Quantum Monte Carlo

Marius Lewerenz

To cite this version:

Marius Lewerenz. Quantum Monte Carlo. 2013. hal-00832980

HAL Id: hal-00832980

https://hal.science/hal-00832980

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantum Monte Carlo

Helsinki 2011
Marius Lewerenz
MSME/CT, UMR 8208 CNRS, Université Paris Est (Marne-la-Vallée)
Marius.Lewerenz@univ-paris-est.fr
http://msme.univ-mlv.fr/staff/ct/marius-lewerenz/
Table of contents
1 Introduction 2
1.1 What is our problem? 2
1.2 What is a Monte Carlo method? 5
1.3 What are Monte Carlo methods good for? 5
1.4 The Difficulty of Monte Carlo Methods 8
1.5 A Classification of Monte Carlo Methods 9
2 Review of Probability and Statistics 10
2.1 Probabilities and Random Variables 10
2.2 Joint and Marginal Probabilities 11
2.3 Random Variables and Expectation Values 12
2.4 Moments of a Distribution 14
2.5 Variance of a Random Function 15
2.6 The Covariance 16
2.7 Properties of the Covariance 17
2.8 Correlation and Autocorrelation 18
2.9 Continuous Distributions 19
2.10 Moments of Continuous Distributions 20
2.11 Sums of Random Variables 21
2.12 Variance of the Sum of Random Variables 22
3 Sources of Randomness 23
3.1 Random Walks 24
3.2 The Stochastic Matrix 25
3.3 Properties of the Stochastic Matrix 26
3.4 Detailed Balance 28
3.5 Decomposition of the Transition Process 29
3.6 Accepting Proposed Transitions 30
3.6.1 How to Accept a Proposed Change of State? 31
3.7 Random Walks in Continuous Spaces 31
3.8 Coordinates of a Random Walk 32
3.9 The Transition Function t 33
3.10 Summary of Important Random Walk Features 34
4 Monte Carlo Integration 35
4.1 The Principle of Monte Carlo Integration 35
4.2 Efficiency of Monte Carlo Integration 36
5 Variational Quantum Monte Carlo 37
5.1 The energy expectation value 37
5.2 The Local Energy 39
5.3 Evaluating Expectation Values 40
5.4 A Program Skeleton 41
5.5 General Criteria for Trial Wave Functions 42
5.6 Optimizing Trial Wave Functions 43
5.7 Moving Downhill in Parameter Space 44
5.8 Variance reduction: Reweighting of Random Walks 45
5.9 Iterative Fixed Sampling 46
6 Diffusion Quantum Monte Carlo (DMC) 47
6.1 The basic idea 47
6.2 The Stationary Solution 49
6.3 The effect of imaginary time 50
6.4 Importance Sampling 51
6.5 Formal Time Evolution 52
6.6 Probabilistic Interpretation and Short Time Approximation 53
6.7 The Practical Solution 54
6.8 The Individual Actions 55
6.9 Making a Move: Metropolis algorithm with asymmetric transition probabilities 56
6.10 Why impose detailed balance? 57
6.11 Energy Estimators I 58
6.12 Trial Functions and Local Energy 59
6.13 How to find a good Ψ_{T} ? 60
6.14 Selfconsistent DMC 61
6.15 Ensemble Size Error 62
6.16 Evolution of Random Walker Weights 65
6.17 Handling Random Walker Weights 66
6.17.1Pure DMC 66
6.17.2 Population control I 67
6.17.3Population control II: Continuous weights with branching/termination 68
6.17.4 Combining small walkers 69
6.17.5Stochastic Ensemble Control 70
6.18 Expectation values 71
6.18.1 The meaning of the weights 71
6.18.2 How to find a measure of Φ_{0}^{2} 72
6.18.3 The noise problem 72
6.18.4 The cheap and dubious way: Squaring the Weights 73
6.18.5 Getting it right: Descendant Weighting/Future Walking I 74
6.18.6 Descendant Weighting/Future Walking II 75
6.18.7 Perturbational estimates for scalar expectation values 77
6.18.8 More good news 78
6.19 Correlated Sampling 79
6.20 Existing techniques which we have not addressed 80
6.21 Scaling behavior of DMC 81
6.22 Why is quantum Monte Carlo not more popular? 83

List of Figures

List of Tables

1 Introduction

1.1 What is our problem?

Molecular structure and vibrational motion

What is the size of typical vibrational amplitudes?

Zero point energy effects on relative stability, delocalization in quantum liquids $\left(\mathbf{L H e}, \mathbf{L H}_{2}\right)$

Equivalent structures with high barriers

Vanishing coupling und practically degenerate states:
Localized wave functions Ψ_{r} and $\Psi_{1} \propto\left(\Psi_{\text {even }} \pm \Psi_{\text {odd }}\right)$

Equivalent structures with low barriers

Coupling \Rightarrow splitting between "even" und "odd" states:
Global wave function \Rightarrow special techniques required

1.2 What is a Monte Carlo method?

Any method which uses random numbers
Our focus will be on Monte Carlo methods of physical and chemical relevance.

Technical formulation:

- Represent the solution of a mathematical/physical/chemical problem as a parameter of a hypothetical distribution.
- Construct a set of samples from this distribution.
- Use these samples to compute statistical estimators for the desired parameter.

1.3 What are Monte Carlo methods good for?

Monte Carlo methods work for any stochastic problem and for a large class of deterministic problems, quadrature being a classical example.

- Classical statistical mechanics: ensemble concept (Gibbs)

Known distributions

- Quantum (statistical) mechanics: probabilistic interpretation of wave functions (Born), density matrices Usually unknown distributions

1.4 The Difficulty of Monte Carlo Methods

- We need to find a proper mapping of our problem onto a stochastic model.
- We need to think in terms of statistics and fluctuations when we analyse Monte Carlo data.
- Each Monte Carlo calculation for the same problem will give a somewhat different answer.
- The notion of convergence needs to be redefined.
- Lack of familiarity can lead to misinterpretations and optimistic ideas about accuracy (correlations).
- Fluctuations can mask subtle systematic errors (random number quality, programming errors etc.).
- Monte Carlo methods look simple but they are not.

Use random numbers to solve your problem but do not produce random results

1.5 A Classification of Monte Carlo Methods

	Classical	Quantum		
$T=0$	Locating the minimum of a multidimensional surface, (Simulated an- nealing etc.)	Single occupied quan- tum state of known en- ergy (Minimisation in discrete space)	Single quantum state(s) with unknown proper- ties: variational Monte Carlo (VMC), GFMC, dif- fusion Monte Carlo (DMC)	
$T>0$	Integration over contin- uous states Classical Monte Carlo (CMC) in various en- sembles	Summation over dis- crete states (lattice model Hamiltonians,	Direct averaging over many quantum states: path integral Monte Cing etc.),	
technically similar to				
CMC				

2 Review of Probability and Statistics

2.1 Probabilities and Random Variables

We consider a reservoir of possible outcomes $\{E\}$ for a random event.

$$
\{E\}=\left\{E_{1}, E_{2}, E_{3} \ldots E_{n}\right\}
$$

We associate a probability p_{k} with each E_{k} :

$$
P\left(E_{k}\right)=p_{k} \quad 1 \geq p_{k} \geq 0
$$

Properties of p_{k} :

1. The following relations hold for any pair of E_{i}, E_{j}.

$$
P\left(E_{i} \wedge E_{j}\right) \leq p_{i}+p_{j} \quad ; \quad P\left(E_{i} \vee E_{j}\right) \leq p_{i}+p_{j}
$$

2. If E_{i} and E_{j} are mutually exclusive

$$
\left(E_{i} \Rightarrow \neg E_{j}, E_{j} \Rightarrow \neg E_{i}\right)
$$

$$
P\left(E_{i} \wedge E_{j}\right)=0 \quad ; \quad P\left(E_{i} \vee E_{j}\right)=p_{i}+p_{j}
$$

3. For a class of mutually exclusive events, which contains all possible events we have:

$$
P(\text { some } E)=1=\sum_{i} p_{i}
$$

2.2 Joint and Marginal Probabilities

Suppose that E and F satisfy the conditions defined above

$$
P\left(E_{i}\right)=p_{1 i} \quad P\left(F_{j}\right)=p_{2 j}
$$

and we are interested in the probability of the combined event $\left(E_{i}, F_{j}\right)$. This probability is called the joint probability

$$
P\left(E_{i}, F_{j}\right)=p_{i j}
$$

The events E_{i} and F_{j} are called independent if

$$
p_{i j}=p_{1 i} p_{2 j}
$$

If the events E_{i} and F_{j} are not independent, there is a useful decomposition of the joint probability as follows:

$$
\begin{gathered}
p_{i j}=\left(\sum_{k} p_{i k}\right)\left[\frac{p_{i j}}{\sum_{k} p_{i k}}\right] \\
p_{i j}=p(i)\left[\frac{p_{i j}}{\sum_{k} p_{i k}}\right]
\end{gathered}
$$

The quantity $p(i)$ is called the marginal probability for the event E_{i}, the probability of observing E_{i} whatever F occurs. Clearly $p(i)=p_{1 i}$ and $\sum_{i} p(i)=\sum_{i} \sum_{k} p_{i k}=1$.

The expression $p_{i j} / \sum_{k} p_{i k}=p(j \mid i)$ defines the conditional probability of observing F_{j}, provided E_{i} has occurred. Since the probability for some F_{j} should be 1 we have

$$
\sum_{j} p(j \mid i)=\sum_{j} \frac{p_{i j}}{\sum_{k} p_{i k}}=\frac{\sum_{j} p_{i j}}{\sum_{k} p_{i k}}=1
$$

2.3 Random Variables and Expectation Values

The random events E, F can be anything of numerical or non numerical character (e.g. a noise amplitude or a logical decision). If we can associate a numerical value x_{i} with each random event E_{i}, we call x a random variable.

We define the expectation value $E\{x\}$ of a random variable x as

$$
E\{x\}=\langle x\rangle=\sum_{i} p_{i} x_{i}
$$

Assume that g is a function of $x, g\left(x_{i}\right)=g_{i}$. Then also g_{i} will be a random variable and we define

$$
E\{g(x)\}=\langle g(x)\rangle=\sum_{i} p_{i} g\left(x_{i}\right)
$$

Suppose that $g\left(x_{i}\right)=g(x)=$ const:

$$
E\{g(x)\}=\sum_{i} p_{i} g\left(x_{i}\right)=g\left(x_{i}\right) \sum_{i} p_{i}=g(x)
$$

The expectation value of a constant is a constant.

