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1 Introduction

1.1 What is our problem?

Molecular structure and vibrational motion

Structure 
interpreted

as geometry:
Isomers

Electronic structure:
distribution function

What is the size of 
typical vibrational

amplitudes?

Zero point energy effects on relative stability,
delocalization in quantum liquids (LHe, LH2)

V(q)

Ψ(q)
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CHDFCl CDHFCl

Equivalent structures with high barriers

Vanishing coupling und practically degenerate states:
Localized wave functions Ψr and Ψl ∝∝∝∝ (ΨΨΨΨeven ±±±± ΨΨΨΨodd)

High barrier: uncoupled minima
Distinguishable isomers

ΨΨΨΨeven

ΨΨΨΨodd

Subspace
is

sufficient
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NH3

Equivalent structures with low barriers

Coupling ⇒ splitting between “even” und “odd” states:
Global wave function ⇒ special techniques required

Low barrier: coupled minima

ΨΨΨΨeven

ΨΨΨΨodd
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1.2 What is a Monte Carlo method?

Any method which uses random numbers

Our focus will be on Monte Carlo methods of physical and chemical relevance.

Technical formulation:

- Represent the solution of a mathematical/physical/chemical problem as a parameter of a hypothetical

distribution.

- Construct a set of samples from this distribution.

- Use these samples to compute statistical estimators for the desired parameter.

1.3 What are Monte Carlo methods good for?

Monte Carlo methods work for any stochastic problem and for a large class of deterministic problems, quadra-

ture being a classical example.

- Classical statistical mechanics: ensemble concept (Gibbs)

Known distributions
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- Quantum (statistical) mechanics: probabilistic interpretation of wave functions (Born), density matrices

Usually unknown distributions
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1.4 The Difficulty of Monte Carlo Methods

- We need to find a proper mapping of our problem onto a stochastic model.

- We need to think in terms of statistics and fluctuations when we analyse Monte Carlo data.

- Each Monte Carlo calculation for the same problem will give a somewhat different answer.

- The notion of convergence needs to be redefined.

- Lack of familiarity can lead to misinterpretations and optimistic ideas about accuracy (correlations).

- Fluctuations can mask subtle systematic errors (random number quality, programming errors etc.).

- Monte Carlo methods look simple but they are not.

Use random numbers to solve your problem but do not produce random results
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1.5 A Classification of Monte Carlo Methods

Classical Quantum

T = 0 Locating the minimum
of a multidimensional
surface, (Simulated an-
nealing etc.)

Single occupied quan-
tum state of known en-
ergy (Minimisation in
discrete space)

Single quantum state(s)
with unknown proper-
ties:
variational Monte Carlo
(VMC), GFMC, dif-
fusion Monte Carlo
(DMC)

T > 0 Integration over contin-
uous states
Classical Monte Carlo
(CMC) in various en-
sembles

Summation over dis-
crete states (lattice
model Hamiltonians,
Ising etc.),
technically similar to
CMC

Direct averaging over
many quantum states:
path integral Monte
Carlo (PIMC)

known energy levels Ei unknown Ei
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2 Review of Probability and Statistics

2.1 Probabilities and Random Variables

We consider a reservoir of possible outcomes {E} for a random event.

{E} = {E1, E2, E3 . . . En}
We associate a probability pk with each Ek:

P (Ek) = pk 1 ≥ pk ≥ 0

Properties of pk:

1. The following relations hold for any pair of Ei, Ej.

P (Ei ∧ Ej) ≤ pi + pj ; P (Ei ∨ Ej) ≤ pi + pj

2. If Ei and Ej are mutually exclusive

(Ei ⇒ ¬Ej, Ej ⇒ ¬Ei):

P (Ei ∧ Ej) = 0 ; P (Ei ∨ Ej) = pi + pj

3. For a class of mutually exclusive events, which contains all possible events we have:

P (some E) = 1 =
∑
i

pi



Quantum Monte Carlo Helsinki 2011 Marius Lewerenz 11

2.2 Joint and Marginal Probabilities

Suppose that E and F satisfy the conditions defined above

P (Ei) = p1i P (Fj) = p2j

and we are interested in the probability of the combined event (Ei, Fj). This probability is called the joint

probability

P (Ei, Fj) = pij

The events Ei and Fj are called independent if

pij = p1ip2j

If the events Ei and Fj are not independent, there is a useful decomposition of the joint probability as follows:

pij =

(∑
k

pik

)[
pij∑
k pik

]

pij = p(i)

[
pij∑
k pik

]
The quantity p(i) is called the marginal probability for the event Ei, the probability of observing Ei whatever

F occurs. Clearly p(i) = p1i and
∑

i p(i) =
∑

i

∑
k pik = 1.



Quantum Monte Carlo Helsinki 2011 Marius Lewerenz 12

The expression pij/
∑

k pik = p(j|i) defines the conditional probability of observing Fj, provided Ei has

occurred. Since the probability for some Fj should be 1 we have∑
j

p(j|i) =
∑
j

pij∑
k pik

=

∑
j pij∑
k pik

= 1

2.3 Random Variables and Expectation Values

The random events E,F can be anything of numerical or non numerical character (e.g. a noise amplitude or

a logical decision). If we can associate a numerical value xi with each random event Ei, we call x a random

variable.

We define the expectation value E{x} of a random variable x as

E{x} = 〈x〉 =
∑
i

pixi

Assume that g is a function of x, g(xi) = gi. Then also gi will be a random variable and we define

E{g(x)} = 〈g(x)〉 =
∑
i

pig(xi)
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Suppose that g(xi) = g(x) = const:

E{g(x)} =
∑
i

pig(xi) = g(xi)
∑
i

pi = g(x)

The expectation value of a constant is a constant.

Linearity of the expectation value of two random functions g1(x) and g2(x):

E{λ1g1(x) + λ2g2(x)} = 〈λ1g1(x) + λ2g2(x)〉
=
∑
i

pi (λ1g1(xi) + λ2g2(xi))

= λ1

∑
i

pig1(xi) + λ2

∑
i

pig2(xi)

= λ1〈g1(x)〉 + λ2〈g2(x)〉
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2.4 Moments of a Distribution

We define the nth moment of a distribution as

µn = 〈xn〉 =
∑
i

pix
n
i

These powers of x are nothing but special cases of the random functions g(x).

