Salembier and Garrido 2000). This filtering approach offers

the advantage of simplifying the image, because some components are removed, as

well as preserving the contour information, because the components that are not

removed are perfectly preserved. In that sense, the connected operators are then

different from the classical morphological operators, such as erosion and dilation

with selected structuring element, that act on the individual pixels. A theoretical

definition of connected operators can be found in Salembier et al. (1998).

2.2.1 The filtering strategy. The filtering strategy adopted in this article is illu-

strated by figure 2. The image is considered as a 3D relief and the first step is to

construct a tree structure of the image, called the component tree. The component tree

is a representation of a grey-level image that contains information about each image

component and the links that exist between components at sequential grey levels in the

image (Najman and Couprie 2006). The nodes of the tree represent the connected

components resulting from the thresholding of the original image at all possible grey-

level values. The leaves of the tree correspond to the maxima of the image. The links

between the nodes describe how the connected components may be merged. The tree

structure is defined by the absolute grey levels of the connected components. Finally,
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Figure 2. Connected operator: filtering strategy (Salembier andGarrido (2000), with permission).
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the root node corresponds to the lowest grey-level value. Once the component tree is

constructed, the next stage is to introduce mechanisms to filter the component tree to

decide which components are to be preserved and which are to be removed by the

image filter. Filtering the tree or tree pruning is a decision-making process that

classifies nodes into active and non-active nodes. A tree node will be referred to as

active if it represents a component that is to be preserved by the filter. The filtering

criterion, denoted by T, is based on one or more of the component’s attributes, for

example the area or perimeter of the component. The criterion requires that the values

of these attributes lie within certain given thresholds. The notion of a connected filter

may be formalized as follows:

Definition 1. If X � <2 is a binary set and T is some filtering criterion, we define

filter FT by

FT Xð Þ �¨ C � X : C is a component satisfying criterion Tf g (2)

Definition 2. If f is a grey-level image, ws(f) is a threshold set at grey level s 2 �,

where � is a chain of integer grey levels, and FT is a binary connected filter; then we

define a grey-level connected filter FT by

FTðf Þðx; yÞ ¼ max t : ðx; yÞ 2 [
s<t

FT Xs fð Þ½ �

( )

(3)

At the end of the pruning, the filtered image is reconstructed by stacking the con-

nected components corresponding to the remaining nodes.

In our application, a quasi-linear and fast algorithm for the construction of the tree

on each image segment is used. The algorithmwas developed byNajman and Couprie

(2006) and it consists in computing the component tree on symmetric graphs based on

Tarjan’s (1975) union-find procedure. The success of filtering based on component

trees is very dependent on the type of attribute used. In the case of detection of ship

targets, the purpose is to discriminate pixels belonging to a ship from the rest of the

image segment.More importantly, the idea is to avoid the problem of some remaining

unmasked clouds and ocean homogeneities (i.e. transitions between regions with

different wind conditions, low wind spiral marks, etc.) that give rise to a large number

of false alarms. The features (small vessels) we are interested in are characterized by

their brightness and by their small size compared with other features present in the

scene. Therefore, among the numerous attributes that can be computed from the

component tree (i.e. volume, perimeter, eccentricity, etc.), we selected the two most

discriminating for the filtering criteria, the height and the area (figure 3), which are

defined as follows: Let [k, c] 2 C(f):

height k; c½ �ð Þ ¼ max f x; yð Þ � k þ 1 x; yð Þ 2 cf g (4)

area k; c½ �ð Þ ¼ card cð Þ

where C(f) is the component tree of image f, c is a component of f, [k, c] is a level

k component of F and card stands for cardinal of c, which is the number of elements in

the set c.

First bright targets are extracted using the height criteria and the result (outheight) is

submitted to a second filtering based on the area criteria. Because of the high sensitivity
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of the system to the height criteria, we propose to analyse this parameter in a separate

paragraph (section 2.2.2). Because we are mainly interested in small fishing boats the

threshold for the area-filtering criteria is set to 20. In other words, all components in the

image that have an area of 20 pixels (¼100 m) or less are removed by the transform;

the remaining components are preserved in their entirety. Finally the resulting image

(outarea) is subtracted from the previous one (outheight) allowing to mark only those

pixels that correspond to potential ship targets (figure 4). Several tests undertaken with

4-connected and 8-connected components showed that the results were not very sensi-

tive to this parameter. Therefore, for both the height- and the area-filtering criteria,

we use 8-connected components for the connectivity parameter.