Linearity of the expectation value of two random functions $g_{1}(x)$ and $g_{2}(x)$:

$$
\begin{aligned}
E\left\{\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right\} & =\left\langle\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right\rangle \\
& =\sum_{i} p_{i}\left(\lambda_{1} g_{1}\left(x_{i}\right)+\lambda_{2} g_{2}\left(x_{i}\right)\right) \\
& =\lambda_{1} \sum_{i} p_{i} g_{1}\left(x_{i}\right)+\lambda_{2} \sum_{i} p_{i} g_{2}\left(x_{i}\right) \\
& =\lambda_{1}\left\langle g_{1}(x)\right\rangle+\lambda_{2}\left\langle g_{2}(x)\right\rangle
\end{aligned}
$$

2.4 Moments of a Distribution

We define the nth moment of a distribution as

$$
\mu_{n}=\left\langle x^{n}\right\rangle=\sum_{i} p_{i} x_{i}^{n}
$$

These powers of x are nothing but special cases of the random functions $g(x)$.
Principal moments:

$$
\begin{aligned}
& \mu_{1}=\sum_{i} p_{i} x_{i} \quad \text { mean of the distribution } \\
& \mu_{2}=\sum_{i} p_{i} x_{i}^{2}
\end{aligned}
$$

Central moments:

$$
\left\langle m_{n}(x)\right\rangle=\left\langle\left(x-\mu_{1}\right)^{n}\right\rangle=\sum_{i} p_{i}\left(x_{i}-\langle x\rangle\right)^{n}
$$

The special case of $n=2$ is called the variance:

$$
\operatorname{Var}\{x\}=\left\langle m_{2}(x)\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

$\operatorname{Var}\{x\}$ and μ_{1} are sufficient to uniquely specify many important distributions, in particular the important Gaussian distribution.

2.5 Variance of a Random Function

In a similar way we can define the variance of a random function $g(x)$:

$$
\begin{aligned}
\operatorname{Var}\{g(x)\} & =\left\langle(g(x)-\langle g(x)\rangle)^{2}\right. \\
& =\sum_{i} p_{i} g^{2}(x)-2\langle g(x)\rangle \sum_{i} p_{i} g\left(x_{i}\right)+\langle g(x)\rangle^{2} \sum_{i} p_{i} \\
& =\left\langle g^{2}(x)\right\rangle-\langle g(x)\rangle^{2}
\end{aligned}
$$

Variance of a Linear Combination of Random Functions:

$$
\begin{aligned}
\operatorname{Var}\left\{\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right\} & =\left\langle\left(\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)-\left\langle\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right\rangle\right)^{2}\right\rangle \\
& =\left\langle\left(\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)-\lambda_{1}\left\langle g_{1}(x)\right\rangle-\lambda_{2}\left\langle g_{2}(x)\right\rangle\right)^{2}\right\rangle \\
& =\left\langle\left(\lambda_{1}\left[g_{1}(x)-\left\langle g_{1}(x)\right\rangle\right]+\lambda_{2}\left[g_{2}(x)-\left\langle g_{2}(x)\right\rangle\right]\right)^{2}\right\rangle \\
& =\left\langle\lambda_{1}^{2}\left[g_{1}(x)-\left\langle g_{1}(x)\right\rangle\right]^{2}+\lambda_{2}^{2}\left[g_{2}(x)-\left\langle g_{2}(x)\right\rangle\right]^{2}\right. \\
& \left.+2 \lambda_{1} \lambda_{2}\left[g_{1}(x)-\left\langle g_{1}\right\rangle\right]\left[g_{2}(x)-\left\langle g_{2}\right\rangle\right]\right\rangle \\
& =\lambda_{1}^{2}\left\langle\left[g_{1}(x)-\left\langle g_{1}(x)\right\rangle\right]^{2}\right\rangle+\lambda_{2}^{2}\left\langle\left[g_{2}(x)-\left\langle g_{2}(x)\right\rangle\right]^{2}\right\rangle \\
& +2 \lambda_{1} \lambda_{2}\left\langle g_{1}(x) g_{2}(x)-g_{1}(x)\left\langle g_{2}(x)\right\rangle-\left\langle g_{1}(x)\right\rangle g_{2}(x)+\left\langle g_{1}(x)\right\rangle\left\langle g_{2}(x)\right\rangle\right\rangle
\end{aligned}
$$

(Exploitation of the linearity of expectation values)

$$
\operatorname{Var}\left\{\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right\}=\lambda_{1}^{2} \operatorname{Var}\left\{g_{1}(x)\right\}+\lambda_{2}^{2} \operatorname{Var}\left\{g_{2}(x)\right\}+2 \lambda_{1} \lambda_{2}\left(\left\langle g_{1}(x) g_{2}(x)\right\rangle-\left\langle g_{1}(x)\right\rangle\left\langle g_{2}(x)\right\rangle\right)
$$

2.6 The Covariance

The mixed last term in the preceeding equation defines the covariance of $g_{1}(x)$ and $g_{2}(x)$.

$$
\operatorname{Cov}\left\{g_{1}(x), g_{2}(x)\right\}=\left\langle g_{1}(x) g_{2}(x)\right\rangle-\left\langle g_{1}(x)\right\rangle\left\langle g_{2}(x)\right\rangle
$$

This term measures the mutual dependence between the two random functions g_{1} and g_{2} and can be positive or negative.

Special cases:

$$
\begin{aligned}
\operatorname{Cov}\{x, y\} & =\langle x y\rangle-\langle x\rangle\langle y\rangle \\
\operatorname{Cov}\{x, x\} & =\langle x x\rangle-\langle x\rangle\langle x\rangle=\operatorname{Var}\{x\}
\end{aligned}
$$

The variance of a linear combination of random functions or variables can be larger or smaller than the sum of the individual variances, depending on the sign of the covariance.

$$
\operatorname{Var}\left\{g_{1}+g_{2}\right\}=\operatorname{Var}\left\{g_{1}\right\}+\operatorname{Var}\left\{g_{2}\right\}+2 \operatorname{Cov}\left\{g_{1}, g_{2}\right\}
$$

The possibility of negative covariance

$$
\operatorname{Var}\left\{g_{1}+g_{2}\right\}<\operatorname{Var}\left\{g_{1}\right\}+\operatorname{Var}\left\{g_{2}\right\}
$$

is crucial for correlated sampling techniques.

2.7 Properties of the Covariance

$$
\begin{aligned}
\operatorname{Cov}\{x, y\} & =\langle x y\rangle-\langle x\rangle\langle y\rangle \\
\langle x y\rangle & =\sum_{i j} p_{i j} x_{i} y_{j}
\end{aligned}
$$

If the random variables x and y are independent, the $p_{i j}$ can be decomposed according to $p_{i j}=p_{1 i} p_{2 j}$

$$
\begin{aligned}
\langle x y\rangle & =\sum_{i j} p_{1 i} x_{i} p_{2 j} y_{j}=\left(\sum_{i} p_{1 i} x_{i}\right)\left(\sum_{j} p_{2 j} y_{j}\right)=\langle x\rangle\langle y\rangle \\
& \Rightarrow \operatorname{Cov}\{x, y\}=0
\end{aligned}
$$

Independence of two random variables x, y is a sufficient but not a necessary condition for $\operatorname{Cov}\{x, y\}$ to be zero!

$$
\begin{aligned}
\text { Example: } & x=\{-1,0,1\}, y=x^{2}, \quad \text { all } p_{i} \text { equal } \\
& \langle x\rangle=0,\langle x y\rangle=\left\langle x^{3}\right\rangle=0 \\
& \Rightarrow \operatorname{Cov}\{x, y\}=0
\end{aligned}
$$

The covariance is zero in spite of a functional relationship between x and y (full correlation).

2.8 Correlation and Autocorrelation

The correlation coefficient $r(x, y)$ is the normalized version of the covariance:

$$
\begin{aligned}
& r(x, y)=\frac{\operatorname{Cov}\{x, y\}}{\sqrt{\operatorname{Var}\{x\} \operatorname{Var}\{y\}}} \\
&-1 \leq r(x, y) \leq 1
\end{aligned}
$$

If one considers the values of y as copies of x with a constant offset δ (in time or some pseudotime establishing an order)

$$
y_{j}=x_{i}=x_{j-\delta}
$$

one can compute a correlation coefficient for each offset δ.

$$
r(x, y ; \delta)=A(x ; \delta)
$$

This function $A(x ; \delta)$ is called the autocorrelation function and varies between -1 and +1 .
The computation of the autocorrelation function is an important tool to measure the statistical independence of events within a sequence of random events.

All random walk methods require careful autocorrelation analysis

2.9 Continuous Distributions

In the preceeding section we have assumed discrete random events, but generally random variables can also be continuous.

For a one-dimensional case we have

$$
-\infty \leq x \leq \infty
$$

We can define a cumulative distribution function $F(x)$ as

$$
F(x)=P(\text { randomly selected } y<x)
$$

Assume $x_{2}>x_{1}$. Then the events $x_{2}>y \geq x_{1}$ and $x_{1}>y$ are mutually exclusive and we conclude:

$$
\begin{aligned}
P\left(x_{2}>y \geq x_{1}\right)+P\left(x_{1}>y\right) & =P\left(x_{2}>y\right) \\
P\left(x_{2}>y\right) & \geq P\left(x_{1}>y\right)
\end{aligned}
$$

It follows that $F(x)$ is monotonically increasing.

$$
F(-\infty)=0 \quad, \quad F(\infty)=1
$$

The function $F(x)$ is not necessarily smooth. In differentiable regions one can define the probability density function $\rho(x)$:

$$
\rho(x)=\frac{d F(x)}{d x} \geq 0
$$

2.10 Moments of Continuous Distributions

- Summations are replaced by integrations.
- probabilities p_{i} are replaced by $d F(x)$.

$$
\begin{gathered}
E\{x\}=\langle x\rangle=\int_{-\infty}^{\infty} x d F(x) \quad\left(=\int_{-\infty}^{\infty} x \rho(x) d x\right) \\
\int_{-\infty}^{\infty} d F(x)=\left(\int_{-\infty}^{\infty} \rho(x) d x\right)=F(\infty)=1 \\
E\{g(x)\}=\langle g(x)\rangle=\int_{-\infty}^{\infty} g(x) d F(x)
\end{gathered}
$$

The variance is now given as

$$
\operatorname{Var}\{x\}=E\left\{x^{2}\right\}-E\{x\}^{2}=\int_{-\infty}^{\infty} x^{2} d F(x)-\left[\int_{-\infty}^{\infty} x d F(x)\right]^{2}
$$

The variance is not a well defined quantity for all $\rho(x)$.
An important example is the Cauchy-Lorentz-distribution

$$
\rho(x)=\frac{1}{\pi} \frac{a}{x^{2}+a^{2}}
$$

for which $E\{x\}=0$ and $E\left\{x^{2}\right\}=\infty$.

