

Quantum simulations of helium clusters with ionic and open shell dopants

Marius Lewerenz

▶ To cite this version:

Marius Lewerenz. Quantum simulations of helium clusters with ionic and open shell dopants. 2013. hal-00832974

HAL Id: hal-00832974 https://hal.science/hal-00832974

Submitted on 11 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantum simulations of helium clusters with ionic and open shell dopants

Marius Lewerenz

Laboratoire de Modélisation et Simulation Multi Echelle UMR8208 CNRS Université Paris Est (Marne la Vallée) 5, Blvd. Descartes, Champs sur Marne 77454 Marne la Vallée Cedex 2 France

Acknowledgments

Paris-Est: Mirjana Mladenović, CO⁺@He_n Ji Jiang, Ph.D student, Ar⁺@He_n, I^q@He_n

Prague: Petr Slavíček, Pb^{q+}@He_n

What makes helium clusters interesting?

•Helium-helium interaction is of weak van der Waals type,

closed shell atoms of very low polarisability, $D_e \approx 7.6$ cm⁻¹

•Helium atoms have a relatively small mass.

•Large zero point energy effects (D_0 for $He_2 \approx 0.001$ cm⁻¹).

•Helium clusters are small chunks of a quantum liquid.

•Quantum statistical effects: bosonic ⁴He, fermionic ³He.

•Superfluidity in bulk liquid ⁴He below 2.17 K, in ³He at mK level

•A very special solvent: Is there a new chemistry?

•Implantation of dopants through (multiple) inelastic collisions.

•Weak interactions with dopant.

•Binding energy and position of dopants depend on quantum effects.

Delicate balance between potential and quantum kinetic energy

Plenty of interesting experiments but theoretical difficulties!

Marius Lewerenz

TU Graz, 15.12.2011

3

Recent applications of helium clusters

•Matrix spectroscopy with minimal perturbations: OCS, (HF)_n, biomolecules at 0.4 K, radicals

•Reaction dynamics at very low temperatures: $Ba + N_2O \rightarrow BaO + N_2$

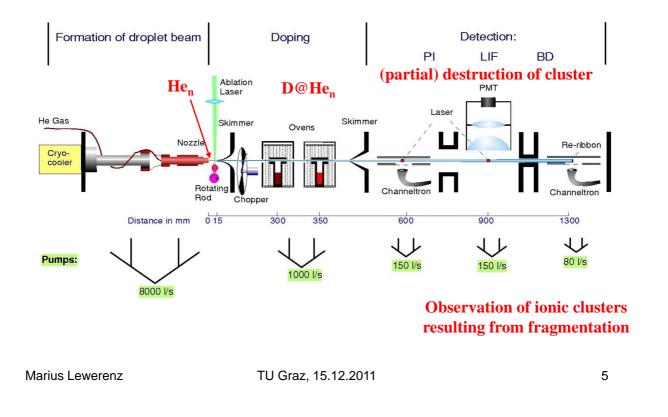
•Preparation of reactive intermediates: HF ··· CH₃, HCN ··· CH₃ etc.

•Preparation of high spin metal polymers: Na₃, K₃, Rb₃ etc.

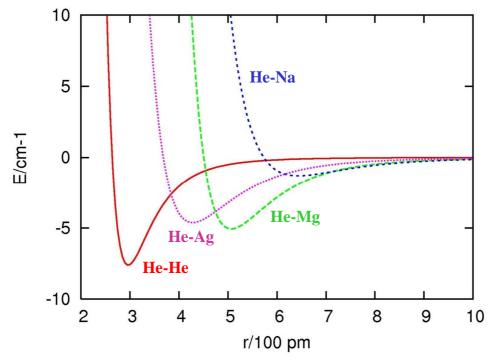
•Assembly of cold clusters: Ag_n, Mg_n

•Thermodynamically unstable isomers: linear (HCN)_n

•Nanomodels for molecule-surface interactions: HCN····Mg₃ etc.

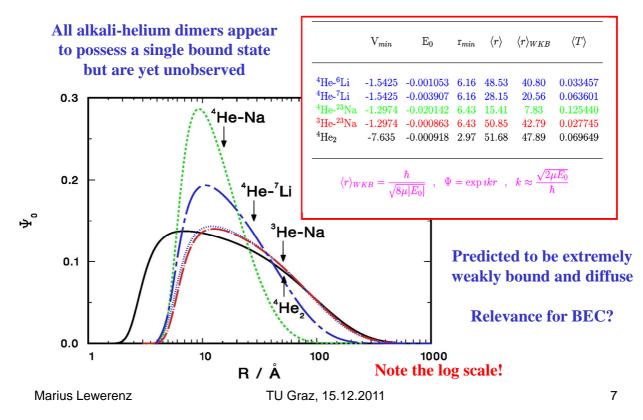

•Container for soft ionisation for analytical mass spectrometry?