Determining the threshold value (th) for the height-filtering criteria is critical in our

application. Small modifications of the height criterion threshold involve drastic

changes on the output and similar images may produce quite different results.

Therefore, we have developed an adaptive threshold module that allows an automatic

h a

Height Area

Figure 3. Illustration of the height- and area-filtering criteria of a component (Najman and
Couprie (2006), with permission).

Filtered image (outheight) with a height criteria 

Detected ship target (outarea – outheight) Filtered image (outarea) with an area criteria

Initial image segment

Lat: 5° 0' 19" N

Long: 52° 6' 2" W

0 400 m

Figure 4. Illustration of the filtering strategy applied on image segment. For illustration
purposes, the cloud masking was not applied prior to image filtering, allowing a better visualiza-
tion of the results. The circle highlights the ship target to be extracted in the prescreening phase.
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estimation of the threshold for the height attribute. It is based on local statistics of

each image segment and is empirically calculated as a function of the width (W) of the

stretching range, defined in section 2.1:

W ¼ ymax � xmax � xminð Þ (5)

The threshold for the height criteria (th) is then obtained by the following model:

th ¼ Waþ sþ �xb (6)

where s is the standard deviation of the image segment, �x its mean, and a and b are the

weighting factors that take alternately values 0.5 and 0.75 depending on the values of

W and s as follows:

If W , 200 and s , 40 then a ¼ 0.5 and b ¼ 0.75;

If W � 200 and s , 40 then a ¼ 0.75 and b ¼ 0.75;

If W , 200 and s � 40 then a ¼ 0.5 and b ¼ 0.75 and s is multiplied by 2;

If W � 200 and s � 40 then a ¼ 0.75 and b ¼ 0.75 and s is multiplied by 2.

These rules are dependent on the object scales andmay therefore vary with the image’s

spatial resolution. They should, hence, be adapted to the spatial resolution of the

images under process. Because, in our study, only SPOT 5, 5-m resolution images

were available, the model was then calibrated for this resolution. Besides, the method

was calibrated for small ship targets that present relatively homogeneous intra-target

DN values. Consequently, the rules may need also to be adapted for targets with very

heterogeneous DN values, such as very big ship targets.

2.3 Postprocessing

In the previous stage, we purposely used component operators based on rather

unrestrictive criteria to avoid missed detections. Hence, a large number of false-

positive detections may be expected as a result of the prescreening step. The purpose

of the postprocessing stage is to assign membership probabilities to the potential ship

targets obtained from the preceding stage. It is intended to supply the human expert

with a first quantitative assessment of detection results, giving him the control of the

final false alarm discrimination.

Assigning membership probabilities to the results of the prescreening phase can be

considered as a dichotomous classification task where the class labels are either ‘ship’

or ‘other’. Among the different types of data classification approaches, we chose the

binary logistic regression, which is commonly used in statistical pattern recognition.

The logistic regression model calculates the class membership probability for one of

the two categories ‘ship’ or ‘other’ given the information of explanatory variables:

P Y ¼ 1jXð Þ ¼
1

1þ exp � b0 þ b1X1 þ � � � þ biXif g½ �
þ e (7)

where b0 is a constant term, bi terms are the derived coefficients and Xi terms are the

values of the variables used to determine the case classification (0 or 1 for dichot-

omous type).

The explanatory variables that are believed to have an effect on the dependent

variable have to be identified. The idea is to look for some typical characteristics that
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allow us to further differentiate the true ship targets from wind-wave crests that result

in false alarms during the prescreening phase.

As shown in figure 5, wind-wave crests may be visually identified as false alarms

because of the presence of a relatively large number of uniformly oriented elongated

features. Moreover, by managing the contextual information a human operator would

be capable of focusing and relating the different features at different scales in the image.

This intuitive visual perception allows the differentiation of bright spots and lines

corresponding respectively to small and moving ship target from the surrounding

oceanic sea surface turbulences. This supports the statement that software-based algo-

rithms for ship detection may not be as good as a human operator, who is better at

dealing with complex clutter situations (Greidanus and Kourti 2006). Because multi-

scale processing is able to model the operation of the human vision, it seems interesting

to analyse the detected targets by means of time–frequency methods and, in particular,

by means of the wavelet tools (Suhling et al. 2004). Consequently, in the last stage, we

propose to further process the candidate targets detected by the prescreening phase and

tomimic the human vision by using the wavelet transform for multiscale analysis of the

signal and RT to accentuate linear features.