2.11 Sums of Random Variables

- Suppose we have random variables $x_{1}, x_{2}, \ldots, x_{n}$ which are distributed according to some probability density function $\rho(x)$. The variable x_{i} may represent a multidimensional point.
- We evaluate functions $g_{i}\left(x_{i}\right)$ for each x_{i} where the functions g_{i} may or may not be identical. The $g_{i}\left(x_{i}\right)$ are random variables.
- We define a weighted sum G over these functions and its expectation value $E(G)$:

$$
\begin{gathered}
G=\sum_{i}^{n} \lambda_{i} g_{i}\left(x_{i}\right) \quad \lambda_{i} \in \mathbf{R} \\
E\{G\}=\langle G\rangle=\sum_{i}^{n} \lambda_{i}\left\langle g_{i}\left(x_{i}\right)\right\rangle
\end{gathered}
$$

- A special choice is $\lambda_{i}=1 / n$ and all g_{i} identical

$$
E\{G\}=E\left\{\frac{1}{n} \sum_{i}^{n} g\left(x_{i}\right)\right\}=\frac{1}{n} \sum_{i}^{n} E\{g\}=E\{g\}
$$

The expectation value for the sum G is identical with the expectation value $E\{g\}$ for the function g.
G can serve as an estimator for $E\{g(x)\}$

2.12 Variance of the Sum of Random Variables

- Assume for simplicity that all x_{i} are independent. The covariance is zero for all combinations and the variance of G can be expressed as the sum of the variances of its terms:

$$
\operatorname{Var}\{G\}=\sum_{i}^{n} \lambda_{i}^{2} \operatorname{Var}\left\{g_{i}(x)\right\}
$$

- Again assume $\lambda_{i}=1 / n, g_{i}(x)=g(x)$

$$
\operatorname{Var}\{G\}=\sum_{i}^{n} \frac{1}{n^{2}} \underbrace{\operatorname{Var}\{g(x)\}}_{\text {some number }}=\frac{1}{n} \operatorname{Var}\{g(x)\}
$$

- The variance of the estimator G decreases $\propto 1 / n$
- The proportionality factor is $\operatorname{Var}\{g(x)\}$

The mean of random variables approaches the expectation value of the mean of the distribution.

Statistical convergence:

The deviation δ of the estimator from the true value will exceed a specified limit Δ with a probability which diminishes as $n \rightarrow \infty$.

3 Sources of Randomness

Monte Carlo methods require the creation of random events according to specified probability densities. There are three classes of sources:

- Natural sources of (true ?) randomness. Historically interesting but inefficient, not reproducible, and of hardly quantifiable quality.
- Deterministic algorithms producing a sequence of numbers (pseudorandom numbers) with properties which are indistinguishable from a true random sequence as measured by a battery of statistical tests.
- Random walks constructed from primitive random events for all complicated multidimensional distributions.

We will look in detail only at random walk methods and assume the availability of a good uniform random number generator or rather pseudorandom number generator.

3.1 Random Walks

- General method to generate samples from specified probability density functions $\rho(x)$, in particular if the space x has a high dimensionality.
- For direct generators $P\left(x_{i}\right)$ is (at least apparently) independent of the previous event x_{j}.
- Random walks are a sequence of events $x_{1}, x_{2}, x_{3}, \ldots$, constructed such that $P\left(x_{\text {new }}\right)=f\left(x_{\text {new }}, x_{\text {last }}\right)$.
- The function $f\left(x_{\text {new }}, x_{\text {last }}\right)$ describes a strategy to propagate the walk and is in fact a conditional probability.
- The process has a memory and serial correlation.

Random walks are a special example for a Markov process

General conditions for random walks which are supposed to generate samples with distribution $\rho(x)$:

1. Every point x must be accessible from any other point in a finite number of steps.
2. It must be possible to revisit the same point x any number of times.
3. The walk must not periodically pass through the same points x again.

These conditions are equivalent to requiring ergodicity of the random walk.

3.2 The Stochastic Matrix

Consider for a moment a system with discrete 'states' (position, orientations, quantum numbers etc.) $x_{1}, x_{2}, \ldots x_{n}$. $p_{i j}=p(j \mid i)$ is the probability to observe x_{j} provided that we had x_{i} just before. $p_{i j}$ is the transition probability for a Markov process.

All $p_{i j}$ can be arranged in matrix form:

$$
\underset{=}{P}=\left(\begin{array}{ccccc}
p_{11} & p_{12} & p_{13} & \ldots & p_{1 n} \\
p_{21} & p_{22} & & & \vdots \\
\vdots & & & & \vdots \\
p_{n 1} & \ldots & \ldots & \ldots & p_{n n}
\end{array}\right)
$$

The matrix P is a stochastic matrix

- All $p_{i j} \geq 0$ because they represent probabilities.
- $\sum_{j} p_{i j}=1$ for all i because each transition from i must lead to one of the available 'states'.

3.3 Properties of the Stochastic Matrix

Consider a row vector

$$
\underline{\rho^{(0)}}=\left\{\rho_{1}^{(0)}, \rho_{2}^{(0)}, \ldots, \rho_{n}^{(0)}\right\}
$$

which describes an initial state in which $\rho_{i}^{(0)}$ is the probability of initially finding the system in state i.
Each step in the Markov chain can be formulated as a multiplication of this row vector with the stochastic matrix P :

$$
\begin{aligned}
& \underline{\rho^{(1)}}=\underline{\rho^{(0)} P}= \\
& \frac{\rho^{(2)}}{}=\underline{\rho^{(1)} P}= \\
& \ldots \cdots \\
& \underline{\rho^{(k)}}=\underline{\rho^{(0)} P^{k}}=
\end{aligned}
$$

The asymptotic distribution $\underline{\rho}$ for $k \rightarrow \infty$ is

$$
\underline{\rho}=\lim _{k \rightarrow \infty} \underline{\rho}^{(0)} \stackrel{P^{k}}{=}
$$

Repeated multiplication of $\rho^{(0)}$ with P converges to a stationary situation if

$$
\begin{gathered}
\underline{\rho}=\underline{\rho} P \\
\underline{\rho} \text { is an eigenvector of } \underset{=}{P} \text { with eigenvalue } 1 .
\end{gathered}
$$

Note: The asymptotic distribution $\underline{\rho}$ is independent of the initial 'state' $\underline{\rho^{(0)}}$ and depends exclusively on the matrix $\underset{=}{P}$. All initial vectors converge to the same asymptotic distribution.

A formal proof requires to show that $P=$ has a largest eigenvalue which is exactly 1 and that all other eigenvalues fall between -1 and 1 .

3.4 Detailed Balance

The remaining question is how to construct a matrix P which has an eigenvector corresponding to the desired probability density ρ.

The eigenvector equation can be written out explicitly as

$$
\sum_{i}^{n} \rho_{i} p_{i j}=\rho_{j}
$$

Ansatz: Detailed balance

We require

$$
\rho_{i} p_{i j}=\rho_{j} p_{j i}
$$

Therefore we have

$$
\sum_{i} \rho_{i} p_{i j}=\sum_{i} \rho_{j} p_{j i}=\rho_{j} \sum_{i} p_{j i}=\rho_{j}
$$

This is exactly the condition required for an eigenvector of $\underset{=}{P}$ with eigenvalue 1 .
Note: Detailed balance guarantees $\underline{\rho} \underset{=}{P}=\underline{\rho}$ and is therefore a sufficient condition to construct a matrix $\underset{=}{P}$ with the desired asymptotic distribution but it is not necessarily the only possible way!

3.5 Decomposition of the Transition Process

We can arbitrarily decompose each $p_{i j}$ into a factor describing the probability of proposing a particular transition $t_{i j}$ and a factor $a_{i j}$ describing the probability of accepting this choice.

$$
p_{i j}=t_{i j} a_{i j}
$$

This decomposition is valid if the two processes are independent.

Substitution into the detailed balance relationship yields

$$
\frac{\rho_{j}}{\rho_{i}}=\frac{p_{i j}}{p_{j i}}=\frac{t_{i j} a_{i j}}{t_{j i} a_{j i}}
$$

Since we assume that ρ is a known probability density to be generated by the walk, and since we can pick a transition strategy specifying $t_{i j}$ according to our taste, it is useful to convert this expression into a form which defines the required acceptance probability:

$$
\frac{a_{i j}}{a_{j i}}=\frac{\rho_{j}}{\rho_{i}} \frac{t_{j i}}{t_{i j}}
$$

Note that the construction of the random walk requires only that we are able to compute the ratio of probability densities. We can work with densities ρ which are not normalized!

3.6 Accepting Proposed Transitions

There are several choices for the acceptance probabilities $a_{i j}, a_{j i}$ which satisfy this relation, the most common one being due to Metropolis et al. (1953):

$$
a_{i j}=\min \left[1, \frac{\rho_{j}}{\rho_{i}} \frac{t_{j i}}{t_{i j}}\right]
$$

Proof by verification of the two possibilities:
(a) $\rho_{j} t_{j i} \geq \rho_{i} t_{i j} \Rightarrow a_{i j}=1$
$a_{j i}=\frac{\rho_{i}}{\rho_{j}} \frac{t_{i j}}{t_{j i}}$
$\frac{a_{i j}}{a_{j i}}=\frac{\rho_{j}}{\rho_{i}} t_{t_{i j}} t_{j i} \quad$ q.e.d.
(b) $\rho_{j} t_{j i}<\rho_{i} t_{i j} \Rightarrow a_{i j}=\frac{\rho_{j}}{\rho_{i}} \frac{t_{j i}}{t_{i j}}$

$$
a_{j i}=1
$$

$$
\frac{a_{i j}^{u}}{a_{j i}}=\frac{\rho_{j}}{\rho_{i}} \frac{t_{i j}}{t_{i j}} \quad \text { q.e. } d .
$$

3.6.1 How to Accept a Proposed Change of State?

- A proposed change of state $i \rightarrow j$ should be accepted with probability $0 \leq a_{i j} \leq 1$.
- Random numbers u with a uniform probability density $\rho(u)=1$ on the interval $[0,1]$ have the property

$$
P(u \leq x)=F(x)=x
$$

- A computed value of $a_{i j}$ will be greater or equal than a uniform random number u with probability $a_{i j}$.
- Generate a uniform random number u and accept the proposed change of state if $a_{i j} \geq u$. The 'new' state j is the old state i in case of rejection and has to be counted as a member of the chain of steps!