Principal moments:

µ1 =
∑
i

pixi mean of the distribution

µ2 =
∑
i

pix
2
i

Central moments:

〈mn(x)〉 = 〈(x− µ1)n〉 =
∑
i

pi(xi − 〈x〉)n

The special case of n = 2 is called the variance:

V ar{x} = 〈m2(x)〉 = 〈x2〉 − 〈x〉2

V ar{x} and µ1 are sufficient to uniquely specify many important distributions, in particular the important

Gaussian distribution.
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2.5 Variance of a Random Function

In a similar way we can define the variance of a random function g(x):

V ar{g(x)} = 〈(g(x)− 〈g(x)〉)2

=
∑
i

pig
2(x)− 2〈g(x)〉

∑
i

pig(xi) + 〈g(x)〉2
∑
i

pi

= 〈g2(x)〉 − 〈g(x)〉2

Variance of a Linear Combination of Random Functions:

V ar{λ1g1(x) + λ2g2(x)} = 〈(λ1g1(x) + λ2g2(x)− 〈λ1g1(x) + λ2g2(x)〉)2〉
= 〈(λ1g1(x) + λ2g2(x)− λ1〈g1(x)〉 − λ2〈g2(x)〉)2〉
= 〈(λ1[g1(x)− 〈g1(x)〉] + λ2[g2(x)− 〈g2(x)〉])2〉
= 〈λ2

1[g1(x)− 〈g1(x)〉]2 + λ2
2[g2(x)− 〈g2(x)〉]2

+ 2λ1λ2[g1(x)− 〈g1〉][g2(x)− 〈g2〉]〉
= λ2

1〈[g1(x)− 〈g1(x)〉]2〉 + λ2
2〈[g2(x)− 〈g2(x)〉]2〉

+ 2λ1λ2〈g1(x)g2(x)− g1(x)〈g2(x)〉 − 〈g1(x)〉g2(x) + 〈g1(x)〉〈g2(x)〉〉

(Exploitation of the linearity of expectation values)

V ar{λ1g1(x) + λ2g2(x)} = λ2
1V ar{g1(x)} + λ2

2V ar{g2(x)} + 2λ1λ2(〈g1(x)g2(x)〉 − 〈g1(x)〉〈g2(x)〉)
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2.6 The Covariance

The mixed last term in the preceeding equation defines the covariance of g1(x) and g2(x).

Cov{g1(x), g2(x)} = 〈g1(x)g2(x)〉 − 〈g1(x)〉〈g2(x)〉
This term measures the mutual dependence between the two random functions g1 and g2 and can be positive

or negative.

Special cases:

Cov{x, y} = 〈xy〉 − 〈x〉〈y〉
Cov{x, x} = 〈xx〉 − 〈x〉〈x〉 = V ar{x}

The variance of a linear combination of random functions or variables can be larger or smaller than the sum

of the individual variances, depending on the sign of the covariance.

V ar{g1 + g2} = V ar{g1} + V ar{g2} + 2 Cov{g1, g2}

The possibility of negative covariance

V ar{g1 + g2} < V ar{g1} + V ar{g2}
is crucial for correlated sampling techniques.
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2.7 Properties of the Covariance

Cov{x, y} = 〈xy〉 − 〈x〉〈y〉
〈xy〉 =

∑
ij

pijxiyj

If the random variables x and y are independent, the pij can be decomposed according to pij = p1ip2j

〈xy〉 =
∑
ij

p1ixip2jyj =

(∑
i

p1ixi

)∑
j

p2jyj

 = 〈x〉〈y〉

⇒ Cov{x, y} = 0

Independence of two random variables x, y is a sufficient but not a necessary condition for Cov{x, y} to be

zero!

Example: x = {−1, 0, 1}, y = x2, all pi equal

〈x〉 = 0, 〈xy〉 = 〈x3〉 = 0

⇒ Cov{x, y} = 0

The covariance is zero in spite of a functional relationship between x and y (full correlation).
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2.8 Correlation and Autocorrelation

The correlation coefficient r(x, y) is the normalized version of the covariance:

r(x, y) =
Cov{x, y}√

V ar{x}V ar{y}

−1 ≤ r(x, y) ≤ 1

If one considers the values of y as copies of x with a constant offset δ (in time or some pseudotime establishing

an order)

yj = xi = xj−δ

one can compute a correlation coefficient for each offset δ.

r(x, y; δ) = A(x; δ)

This function A(x; δ) is called the autocorrelation function and varies between -1 and +1.

The computation of the autocorrelation function is an important tool to measure the statistical independence

of events within a sequence of random events.

All random walk methods require careful autocorrelation analysis
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2.9 Continuous Distributions

In the preceeding section we have assumed discrete random events, but generally random variables can also

be continuous.

For a one-dimensional case we have

−∞ ≤ x ≤ ∞

We can define a cumulative distribution function F (x) as

F (x) = P (randomly selected y < x)

Assume x2 > x1. Then the events x2 > y ≥ x1 and x1 > y are mutually exclusive and we conclude:

P (x2 > y ≥ x1) + P (x1 > y) = P (x2 > y)

P (x2 > y) ≥ P (x1 > y)

It follows that F (x) is monotonically increasing.

F (−∞) = 0 , F (∞) = 1

The function F (x) is not necessarily smooth. In differentiable regions one can define the probability density

function ρ(x):

ρ(x) =
dF (x)

dx
≥ 0
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2.10 Moments of Continuous Distributions

- Summations are replaced by integrations.

- probabilities pi are replaced by dF (x).

E{x} = 〈x〉 =

∫ ∞
−∞

xdF (x)

(
=

∫ ∞
−∞

xρ(x)dx

)
∫ ∞
−∞

dF (x) =

(∫ ∞
−∞

ρ(x)dx

)
= F (∞) = 1

E{g(x)} = 〈g(x)〉 =

∫ ∞
−∞

g(x)dF (x)

The variance is now given as

V ar{x} = E{x2} − E{x}2 =

∫ ∞
−∞

x2dF (x)−
[∫ ∞
−∞

xdF (x)

]2

The variance is not a well defined quantity for all ρ(x).

An important example is the Cauchy-Lorentz-distribution

ρ(x) =
1

π

a

x2 + a2

for which E{x} = 0 and E{x2} =∞.
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2.11 Sums of Random Variables

- Suppose we have random variables x1, x2, . . . , xn which are distributed according to some probability

density function ρ(x). The variable xi may represent a multidimensional point.

- We evaluate functions gi(xi) for each xi where the functions gi may or may not be identical. The gi(xi)

are random variables.

- We define a weighted sum G over these functions and its expectation value E(G):

G =

n∑
i

λigi(xi) λi ∈ R

E{G} = 〈G〉 =

n∑
i

λi〈gi(xi)〉

- A special choice is λi = 1/n and all gi identical

E{G} = E

{
1

n

n∑
i

g(xi)

}
=

1

n

n∑
i

E{g} = E{g}

The expectation value for the sum G is identical with the expectation value E{g} for the function g.

G can serve as an estimator for E{g(x)}
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2.12 Variance of the Sum of Random Variables

- Assume for simplicity that all xi are independent. The covariance is zero for all combinations and the

variance of G can be expressed as the sum of the variances of its terms:

V ar{G} =

n∑
i

λ2
iV ar{gi(x)}

- Again assume λi = 1/n, gi(x) = g(x)

V ar{G} =

n∑
i

1

n2
V ar{g(x)}︸ ︷︷ ︸
some number

=
1

n
V ar{g(x)}

- The variance of the estimator G decreases ∝ 1/n

- The proportionality factor is V ar{g(x)}

The mean of random variables approaches the expectation value of the mean of the distribution.

Statistical convergence:

The deviation δ of the estimator from the true value will exceed a specified limit ∆ with a probability which

diminishes as n→∞.
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3 Sources of Randomness

Monte Carlo methods require the creation of random events according to specified probability densities. There

are three classes of sources:

- Natural sources of (true ?) randomness.

Historically interesting but inefficient, not reproducible, and of hardly quantifiable quality.

- Deterministic algorithms producing a sequence of numbers (pseudorandom numbers) with properties which

are indistinguishable from a true random sequence as measured by a battery of statistical tests.

- Random walks constructed from primitive random events for all complicated multidimensional distributions.