2.3.1 Wavelet transform

Signal processing with wavelets is just one among the other time–frequency methods

but it presents clear advantages. The short-time Fourier transform and the

Wigner–Ville transform are not always suitable for transient phenomena. Besides,

wavelet transforms have been used successfully for the detection/estimation in non-

stationary environment (Qiang et al. 2005). Moreover, wavelet tools are especially

well suited for their use in the processing of natural scenes because they are well

adapted to analyse multifractal properties (Tello et al. 2006a). Wavelet analysis

decomposes an image into a hierarchical set of approximation and detail wavelet

maps. The approximation map contains the image’s low-frequency information,

whereas the detail maps contain the high-frequency information. At each level, the

wavelet transform is applied to the approximation map, breaking it down into further

approximation and detail maps (Mallat 1989, Mallat and Hwang 1992).

The wavelet transform starts with a mother wavelet. The mother wavelet is an

irregular, asymmetric waveform of limited duration. There are many different mother

wavelets, the choice of which depends on the application. The mother wavelet can be

thought of as a ‘window’ that is shifted along the original signal. At each location, or

Lat:  4° 56' 43" N

Long: 52° 16 ' 51" W
400 m0

Figure 5. Example of false positive detection related to wind-wave crests.
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translation, along the signal the wavelet is correlated with the signal at that particular

point. Once the wavelet has been translated to every point along the signal, the process

is repeated. This time the wavelet is stretched, or dilated, to a larger scale. The wavelet

scale is inversely related to frequency. A large scale corresponds to a low frequency,

whereas a short scale corresponds to a high frequency. The final result of the process is

a map of correlation values, called wavelet coefficients, corresponding to each trans-

lation (time) and scale (frequency).

The discrete wavelet transform (DWT) is employed in our algorithm. It allows a

signal to be sampled at discrete points, resulting in efficient computation. Discrete

wavelets are scaled and translated in discrete steps [13]. This is achieved using scaling

and translation integers instead of real numbers. The following is the DWT equation:

Cj;k tð Þ ¼
1
ffiffiffiffi

s
j
0

q C
t� kt0s

j
0

s
j
0

 !

(8)

where j and k are integers with j determining the scale and k the translation. The scale

describes the time domain width of the wavelet and the translation identifies the

position of the wavelet with respect to the dataset. The rate of scale dilation is s0
and the translation step magnitude is t0. The rate of scale dilation, together with the

size of the dataset, governs the number of scales generated. The choice of the number

of decomposition levels is clearly a trade-off between the size of the targets to detect

and the presence of noise. In the case of images resulting from the prescreening phase,

a visual inspection of the information at different scales showed that most of the

vessels appear in the first level (j¼ 1), even if their presence is transmitted over higher

scales.

Among the different families of mother wavelets, the Haar was chosen because it is

quite appropriate to spot detection according to Tello et al. (2006b). A 2D wavelet

transform of an original image f(x,y) at a scale j produces four images at a scale jþ 1:

three detailed images in the horizontal (Dh
j ), vertical (D

v
j ) and diagonal (Dd

j ) directions

and an approximation image (A
f
j ) (figure 6). The approximation image contains the

image’s low-frequency information, whereas the detailed maps contain the high-

frequency information.

Figure 7 shows the results of the application of a 2D DWT, on three images

obtained from the prescreening phase. Figure 7(a) corresponds to DWT of a real

ship target in a flat sea state, whereas figure 7(c) corresponds to DWT of a ship target

in a high sea state and figure 7(d) to DWT of a false alarm representing ocean

turbulences. It is obvious that the presence of a ship target is noticeably enhanced

by the DWT. Compared to figure 7(d), which corresponds to ocean turbulences, the

ship target is appreciable in the approximation component (A
f
j ) represented in the

upper left corner of the DWT in figures 7(a) and (c) where the peak intensity is mostly

significant. A closer inspection of the approximation component (containing

Af Dh
j

Dd
jDv

j

j

Figure 6. The result of 2D DWT decomposition.
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low-frequency information) shows that the central peak is significantly higher than

the surrounding ones (figure 7(b)). Therefore, by counting the number of peaks in the

approximation component and by calculatingHDWT, which is the difference in DWT

values between the central peak and the surrounding ones, it is possible to detect the

presence of a ship target. The effect of the variableHDWT extracted from the DWT on

the discrimination performances of the logistic model is studied in section 2.3.3.

