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Abstract

In this paper, the expression of Weierstrass operators as differential operators on
polynomials is used for the construction of associated quasi-interpolants. Then the
convergence properties of these operators are studied.

AMS Classification: 41A35.
Keywords: Approximation by integral operators.

1 Introduction

In the present paper, the general method developed by the author [19, 20, 21] for the con-
struction of new quasi-interpolants from classical linear approximation operators is applied
to Weierstrass operators. Similar studies are done in [14] for Bernstein operators and in
[15] for Baskakov quasi-interpolants (abbr. QIs). The latter is completed in [22]. The idea
can be summarized as follows : let {Qn, n ∈ N} be a sequence of linear operators defined
on some functional space F with values in a finite-dimensional subspace Pn of algebraic
or trigonometric polynomials. Assuming that for all n ∈ N, Qn is an isomorphism of Pn

preserving the degree, i.e. Qnp ∈ Pm for any p ∈ Pm, 0 ≤ m ≤ n , very often it admits a
representation in that space as a linear differential (or a difference) operator of the form

Qn =

n
∑

r=0

β(n)
r (x)Dr

where Dr is a linear differential (or difference) operator, and β
(n)
r (x) is a polynomial of

degree at most r. In most cases, the inverse Pn := Q−1
n of Qn has also a representation of

the same form

Pn =
n
∑

r=0

α(n)
r (x)Dr

In general, both families of polynomial coefficients satisfy a recurrence relation. This has
been proved ([6, 7, 8, 9, 21]) for Bernstein and Szász-Mirakyan operators and their associ-
ated Durrmeyer versions, and also for Kantorovich operators.
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Introducing the truncated inverses of order 0 ≤ r ≤ n:

P (r)
n =

r
∑

k=0

α
(n)
k (x)Dk

one can associate with Qn the family of (left) quasi-interpolants {Q(r)
n , 0 ≤ r ≤ n} defined

by

Q(r)
n p := P (r)

n Qnp =
r
∑

k=0

α
(n)
k (x)DkQnp, ∀p ∈ Pn

By construction, this operator is exact on Pr and it can be extended to the functional space
F . By virtue of classical theorems in approximation theory, this procedure greatly improves
the convergence order of the initial operator Qn in the space F .

Since 1990, the method has been extended by several authors to various operators. For
example by M.W. Müller [16] to Gamma operators, by A.T. Diallo [6, 8, 9] and others to
Szász-Mirakyan operators. In this paper, the expression of Weierstrass operators as differ-
ential operators on polynomials is used for the construction of associated quasi-interpolants.
Then the convergence properties of these operators are studied. These operators were first
used by Weierstrass for the proof of the uniform approximation of continuous functions by
polynomials.
Here is an outline of the paper. In Section 2, Weierstrass operators are expressed as differen-
tial or difference operators on polynomials. In Section 3, similar expressions are given for the
inverse Weierstrass operators. In Section 4, Weierstrass left quasi-interpolants are defined
on the space Π of polynomials. In the same way, in Section 5, Weierstrass right quasi-
interpolants are defined on the same space. In Section 6, Weierstrass quasi-interpolants
are expressed in terms of polynomials derived from Hermite polynomials. In Section 7 are
studied the norms of the Weierstrass left quasi-interpolants and their convergence proper-
ties. Finally, in Section 8, some methods for the effective computation of these operators
are briefly described. They will be detailed in a further paper.

2 Weierstrass operator as differential or difference operator

on polynomials

Setting gn(u) :=
√

n
π exp(−nu2), the Weierstrass operator ([3],[5] p.15) is defined as

Wnf(x) := (f ∗ gn)(x) =

∫ +∞

−∞
f(t)gn(x − t)dt =

∫ +∞

−∞
f(x − t)gn(t)dt

The first integral is called the first form of the Weierstrass operator

Wnf(x) =

√

n

π

∫ +∞

−∞
exp(−n(x − t)2)f(t)dt
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Similarly, the second integral is called the second form of the Weierstrass operator. It can
also be written, with the change of variable t = s/

√
n:

Wnf :=

√

n

π

∫ +∞

−∞
f(x − t) exp(−nt2)dt =

1√
π

∫ +∞

−∞
f(x − s/

√
n) exp(−s2)ds

It is linked to the heat kernel [12] K(t, x) := 1
(4πt)1/2

e−x2/4t by the relation gn(u) = K( 1
4n , x).

2.1 Wn as differential operator

According to formulas (7.4.4) and (7.4.5) of [1], we have

Lemma 1. (i) The even moments of the function exp(−x2) are given by

M2k :=
1√
π

∫ +∞

−∞
e−s2

s2kds =
1√
π

Γ(k + 1/2)

(ii) The absolute odd moments of the function exp(−x2) are given by

M2k+1 :=
2√
π

∫ +∞

0
e−s2

s2k+1ds =
1√
π

Γ(k + 1)

Denoting monomials by mp(x) = xp, then we first have Wnm0 = m0 and Wnm1 = m1.
Then, we get successively:

Wnm2 = m2 +
1

2n
m0, Wnm3 = m3 +

3

2n
m1, Wnm4 = m4 +

3

n
m2 +

3

4n2
m0,

Wnm5 = m5 +
5

n
m3 +

15

4n2
m1, Wnm6 = m6 +

15

2n
m4 +

45

4n2
m2 +

15

8n3
m0

From that, we easily deduce the first terms of the expansion of Wn as differential operator
on polynomials

Wnp = p +
1

4n
D2p +

1

32n2
D4p +

1

384n3
D6p + . . .