•Energy dissipation by coupling to the bath?

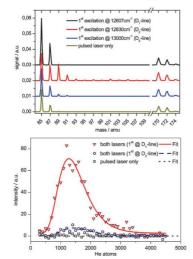

•Confinement medium for cluster ignition and Coulomb explosion.

•Spacer for interatomic Coulombic decay (ICD).

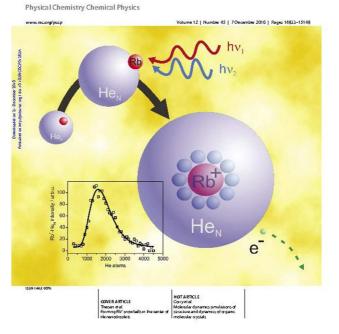
A typical helium droplet experiment


Pair potentials involving helium and metals

Shallower well than He-He and larger equilibrium distance for He-M

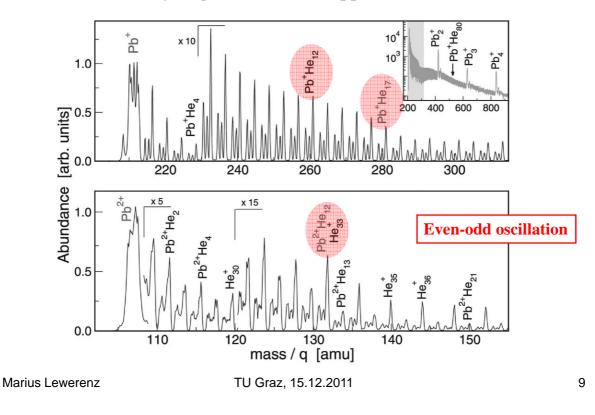

Alkali-helium dimers

Variational calculations with large basis sets of Laguerre functions, PRL 1999



Ions in helium clusters

- Massive change of interaction potential
- Polarisation forces
- Enhanced localisation of helium atoms
- "Snowball" formation


Two step photoionisation Theisen et al., TU Graz

Marius Lewerenz

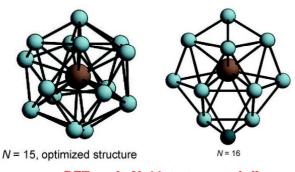
TU Graz, 15.12.2011

Pb^{q+}**He**_n **mass spectra after fs pulse ionisation** Lead atoms in very large He clusters, Döppner et al. 2007, U. Rostock

Communications

Angew. Chem. Int. Ed. 2007, 46, 2444-2447

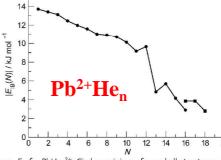
Coordination in the Gas Phase


DOI: 10.1002/anie.200604148

The Search for the Species with the Highest Coordination Number**

Andreas Hermann, Matthias Lein, and Peter Schwerdtfeger*

The question of the highest possible coordination number for an atom is addressed as this is related to the Gregory–Newton problem of kissing hard spheres.^[1] Using first-principles quantum chemical simulations we show that the interaction of Pb²⁺ with He atoms results in remarkably stable PbHe₁₂²⁺ with 15 atoms in the first coordination sphere forming a Frank–Kasper polyhedron.^[2] The Pb–He distances do not change significantly by subsequent filling of the first coordination shell as one expects for a hard-sphere model. Such high coordination numbers have been proposed only in liquid simulations so far.^[3]


The problem of how many spheres $(N_{\text{max}}, \text{ called the kissing number or Newton number})$ of a given radius *R* can be

DFT result: N=16 starts a new shell

conjunction with coordination numbers higher than 12 stabilized by the surrounding matrix. $^{\left[2\right] }$

Herein we take a different approach. We look for a single molecule MX_N in the gas phase of high coordination number N which can be experimentally verified. We choose a large positively charged central atom, $M = Pb^{2+}$, and a very small ligand, X = He. Both atoms have reasonably small polarizabilities ($\alpha_{\rm He} = 1.38~{\rm au}^{(10)}$ and $\alpha_{\rm Pb^{2+}} = 14.1~{\rm au}^{(11)}$), and therefore fit the hard-sphere model quite well. The ionization potential of Pb⁺ (15.03~eV) is much smaller than that of He (24.58~eV).^[12] Hence, Pb²⁺ He does not undergo a Coulomb explosion and there is no (or minimal) charge transfer from He to Pb²⁺. Hence the Pb²⁺-He interaction V(R) is mainly of

Figure 4. E_{IB} for PbHe_N²⁺. Circles: minima of one-shell structures; squares: minima of two-shell structures.

Modelling ions inside helium clusters

Alkali ions and Pb²⁺ ions have closed electronic shells and an isotropic interaction potential with helium atoms.