2.3.2 Radon transform. In addition to the application of the DWT for an extended

detection of prescreened targets, a RT was also applied to the results of the prescreen-

ing phase. RT has certain advantages as regards its computing efficiency for linear

features detection compared with Hough transforms (Götz andDruckmüller 1996) or

directional morphological operators (Couloigner and Zhang 2007).

The RT of a 2D function f(x,y) is the set of projections along angles �,

Rf ; pðr; �Þ ¼

ð ðþ1

�1

f ðx; yÞ�ðx cos �þ y sin �� rÞdxdy (9)

¼

ðþ1

�1

f ðr cos �� l sin �; r sin �þ l cos �Þdl

where
r

l

� �

¼
cos � sin �

� sin � cos �

� �

x

y

� �

ðcoordinate rotationÞ

(10)
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Figure 7. The result of 2D DWT decomposition applied on (a) a prescreened ship target in a
flat sea surface, (c) a prescreened ship target in a high sea state and (d) a false positive
corresponding to wind-wave crests. (b) represents a close view of the approximation component
(A

f
j ) visible in the upper left corner of (a).
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where �(x) is the Dirac function, r 2 p (–1, þ1) and � 2 [0,p]. The RT performs the

integration of the image along each possible straight line of the image with polar

parameters (r, �). The RT of an image containing a segment will therefore exhibit a

prominent peak of coordinates (r0, �0) such that r0¼ x cos �0þ y sin �0 is the equation

of the straight line along which the segment lies (Magli et al. 1999). For the continuous

RT, back-projection is the adjoin operator to the transform,

R � p;bðx; yÞ ¼

ðþ1

�1

ðp

0

pðr; �Þ�ðx cos �þ y sin �� rÞdrd� (11)

¼

ð

�

0

pðx cos �þ y sin �; �Þd� (12)

Here we propose to apply the RT by integrating image intensity along all lines starting

from the centre of each ship candidate obtained in the preceding prescreening phase.

The image is then reconstructed by simply taking the inverse transform of the projec-

tion. This involves two steps; the image is back-projected and then filtered using a

Laplacian of Gaussian filter, allowing further to highlight edges in the reconstructed

image. Figure 8 displays the result of filtered back-projections applied to two detected

targets, one representing a real ship (figure 8(a)) and one representing a false alarm

(figure 8(b)) caused by the presence of wind waves. Clearly the ship target is well

localized. The ship and its wake are enhanced and sharpened by the RT. They are

represented by a central peak significantly higher than its surrounding. Conversely,

the peak corresponding to a wave crest in the centre of figure 8(b) is faintly visible in

the centre of the 3D representation of the back-projection. The significance of the

central peak is tested by calculating its relative height. This is a ratio of the central

peak to the mean peak value as used and defined in Hill et al. (2000). It is defined by

the variableHRT, which is thought to be relevant for the separation of the prescreened

targets into two categories ‘ship’ and ‘other’.

2.3.3 Logistic regression model. The predictive logistic model, used for assigning

membership probabilities to each detected target, was built based on a dataset con-

sisting of 15 SPOT 5 images with 186 targets among which 54 correspond to ship
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Figure 8. The result of Radon Transform applied on two detected targets: a real ship (a) and a
false positive (b).
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samples. Variable selection was performed with HDWT and HRT (obtained respec-

tively from the analysis of DWT and RT of the data) as explanatory variables. We

tested the statistical significance of the coefficients with an automatic stepwise forward

selection procedure that starts with a simple model and add terms sequentially until

further additions do not significantly improve the fit. Both HDWT and HRT were

significant predictors (p , 0.05). The test of the intercept (the constant b0 in table 1)

merely suggests that an intercept should be included in the model (p , 0.05).

Goodness-of-fit statisticswere also calculated for assessing the fit of the logisticmodel

against actual outcomes. The ratios of the various statistics (deviance, Pearson w2) to the

respective degrees of freedom are close to 1.0. Thus, there is no evidence of overdisper-

sion. This suggests that the values of the parameters’ estimate for variables HRT and

HDWT are appropriately scaled. The fitted logistic model is used in the processing chain

to assign predictedmembership probabilities to each prescreened target during the final

postprocessing stage.

3. Experimental results

For evaluating the performance of the developed procedure, 37 SPOT 5 images with a

high-resolution panchromatic band (5 m) were acquired over the Exclusive Economic

Zone (EEZ) of French Guiana. These images were not used in the model building

process. They were provided by the Direct Receiving Station of SPOT 5 satellite,

operating under the SEAS-Guyane (Survey of Environment of the Amazonia

Assisted by Satellites) program. For the detection of ship targets, panchromatic

imagery was preferred over multi-spectral, because additional bytes (bandwidth) of

information are better spent on increased resolution than on additional colour. On

SPOT 5 optical images of 5-m resolution, ships are easy to detect with the human eye;

their size is readily estimated and details on the superstructure can easily be discerned.