3.7 Random Walks in Continuous Spaces

The fundamental ideas of the construction of random walks via the stochastic matrix and a detailed balance ansatz can be generalized to an infinite number of states.

$$
\begin{gathered}
\frac{a\left(x \rightarrow x^{\prime}\right)}{a\left(x^{\prime} \rightarrow x\right)}=\frac{\rho\left(x^{\prime}\right) t\left(x^{\prime} \rightarrow x\right)}{\rho(x) t\left(x \rightarrow x^{\prime}\right)} \\
a\left(x \rightarrow x^{\prime}\right)=\min \left[1, \frac{\rho\left(x^{\prime}\right) t\left(x^{\prime} \rightarrow x\right)}{\rho(x) t\left(x \rightarrow x^{\prime}\right)}\right]
\end{gathered}
$$

3.8 Coordinates of a Random Walk

The coordinates or 'states' of random walks are defined very broadly and can be

- All discrete (e.g. spins on a lattice)
- All continuous (e.g. atomic coordinates in simulations of liquids)
- Any mixture of the two (e.g. particles with spin and continuous space coordinates)

Specifically also the particle number in physical simulations can be a (discrete) coordinate (Grand canonical Monte Carlo).

3.9 The Transition Function t

A common simplification consists in the special case

$$
t\left(x^{\prime} \rightarrow x\right)=t\left(x \rightarrow x^{\prime}\right)
$$

specifically the choice $t\left(x \rightarrow x^{\prime}\right)=t\left(\left|x-x^{\prime}\right|\right)$.
The simplified formula for the Metropolis acceptance probability for symmetric transitions is

$$
a\left(x \rightarrow x^{\prime}\right)=\min \left[1, \frac{\rho\left(x^{\prime}\right)}{\rho(x)}\right]
$$

Examples:

- Proposing a new position x^{\prime} with uniform probability from a volume surrounding x (e.g. a hypercube of predefined size in the majority of simple random walk methods).
- Picking a new position x^{\prime} according to a multidimensional Gaussian centered on x :

$$
t\left(x \rightarrow x^{\prime}\right) \propto \exp \left(-\frac{\left|x-x^{\prime}\right|^{2}}{2 \sigma^{2}}\right)
$$

Explicit inclusion of $t\left(x \rightarrow x^{\prime}\right)$ in the formulation allows guided random walks:
Force bias Monte Carlo, improved variational Monte Carlo diffusion Monte Carlo with importance sampling

3.10 Summary of Important Random Walk Features

Good features:

- Random sampling from distributions in spaces of high dimension.
- No need to be able to normalize the probability density function (which would involve a multidimensional integration).
- Very general coordinate definition and very broad applicability.

Troublesome Features:

- The desired distribution is reached only asymptotically. When is a random walk in its asymptotic regime?
- Serial correlation between sampling positions. Requires careful autocorrelation analysis.

4 Monte Carlo Integration

4.1 The Principle of Monte Carlo Integration

We have seen that the expectation value of the sum G of random variables $g\left(x_{i}\right)$ with x_{i} drawn according to the probability density $\rho(x)$ is identical with the expectation value of $g(x)$ over the underlying distribution:

$$
E\{G\}=E\{g(x)\} \quad, \quad G=\frac{1}{n} \sum_{i}^{n} g\left(x_{i}\right) \quad, \quad x_{i} \propto \rho(x)
$$

Now recall the original definition of the expectation value as an integral over the distribution:

$$
E\{g(x)\}=\int \rho(x) g(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i}^{n} g\left(x_{i}\right)
$$

Observations

- The statistical error for the integral is independent of the dimensionality of the integral.
- The statistical error diminishes proportional to $1 / \sqrt{n}$.
- The proportionality constant controlling the absolute size of the error bar depends on the variance of g.
- The integrand need not even be smooth.

4.2 Efficiency of Monte Carlo Integration

We consider the following situation

- $g(x)$ is a d-dimensional function.
- We have fixed resources which allow the evaluation of $g(x)$ at a fixed number of points n.
- We dispose of a grid based product integration rule with leading error h^{q} in the grid step h.
- In a balanced treatment of all dimensions the grid step size will then be $h \propto n^{-1 / d}$.

Efficiency analysis:

- The product rule quadrature will have overall accuracy $\varepsilon_{\text {Grid }} \propto n^{-q / d}$
- The Monte Carlo quadrature will have overall accuracy $\varepsilon_{M C} \propto n^{-1 / 2}$
- Monte Carlo will be more efficient if $d>2 q$.

Remarks:

- We have neglected the prefactors of the n-dependence.
- Accurate product rules require (locally) smooth integrands.
- Monte Carlo methods are very robust and allow 'spiky' integrands.
- For moderate d so called Quasi Monte Carlo Methods can be even more efficient.

5 Variational Quantum Monte Carlo

5.1 The energy expectation value

VMC is an approximative approach for quantum many body problems using a multidimensional and usually not factorizable trial wave function $\Psi_{T}(x ; p)$ with free parameters p and exploiting the variational principle combined with Monte Carlo integration techniques.

$$
E(p)=\frac{\int \Psi_{T}^{*}(x ; p) \hat{H} \Psi_{T}(x ; p) d x}{\int\left|\Psi_{T}(x ; p)\right|^{2} d x} \geq E_{\text {exact }}
$$

Recasting of the integrand as "function • weight":

$$
\begin{gathered}
E(p)=\frac{\int\left|\Psi_{T}(x ; p)\right|^{2} \Psi_{T}^{-1}(x ; p) \hat{H} \Psi_{T}(x ; p) d x}{\int\left|\Psi_{T}(x ; p)\right|^{2} d x} \\
E(p)=\int \rho(x ; p) \Psi_{T}^{-1}(x ; p) \hat{H} \Psi_{T}(x ; p) d x
\end{gathered}
$$

The density $\rho(x ; p)$ is a normalized probability density

$$
\rho(x ; p)=\frac{\left|\Psi_{T}(x ; p)\right|^{2}}{\int\left|\Psi_{T}(x ; p)\right|^{2} d x}
$$

The second factor under the integral is the local energy, an energy-like quantity which varies as a function of x.

$$
E_{l o c a l}=\Psi_{T}^{-1}(x ; p) \hat{H} \Psi_{T}(x ; p)
$$

This integral can be evaluated by Monte Carlo sampling:

$$
E(p) \approx \sum_{i} E_{\text {local }}\left(x_{i} ; p\right) \quad, \quad x_{i} \propto \rho(x ; p)
$$

5.2 The Local Energy

$$
E_{\text {local }}=\Psi_{T}^{-1}(x ; p) \hat{H} \Psi_{T}(x ; p)
$$

The local energy is the key quantity in variational and diffusion Monte Carlo.

Important Properties:

- $E_{l o c a l}$ is computable for any reasonable many body wave function (with or without explicit particle correlation) because it only involves derivatives.
- $E_{\text {local }}$ approaches a constant (the exact eigenvalue) as Ψ_{T} approaches any of the eigenfunctions Φ of the system (zero variance property).
- $E_{\text {local }}$ can have singularities for any Ψ_{T} with nodes (ground and excited states of fermionic systems, excited states of bosonic systems).
This can cause enormous fluctuations in the Monte Carlo sampling and should be avoided. Trial wave functions should respect all known boundary conditions near nodes and in the various asymptotes.
- Singularities are absent if Ψ_{T} happens to be an eigenfunction.
- $E_{l o c a l}=V(x)$ if $\Psi_{T}=$ const (limiting case in simple diffusion Monte Carlo).

5.3 Evaluating Expectation Values

- The calculation of the energy (and other properties) for a given trial wave function $\Psi_{T}(p)$ has a complexity comparable to a classical Monte Carlo simulation,
- Convert any classical canonical MC code into a VMC code by the substitution

$$
\exp \left[-V(x) / k_{B} T\right] \rightarrow\left|\Psi_{T}(x ; p)\right|^{2}
$$

(Ergodicity problems are usually actually smaller because of a 'softer' distribution)

- Any tricks known in classical Monte Carlo can be immediately exploited (truncation of finite range interactions, fast methods for long range potential summations, smart move generation).

5.4 A Program Skeleton

1. Pick a starting point x in $3 N$-dimensional space and compute $\left|\Psi_{T}(x ; p)\right|^{2}$.
2. Set all counters to zero.
3. Propose a new point x^{\prime} by randomly modifying one or more components of x within a hyperbox or a high-dimensional gaussian (symmetric transition).
4. Compute $z=\left|\Psi_{T}\left(x^{\prime} ; p\right)\right|^{2} /\left|\Psi_{T}(x ; p)\right|^{2}$
(probably taking advantage of unchanged parts of Ψ_{T}).
5. If $z \geq u$ with u random in $[0,1]$, replace x by x^{\prime}.
6. Otherwise retain x (possibly counting it thus more than once).
7. Repeat steps 3 to 6 long enough to allow correlations to die out.
8. Evaluate $E_{l o c a l}$ and any other property at the present point x and increment the appropriate counters for mean values and variances.
Return to step 3

- Accumulate autocorrelation information on all important properties during the entire simulation. Autocorrelation lengths are not necessarily identical for all properties!
- For efficiency reasons (vectorisation or parallelisation) a swarm of parallel walks is an option, if each walk by itself is sufficiently long to ensure that the asymptotic regime is sampled.

5.5 General Criteria for Trial Wave Functions

- $\hat{H} \Psi_{T}$ must exist anywhere in space; Ψ_{T} and $\nabla \Psi_{T}$ must be smooth in all regions where the potential is not infinite.
- The following three integrals must exist

$$
\begin{gathered}
\int\left|\Psi_{T}\right|^{2} d V, \quad \int \Psi_{T}^{*} \hat{H} \Psi_{T} d V \\
\int\left|\hat{H} \Psi_{T}\right|^{2} d V
\end{gathered}
$$

The first two integrals are ordinary requirements of quantum mechanics, the last integral is a supplementary requirement, which assures a finite variance and the computability of error estimates.

- Ψ_{T} must possess all required symmetries (particle interchange, space inversion).
- Ψ_{T} should have the physically correct asymptotic behaviour for large particle separations.
- Ψ_{T} should properly describe the approach to zero distance between any two particles (cusp conditions).
- For bulk systems appropriate periodic boundary conditions at the limits of the simulation cell have to be satisfied.

5.6 Optimizing Trial Wave Functions

The hard part of VMC is optimizing $\Psi_{t}(x ; p)$ with respect to its parameters p.

General Strategy

- The variational principle tells us that energy minimization as in other quantum chemical techniques would be a good idea.
- The Monte Carlo formulation allows an even better way: Variance Minimization.
- Knowing the target (namely zero variance) we have some sort of measure, how far away we are from an eigenfunction.
- Variance minimization works in principle also for excited states; energy minimization has contamination problems (mixed wave functions) and is not valid any more unless very difficult orthogonalisations are done.
- Energy minimization is good for coarse optimization, variance minimization can discriminate between energetically equally good functions.
- Variance minimization emphasizes uniform quality and tends to give better expectation values.
- In practice often minimization of a mixed quantity

$$
F(p)=\alpha E(p)+\beta \operatorname{Var}\{E(p)\}
$$

where β is increased as the optimization progresses.