We will look in detail only at random walk methods and assume the availability of a good uniform random

number generator or rather pseudorandom number generator.
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3.1 Random Walks

- General method to generate samples from specified probability density functions ρ(x), in particular if the

space x has a high dimensionality.

- For direct generators P (xi) is (at least apparently) independent of the previous event xj.

- Random walks are a sequence of events x1, x2, x3, . . . , constructed such that P (xnew) = f (xnew, xlast).

- The function f (xnew, xlast) describes a strategy to propagate the walk and is in fact a conditional proba-

bility.

- The process has a memory and serial correlation.

Random walks are a special example for a Markov process

General conditions for random walks which are supposed to generate samples with distribution ρ(x):

1. Every point x must be accessible from any other point in a finite number of steps.

2. It must be possible to revisit the same point x any number of times.

3. The walk must not periodically pass through the same points x again.

These conditions are equivalent to requiring ergodicity of the random walk.
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3.2 The Stochastic Matrix

Consider for a moment a system with discrete ’states’ (position, orientations, quantum numbers etc.) x1, x2, . . . xn.

pij = p(j|i) is the probability to observe xj provided that we had xi just before. pij is the transition probability

for a Markov process.

All pij can be arranged in matrix form:

P
=

=


p11 p12 p13 . . . p1n

p21 p22
...

... ...

pn1 . . . . . . . . . pnn


The matrix P

=
is a stochastic matrix

- All pij ≥ 0 because they represent probabilities.

-
∑

j pij = 1 for all i because each transition from i must lead to one of the available ’states’.
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3.3 Properties of the Stochastic Matrix

Consider a row vector

ρ(0) = {ρ(0)
1 , ρ

(0)
2 , . . . , ρ(0)

n }

which describes an initial state in which ρ
(0)
i is the probability of initially finding the system in state i.

Each step in the Markov chain can be formulated as a multiplication of this row vector with the stochastic

matrix P :

ρ(1) = ρ(0)P
=

ρ(2) = ρ(1)P
=

. . . . . .

ρ(k) = ρ(0)P
=

k

The asymptotic distribution ρ for k →∞ is

ρ = lim
k→∞

ρ(0)P
=

k
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Repeated multiplication of ρ(0) with P converges to a stationary situation if

ρ = ρP
=

ρ is an eigenvector of P
=

with eigenvalue 1.

Note: The asymptotic distribution ρ is independent of the initial ’state’ ρ(0) and depends exclusively on the

matrix P
=

. All initial vectors converge to the same asymptotic distribution.

A formal proof requires to show that P
=

has a largest eigenvalue which is exactly 1 and that all other eigenvalues

fall between -1 and 1.
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3.4 Detailed Balance

The remaining question is how to construct a matrix P
=

which has an eigenvector corresponding to the desired

probability density ρ.

The eigenvector equation can be written out explicitly as
n∑
i

ρipij = ρj

Ansatz: Detailed balance

We require

ρipij = ρjpji

Therefore we have ∑
i

ρipij =
∑
i

ρjpji = ρj
∑
i

pji = ρj

This is exactly the condition required for an eigenvector of P
=

with eigenvalue 1.

Note: Detailed balance guarantees ρP
=

= ρ and is therefore a sufficient condition to construct a matrix P
=

with

the desired asymptotic distribution but it is not necessarily the only possible way!
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3.5 Decomposition of the Transition Process

We can arbitrarily decompose each pij into a factor describing the probability of proposing a particular transition

tij and a factor aij describing the probability of accepting this choice.

pij = tijaij

This decomposition is valid if the two processes are independent.

Substitution into the detailed balance relationship yields

ρj
ρi

=
pij
pji

=
tijaij
tjiaji

Since we assume that ρ is a known probability density to be generated by the walk, and since we can pick

a transition strategy specifying tij according to our taste, it is useful to convert this expression into a form

which defines the required acceptance probability:

aij
aji

=
ρj
ρi

tji
tij

Note that the construction of the random walk requires only that we are able to compute the ratio of probability

densities. We can work with densities ρ which are not normalized!
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3.6 Accepting Proposed Transitions

There are several choices for the acceptance probabilities aij, aji which satisfy this relation, the most common

one being due to Metropolis et al. (1953):

aij = min

[
1,
ρj
ρi

tji
tij

]
Proof by verification of the two possibilities:

(a) ρjtji ≥ ρitij ⇒ aij = 1

aji = ρi
ρj

tij
tji

aij
aji

=
ρj
ρi

tji
tij

q.e.d.

(b) ρjtji < ρitij ⇒ aij =
ρj
ρi

tji
tij

aji = 1
aij
aji

=
ρj
ρi

tji
tij

q.e.d.
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3.6.1 How to Accept a Proposed Change of State?

- A proposed change of state i→ j should be accepted with probability 0 ≤ aij ≤ 1.

- Random numbers u with a uniform probability density ρ(u) = 1 on the interval [0, 1] have the property

P (u ≤ x) = F (x) = x

- A computed value of aij will be greater or equal than a uniform random number u with probability aij.

- Generate a uniform random number u and accept the proposed change of state if aij ≥ u. The ’new’

state j is the old state i in case of rejection and has to be counted as a member of the chain of steps!

3.7 Random Walks in Continuous Spaces

The fundamental ideas of the construction of random walks via the stochastic matrix and a detailed balance

ansatz can be generalized to an infinite number of states.

a(x→ x′)

a(x′ → x)
=
ρ(x′)t(x′ → x)

ρ(x)t(x→ x′)

a(x→ x′) = min

[
1,
ρ(x′)t(x′ → x)

ρ(x)t(x→ x′)

]
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3.8 Coordinates of a Random Walk

The coordinates or ’states’ of random walks are defined very broadly and can be

- All discrete (e.g. spins on a lattice)

- All continuous (e.g. atomic coordinates in simulations of liquids)

- Any mixture of the two (e.g. particles with spin and continuous space coordinates)

Specifically also the particle number in physical simulations can be a (discrete) coordinate (Grand canonical

Monte Carlo).
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3.9 The Transition Function t

A common simplification consists in the special case

t(x′ → x) = t(x→ x′)

specifically the choice t(x→ x′) = t(|x− x′|).

The simplified formula for the Metropolis acceptance probability for symmetric transitions is

a(x→ x′) = min

[
1,
ρ(x′)

ρ(x)

]
Examples:

- Proposing a new position x′ with uniform probability from a volume surrounding x (e.g. a hypercube of

predefined size in the majority of simple random walk methods).

- Picking a new position x′ according to a multidimensional Gaussian centered on x:

t(x→ x′) ∝ exp

(
−|x− x

′|2

2σ2

)
Explicit inclusion of t(x→ x′) in the formulation allows guided random walks:

Force bias Monte Carlo, improved variational Monte Carlo diffusion Monte Carlo with importance sampling
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3.10 Summary of Important Random Walk Features

Good features:

- Random sampling from distributions in spaces of high dimension.

- No need to be able to normalize the probability density function (which would involve a multidimensional

integration).

- Very general coordinate definition and very broad applicability.

Troublesome Features:

- The desired distribution is reached only asymptotically.

When is a random walk in its asymptotic regime?

- Serial correlation between sampling positions.