Pb⁺ has an open shell s²p electronic configuration leading to electronic anisotropy and X²II and A² Σ ⁺ states for Pb⁺He.

Similar systems of interest are Ar^+ ions $(s^2p^5$ valence shell, $X^2\Sigma^+$ and $A^2\Pi$ states for Ar^+He) and halogen atoms and ions interacting with helium, in particular iodine. Spin-orbit coupling between Σ and Π states has to be included in the model.

The road map:

Build reliable many body models for He interacting with open shell species by combining high level ab initio surfaces with accurate level predictions and comparison with spectroscopic or collision experiments.

Use an accurate quantum many body method for nuclear dynamics: Diffusion quantum Monte Carlo (DMC)

Marius Lewerenz

TU Graz, 15.12.2011

11

Diffusion quantum Monte Carlo (DMC)

Isomorphism between time dependent Schrödinger equation and a multi dimensional diffusion equation (Fermi, Ulam)
Exact solution except for statistical errors

$$\imath\hbarrac{\partial\Psi(ec{r},t)}{\partial t}=\left\{-rac{\hbar^2}{2}\sum_{j=1}^nrac{1}{m_j}
abla_j^2+\left\{egin{array}{c}ec{r}\\ec{V(ec{r})}-E_{ref}
ight\}
ight\}\Psi(ec{r},t)$$

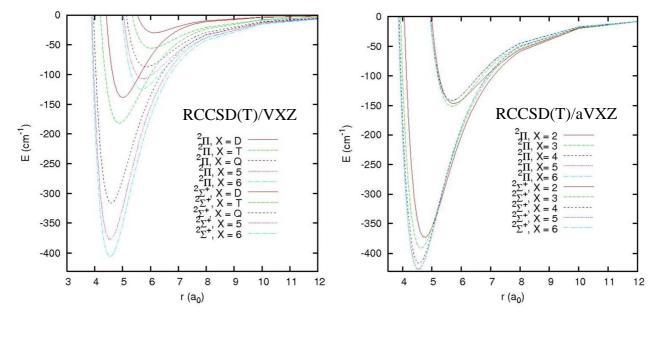
$$rac{\partial oldsymbol{C}(ec{m{r}},t)}{\partial t} = \left\{ \sum_{j=1}^n oldsymbol{D}_j
abla_j^2 - oldsymbol{k}(ec{m{r}})
ight\} oldsymbol{C}(ec{m{r}},t) \; .$$

Solution by propagation of an ensemble of random walkers in imaginary time Cartesian coordinates, precision $\sigma_F/E = 10^{-6} - 10^{-3}$

Some scientists on past or current bills

DMC calculations for Ar⁺He_n

Potential model:

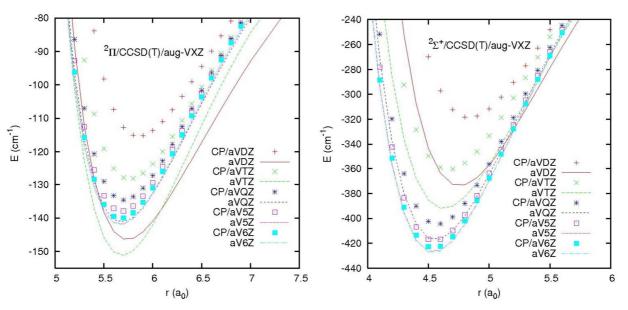

Anisotropy due to $Ar^+ s^2 p^5$ valence shell $\rightarrow X^2 \Sigma^+$ and $A^2 \Pi$ states for Ar^+He .

IP(Ar)=15.76 eV \rightarrow He⁺+Ar channel is unimportant, single configuration. RCCSD(T) calculations with (aug)-cc-pVXZ basis sets (MOLPRO).

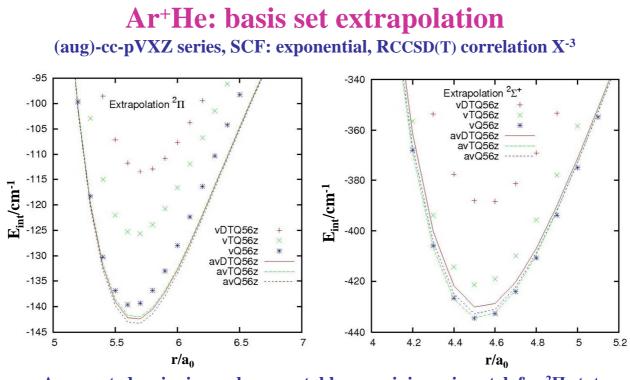
Infinite basis set ab initio points fitted to HFD-style analytical form with fixed C₄ coefficient computed from $\alpha_{\text{He}} = 1.41 \text{ a}_0^{-3}$.