Some of the larger vessel types can be immediately recognized, such as container

ships, oil tankers and bulk carriers. Intermediate vessels such as shrimp boats that

range from 20 to 25 m in length still show details, but their interpretation is not so

straightforward: it is difficult for an untrained interpreter to discern, for example, a

fishing vessel from a patrol boat.

The results for small ship detection on the 37 SPOT 5 images using the developed

algorithm are represented in table 2. It is generally difficult to correctly cross-check

the results of automatic ship detection because only limited ground truth information

is available concerning ship positions. Moreover, unavailability of Automatic

Table 1. Estimates of parameters (statistical significance p , 0.05) and goodness-of-fit test
measures for the fitted logistic model.

Predictor Estimate Standard error p-level

Constant b0 -2.65 0.50 0.000
b1 (HRT) 0.045 0.09 0.000
b2 (HDWT) 0.0067 0.002 0.013

Test Degrees of freedom (Df) Statistics Df/statistics

Goodness-of-fit
Deviance 174 130.62 1.33
Pearson w2 174 172 1.01
Loglikelihood -16.57

Spatial information retrieval 5849



Identification System data in French Guiana precluded a correct validation of the

algorithm’s performance. Nevertheless, in our case, visual interpretation by trained

human operators was used to help assess performance. Seventy-nine ship targets were

identified by human operators. Performance was measured by detection rate (DR)

and FAR. DR is the number of ships correctly detected as a percentage of the total

number of real ships and FAR is the number of ships incorrectly reported as a

percentage of total number of real shrimp boats. As a reminder, the algorithm output

is a detection bulletin with membership probabilities (Mp) assigned to each detected

target. Hence, detection results in table 2 were represented in the form of intervals of

Mp and separated into good detections and false detections for a more detailed

performance analysis.

A total of 2000 possible targets were detected by the algorithm. The specific

distribution of these positives is as follows:

– 73 good detections;

– 1027 false detections.

The classification of good detections and false detections into intervals of membership

probabilities allows the refinement of the evaluation criteria of the results. If we set the

probability threshold value to 30%, the total number of good detections falls to 70 and

the false detections to 107. Consequently the DR would be 89.8% whereas the FAR

would be 135%. If the probability threshold is set to 70%, the total number of good

detections would be only 50 with a DR of 63.3%. However, the total number of false

detections would be far lower with only 27 false positives and a FAR of 34.1%.

From the foregoing results analysis, it is manifest that the detection performances

of the algorithm are strongly related to membership probabilities automatically

assigned to the detected targets but most of all to the detection threshold fixed by

the human operator. Thus exists the classical battle between sensitivity and false

alarms; that is, the desire to increase the DR is offset by the resulting increase in the

FAR. To avoid this dilemma, the system presented in this article does not include an

automated FAR. Instead it provides a graphical user interface (GUI) displaying the

original image with detection overlaid together with a detailed detection bulletin and

quick looks of the detected targets enabling the intervention of an experienced

operator for final false alarm discrimination.

Table 2. Good and false detection results of algorithm validation on 37 images represented in
the form of intervals ofmembership probabilities (Mp). The latter are predicted from the logistic
model during the postprocessing phase. DR and FAR are calculated according to probability

threshold values Mp . 30% and Mp . 70%.

Good detections False detections

Membership probabilities (Mp) to
‘ship’ category (%)

,30 30–50 50–70 .70 ,30 30–50 50–70 .70

Number of detected targets 2 3 18 50 918 30 50 27

DR FAR

For Mp . 30% 89.8% 135%
For Mp . 70% 63.3% 34.1%

Number of ships reported by human operator ¼ 79.
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In addition to the performance and qualification tests performed over the EEZ of

FrenchGuiana, the systemwas also validated over the Adriatic Sea in a pre-operational

context. A pilot exercise was conducted on 14 October 2008 over Rijeka Harbour with

the purpose of assessing the real potentials and limitations of space-borne (SAR and

optical data) and airborne technologies (hyperspectral aerial photos) for the surveil-

lance of oil spills and for identifying the position of probable pollution culprit. One-

eighth of a SPOT 5 scene covering an area of 20 � 20 km was acquired for the

demonstration case study. The acquired image was available a few hours after its

acquisition allowing to run the validation exercise in almost operational conditions.