5.7 Moving Downhill in Parameter Space

- As opposed to linear variational problems we have no direct algorithm for locating the minimum.
- Multidimensional nonlinear optimization is known as a hard problem. Don't expect too much!
- Random search methods (simulated annealing, threshold accepting etc.) are too expensive and generally not too good in continuous spaces.
- Gradient methods (essentially local) are most common but less global.
- Our biggest problem: Noise How to compute a gradient from noisy data by finite differencing?

5.8 Variance reduction: Reweighting of Random Walks

- In the ordinary case of independent MC integrations at each p, the error bars of the total energies have to be smaller than the energy difference.
- We should try to directly sample the change of the energy as we change p by a small amount.
- In practice: We evaluate the expectation values $E(p)$ for a whole set of p-space points by using sampling positions x generated by a 'master walk' at some p_{m} (usually the best current point).
- Accumulating all estimators over the same set of points guarantees strong correlation and reduces relative fluctuations.

$$
\begin{aligned}
& E(p)=\frac{\int \Psi_{T}(x, p) \hat{H} \Psi_{T}(x, p) d x}{\int \Psi_{T}(x, p) \Psi_{T}(x, p) d x} \\
&=\frac{\int \Psi_{T}^{2}\left(x, p_{m}\right) \Psi_{T}^{2}(x, p)}{\Psi_{T}^{2}\left(x, p_{m}\right)} \Psi_{T}^{-1}(x, p) \hat{H} \Psi_{T}(x, p) d x \\
& \int \Psi_{T}^{2}\left(x, p_{m}\right) \frac{\Psi_{T}^{2}(x, p)}{\Psi_{T}^{2}\left(x, p_{m}\right)} d x \\
&=\frac{\int \Psi_{T}^{2}\left(x, p_{m}\right) W\left(x ; p, p_{m}\right) \Psi_{T}^{-1}(x, p) \hat{H} \Psi_{T}(x, p) d x}{\int \Psi_{T}^{2}\left(x, p_{m}\right) W\left(x ; p, p_{m}\right) d x} \\
& \approx \frac{\sum_{i} W\left(x_{i} ; p, p_{m}\right) \Psi_{T}^{-1}\left(x_{i}, p\right) \hat{H} \Psi_{T}\left(x_{i}, p\right)}{\sum_{i} W\left(x_{i} ; p, p_{m}\right)}
\end{aligned}
$$

5.9 Iterative Fixed Sampling

- In ordinary reweighting a new 'master walk' is generated once a step in p-space has been taken.
- Actual averages often need only a few thousand uncorrelated samples, originating from very much longer random walks (large delay between samples to suppress serial correlation).
- Reduction of computational cost is possible by storing well decorrelated configurations and some important quantities (e.g. $\Psi_{T}\left(p_{m}\right)$ of the generating walk).
- The data volume even for hundreds of particles is quite acceptable (below 3 KByte per configuration and 100 particles).
- Reuse this set of fixed samples over many optimization cycles.
- Generate a new set of configurations by a long random walk only when the statistical fluctuations have become too large.

6 Diffusion Quantum Monte Carlo (DMC)

6.1 The basic idea

- Isomorphism between the time dependent Schrödinger equation and a multi dimensional diffusion equation. Recognized by Fermi and Ulam in 1940's.
- Exact solution limited only by statistical errors.

$$
\begin{gathered}
\imath \hbar \frac{\partial \Psi(\vec{r}, t)}{\partial t}=\left\{-\frac{\hbar^{2}}{2} \sum_{j=1}^{n} \frac{1}{m_{j}} \nabla_{j}^{2}+\left\{V(\vec{r})-E_{r e f}\right\}\right\} \Psi(\vec{r}, t) \\
\frac{\partial C(\vec{r}, t)}{\partial t}=\left\{\sum_{j=1}^{n} D_{j} \nabla_{j}^{2}-k(\vec{r})\right\} C(\vec{r}, t)
\end{gathered}
$$

- Potential energy function acts as position dependent reaction term
- Inverse masses correspond to diffusion coefficients in a $3 N$-dimensional space. Anisotropic diffusion with groups of 3 equivalent space dimensions.
- Reference energy $E_{r e f}$: arbitrary shift of the energy scale.

Key concept of DMC

Brownian Dynamics \Rightarrow Ensemble of 'Random Walkers'

6.2 The Stationary Solution

The diffusion analogy I

6.3 The effect of imaginary time

- Imaginary time $\tau=\imath t / \hbar$
\Rightarrow mapping of periodic processes on relaxations.
- Propagation of arbitrary initial distribution $\Psi(\vec{r}, 0)$ leads to steady state ground state distribution $\Phi_{0}(\vec{r})$.
- Asymptotic decay with a rate proportional to $E_{0}-E_{r e f}$:

$$
\begin{aligned}
\Psi(\vec{r}, \tau) & =\sum_{k} A_{k} \exp \left\{-\left(E_{k}-E_{r e f}\right) \tau\right\} \Phi_{k}(\vec{r}) \\
\lim _{\tau \rightarrow \infty} \Psi(\vec{r}, \tau) & =A_{0} \exp \left\{-\left(E_{0}-E_{r e f}\right) \tau\right\} \Phi_{0}(\vec{r})
\end{aligned}
$$

Diffusion Monte Carlo is in principle a projection method which projects the exact ground state wave function out of an arbitrary initial function.

The difference with respect to other quantum mechanical projection techniques is the implementation of the projection by sampling which has several advantages and disadvantages!

Once the ground state has been projected out we can continue the projection and accumulate an arbitrary amount of information.

6.4 Importance Sampling

Improvement of statistical accuracy and introduction of boundary conditions through trial wave functions Ψ_{T} : diffusion equation with convection for $\Psi \Psi_{T}$:

$$
\frac{\partial\left(\Psi \Psi_{T}\right)}{\partial \tau}=\sum_{j=1}^{n}\{\frac{1}{2 m_{j}} \nabla_{j}^{2}\left(\Psi \Psi_{T}\right)-\overbrace{\frac{1}{m_{j}} \nabla_{j}\left(\Psi \Psi_{T} \nabla \ln \Psi_{T}\right)}^{\text {Drift }}\}-\{\underbrace{\Psi_{T}^{-1} \hat{T} \Psi_{T}+V(\vec{r})}_{E_{\text {local }}}-E_{\text {ref }}\}\left(\Psi \Psi_{T}\right)
$$ Advantages:

- $E_{\text {local }}(\vec{r})$ is smoother than $V(\vec{r})$.
- Statistical error approaches zero for $\Psi_{T} \rightarrow \Psi$.
- Distribution $\Psi \Psi_{T}$ is closer to $|\Psi|^{2}$. \Rightarrow Simpler evaluation of expectation values.
- Introduction of nodal constraints.

New Computational Quantities:

- $E_{\text {local }}(\vec{r})$ by analytical differentiation of Ψ_{T}.
- "Quantum force" from gradient of Ψ_{T}.

6.5 Formal Time Evolution

Consider the sequence of trial functions defined by

$$
\Psi_{n+1}(\vec{r})=\exp \left\{-\Delta \tau\left(\hat{H}-E_{r e f}\right)\right\} \Psi_{n}(\vec{r})=\int d \vec{r}^{\prime} G\left(\vec{r}, \vec{r}^{\prime}\right) \Psi_{n}(\vec{r})
$$

Expand into eigenfunctions Φ_{k} :

$$
\begin{aligned}
\Psi_{0}(\vec{r}) & =\sum_{k}\left\langle\Phi_{k} \mid \Psi_{0}\right\rangle \Phi_{k}(\vec{r}) \\
\Psi_{1}(\vec{r}) & =\sum_{k}\left\langle\Phi_{k} \mid \Psi_{0}\right\rangle \Phi_{k}(\vec{r}) \exp \left[-\Delta \tau\left(E_{k}-E_{r e f}\right)\right] \\
\Psi_{n}(\vec{r}) & =\sum_{k}\left\langle\Phi_{k} \mid \Psi_{0}\right\rangle \Phi_{k}(\vec{r}) \exp \left[-n \Delta \tau\left(E_{k}-E_{r e f}\right)\right] \\
\lim _{n \rightarrow \infty} \Psi_{n}(\vec{r}) & =\left\langle\Phi_{0} \mid \Psi_{0}\right\rangle \Phi_{0}(\vec{r}) \exp \left[-n \Delta \tau\left(E_{k}-E_{r e f}\right)\right]
\end{aligned}
$$

In the case of importance sampling:

$$
\begin{aligned}
f_{n}(\vec{r}) & =\Psi_{T}(\vec{r}) \Psi_{n}(\vec{r}) \\
f_{n+1}(\vec{r}) & =\Psi_{T}(\vec{r}) \exp \left\{-\Delta \tau\left(\hat{H}-E_{r e f}\right)\right\} \Psi_{n}(\vec{r})=\int d \vec{r}^{\prime} \tilde{G}\left(\vec{r}, \vec{r}^{\prime}\right) f_{n}(\vec{r}) \\
\lim _{n \rightarrow \infty} f_{n}(\vec{r}) & =\left\langle\Phi_{0} \mid \Psi_{0}\right\rangle \Phi_{0}(\vec{r}) \Psi_{T}(\vec{r}) \exp \left[-n \Delta \tau\left(E_{k}-E_{r e f}\right)\right]
\end{aligned}
$$

6.6 Probabilistic Interpretation and Short Time Approximation

- Propagation requires the evaluation of the integral over the Green's function $G\left(\vec{r}, \vec{r}^{\prime}\right)$.
- We need a coordinate space representation of G.
- Positive $G\left(\vec{r}, \vec{r}^{\prime}\right)$ would allow a probabilistic interpretation and sampling of the integral.

$$
G\left(\vec{r}, \vec{r}^{\prime} ; \Delta \tau\right)=\prod_{j}^{N}\left[\left(\frac{m_{j}}{2 \pi \Delta \tau}\right)^{3 / 2} \exp \left\{-\frac{m_{j}}{2 \Delta \tau}\left(\vec{r}_{j}-\vec{r}_{j}^{\prime}\right)^{2}\right\}\right] \times \exp \left\{-\Delta \tau\left(\frac{V(\vec{r})+V\left(\vec{r}^{\prime}\right)}{2}-E_{r e f}\right)\right\}+\mathcal{O}\left(\Delta \tau^{3}\right)
$$

In the case of importance sampling:

$$
\begin{aligned}
\tilde{G}\left(\vec{r}, \vec{r}^{\prime} ; \Delta \tau\right)= & \prod_{j}^{N}\left[\left(\frac{m_{j}}{2 \pi \Delta \tau}\right)^{3 / 2} \exp \left\{-\frac{m_{j}}{2 \Delta \tau}\left(\vec{r}_{j}-\vec{r}_{j}^{\prime}-\frac{\Delta \tau}{2 m_{j}} \vec{F}_{j}(\vec{r})\right)^{2}\right\}\right] \times \\
& \exp \left\{-\Delta \tau_{\text {eff }}\left(\frac{E_{\text {local }}(\vec{r})+E_{\text {local }}\left(\vec{r}^{\prime}\right)}{2}-E_{\text {ref }}\right)\right\}+\mathcal{O}\left(\Delta \tau^{2}\right)
\end{aligned}
$$

6.7 The Practical Solution

- Represent solution by an ensemble of random walkers with weights w_{i} (δ-functions). Typical ensemble size 1000-10000.
- Cut propagation time into slices $\Delta \tau$.
- Solve each part of the diffusion equation (drift, diffusion, growth/decay) separately. \Rightarrow Short time approximation, nothing else but a Trotter factorisation.