Strong spin-orbit interaction in Ar⁺ ($\Delta = 1432 \text{ cm}^{-1}$): Non additive many body potential model including induced dipoles on He with additional spin-orbit mixing included using atomic $\Delta_{\text{Ar+}}$ (complex 6 x 6 matrix to diagonalise in each DMC step).

Ar⁺He: convergence of interaction energy RCCSD(T) calculation, standard and augmented basis sets




```
Marius Lewerenz
```


TU Graz, 15.12.2011

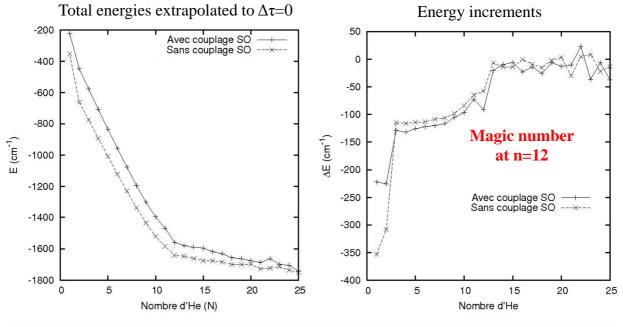
15

Ar+He: BSSE counter poise correction RCCSD(T) calculation

Marius Lewerenz

TU Graz, 15.12.2011

17


Ar⁺**He: spectroscopic observables**

extrapolated potentials (aQ56), atomic spin-orbit splitting, variational rovibrational calculation in Laguerre basis, ⁴He⁴⁰Ar⁺

Vibrational transition frequencies in cm-1													
V	$X^{2}\Sigma_{1/2}^{+}$			A_1	² П _{3/2}	$A_2 \ ^2\Pi_{1/2}$							
	exp	S96	This work	S96	This work	exp	S96	This work					
0	92.9	83.9	92.47	52.9	55.91	69.2	64.0	69.19					
1	66.2	55.2	64.88	26.9	29.20		35.1	38.82					
2		30.7	38.55	11.9	11.73		15.7	17.59					
3		14.1	17.81										
Expectation values for rotational constants in cm-1													
0	0.659	0.614	0.650	0.460	0.469	0.515	0.501	0.514					
1	0.551	0.518	0.559	0.355	5 0.365	0.420	0.397	0.412					
2	0.39	0.404	0.450	0.241	0.255		0.282	0.298					
3		0.282	0.324	0.168	3 0.087		0.182	0.180					
4		0.182	0.196	[Our Ar+H	le pote	ential is	s excellent !					

Marius Lewerenz

Ar⁺**He**_n : **DMC** ground state energies

Spin orbit coupling is responsible for magic character of n=12 cluster

Marius Lewerenz

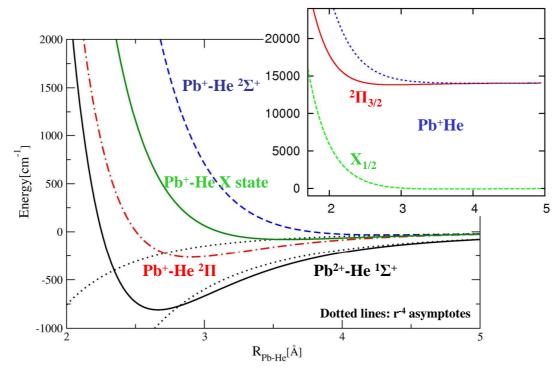
TU Graz, 15.12.2011

19

DMC calculations for Pbq+He_n

Pb²⁺He_n:

Isotropic Pb^{2+} - He interaction ($Pb^{2+} s^2$ valence shell, Pb^{2+} -He $X^1\Sigma^+$). Induced dipoles on He, He-dipoles induce a noticeable dipole on Pb^{2+} : Non additive many body potential model checked against ab initio.

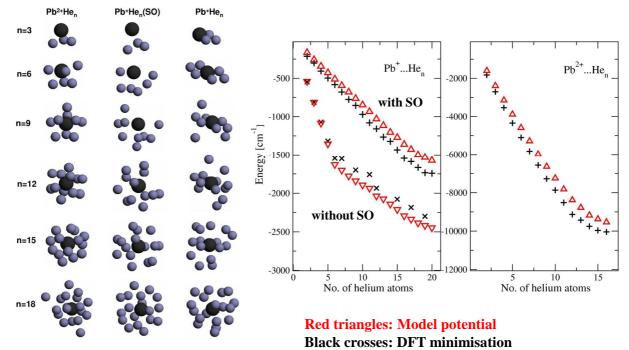

Pb⁺**He**_n:

Anisotropy due to Pb⁺ s²p valence shell $\rightarrow X^2\Pi$ and $A^2\Sigma^+$ states for Pb⁺He. Strong spin-orbit interaction in Pb⁺ ($\Delta = 14081 \text{ cm}^{-1}$): Non additive many body potential model including induced dipoles on He with additional spin-orbit mixing included using atomic Δ_{Pb+} (complex 6 x 6 matrix to diagonalise in each DMC step).