Requires careful autocorrelation analysis.
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4 Monte Carlo Integration

4.1 The Principle of Monte Carlo Integration

We have seen that the expectation value of the sum G of random variables g(xi) with xi drawn according to

the probability density ρ(x) is identical with the expectation value of g(x) over the underlying distribution:

E{G} = E{g(x)} , G =
1

n

n∑
i

g(xi) , xi ∝ ρ(x)

Now recall the original definition of the expectation value as an integral over the distribution:

E{g(x)} =

∫
ρ(x)g(x)dx = lim

n→∞

1

n

n∑
i

g(xi)

Observations

- The statistical error for the integral is independent of the dimensionality of the integral.

- The statistical error diminishes proportional to 1/
√
n.

- The proportionality constant controlling the absolute size of the error bar depends on the variance of g.

- The integrand need not even be smooth.
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4.2 Efficiency of Monte Carlo Integration

We consider the following situation

- g(x) is a d-dimensional function.

- We have fixed resources which allow the evaluation of g(x) at a fixed number of points n.

- We dispose of a grid based product integration rule with leading error hq in the grid step h.

- In a balanced treatment of all dimensions the grid step size will then be h ∝ n−1/d.

Efficiency analysis:

- The product rule quadrature will have overall accuracy εGrid ∝ n−q/d

- The Monte Carlo quadrature will have overall accuracy εMC ∝ n−1/2

- Monte Carlo will be more efficient if d > 2q.

Remarks:

- We have neglected the prefactors of the n-dependence.

- Accurate product rules require (locally) smooth integrands.

- Monte Carlo methods are very robust and allow ’spiky’ integrands.

- For moderate d so called Quasi Monte Carlo Methods can be even more efficient.
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5 Variational Quantum Monte Carlo

5.1 The energy expectation value

VMC is an approximative approach for quantum many body problems using a multidimensional and usually

not factorizable trial wave function ΨT (x; p) with free parameters p and exploiting the variational principle

combined with Monte Carlo integration techniques.

E(p) =

∫
Ψ∗T (x; p)ĤΨT (x; p)dx∫
|ΨT (x; p)|2dx

≥ Eexact

Recasting of the integrand as ”function · weight”:

E(p) =

∫
|ΨT (x; p)|2Ψ−1

T (x; p)ĤΨT (x; p)dx∫
|ΨT (x; p)|2dx

E(p) =

∫
ρ(x; p)Ψ−1

T (x; p)ĤΨT (x; p)dx
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The density ρ(x; p) is a normalized probability density

ρ(x; p) =
|ΨT (x; p)|2∫
|ΨT (x; p)|2dx

The second factor under the integral is the local energy, an energy-like quantity which varies as a function of

x.

Elocal = Ψ−1
T (x; p)ĤΨT (x; p)

This integral can be evaluated by Monte Carlo sampling:

E(p) ≈
∑
i

Elocal(xi; p) , xi ∝ ρ(x; p)
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5.2 The Local Energy

Elocal = Ψ−1
T (x; p)ĤΨT (x; p)

The local energy is the key quantity in variational and diffusion Monte Carlo.

Important Properties:

- Elocal is computable for any reasonable many body wave function (with or without explicit particle corre-

lation) because it only involves derivatives.

- Elocal approaches a constant (the exact eigenvalue) as ΨT approaches any of the eigenfunctions Φ of the

system (zero variance property).

- Elocal can have singularities for any ΨT with nodes (ground and excited states of fermionic systems, excited

states of bosonic systems).

This can cause enormous fluctuations in the Monte Carlo sampling and should be avoided. Trial wave

functions should respect all known boundary conditions near nodes and in the various asymptotes.

- Singularities are absent if ΨT happens to be an eigenfunction.

- Elocal = V (x) if ΨT = const (limiting case in simple diffusion Monte Carlo).
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5.3 Evaluating Expectation Values

- The calculation of the energy (and other properties) for a given trial wave function ΨT (p) has a complexity

comparable to a classical Monte Carlo simulation,

- Convert any classical canonical MC code into a VMC code by the substitution

exp [−V (x)/kBT ]→ |ΨT (x; p)|2

(Ergodicity problems are usually actually smaller because of a ’softer’ distribution)

- Any tricks known in classical Monte Carlo can be immediately exploited (truncation of finite range inter-

actions, fast methods for long range potential summations, smart move generation).
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5.4 A Program Skeleton

1. Pick a starting point x in 3N -dimensional space and compute |ΨT (x; p)|2.

2. Set all counters to zero.

3. Propose a new point x′ by randomly modifying one or more components of x within a hyperbox or a

high-dimensional gaussian (symmetric transition).

4. Compute z = |ΨT (x′; p)|2/|ΨT (x; p)|2
(probably taking advantage of unchanged parts of ΨT ).

5. If z ≥ u with u random in [0, 1], replace x by x′.

6. Otherwise retain x (possibly counting it thus more than once).

7. Repeat steps 3 to 6 long enough to allow correlations to die out.

8. Evaluate Elocal and any other property at the present point x and increment the appropriate counters for

mean values and variances.

Return to step 3

- Accumulate autocorrelation information on all important properties during the entire simulation.

Autocorrelation lengths are not necessarily identical for all properties!

- For efficiency reasons (vectorisation or parallelisation) a swarm of parallel walks is an option, if each walk

by itself is sufficiently long to ensure that the asymptotic regime is sampled.
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5.5 General Criteria for Trial Wave Functions

- ĤΨT must exist anywhere in space; ΨT and ∇ΨT must be smooth in all regions where the potential is

not infinite.

- The following three integrals must exist∫
|ΨT |2dV ,

∫
Ψ∗T ĤΨTdV∫

|ĤΨT |2dV

The first two integrals are ordinary requirements of quantum mechanics, the last integral is a supplementary

requirement, which assures a finite variance and the computability of error estimates.

- ΨT must possess all required symmetries (particle interchange, space inversion).

- ΨT should have the physically correct asymptotic behaviour for large particle separations.

- ΨT should properly describe the approach to zero distance between any two particles (cusp conditions).

- For bulk systems appropriate periodic boundary conditions at the limits of the simulation cell have to be

satisfied.
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5.6 Optimizing Trial Wave Functions

The hard part of VMC is optimizing Ψt(x; p) with respect to its parameters p.

General Strategy

- The variational principle tells us that energy minimization as in other quantum chemical techniques would

be a good idea.

- The Monte Carlo formulation allows an even better way: Variance Minimization.

– Knowing the target (namely zero variance) we have some sort of measure, how far away we are from

an eigenfunction.

– Variance minimization works in principle also for excited states; energy minimization has contamination

problems (mixed wave functions) and is not valid any more unless very difficult orthogonalisations are

done.

- Energy minimization is good for coarse optimization, variance minimization can discriminate between

energetically equally good functions.

- Variance minimization emphasizes uniform quality and tends to give better expectation values.

- In practice often minimization of a mixed quantity

F (p) = αE(p) + βV ar{E(p)}
where β is increased as the optimization progresses.
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5.7 Moving Downhill in Parameter Space

- As opposed to linear variational problems we have no direct algorithm for locating the minimum.

- Multidimensional nonlinear optimization is known as a hard problem. Don’t expect too much!

- Random search methods (simulated annealing, threshold accepting etc.) are too expensive and generally

not too good in continuous spaces.

- Gradient methods (essentially local) are most common but less global.

- Our biggest problem: Noise

How to compute a gradient from noisy data by finite differencing?