Drift displaces each δ-function
Diffusion broadens δ-function to Gaussian Growth/decay scales weight of δ-function

Sample the Gaussian to preserve the δ-representation by picking new position from a multidimensional Gaussian centered on the position reached after the drift step

- Random walkers move independently \Rightarrow vectorization or parallelisation.
- Communication only for ensemble control and averaging; minimal overhead.

6.8 The Individual Actions

- Propose a new position vector r^{\prime} for each random walker by updating the components related to particle j according to

$$
\begin{aligned}
r_{j}^{\prime} & =r_{j}+\frac{\Delta \tau}{m_{j}} \vec{F}_{j}(r)+\sqrt{\frac{\Delta \tau}{m_{j}}} \vec{\zeta} \\
\vec{F}_{j}(r) & =\frac{\nabla_{j} \Psi_{T}(\vec{r})}{\Psi_{T}(\vec{r})} \\
\vec{\zeta} & =\text { Gaussian random vector }
\end{aligned}
$$

- Check acceptance of r^{\prime} to ensure detailed balance by computation of backward drift $\vec{F}\left(r^{\prime}\right)$ and new probability density $\Psi_{T}^{2}\left(r^{\prime}\right)$.
- Apply weight update according to local energy values:

$$
w_{k}^{\text {new }}=w_{k}^{\text {old }} \exp \left[-\Delta \tau_{e f f}\left(\frac{E_{\text {local }}(\vec{r})+E_{\text {local }}\left(\vec{r}^{\prime}\right)}{2}-E_{r e f}\right)\right]
$$

- Keep track of actual displacements:

$$
\begin{aligned}
\left\langle\left(r_{j}-r_{j}^{\prime}\right)^{2}\right\rangle_{\text {prop. }} & =\frac{\Delta \tau}{m_{j}} \\
\left\langle\left(r_{j}-r_{j}^{\prime}\right)^{2}\right\rangle_{a c c .} & =\frac{\Delta \tau_{e f f}}{m_{j}}
\end{aligned}
$$

6.9 Making a Move: Metropolis algorithm with asymmetric transition probabilities

$$
\begin{gathered}
P\left(r \rightarrow r^{\prime}\right)=\min \left\{1, \frac{\left|\Psi_{T}(r)\right|^{2}}{\left|\Psi_{T}\left(r^{\prime}\right)\right|^{2}} \frac{t\left(r^{\prime} \rightarrow r\right)}{t\left(r \rightarrow r^{\prime}\right)}\right\} \\
t\left(r \rightarrow r^{\prime}\right)=\exp \left\{-\sum_{j} \frac{m_{j}}{2 \Delta \tau}\left(\vec{r}_{j}-\vec{r}_{j}^{\prime}-\frac{\Delta \tau}{2 m_{j}} \vec{F}_{j}(r)\right)^{2}\right\} ; \quad \vec{F}_{j}(r)=\nabla_{j} \ln \Psi_{T}
\end{gathered}
$$

6.10 Why impose detailed balance?

- Distribution of random walkers is supposed to represent $\Phi_{k} \Psi_{T}$ (usually $k=0$).
- If Ψ_{T} is an eigenfunction Φ_{k} (perfect importance sampling) $E_{\text {local }}$ is a constant (the eigenvalue!) and the DMC energy is exactly E_{k} for any $\Delta \tau$ (vanishing time step error!).
All weights w_{i} are equal and the space density of random walkers alone carries the information on Φ_{k}^{2}.
- Low order integration of drift leads to a distorted distribution after each time step $\Delta \tau>0$ even with perfect importance sampling!

Benefits of detailed balance:

- Imposing detailed balance ensures that the space density of random walkers is proportional to Ψ_{T}^{2} for any $\Delta \tau$.
- Clean interpretation of weights: Space density of walkers is always Ψ_{T}^{2} and the weighted ensemble represents $\Phi_{k} \Psi_{T} \Rightarrow$ the weights are a statistical measure of Φ_{k} / Ψ_{T}.
- Well defined weights are important for expectation values!
- Significant reduction of time step error (empirical observation, no known formal proof).
- Very low rejection rate at typical $\Delta \tau . \Rightarrow$ Large enhancement of efficiency at negligible cost.
- Shorter effective time step $\tau_{e f f}$ due to rejected proposals computed from Einstein relationship.

6.11 Energy Estimators I

Method 1: $E_{\text {mean }}$, local energy or mean energy estimator

$$
\left\langle E_{\text {local }}\right\rangle=\frac{\sum_{i} w_{i} E_{\text {local }}\left(r_{i}\right)}{\sum_{i} w_{i}}=\frac{\int \Phi_{0} \Psi_{T} \Psi_{T}^{-1} \hat{H} \Psi_{T} d \vec{r}}{\int \Phi_{0} \Psi_{T} d \vec{r}}=\frac{\int \Phi_{0} \hat{H}\left(\sum_{k} c_{k} \Phi_{k}\right) d \vec{r}}{\int \Phi_{0}\left(\sum_{k} c_{k} \Phi_{k}\right) d \vec{r}}=E_{0}
$$

Special case $\Psi_{T}=$ const $\Rightarrow E_{0}=\langle V\rangle$

Method 2: $E_{\text {grow }}$, growth estimator

$$
\Phi_{0} \Psi_{T}(\vec{r}, \tau+\Delta \tau)=\exp \left\{-\left(E_{0}-E_{r e f}\right) \Delta \tau\right\} \Phi_{0} \Psi_{T}(\vec{r}, \tau)
$$

Analyse weight evolution:

$$
E_{\text {grow }}=E_{0}=E_{\text {ref }}-\frac{d \ln W(\tau)}{d \tau} ; W=\sum_{i} w_{i}
$$

6.12 Trial Functions and Local Energy

Standard form for atomic systems:

$$
\Psi_{T}(\vec{r} ; \vec{p})=\prod_{i<j \in R g} \Phi_{i j}\left(r_{i j} ; \vec{p}\right)
$$

Permutation symmetry!

$$
\begin{aligned}
\Psi_{T}^{-1} \hat{T} \Psi_{T}=-\sum_{i} \frac{\hbar^{2}}{2 m_{i}} & \left\{\sum_{q=x, y, z}\left[\sum_{j \neq i} \frac{1}{r_{i j}} \frac{\partial \ln \Phi_{i j}}{\partial r_{i j}}\left(q_{i}-q_{j}\right)\right]^{2}\right. \\
& \left.+\sum_{j \neq i}\left[\frac{2}{r_{i j}} \frac{\partial \ln \Phi_{i j}}{\partial r_{i j}}+\frac{1}{\Phi_{i j}} \frac{\partial^{2} \Phi_{i j}}{\partial r_{i j}^{2}}-\left(\frac{\partial \ln \Phi_{i j}}{\partial r_{i j}}\right)^{2}\right]\right\}
\end{aligned}
$$

Computational complexity $\propto N^{2}$
Extension for rare gas-molecule clusters with anisotropy:

$$
\Psi_{T}(\vec{r})=\prod_{i \in R g} \chi_{i}\left(r_{i}, \cos \theta_{i}\right) \cdot \prod_{i<j \in R g} \Phi_{i j}\left(r_{i j}\right)
$$

6.13 How to find a good Ψ_{T} ?

1. Get an idea about the functional form:

- Physical intuition or luck
- Better: Use whatever is known about asymptotic behavior and cusp conditions
- Let DMC generate it for you: Selfconsistent DMC

2. Optimize free parameters in Ψ_{T}

- Variational Monte Carlo

$$
E_{v a r}=\frac{\int E_{\text {local }} \Psi_{T}^{2} d r}{\int \Psi_{T}^{2} d r} \approx\left\langle E_{\text {local }}\right\rangle_{\text {walk }} \geq E_{0}
$$

- Better: Exploit zero variance property of $E_{l o c a l}$ as Ψ_{T} approaches an eigenfunction: $E_{\text {local }}(r)=\Psi_{T}^{-1}(r) \hat{H} \Psi_{T}(r)$
$\operatorname{Minimize}\left\langle E_{\text {local }}^{2}\right\rangle-\left\langle E_{\text {local }}\right\rangle^{2}$
Valid for all eigenstates:
Optimisation toward excited states possible
Least squares type algorithm with iterative fixed samples

6.14 Selfconsistent DMC

- Let an unbiased DMC run explore space and settle into important wells
\Rightarrow Extension to minimization problems
- Collect histograms of the distribution $\propto \Psi_{0}$
- Inspect histograms and develop a suitable analytical form for their representation
- Feed the result as Ψ_{T} into an improved DMC run

Very efficient for anisotropic cases Avoids bias in DMC calculation caused by bad choices of Ψ_{T}

6.15 Ensemble Size Error

In the asymptotic regime we ideally expect to have a random walker ensemble representing $\Phi_{0} \Psi_{T}$, contributions from higher Φ_{k} having died out.

$$
\lim _{\tau \rightarrow \infty} \Psi(\vec{r}, \tau) \Psi_{T} \propto \Phi_{0}(\vec{r}) \Psi_{T} \exp \left\{-\left(E_{0}-E_{r e f}\right) \tau\right\}
$$

Problem: Fluctuations in a finite random walker ensemble

$$
\left[\Psi(\vec{r}, \tau) \Psi_{T}\right]^{\text {finite }} \propto\left(\Phi_{0}(\vec{r}) \Psi_{T}+\delta(\tau)\right) \exp \left\{-\left(E_{0}-E_{r e f}\right) \tau\right\}
$$

with a random perturbation $\delta(\tau)$ with zero mean.
The rms amplitude of δ scales with $n_{\text {walk }}^{-1 / 2}$. δ can be expanded in the eigenfunctions $\Phi_{k}, k>0$.

$$
\delta=\frac{1}{\sqrt{n_{\text {walk }}}} \sum_{k}^{\infty} c_{k} \Phi_{k}
$$

The energy expectation value should then take the form:

$$
E\left(n_{\text {walk }}\right)=E_{0}+\frac{1}{n_{\text {walk }}} \sum_{k}^{\infty} c_{k}^{2} E_{k}
$$

- The ensemble size bias is always positive and scales as $1 / n_{\text {walk }}$.
- It can be suppressed by any noise reduction technique, e.g. a good trial wave function, but can be large for simple DMC without Ψ_{T}.