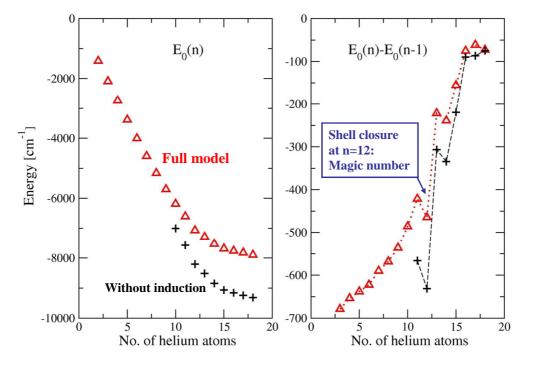
CCSD(T) calculations with Stuttgart pseudopotentials for both systems in collaboration with Petr Slavíček.

 $> 10^9$ DMC samples, large ensemble sizes to suppress ensemble size bias

Pair interaction potentials for Pbq+He_n



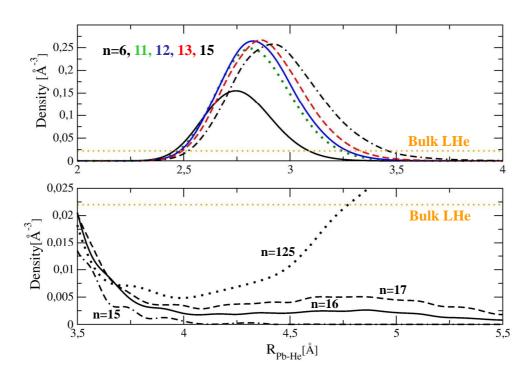
Marius Lewerenz


TU Graz, 15.12.2011

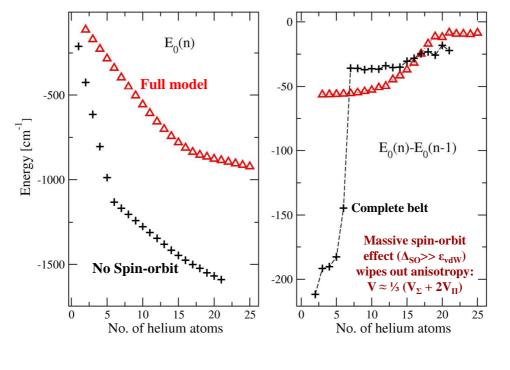
21

Minimum energy structures for Pb^{q+}He_n

DMC ground state energies for Pb²⁺He_n



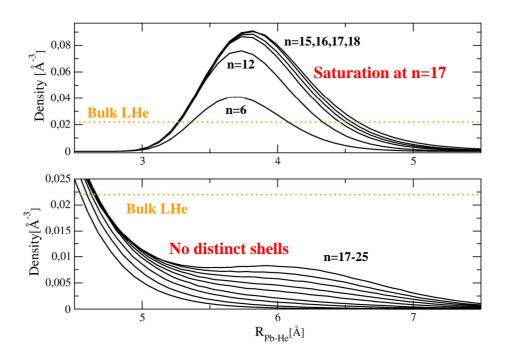
Marius Lewerenz


TU Graz, 15.12.2011

23

Radial densities for Pb²⁺He_n

Ground state energies for Pb+He_n



Marius Lewerenz

TU Graz, 15.12.2011

25

Radial densities for Pb⁺He_n

DMC calculations for I@He_n

Motivation: Photodissociation of $CH_3I \rightarrow CH_3 + I$ inside He_n . We need global potential energy surfaces for ground and excited $CH_3I@He_n$ and for the relevant fragments $CH_3@He_n$ and $I@He_n$

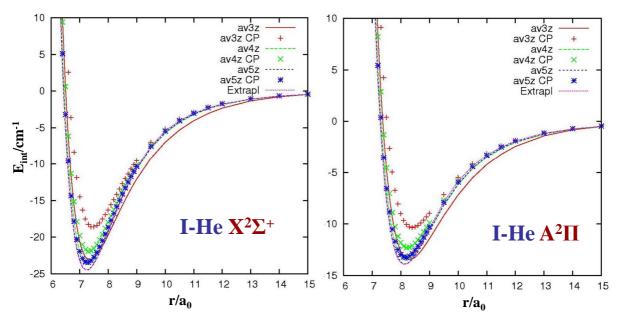
Potential model:

Anisotropy due to I s^2p^5 valence shell $\rightarrow X^2\Sigma^+$ and $A^2\Pi$ states for I-He. RCCSD(T) calculations with aug-cc-pVXZ basis sets and relativistic pseudopotential (ECP) from K. Petersen.

Ab initio points fitted to extended Tang-Toennies analytical form.