F (p)

Parameter space p



Quantum Monte Carlo Helsinki 2011 Marius Lewerenz 45

5.8 Variance reduction: Reweighting of Random Walks

- In the ordinary case of independent MC integrations at each p, the error bars of the total energies have

to be smaller than the energy difference.

- We should try to directly sample the change of the energy as we change p by a small amount.

- In practice: We evaluate the expectation values E(p) for a whole set of p-space points by using sampling

positions x generated by a ’master walk’ at some pm (usually the best current point).

- Accumulating all estimators over the same set of points guarantees strong correlation and reduces relative

fluctuations.

E(p) =

∫
ΨT (x, p)ĤΨT (x, p)dx∫
ΨT (x, p)ΨT (x, p)dx

=

∫
Ψ2
T (x, pm)

Ψ2
T (x,p)

Ψ2
T (x,pm)

Ψ−1
T (x, p)ĤΨT (x, p)dx∫

Ψ2
T (x, pm)

Ψ2
T (x,p)

Ψ2
T (x,pm)

dx

=

∫
Ψ2
T (x, pm)W (x; p, pm)Ψ−1

T (x, p)ĤΨT (x, p)dx∫
Ψ2
T (x, pm)W (x; p, pm)dx

≈
∑

iW (xi; p, pm)Ψ−1
T (xi, p)ĤΨT (xi, p)∑

iW (xi; p, pm)
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5.9 Iterative Fixed Sampling

- In ordinary reweighting a new ’master walk’ is generated once a step in p-space has been taken.

- Actual averages often need only a few thousand uncorrelated samples, originating from very much longer

random walks (large delay between samples to suppress serial correlation).

- Reduction of computational cost is possible by storing well decorrelated configurations and some important

quantities (e.g. ΨT (pm) of the generating walk).

- The data volume even for hundreds of particles is quite acceptable (below 3 KByte per configuration and

100 particles).

- Reuse this set of fixed samples over many optimization cycles.

- Generate a new set of configurations by a long random walk only when the statistical fluctuations have

become too large.
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6 Diffusion Quantum Monte Carlo (DMC)

6.1 The basic idea

- Isomorphism between the time dependent Schrödinger equation and a multi dimensional diffusion equation.

Recognized by Fermi and Ulam in 1940’s.

- Exact solution limited only by statistical errors.

ıh̄
∂Ψ(~r, t)

∂t
=

−h̄2

2

n∑
j=1

1

mj
∇2
j + {V (~r)− Eref}

Ψ(~r, t)

∂C(~r, t)

∂t
=


n∑
j=1

Dj∇2
j − k(~r)

C(~r, t) .

- Potential energy function acts as position dependent reaction term

- Inverse masses correspond to diffusion coefficients in a 3N -dimensional space.

Anisotropic diffusion with groups of 3 equivalent space dimensions.

- Reference energy Eref : arbitrary shift of the energy scale.
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≈NA

103 - 104

C(r,t)

Ψ(r,t)Discretisation

Brownian Dynamics ⇒⇒⇒⇒ Ensemble of ‘Random Walkers’

Continuum

limit

Distribution functionMicro dynamics

3D
diffusion
equation

3N-D
Schrödinger
equation

Isomorphism

Key concept of DMC
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6.2 The Stationary Solution

The diffusion analogy I

Reaction/diffusion/
convection evolves 

towards a 
stationary 

distribution
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6.3 The effect of imaginary time

- Imaginary time τ = ıt/h̄

⇒ mapping of periodic processes on relaxations.

- Propagation of arbitrary initial distribution Ψ(~r, 0) leads to steady state ground state distribution Φ0(~r).

- Asymptotic decay with a rate proportional to E0 − Eref :

Ψ(~r, τ ) =
∑
k

Ak exp{−(Ek − Eref)τ}Φk(~r)

limτ→∞Ψ(~r, τ ) = A0 exp{−(E0 − Eref)τ}Φ0(~r)

Diffusion Monte Carlo is in principle a projection method which projects the exact ground state wave function

out of an arbitrary initial function.

The difference with respect to other quantum mechanical projection techniques is the implementation of the

projection by sampling which has several advantages and disadvantages!

Once the ground state has been projected out we can continue the projection and accumulate an arbitrary

amount of information.

Combination of ensemble and time average
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6.4 Importance Sampling

Improvement of statistical accuracy and introduction of boundary conditions through trial wave functions ΨT :

diffusion equation with convection for ΨΨT :

∂(ΨΨT )

∂τ
=

n∑
j=1


1

2mj
∇2
j(ΨΨT )−

Drift︷ ︸︸ ︷
1

mj
∇j(ΨΨT∇ ln ΨT )

−
Ψ−1

T T̂ΨT + V (~r)︸ ︷︷ ︸
Elocal

− Eref

 (ΨΨT )

Advantages:

- Elocal(~r) is smoother than V (~r).

- Statistical error approaches zero for ΨT → Ψ.

- Distribution ΨΨT is closer to |Ψ|2. ⇒ Simpler evaluation of expectation values.

- Introduction of nodal constraints.

New Computational Quantities:

- Elocal(~r) by analytical differentiation of ΨT .

- ”Quantum force” from gradient of ΨT .
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6.5 Formal Time Evolution

Consider the sequence of trial functions defined by

Ψn+1(~r) = exp{−∆τ (Ĥ − Eref)}Ψn(~r) =

∫
d~r′G(~r, ~r′)Ψn(~r)

Expand into eigenfunctions Φk:

Ψ0(~r) =
∑
k

〈Φk|Ψ0〉Φk(~r)

Ψ1(~r) =
∑
k

〈Φk|Ψ0〉Φk(~r) exp[−∆τ (Ek − Eref)]

Ψn(~r) =
∑
k

〈Φk|Ψ0〉Φk(~r) exp[−n∆τ (Ek − Eref)]

lim
n→∞

Ψn(~r) = 〈Φ0|Ψ0〉Φ0(~r) exp[−n∆τ (Ek − Eref)]

In the case of importance sampling:

fn(~r) = ΨT (~r)Ψn(~r)

fn+1(~r) = ΨT (~r) exp{−∆τ (Ĥ − Eref)}Ψn(~r) =

∫
d~r′G̃(~r, ~r′)fn(~r)

lim
n→∞

fn(~r) = 〈Φ0|Ψ0〉Φ0(~r)ΨT (~r) exp[−n∆τ (Ek − Eref)]
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6.6 Probabilistic Interpretation and Short Time Approximation

- Propagation requires the evaluation of the integral over the Green’s function G(~r, ~r′).

- We need a coordinate space representation of G.

- Positive G(~r, ~r′) would allow a probabilistic interpretation and sampling of the integral.

G(~r, ~r′; ∆τ ) =

N∏
j

[( mj

2π∆τ

)3/2

exp
{
− mj

2∆τ

(
~rj − ~r′j

)2
}]
× exp

{
−∆τ

(
V (~r) + V (~r′)

2
− Eref

)}
+O(∆τ 3)

In the case of importance sampling:

G̃(~r, ~r′; ∆τ ) =

N∏
j

[( mj

2π∆τ

)3/2

exp

{
− mj

2∆τ

(
~rj − ~r′j −

∆τ

2mj

~Fj(~r)

)2
}]
×

exp

{
−∆τeff

(
Elocal(~r) + Elocal(~r

′)

2
− Eref

)}
+O(∆τ 2)
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6.7 The Practical Solution

- Represent solution by an ensemble of random walkers with weights wi (δ-functions).