Time step and ensemble size errors

6.16 Evolution of Random Walker Weights

After n steps the weight w_{i} of walker i with initial weight $w_{i}(\tau=0)$ (usually 1) is

$$
w_{i}(n \Delta \tau)=w_{i}(0) \prod_{j=1}^{n} g_{i j} \quad ; \quad \ln w_{i}(n \Delta \tau)=\ln w_{i}(0)+\sum_{j=1}^{n} \ln g_{i j}
$$

with random growth factor $g_{i j}$ due to random position $\vec{r}_{i ; j}$ in step j (unless $\Psi_{T}=\Phi_{k}, E_{\text {local }}$ depends on \vec{r}_{i}):

$$
g_{i j}=\exp \left\{-\frac{\Delta \tau}{2}\left[E_{l o c a l}\left(\vec{r}_{i ; j}\right)+E_{\text {local }}\left(\vec{r}_{i ; j-1}\right)-2 E_{\text {ref }}\right]\right\}
$$

- Weights w_{i} grow or decay exponentially and reflect the life history of random walker: Walkers which have explored regions of large $E_{\text {local }}$ have accumulated low w_{i} and walkers which accidentally remained in regions of low $E_{\text {local }}$ carry exponentially larger weights.
- The sum of random variables tends towards a Gaussian distribution (central limit theorem): $g_{i j}$ and $\ln g_{i j}$ are random variables and the asymptotic distribution of weights has to be log-normal!
- The width of the initial δ-distribution of weights becomes exponentially large and the ensemble is dominated by a few walkers with large w_{i} (asymptotically one walker). \Rightarrow Unstable simulation with increasingly noisy ensemble and time averages.
- Loss of computational efficiency and creeping in of systematic ensemble size errors.

How to handle the instability?

6.17 Handling Random Walker Weights

6.17.1 Pure DMC

- Just ignore the instability!
- Requires very good Ψ_{T} with weight divergence slower than satisfactory statistical convergence of system properties.
- Automatically maintains a constant ensemble size.
- Clearly impossible without importance sampling. No restoring " quantum force" \Rightarrow diffusive spatial divergence of random walker ensemble.
- Commonly used in electronic structure DMC where sufficiently accurate Ψ_{T} from conventional methods are available.
- Keep your fingers crossed!

What to do when pure DMC does not work?
"Population control"

6.17.2 Population control I

The name of the game: Keep all weights in a reasonable range
This is an artificial intervention without motivation in the original diffusion equation and requires great care to avoid systematic sampling biases.

Method I (historical, Anderson 1975): Discrete weights

- Assign a standard weight w_{s} to each walker.
- Compute evolution of weight w_{s} using growth factor g_{i} for walker $i: w_{i}=w_{s} g_{i}$
- Replace walker i with $n_{\text {walk }}$ copies with identical properties and standard weight w_{s} using a uniform random number $0<u \leq 1$.
$n_{\text {walk }}=\operatorname{int}\left(w_{i}+u\right)$
- All information carried by number density of random walkers.
- Leads to fluctuating ensemble size. Nonuniform ensemble size errors; hard to deal with.
- Requires careful adjustment of $E_{r e f}$ to avoid collapse or explosion of ensemble size.
- Introduces discretization noise into the simulation.

6.17.3 Population control II: Continuous weights with branching/termination

- Branching: Replacing a walker with weight w_{i} by k walkers with weight w_{i} / k leaves both energy estimators unchanged:

$$
\begin{aligned}
& W(\tau)=\sum_{i} w_{i}(\tau) \quad \rightarrow E_{\text {grow }} \\
& E_{\text {mean }}(\tau)=\frac{1}{W(\tau)} \sum_{i} w_{i}(\tau) E_{\text {local }}\left(r_{i}, \tau\right)
\end{aligned}
$$

- Branching whenever w_{i} exceeds an arbitrary threshold $w_{\max }$ avoids excessive weights.
- Branching does not introduce artificial noise but systematically increases the number of random walkers.

Termination to avoid ensemble explosion

- Walkers with small w_{i} contribute very little to the physically interesting property averages. \Rightarrow Eliminate walkers with small w_{i}.
- Small walkers tend to be in regions with above average $E_{\text {local }} \Rightarrow$ Systematic elimination of small walkers biases both energy estimators towards lower values.

Invent unbiased termination rules:

Find rules which ensure that $W(\tau)$ and $E_{\text {mean }}(\tau)$ are conserved strictly or at least on average.

6.17.4 Combining small walkers

- Pick two small walkers with weights w_{1} and w_{2}.
- Assign their total weight $w=w_{1}+w_{2}$ to walker $i=1,2$ with probability

$$
p_{i}=\frac{w_{i}}{w_{1}+w_{2}}
$$

and eliminate the loser.

- $W(\tau)$ and thus $E_{\text {grow }}$ are strictly conserved.
- $E_{\text {mean }}$ is conserved in an average sense:

Before: $E_{\text {mean }}^{(1,2)}=w_{1} E_{\text {local }}^{(1)}+w_{2} E_{\text {local }}^{(2)}$
After: $\left\langle E_{\text {mean }}^{(1,2)}\right\rangle=w\left(p_{1} E_{\text {local }}^{(1)}+p_{2} E_{\text {local }}^{(2)}\right)=E_{\text {mean }}^{(1,2)}$

- Minimal introduction of artificial noise.
- Provides true reversibility also for branching but cannot be generalized for correlated sampling.

6.17.5 Stochastic Ensemble Control

One weight per walker:

1. Eliminate walkers with relative weight $w<w_{\min }$ with probability p (usually $p=1-w$).
2. Increase the weight of a walker surviving an elimination attempt by $w_{+}=w p /(1-p)$.
3. Split walkers with high weight $w>w_{\max }$ into k walkers with weights $w_{n e w}=w / k$.

No systematic sources or sinks because $-p w+(1-p) w_{+}=0$

Extension to multiple weights:
p is in principle arbitrary \Rightarrow generalization

$$
p=1-\frac{1}{N} \sum_{j=1}^{N} w_{j}=1-w_{\text {mean }}
$$

- Explicit evaluation of new weights in all "states" if the walker remains in the ensemble ($w_{\text {new }}=w / w_{\text {mean }}$).
- All walkers are active in all simultaneous simulations.
- Slowest possible decay of correlation, no systematic errors.

6.18 Expectation values

6.18.1 The meaning of the weights

- The solution function of the diffusion equation is the distribution $\Phi_{0} \Psi_{T}$.
- The number density of walkers in space is $\propto \Psi_{T}^{2}$ if we handled the walks and the weights correctly (This is true for only a few implementations of the DMC algorithm!).
- Instantaneous weights w_{i} therefore provide a statistical measure for $\Phi_{0}\left(r_{i}\right) / \Psi_{T}\left(r_{i}\right)$.

Weighted property average yields "mixed" expectation value:

$$
\left\langle\Phi_{0}\right| \hat{A}\left|\Psi_{T}\right\rangle=\left\langle\frac{\sum_{i} w_{i} A\left(\vec{r}_{i}\right)}{\sum_{i} w_{i}}\right\rangle_{\tau}
$$

Cheap extrapolation to exact expectation value:

$$
\begin{gathered}
\left\langle\Phi_{0}\right| A\left|\Phi_{0}\right\rangle=2\left\langle\Phi_{0}\right| A\left|\Psi_{T}\right\rangle-\left\langle\Psi_{T}\right| A\left|\Psi_{T}\right\rangle+\mathcal{O}\left(\Delta^{2}\right) \\
\Delta=\Phi_{0}-\Psi_{T}
\end{gathered}
$$

6.18.2 How to find a measure of Φ_{0}^{2}

Can we just square the weights?

$$
\langle A\rangle=\frac{\sum_{i} w_{i}^{2} A\left(\vec{r}_{i}\right)}{\sum_{i} w_{i}^{2}}
$$

The hard problem: we only have a stochastic representation of Φ_{0} via the ratio $\frac{\Phi_{0}}{\Psi_{T}}$.

6.18.3 The noise problem

The weight w_{i} of a walker at position \vec{r}_{i} depends on the history of the walker and does not give an exact measure of $\Phi_{0}\left(\vec{r}_{i}\right) / \Psi_{T}\left(\vec{r}_{i}\right)$. The actual weight w_{i} has a random deviation δ from the true ratio $\Phi_{0}\left(\vec{r}_{i}\right) / \Psi_{T}\left(\vec{r}_{i}\right)$

$$
w\left(\vec{r}_{i}\right)=\frac{\Phi_{0}\left(\vec{r}_{i}\right)}{\Psi_{T}\left(\vec{r}_{i}\right)}+\delta
$$

Only the imaginary time average of weights of walkers visiting \vec{r}_{i} provides $\Phi_{0}\left(\vec{r}_{i}\right) / \Psi_{T}\left(\vec{r}_{i}\right)$.

$$
\left\langle w\left(\vec{r}_{i}\right)\right\rangle_{\tau}=\left\langle\frac{\Phi_{0}\left(\vec{r}_{i}\right)}{\Psi_{T}\left(\overrightarrow{r_{i}}\right)}\right\rangle+\langle\delta\rangle_{\tau}=\frac{\Phi_{0}\left(\overrightarrow{r_{i}}\right)}{\Psi_{T}\left(\overrightarrow{r_{i}}\right)}
$$

because of $\langle\delta\rangle_{\tau}=0$ for random noise.