Very strong spin-orbit interaction in I:

Non additive many body potential model with additional spin-orbit mixing using atomic Δ_{I} (complex 6 x 6 matrix to diagonalise in each DMC step).

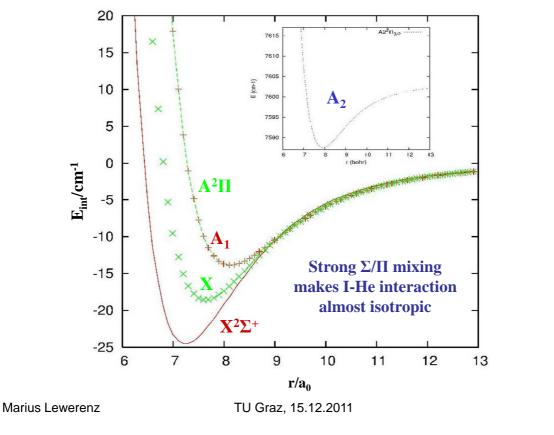

 Δ_{SO} dominates so much over E_{vdW} that SO mixing is almost perfect!

Marius Lewerenz

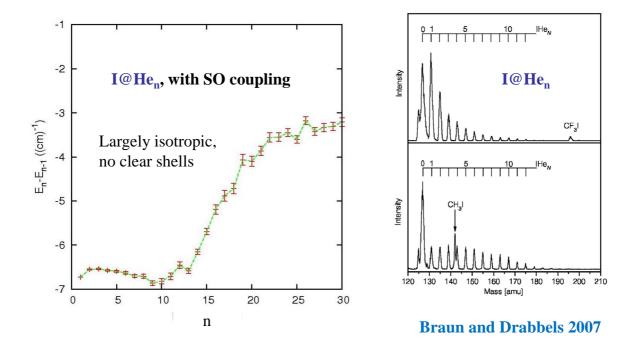
TU Graz, 15.12.2011

27

I-He: Convergence of RCCSD(T)/ECP calculations

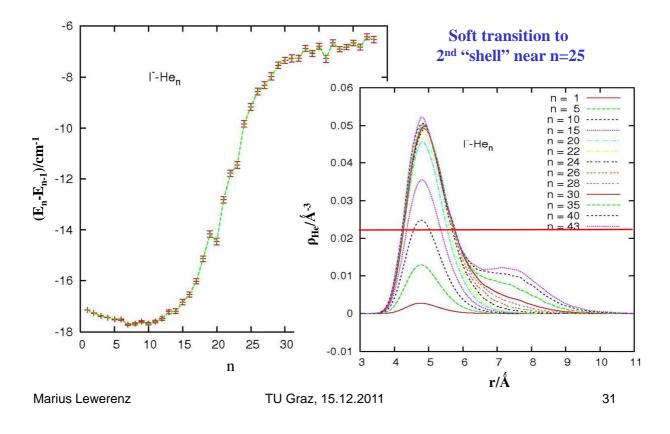


Spin-orbit coupling mixes the ${}^{2}\Sigma_{_{1/_{2}}}$ and ${}^{2}\Pi_{_{1/_{2}}}$ components: 6x6 complex matrix