Typical ensemble size 1000-10000.

- Cut propagation time into slices ∆τ .

- Solve each part of the diffusion equation (drift, diffusion, growth/decay) separately.

⇒ Short time approximation, nothing else but a Trotter factorisation.

Drift displaces each δ-function

Diffusion broadens δ-function to Gaussian

Growth/decay scales weight of δ-function

Sample the Gaussian to preserve the δ-representation by picking new position from a multidimensional Gaussian

centered on the position reached after the drift step

- Random walkers move independently ⇒ vectorization or parallelisation.

- Communication only for ensemble control and averaging; minimal overhead.
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6.8 The Individual Actions

- Propose a new position vector r′ for each random walker by updating the components related to particle

j according to

r′j = rj +
∆τ

mj

~Fj(r) +

√
∆τ

mj

~ζ

~Fj(r) =
∇jΨT (~r)

ΨT (~r)
~ζ = Gaussian random vector

- Check acceptance of r′ to ensure detailed balance by computation of backward drift ~F (r′) and new

probability density Ψ2
T (r′).

- Apply weight update according to local energy values:

wnew
k = wold

k exp

[
−∆τeff

(
Elocal(~r) + Elocal(~r

′)

2
− Eref

)]
- Keep track of actual displacements:

〈(rj − r′j)2〉prop. =
∆τ

mj

〈(rj − r′j)2〉acc. =
∆τeff
mj
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6.9 Making a Move: Metropolis algorithm with asymmetric transition probabilities

r

ΨT (r)

∇ΨT (r)

Forward drift

Diffusionz

z

zz r′

ΨT (r′)

∇ΨT (r′)Backward drift

Diffusion

P (r → r′) = min

{
1,
|ΨT (r)|2

|ΨT (r′)|2
t(r′ → r)

t(r → r′)

}

t(r → r′) = exp

−∑
j

mj

2∆τ

(
~rj − ~r′j −

∆τ

2mj

~Fj(r)

)2
 ; ~Fj(r) = ∇j ln ΨT
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6.10 Why impose detailed balance?

- Distribution of random walkers is supposed to represent ΦkΨT (usually k = 0).

- If ΨT is an eigenfunction Φk (perfect importance sampling) Elocal is a constant (the eigenvalue!) and the

DMC energy is exactly Ek for any ∆τ (vanishing time step error!).

All weights wi are equal and the space density of random walkers alone carries the information on Φ2
k.

- Low order integration of drift leads to a distorted distribution after each time step ∆τ > 0 even with

perfect importance sampling!

Benefits of detailed balance:

- Imposing detailed balance ensures that the space density of random walkers is proportional to Ψ2
T for any

∆τ .

- Clean interpretation of weights: Space density of walkers is always Ψ2
T and the weighted ensemble repre-

sents ΦkΨT ⇒ the weights are a statistical measure of Φk/ΨT .

- Well defined weights are important for expectation values!

- Significant reduction of time step error (empirical observation, no known formal proof).

- Very low rejection rate at typical ∆τ . ⇒ Large enhancement of efficiency at negligible cost.

- Shorter effective time step τeff due to rejected proposals computed from Einstein relationship.
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6.11 Energy Estimators I

Method 1: Emean, local energy or mean energy estimator

〈Elocal〉 =

∑
iwiElocal(ri)∑

iwi
=

∫
Φ0ΨTΨ−1

T ĤΨTd~r∫
Φ0ΨTd~r

=

∫
Φ0Ĥ(

∑
k ckΦk)d~r∫

Φ0(
∑

k ckΦk)d~r
= E0

Special case ΨT = const⇒ E0 = 〈V 〉

Method 2: Egrow, growth estimator

Φ0ΨT (~r, τ + ∆τ ) = exp {−(E0 − Eref)∆τ}Φ0ΨT (~r, τ )

Analyse weight evolution:

Egrow = E0 = Eref −
d lnW (τ )

dτ
; W =

∑
i

wi
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6.12 Trial Functions and Local Energy

Standard form for atomic systems:

ΨT (~r; ~p) =
∏

i<j∈Rg

Φij(rij; ~p)

Permutation symmetry!

Ψ−1T T̂ΨT = −
∑
i

h̄2

2mi


∑

q=x,y,z

∑
j 6=i

1

rij

∂ ln Φij

∂rij
(qi − qj)

2

+
∑
j 6=i

[
2

rij

∂ ln Φij

∂rij
+

1

Φij

∂2Φij

∂r2ij
−
(
∂ ln Φij

∂rij

)2
]

Computational complexity ∝ N 2

Extension for rare gas-molecule clusters with anisotropy:

ΨT (~r) =
∏
i∈Rg

χi(ri, cos θi) ·
∏

i<j∈Rg

Φij(rij)
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6.13 How to find a good ΨT?

1. Get an idea about the functional form:

- Physical intuition or luck

- Better: Use whatever is known about asymptotic behavior and cusp conditions

- Let DMC generate it for you: Selfconsistent DMC

2. Optimize free parameters in ΨT

- Variational Monte Carlo

Evar =

∫
ElocalΨ

2
Tdr∫

Ψ2
Tdr

≈ 〈Elocal〉walk ≥ E0

- Better: Exploit zero variance property of Elocal as ΨT approaches an eigenfunction:

Elocal(r) = Ψ−1
T (r)ĤΨT (r)

Minimize 〈E2
local〉 − 〈Elocal〉2

Valid for all eigenstates:

Optimisation toward excited states possible

Least squares type algorithm with iterative fixed samples
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6.14 Selfconsistent DMC

- Let an unbiased DMC run explore space and settle into important wells

⇒ Extension to minimization problems

- Collect histograms of the distribution ∝ Ψ0

- Inspect histograms and develop a suitable analytical form for their representation

- Feed the result as ΨT into an improved DMC run

Very efficient for anisotropic cases

Avoids bias in DMC calculation caused by bad choices of ΨT
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6.15 Ensemble Size Error

In the asymptotic regime we ideally expect to have a random walker ensemble representing Φ0ΨT , contributions

from higher Φk having died out.

lim
τ→∞

Ψ(~r, τ )ΨT ∝ Φ0(~r)ΨT exp{−(E0 − Eref)τ}

Problem: Fluctuations in a finite random walker ensemble

[Ψ(~r, τ )ΨT ]finite ∝ (Φ0(~r)ΨT + δ(τ )) exp{−(E0 − Eref)τ}
with a random perturbation δ(τ ) with zero mean.

The rms amplitude of δ scales with n
−1/2
walk . δ can be expanded in the eigenfunctions Φk, k > 0.

δ =
1

√
nwalk

∞∑
k

ckΦk

The energy expectation value should then take the form:

E(nwalk) = E0 +
1

nwalk

∞∑
k

c2
kEk

- The ensemble size bias is always positive and scales as 1/nwalk.