The result of automatic ship detection, shown in figure 9, was obtained in less than 3

minutes after image reception. The coloured circles represent the membership prob-

abilities of the detected ship targets, whereas the cross circle corresponds to those

targets identified by a human expert. It can be noticed that there are six missed targets

and only five false alarms with membership probabilities greater than 70%. This

satisfactory result illustrates the suitability of the system for operational maritime

surveillance. It is a first step towards the definition of conditions and interrelations

for an information fusion approach that combines data provided from different obser-

vation technologies for monitoring oil spills.

4. Discussion and conclusion

We presented a system designed for automatic ship detection on high spatial resolu-

tion optical satellite imagery. The procedure is completely unsupervised and takes few

minutes (5–10 minutes), depending on hardware characteristics. The heart of the

algorithm is the filtering strategy (prescreening phase) for the detection of potential

ship targets. It lies on connected operators derived from mathematical morphology.

This promising technique for ship detection was augmented by a preprocessing and a

postprocessing to reduce both the computation time and the number of false alarms.

Figure 9. Result of automatic ship detection during the operational validation of the system
over Rijeka harbour in Croatia.

Spatial information retrieval 5851



The preprocessing involves cloud masking and local contrast enhancement of image

tiles. The postprocessing involves the application of wavelet transform andRT. Using

these two techniques, it is possible to refine the results of the prescreening phase by

assigning membership probabilities to the ‘ship’ category predicted from a fitted

logistic model. The algorithm was calibrated on 15 SPOT 5, 5-m resolution, panchro-

matic images and validated on an independent dataset comprising 37 images, all

acquired over the EEZ of French Guiana. The results are promising. There were no

missed detections and 73 detected targets for a total of 79 ship targets visually

identified by human operators. However, in an absolute way, the total number of

false detections (1027) for 37 processed images is unacceptably high for satellite ship

surveillance applications.Most of these false alarms are due to local wind turbulences,

which increase background noise. Some other false alarms are related to confusions

between moving targets with characteristic ship wakes and other naturally produced

linear features such as internal waves or wind-wave crests. Some large boats with their

wakes were considered as several small ship targets and hence resulted in multiple

detections that augmented the total number of false positives.

When we take into account membership probabilities, we notice that most of these

false-positive detections are assigned low probabilities (i.e. 918 false positives have

membership probabilities less than 30%). This evinces the potential of wavelet trans-

form and RT for dealing with complex clutter situations and for the discrimination

between ship wakes and other naturally occurring linear features. This suggests that

an automatic wake detection module would obviously enhance the ship detection

system. The presence of a wake confirms the presence of a ship and further it can be

used to estimate the ship heading and speed. As for multiple detections of large ships,

theymay be reduced or eliminated by applying bounds on target area (size), which can

be implemented using morphological filters (i.e. dilation that connects the neighbour-

ing ship pixels and thereby clusters them). Compared to the detection system devel-

oped by Corbane et al. (2008) and based on non-parametric techniques such as neural

networks and genetic programming, the current approach provides a much lower

FAR. For instance, when tested on the same image with a highly cluttered back-

ground and high percentage of cloud cover, the algorithm based on neural network

clustering resulted in a FAR of 5700% whereas the current approach yielded only one

false positive for a DR of 100%.

The promising detection performances and the modest computational cost of the

algorithm (the CPU time for an average 15,000 � 15,000 pixels image is around 5

minutes on a standard 2 GHz Pentium IV-class machine) are a proof of its potential for

providing a recognition system to a variety of users such as coast guards, search and

rescue teams and harbour masters. The algorithm is currently used in a pre-operational

framework. A great deal of effort is being undertaken to improve the validation

procedures and control efficiency by (i) introducing information from other maritime

monitoring systems, such as VMS, and (ii) cross-cuing to other sensors, such as SAR

sensor, for obtaining or confirming detections. Further experiments are required to

render the system fully operational. For instance, it would be interesting to adapt the

algorithm to various ship sizes and types and to test it on very high spatial resolution

optical imagery (sub-metric pixel resolution). Other possible extensions to this work

could be the automatic determination of threshold values, mainly the cloud screening

and the height criteria thresholds. Current research efforts are directed towards the

identification of additional characteristics that enhance the discrimination of true

targets from wind-wave crests. Mainly, directional morphological filters with line
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segments as structuring elements are being investigated for a more noise-robust extrac-

tion of ships.
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