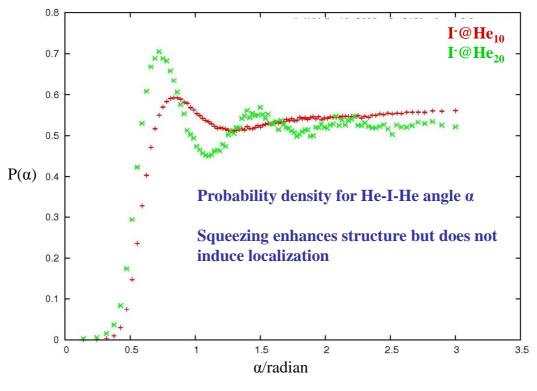

Marius Lewerenz

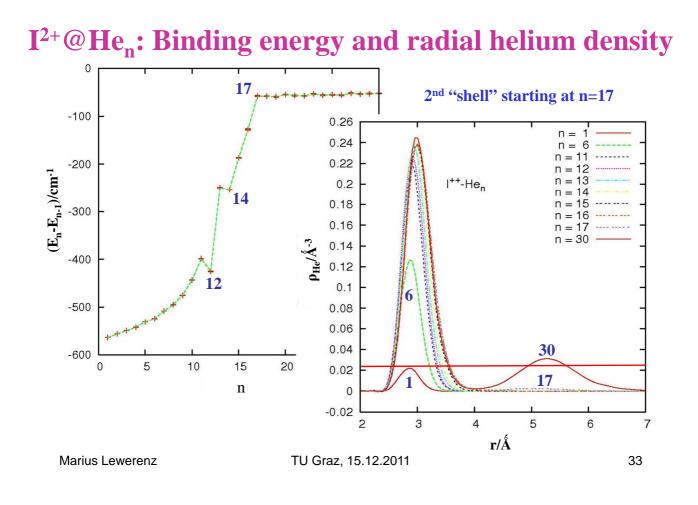
28

I-He: Interaction potential with SO coupling



I@He_n: Incremental binding energies from DMC




29

I⁻@He_n: Binding energy and radial helium density

I⁻@He_n: Angular correlations

CO⁺-He and CO⁺@He_n

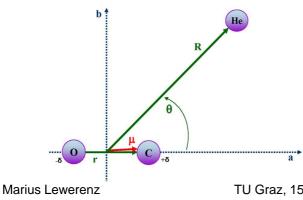
CO⁺He ions have been observed several times in drift tube experiments.

Mixed cluster ions of the composition CO^+He_n should be accessible in drift tube experiments, mixed gas expansions coupled to electric discharges, or CO ionization inside large He clusters.

Ionisation of CO barely changes the rotational constants but strongly affects the interaction with helium: $CO@He_n$ and CO^+He_n are an ideal pair to understand rotation in helium clusters by separating effects due to mass and interaction.

Potential surface can be checked by ion depletion spectroscopy (see N_2^+ -He_n).

Astrophysical motivation

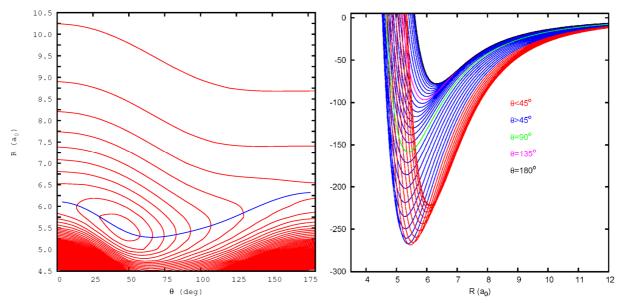

CO is a relatively abundant molecule in interstellar space and CO^+ has been identified in 1993. Low energy collisions with its second most abundant collision partner, helium atoms, are governed by the weak intermolecular interaction leading to the van der Waals complex He-CO⁺.

Interaction and structure, what to expect?

Electrostatics/induction: Charge – induced dipole: isotropic ~ $1/R^4$ Permanent dipole – induced dipole: anisotropic $\sim 1/R^5 \rightarrow$ linear complex Quadrupole moment – induced dipole: anisotropic $\sim 1/R^6 \rightarrow$ T-shaped

Dispersion: anisotropic $\sim 1/\mathbb{R}^k$, $k \ge 6$

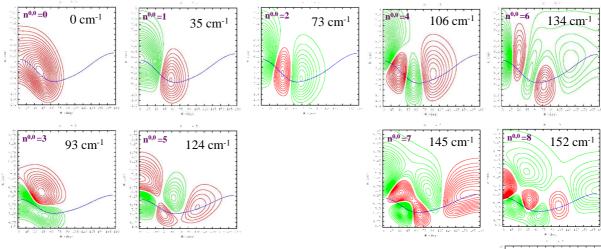
Result: Compromise between linear and T-shaped at short range, linear long range approach: Floppy, quasilinear?

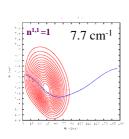


Ab initio CCSD(T)equilibrium structure of He-CO⁺($X^2\Sigma^+$) and the dipole moment vector µ.