- It can be suppressed by any noise reduction technique, e.g. a good trial wave function, but can be large

for simple DMC without ΨT .
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Time step and ensemble size errors

(HF)2

NH3

Importance
sampling

No importance
sampling,:
δE ~ ∆τ2
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Chem. Phys. Lett. 321, 135 (2000)

Imaginary time step

DMC agrees with
best available

variational
calculation with

several 106

basis functions

Confirmed by
Truhlar et al. 2001
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6.16 Evolution of Random Walker Weights

After n steps the weight wi of walker i with initial weight wi(τ = 0) (usually 1) is

wi(n∆τ ) = wi(0)

n∏
j=1

gij ; lnwi(n∆τ ) = lnwi(0) +

n∑
j=1

ln gij

with random growth factor gij due to random position ~ri;j in step j (unless ΨT = Φk, Elocal depends on ~ri):

gij = exp{−∆τ

2
[Elocal(~ri;j) + Elocal(~ri;j−1)− 2Eref ]}

- Weights wi grow or decay exponentially and reflect the life history of random walker: Walkers which

have explored regions of large Elocal have accumulated low wi and walkers which accidentally remained in

regions of low Elocal carry exponentially larger weights.

- The sum of random variables tends towards a Gaussian distribution (central limit theorem): gij and ln gij
are random variables and the asymptotic distribution of weights has to be log-normal!

- The width of the initial δ-distribution of weights becomes exponentially large and the ensemble is dominated

by a few walkers with large wi (asymptotically one walker). ⇒ Unstable simulation with increasingly noisy

ensemble and time averages.

- Loss of computational efficiency and creeping in of systematic ensemble size errors.

How to handle the instability?
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6.17 Handling Random Walker Weights

6.17.1 Pure DMC

- Just ignore the instability!

- Requires very good ΨT with weight divergence slower than satisfactory statistical convergence of system

properties.

- Automatically maintains a constant ensemble size.

- Clearly impossible without importance sampling.

No restoring ”quantum force” ⇒ diffusive spatial divergence of random walker ensemble.

- Commonly used in electronic structure DMC where sufficiently accurate ΨT from conventional methods

are available.

- Keep your fingers crossed!

What to do when pure DMC does not work?

”Population control”
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6.17.2 Population control I

The name of the game: Keep all weights in a reasonable range

This is an artificial intervention without motivation in the original diffusion equation and requires great care

to avoid systematic sampling biases.

Method I (historical, Anderson 1975): Discrete weights

- Assign a standard weight ws to each walker.

- Compute evolution of weight ws using growth factor gi for walker i: wi = wsgi

- Replace walker i with nwalk copies with identical properties and standard weight ws using a uniform

random number 0 < u ≤ 1.

nwalk = int(wi + u)

- All information carried by number density of random walkers.

- Leads to fluctuating ensemble size. Nonuniform ensemble size errors; hard to deal with.

- Requires careful adjustment of Eref to avoid collapse or explosion of ensemble size.

- Introduces discretization noise into the simulation.
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6.17.3 Population control II: Continuous weights with branching/termination

- Branching: Replacing a walker with weight wi by k walkers with weight wi/k leaves both energy estimators

unchanged:

W (τ ) =
∑
i

wi(τ ) → Egrow

Emean(τ ) =
1

W (τ )

∑
i

wi(τ )Elocal(ri, τ )

- Branching whenever wi exceeds an arbitrary threshold wmax avoids excessive weights.

- Branching does not introduce artificial noise but systematically increases the number of random walkers.

Termination to avoid ensemble explosion

- Walkers with small wi contribute very little to the physically interesting property averages.

⇒ Eliminate walkers with small wi.

- Small walkers tend to be in regions with above average Elocal ⇒ Systematic elimination of small walkers

biases both energy estimators towards lower values.

Invent unbiased termination rules:

Find rules which ensure that W (τ ) and Emean(τ ) are conserved strictly or at least on average.
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6.17.4 Combining small walkers

- Pick two small walkers with weights w1 and w2.

- Assign their total weight w = w1 + w2 to walker i = 1, 2 with probability

pi =
wi

w1 + w2

and eliminate the loser.

- W (τ ) and thus Egrow are strictly conserved.

- Emean is conserved in an average sense:

Before: E
(1,2)
mean = w1E

(1)
local + w2E

(2)
local

After: 〈E(1,2)
mean〉 = w(p1E

(1)
local + p2E

(2)
local) = E

(1,2)
mean

- Minimal introduction of artificial noise.

- Provides true reversibility also for branching but cannot be generalized for correlated sampling.
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6.17.5 Stochastic Ensemble Control

One weight per walker:

1. Eliminate walkers with relative weight w < wmin with probability p (usually p = 1− w).

2. Increase the weight of a walker surviving an elimination attempt by w+ = wp/(1− p).

3. Split walkers with high weight w > wmax into k walkers with weights wnew = w/k.

No systematic sources or sinks because −pw + (1− p)w+ = 0

Extension to multiple weights:

p is in principle arbitrary ⇒ generalization

p = 1− 1

N

N∑
j=1

wj = 1− wmean

- Explicit evaluation of new weights in all ”states” if the walker remains in the ensemble (wnew = w/wmean).

- All walkers are active in all simultaneous simulations.

- Slowest possible decay of correlation, no systematic errors.
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6.18 Expectation values

6.18.1 The meaning of the weights

- The solution function of the diffusion equation is the distribution Φ0ΨT .

- The number density of walkers in space is ∝ Ψ2
T if we handled the walks and the weights correctly

(This is true for only a few implementations of the DMC algorithm!).

- Instantaneous weights wi therefore provide a statistical measure for Φ0(ri)/ΨT (ri).

Weighted property average yields ”mixed” expectation value:

〈Φ0|Â|ΨT 〉 =

〈∑
iwiA(~ri)∑

iwi

〉
τ

Cheap extrapolation to exact expectation value:

〈Φ0|A|Φ0〉 = 2〈Φ0|A|ΨT 〉 − 〈ΨT |A|ΨT 〉 +O(∆2)

∆ = Φ0 − ΨT
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6.18.2 How to find a measure of Φ2
0

Can we just square the weights?

〈A〉 =

∑
iw

2
iA(~ri)∑
iw

2
i

The hard problem: we only have a stochastic representation of Φ0 via the ratio Φ0
ΨT

.

6.18.3 The noise problem

The weight wi of a walker at position ~ri depends on the history of the walker and does not give an exact

measure of Φ0(~ri)/ΨT (~ri). The actual weight wi has a random deviation δ from the true ratio Φ0(~ri)/ΨT (~ri)

w(~ri) =
Φ0(~ri)

ΨT (~ri)
+ δ

Only the imaginary time average of weights of walkers visiting ~ri provides Φ0(~ri)/ΨT (~ri).

〈w(~ri)〉τ =

〈
Φ0(~ri)

ΨT (~ri)

〉
+ 〈δ〉τ =

Φ0(~ri)

ΨT (~ri)

because of 〈δ〉τ = 0 for random noise.
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6.18.4 The cheap and dubious way: Squaring the Weights

w2(~ri) =
Φ2

0(~ri)

Ψ2
T (~ri)

+ δ2 + 2
Φ0(~ri)

ΨT (~ri)
δ

〈w2(~ri)〉τ =

〈
Φ2

0(~ri)

Ψ2
T (~ri)

〉
τ

+ 〈δ2〉τ + 2

〈
Φ2

0(~ri)

Ψ2
T (~ri)

δ

〉
τ

〈w2(~ri)〉τ =
Φ2

0(~ri)

Ψ2
T (~ri)

+ 〈δ2〉τ

The average of the square is biased by a positive quantity whose amplitude depends on the noise.