6.18.4 The cheap and dubious way: Squaring the Weights

$$
\begin{gathered}
w^{2}\left(\vec{r}_{i}\right)=\frac{\Phi_{0}^{2}\left(\vec{r}_{i}\right)}{\Psi_{T}^{2}\left(\vec{r}_{i}\right)}+\delta^{2}+2 \frac{\Phi_{0}\left(\vec{r}_{i}\right)}{\Psi_{T}\left(\vec{r}_{i}\right)} \delta \\
\left\langle w^{2}\left(\vec{r}_{i}\right)\right\rangle_{\tau}=\left\langle\frac{\Phi_{0}^{2}\left(\vec{r}_{i}\right)}{\Psi_{T}^{2}\left(\vec{r}_{i}\right)}\right\rangle_{\tau}+\left\langle\delta^{2}\right\rangle_{\tau}+2\left\langle\frac{\Phi_{0}^{2}\left(\vec{r}_{i}\right)}{\Psi_{T}^{2}\left(\overrightarrow{r_{i}}\right)} \delta\right\rangle_{\tau} \\
\left\langle w^{2}\left(\vec{r}_{i}\right)\right\rangle_{\tau}=\frac{\Phi_{0}^{2}\left(\vec{r}_{i}\right)}{\Psi_{T}^{2}\left(\vec{r}_{i}\right)}+\left\langle\delta^{2}\right\rangle_{\tau}
\end{gathered}
$$

The average of the square is biased by a positive quantity whose amplitude depends on the noise.
We need a 2nd uncorrelated estimate of $\Phi_{0}\left(\vec{r}_{i}\right) / \Psi_{T}\left(\vec{r}_{i}\right)$:

$$
w^{\prime}\left(\vec{r}_{i}\right)=\frac{\Phi_{0}\left(\vec{r}_{i}\right)}{\Psi_{T}\left(\vec{r}_{i}\right)}+\delta^{\prime}
$$

to evaluate the quantity

$$
\left\langle w\left(\vec{r}_{i}\right) w^{\prime}\left(\vec{r}_{i}\right)\right\rangle_{\tau}=\frac{\Phi_{0}^{2}\left(\vec{r}_{i}\right)}{\Psi_{T}^{2}\left(\vec{r}_{i}\right)}+\left\langle\delta \delta^{\prime}\right\rangle_{\tau}
$$

where $\left\langle\delta \delta^{\prime}\right\rangle_{\tau}=0$ for uncorrelated random deviations δ and δ^{\prime}.
Combination with the number density of walkers $\left(\propto\left|\Psi_{T}\right|^{2}\right)$ gives the correct Φ_{0}^{2} distribution.

6.18.5 Getting it right: Descendant Weighting/Future Walking I

- The density of random walkers at any time origin is given by:

$$
f(\vec{r}, 0)=\Psi(\vec{r}, 0) \Psi_{T}(\vec{r})
$$

- Assume a single random walker at position \vec{R} at time 0 .

$$
f(\vec{r}, 0)=\delta(\vec{r}-\vec{R})
$$

- Expand Ψ into eigenfunctions Φ :

$$
\delta(\vec{r}-\vec{R})=\Psi_{T}(\vec{r}) \sum_{k} c_{k} \Phi_{k}(\vec{r})
$$

- Multiply with Φ_{i} / Ψ_{T} and integrate:

$$
\int \delta(\vec{r}-\vec{R}) \frac{\Phi_{i}(\vec{r})}{\Psi_{T}(\vec{r})} d \vec{r}=c_{i}=\frac{\Phi_{i}(\vec{R})}{\Psi_{T}(\vec{R})}
$$

- c_{0} is a measure of the ratio Φ_{0} / Ψ_{T} needed to transform the simulated distribution $\Phi_{0} \Psi_{T}$ into the desired Φ_{0}^{2}.

$$
c_{0}(\vec{R})=\frac{\Phi_{0}(\vec{R})}{\Psi_{T}(\vec{R})}
$$

6.18.6 Descendant Weighting/Future Walking II

The asymptotic distribution of the random walks is

$$
f(\vec{r}, \tau \rightarrow \infty)=c_{0} \Phi_{0}(\vec{r}) \Psi_{T}(\vec{r}) \exp \left[-\tau\left(E_{0}-E_{r e f}\right)\right]
$$

The total population is given by the integral:

$$
P(\tau)=\int f(\vec{r}, \tau) d \vec{r}=\sum_{i} w_{i}(\tau)
$$

The contribution $P_{\infty}(\vec{R})$ originating from an ancestral walker at position \vec{R} is:

$$
\begin{aligned}
P_{\infty}(\vec{R}) & =\int c_{0}(\vec{R}) \Phi_{0}(\vec{r}) \Psi_{T}(\vec{r}) \exp \left[-\tau\left(E_{0}-E_{r e f}\right)\right] \\
& =\frac{\Phi_{0}(\vec{R})}{\Psi_{t}(\vec{R})} \exp \left[-\tau\left(E_{0}-E_{r e f}\right)\right]\left\langle\Phi_{0} \mid \Psi_{T}\right\rangle
\end{aligned}
$$

The asymptotic population originating from a given walker is proportional to the desired ratio $\Phi_{0}(\vec{R}) / \Psi_{T}(\vec{R})$.
Since the other factors in P_{∞} are identical for all walkers one can simply correct the weights by multiplication with the total weight of the asymptotic descendants.
This requires storing old coordinates and weights and a tagging algorithm for each branching event.

$$
\langle\hat{A}\rangle \approx \frac{\sum_{i} A\left(\vec{R}_{i}, \tau\right) w_{i}\left(\vec{R}_{i}, \tau\right) P(\vec{R}, \tau)}{\sum_{i} w_{i}\left(\vec{R}_{i}, \tau\right) P(\vec{R}, \tau)}
$$

Hydrogen density in $(\mathbf{H F})_{2}$ from DMC

Density

6.18.7 Perturbational estimates for scalar expectation values

Add a perturbation A to the original hamiltonian H_{0} with eigenvalue E_{0} and eigenfunction Φ_{0} according to

$$
H_{\lambda}=H_{0}+\lambda A
$$

1st order perturbation theory gives for small λA

$$
E_{p}(\lambda) \approx\left\langle\Phi_{0}\right| H_{0}+\lambda A\left|\Phi_{0}\right\rangle=E_{0}+\lambda\left\langle\Phi_{0}\right| A\left|\Phi_{0}\right\rangle
$$

Use DMC to compute E_{0} and the eigenvalue E_{λ} of H_{λ} with eigenfunction Φ_{λ}. For small λ we have

$$
E_{p}(\lambda)=E_{\lambda}
$$

$$
\left\langle\Phi_{0}\right| A\left|\Phi_{0}\right\rangle=\frac{E_{\lambda}-E_{0}}{\lambda}
$$

Problem: Extract a small energy difference from noisy data
Solution: Correlated sampling
Run correlated DMC on a set of "potential surfaces" $V_{\lambda}=V_{0}+\lambda A$ to get E_{λ}.

- Compute entire curves E_{λ} in a single simulation also for several A_{i}.
- Correlation is highest for small λ, just where we want to be.

6.18.8 More good news

Origins of time step error

1. Neglect of commutators in split operator.
2. Low order integration of drift term.

Consequences for perturbation method:

$$
E_{\lambda}(\Delta \tau)=E_{\lambda}+\sum_{k} c_{\lambda k}(\Delta \tau)^{k}
$$

- Replacement of V_{0} by V_{λ} has only a small effect on c_{2}, all $c_{\lambda 2} \approx$ equal.
- Linear time step error is strictly independent of λ. All $c_{\lambda 1}$ are equal.
- The curves $E_{\lambda}(\Delta \tau)$ are essentially parallel.
- Energy differences $E_{\lambda}-E_{0}$ are robust wrt $\Delta \tau$.
- We can use a large time step and speed up the calculation.

6.19 Correlated Sampling

- Kinetic energy and Ψ_{T} control the random walkers position.
- Potential V affects only the weights w.

- Simultaneous simulation on several surfaces through introduction of a set of weights.
- Identical sampling positions cause large covariance.
- High accuracy for energy difference sampling.
- Computational savings (common terms in several potentials etc.).

6.20 Existing techniques which we have not addressed

- Approximations for excited states in special situations:
- Adiabatic decompositions leading to rigid body constraints which can be handled by methods from classical molecular dynamics (SHAKE, quaternion techniques etc.)
RB-DMC = Rigid body diffusion Monte Carlo
- Beyond the adiabatic decomposition: allowing high frequency and low frequency modes to influence each other
SB-DMC = Soft body diffusion Monte Carlo
Useful for the calculation of matrix shifts
- General approaches to excited states.
- POITSE: Projection operator imaginary time spectral evolution very expensive, requires careful choice of the projection operator
- CFMC: Correlation function Monte Carlo

Uses diffusion Monte Carlo projections of wave functions to construct sequences of non-orthogonal basis sets which are injected into a diagonalisation method.
Troubles with precision of matrix elements and resulting ill-conditioned matrices

- Finite temperature techniques.

PIMC: Path integral Monte Carlo

6.21 Scaling behavior of DMC

General computational issues

- Storage requirements only $\propto N$.
- Large cpu-requirements: typically $>10^{8}$ random walker steps.
- Very large volume of step by step data: only storage of histograms and running averages is feasible.

Cost per step

- Time consuming steps are potential evaluation and trial function evaluation and derivatives
- Potential effort scales as in any other simulation method: e.g. N^{2} for pairwise models.
- Trial wave function effort depends on functional form, usually N^{2}.
- Long range cutoffs are possible in potential and Ψ_{T}. Larger cutoff radius than in classical simulations.
- Usually all particles move in each step. Propagation cost per step $\propto N$.
- Multiple 'time'-step techniques are not obvious.

Statistical convergence

- Absolute error grows with total energy $\propto N$.
- Number of steps for similar absolute error $\propto N^{2}$.
\Rightarrow Overall cost $\propto N^{3}-N^{4}$.

Parallelization issues

- All cpu-intensive parts are distributable and do not require communication.
- Communication only for average accumulation and ensemble control $\propto N$.
- Computation grows much faster than communication.

Ratio can be adjusted within certain limits.

- Low I/O bandwidth.

6.22 Why is quantum Monte Carlo not more popular?

Top reasons why QMC is not generally used in chemistry: archive.ncsa.uiuc.edu/Apps/CMP/topten/topten.html (D. M. Ceperley)

- We need forces, dummy!
- Try getting O_{2} to bind at the variational level.
- How many graduate students lives have been lost optimizing wavefunctions?
- It is hard to get 0.01 eV accuracy by throwing dice.
- Most chemical problems have more than 50 electrons.
- Who thought LDA or HF pseudopotentials would be any good?
- How many spectra have you seen computed by QMC?
- QMC is only exact for energies.
- Multiple determinants. We can't live with them, we can't live without them.
- After all, electrons are fermions.
- Electrons move.
- QMC isn't included in Gaussian 90. Who programs anyway?

My personal additions from nuclear dynamics:

- We need good trial wave functions for arbitrary potentials
- We want many excited states.
- How to handle almost degenerate states?

There is room for a lot of future research!