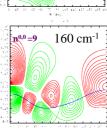
TU Graz, 15.12.2011

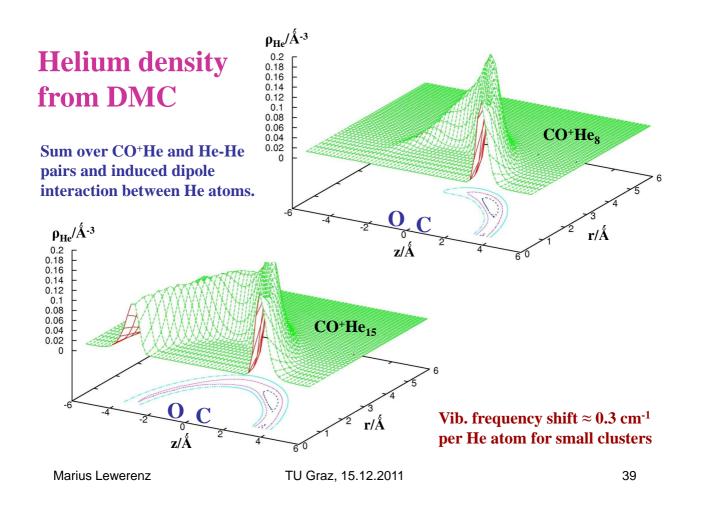
35

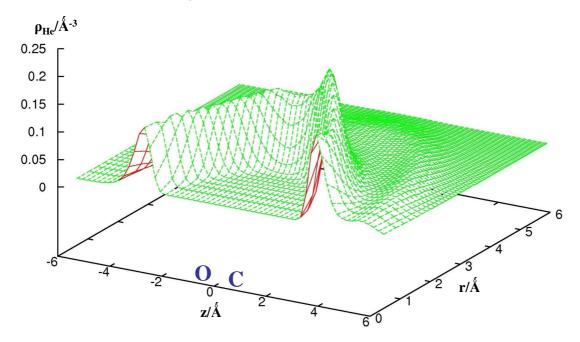

2D contour plot of the RCCSD(T) PES. Contour lines at intervals of 25 cm⁻¹, first contour placed at -250 cm⁻¹. The blue line shows the variation of the Jacobi distance R along the minimum energy path in the direction of the Jacobi angle θ .


Radial cuts for several values of the Jacobi angle θ .

Spectroscopic results from DVR-DGB calculations


He-CO⁺($X^{2}\Sigma^{+}$) 2D RCCSD(T) potential energy surfaces V(R, θ) at r(CO)=1.11783 Å


	avtz	avtz _{corr}	avqz	avqz _{corr}	av5z	av5z _{corr}	av∞z
$R_e/Å$	2.898	2.905	2.870	2.878	2.868	2.871	2.866
$ heta_e/\mathrm{deg}$	43.8	46.2	45.8	46.0	46.1	46.1	46.3
V_{min} /cm ⁻¹	-285.8	-252.4	-281.6	-269.0	-277.7	-274.0	-275.3
E_0 /cm ⁻¹	-209.7	-177.5	-201.3	-189.9	-197.6	-194.2	-195.0
A_0 /cm ⁻¹	10.3	7.315	7.679	7.328	7.362	7.256	7.168
B_0/cm^{-1}	0.444	0.454	0.462	0.462	0.465	0.465	0.466
C_0/cm^{-1}	0.395	0.400	0.408	0.407	0.410	0.409	0.411
ν_2/cm^{-1}	31.9	32.8	34.3	34.4	34.7	34.7	34.9
ν_3/cm^{-1}	94.8	86.5	94.2	91.3	93.6	92.8	93.3
$\Delta_1/\mathrm{cm}^{-1}$	0.049	0.055	0.056	0.055	0.055	0.055	0.056
κ	-0.990	-0.984	-0.985	-0.984	-0.984	-0.984	-0.983
γ_0	-0.31	0.08	0.08	0.12	0.12	0.14	0.15



Contour plots of 2D (ro)vibrational wavefunctions obtained in 2D DVR-DGB calculations. Contours are drawn at intervals of 5% of the maximum wavefunction amplitude.

CO⁺@**He**₂₀: helium density from **DMC**

CH₃-He

Ab initio RCCSD(T) calculations with aug-cc-pVXZ basis sets (X=D,T,Q,5)
 CH₃ keeping C_{3v} symmetry and fixed C-H distance: only umbrella angle α
 He position relative to CH₃ center of mass in spherical coordinates R,θ,φ
 Several 3D surfaces assembled into 4D surface including CH₃ relaxation
 Overall about 3000 potential energy points

Analytical representation with angle dependent HFD form expanded over real spherical harmonics T_{lm} with symmetry restrictions on l,m:

 $V(\mathbf{R}, \theta, \phi) = \mathbf{A} \exp\{-\mathbf{b}(\theta, \phi) [\mathbf{R} - \mathbf{R}_{e}(\theta, \phi)]\} - \sum_{k} C_{k}(\theta, \phi) / \mathbf{R}^{k}$ $\mathbf{X}(\theta, \phi) = \sum_{lm} x_{lm} T_{lm}(\theta, \phi) \qquad \mathbf{X} = \mathbf{b}, \mathbf{R}_{e}, \mathbf{C}_{k}$

500-1000 points per 3D cut are fitted with 38 parameters and rms < 0.1 cm⁻¹

Marius Lewerenz

TU Graz, 15.12.2011

41

Outlook

- •Vibrational shifts and effective rotational constants for CO⁺ in helium (DMC/PIMC in collaboration with P. N. Roy).
- •CH₃ radicals in helium, reactive complexes.
- •Photodissociation of CH₃I and CF₃I (ZPAD, DMC etc.)
- •Dopant spectroscopy (Mg*, Ag*, Ag+ etc.).
- •Transport properties (Mg⁺, Na⁺).
- •DMC and ZPAD calculations on Xe_nHe_m.
- •DMC with constraints $((H_2)_n, He_n(H_2)_m \text{ possible})$.

•SBDMC: soft body DMC allowing feedback between dopant and bath vibrations

ANR project DYNHELIUM (Toulouse, Rennes, Paris)