We need a 2nd uncorrelated estimate of Φ0(~ri)/ΨT (~ri):

w′(~ri) =
Φ0(~ri)

ΨT (~ri)
+ δ′

to evaluate the quantity

〈w(~ri)w
′(~ri)〉τ =

Φ2
0(~ri)

Ψ2
T (~ri)

+ 〈δδ′〉τ

where 〈δδ′〉τ = 0 for uncorrelated random deviations δ and δ′.

Combination with the number density of walkers (∝ |ΨT |2) gives the correct Φ2
0 distribution.
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6.18.5 Getting it right: Descendant Weighting/Future Walking I

- The density of random walkers at any time origin is given by:

f (~r, 0) = Ψ(~r, 0)ΨT (~r)

- Assume a single random walker at position ~R at time 0.

f (~r, 0) = δ(~r − ~R)

- Expand Ψ into eigenfunctions Φ:

δ(~r − ~R) = ΨT (~r)
∑
k

ckΦk(~r)

- Multiply with Φi/ΨT and integrate:∫
δ(~r − ~R)

Φi(~r)

ΨT (~r)
d~r = ci =

Φi(~R)

ΨT (~R)

- c0 is a measure of the ratio Φ0/ΨT needed to transform the simulated distribution Φ0ΨT into the desired

Φ2
0.

c0(~R) =
Φ0(~R)

ΨT (~R)
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6.18.6 Descendant Weighting/Future Walking II

The asymptotic distribution of the random walks is

f (~r, τ →∞) = c0Φ0(~r)ΨT (~r) exp[−τ (E0 − Eref)]

The total population is given by the integral:

P (τ ) =

∫
f (~r, τ )d~r =

∑
i

wi(τ )

The contribution P∞(~R) originating from an ancestral walker at position ~R is:

P∞(~R) =

∫
c0(~R)Φ0(~r)ΨT (~r) exp[−τ (E0 − Eref)]

=
Φ0(~R)

Ψt(~R)
exp[−τ (E0 − Eref)]〈Φ0|ΨT 〉

The asymptotic population originating from a given walker is proportional to the desired ratio Φ0(~R)/ΨT (~R).

Since the other factors in P∞ are identical for all walkers one can simply correct the weights by multiplication

with the total weight of the asymptotic descendants.

This requires storing old coordinates and weights and a tagging algorithm for each branching event.

〈Â〉 ≈
∑

iA(~Ri, τ )wi(~Ri, τ )P (~R, τ )∑
iwi(

~Ri, τ )P (~R, τ )
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Hydrogen density in (HF)2 from DMC
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6.18.7 Perturbational estimates for scalar expectation values

Add a perturbation A to the original hamiltonian H0 with eigenvalue E0 and eigenfunction Φ0 according to

Hλ = H0 + λA

1st order perturbation theory gives for small λA

Ep(λ) ≈ 〈Φ0|H0 + λA|Φ0〉 = E0 + λ〈Φ0|A|Φ0〉

Use DMC to compute E0 and the eigenvalue Eλ of Hλ with eigenfunction Φλ. For small λ we have

Ep(λ) = Eλ

〈Φ0|A|Φ0〉 =
Eλ − E0

λ
Problem: Extract a small energy difference from noisy data

Solution: Correlated sampling

Run correlated DMC on a set of ”potential surfaces” Vλ = V0 + λA to get Eλ.

- Compute entire curves Eλ in a single simulation also for several Ai.

- Correlation is highest for small λ, just where we want to be.
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6.18.8 More good news

Origins of time step error

1. Neglect of commutators in split operator.

2. Low order integration of drift term.

Consequences for perturbation method:

Eλ(∆τ ) = Eλ +
∑
k

cλk(∆τ )k

- Replacement of V0 by Vλ has only a small effect on c2, all cλ2 ≈ equal.

- Linear time step error is strictly independent of λ. All cλ1 are equal.

- The curves Eλ(∆τ ) are essentially parallel.

- Energy differences Eλ − E0 are robust wrt ∆τ .

- We can use a large time step and speed up the calculation.
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6.19 Correlated Sampling

- Kinetic energy and ΨT control the random walkers position.

- Potential V affects only the weights w.

Va

Vb

Ψa

Ψb

- Simultaneous simulation on several surfaces through introduction of a set of weights.

- Identical sampling positions cause large covariance.

- High accuracy for energy difference sampling.

- Computational savings (common terms in several potentials etc.).



Quantum Monte Carlo Helsinki 2011 Marius Lewerenz 80

6.20 Existing techniques which we have not addressed

- Approximations for excited states in special situations:

– Adiabatic decompositions leading to rigid body constraints which can be handled by methods from

classical molecular dynamics (SHAKE, quaternion techniques etc.)

RB-DMC = Rigid body diffusion Monte Carlo

– Beyond the adiabatic decomposition: allowing high frequency and low frequency modes to influence

each other

SB-DMC = Soft body diffusion Monte Carlo

Useful for the calculation of matrix shifts

- General approaches to excited states.

– POITSE: Projection operator imaginary time spectral evolution

very expensive, requires careful choice of the projection operator

– CFMC: Correlation function Monte Carlo

Uses diffusion Monte Carlo projections of wave functions to construct sequences of non-orthogonal

basis sets which are injected into a diagonalisation method.

Troubles with precision of matrix elements and resulting ill-conditioned matrices

- Finite temperature techniques.

PIMC: Path integral Monte Carlo
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6.21 Scaling behavior of DMC

General computational issues

- Storage requirements only ∝ N .

- Large cpu-requirements: typically > 108 random walker steps.

- Very large volume of step by step data: only storage of histograms and running averages is feasible.

Cost per step

- Time consuming steps are potential evaluation and trial function evaluation and derivatives

- Potential effort scales as in any other simulation method: e.g. N 2 for pairwise models.

- Trial wave function effort depends on functional form, usually N 2.

- Long range cutoffs are possible in potential and ΨT . Larger cutoff radius than in classical simulations.

- Usually all particles move in each step. Propagation cost per step ∝ N .

- Multiple ’time’-step techniques are not obvious.
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Statistical convergence

- Absolute error grows with total energy ∝ N .

- Number of steps for similar absolute error ∝ N 2.

⇒ Overall cost ∝ N 3 −N 4.

Parallelization issues

- All cpu-intensive parts are distributable and do not require communication.

- Communication only for average accumulation and ensemble control ∝ N .

- Computation grows much faster than communication.

Ratio can be adjusted within certain limits.

- Low I/O bandwidth.
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6.22 Why is quantum Monte Carlo not more popular?

Top reasons why QMC is not generally used in chemistry:

archive.ncsa.uiuc.edu/Apps/CMP/topten/topten.html (D. M. Ceperley)

- We need forces, dummy!

- Try getting O2 to bind at the variational level.

- How many graduate students lives have been lost optimizing wavefunctions?

- It is hard to get 0.01 eV accuracy by throwing dice.

- Most chemical problems have more than 50 electrons.

- Who thought LDA or HF pseudopotentials would be any good?

- How many spectra have you seen computed by QMC?

- QMC is only exact for energies.

- Multiple determinants. We can’t live with them, we can’t live without them.

- After all, electrons are fermions.

- Electrons move.

- QMC isn’t included in Gaussian 90. Who programs anyway?
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My personal additions from nuclear dynamics:

- We need good trial wave functions for arbitrary potentials

- We want many excited states.

- How to handle almost degenerate states?

There is room for a lot of future research!