More generally, we get

Theorem 1. The representation of Wn as differential operator on Π is the following:

Wn = I +
∑

k≥1

1

4kk!

1

nk
D2k

Proof. By definition,

Wnmr(x) =

√
n√
π

∫

R

(x − t)re−nt2 dt =
r
∑

j=0

(−1)j

(

r

j

)

xr−j

√
n√
π

∫

R

tje−nt2 dt
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and, using the change of variable s =
√

n t, we get

Wnmr(x) =

r
∑

j=0

(−1)j

(

r

j

)

xr−jn−j/2 1√
π

∫

R

sje−s2

ds

Finally, we obtain the desired result:

Wnmr(x) =

[r/2]
∑

k=0

(

r

2k

)

xr−2kn−kM2k =

[r/2]
∑

k=0

1

4kk!

1

nk
D2kmr q.e.d. �

Remark. The formal power series (abbr. fps)
∑

k≥0 X2k/k!4knk is the expansion of the

function exp(X2/(4n)), therefore the differential form of the Weierstrass operator can be
written

Wn = exp(D2/(4n)) =
∑

k≥0

D2k

4kk!nk

2.2 Wn as difference operator

Let δf(x) = f(x+h/2)−f(x−h/2). We start from the formula giving derivatives in terms
of centered finite differences (see [2])

Dpf(x)/p! =
∑

k≥p

t(k, p)δ2kf(x)/(2k)!

where the coefficients t(k, p) are the central factorial numbers (abbr. cfn) of the first kind
defined by

x[n] :=
n
∑

k=0

t(n, k)xk

with x[0] = 1, x[1] = x, and x[n] = x
∏n−1

k=1

(

x + n
2 − k

)

for all n ≥ 2. Then we obtain

Wn =
∑

k≥0

D2k

(4n)kk!
=
∑

k≥0

(2k)!

(4n)kk!





∑

ℓ≥k

t(2ℓ, 2k)
δ2ℓ

2ℓ!





=
∑

ℓ≥0





∑

k≤ℓ

(2k)!

(4n)kk!
t(2ℓ, 2k)





δ2ℓ

2ℓ!

that we can write

Wn = Id +
∑

ℓ≥1

βℓ(n)
δ2ℓ

2ℓ!
, with βℓ(n) =

ℓ
∑

k=1

(2k)!

(4n)k
t(2ℓ, 2k) for ℓ ≥ 1
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The first coefficients being

β1 =
1

2n
, β2 = − 1

2n
+

3

4n2
, β3 =

2

n
− 15

4n2
+

15

8n3

β4 = −18

n
+

147

4n2
− 105

4n3
+

105

16n4

β5 =
288

n
− 615

n2
+

4095

8n3
− 1575

8n4
+

945

32n5

we get the first term of he expression of Wn as difference operator :

Wn = I +
1

2n

δ2

2
+

(

− 1

2n
+

3

4n2

)

δ4

4!
+

(

2

n
− 15

4n2
+

15

8n3

)

δ6

6!
+ . . .

3 The inverse Wn-operator as differential or difference op-

erator on polynomials

3.1 Inverse of the Weierstrass operator as differential operator on Π

We look for the inverse of Weierstrass operator under the form

Vn := W−1
n = I +

∑

ℓ≥1

dℓD
2ℓ

The problem consists in computing the inverse Vn(X) of the fps Wn(X):

Wn(X) = 1 +
∑

k≥1

ckX
k, Vn(X) = 1 +

∑

ℓ≥1

dℓX
ℓ, Vn(X)Wn(X) = 1

As Wn = exp(D2/(4n)), it is straightforward to deduce Vn = exp(−D2/(4n)), thus

Theorem 2. The inverse of Wn as differential operator on P is given by

Vn = Id +
∑

k≥1

(−1)kD2k

(4n)kk!

3.2 Inverse of the Weierstrass operator as difference operator on Π

We use the formalism of Section 2.2:

Vn =
∑

k≥0

(−1)kD2k

(4n)kk!
=
∑

k≥0

(−1)k (2k)!

(4n)kk!





∑

ℓ≥k

t(2ℓ, 2k)
δ2ℓ

2ℓ!





=
∑

ℓ≥0





∑

k≤ℓ

(−1)k (2k)!

(4n)kk!
t(2ℓ, 2k)





δ2ℓ

2ℓ!
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that we can write

Vn =
∑

ℓ≥0

αℓ(n)
δ2ℓ

2ℓ!
, with αℓ(n) =

ℓ
∑

k=1

(−1)k (2k)!

(4n)kk!
t(2ℓ, 2k).

The first coefficients αℓ are

α1 = − 1

2n
, α2 =

1

2n
+

3

4n2
, α3 = −

(

2

n
+

15

4n2
+

15

8n3

)

α4 =
18

n
+

147

4n2
+

105

4n3
+

105

16n4

α5 = −
(

288

n
+

615

n2
+

4095

8n3
+

1575

8n4
+

945

32n5

)

4 Left quasi-interpolants on polynomials

4.1 Weierstrass left-quasi-interpolants : first form

Definition. Considering the partial sums of order r of the inverse W-operator

V [r]
n :=

r
∑

k=0

1

nk

(−1)k

4kk!
D2k

one defines the Weierstrass left quasi-interpolants of order r as follows:

W [r]
n := V [r]

n Wn :=
r
∑

k=0

1

nk

(−1)k

4kk!
D2kWn, 0 ≤ r ≤ n.

Using the first form of Wnf , we get

W [r]
n f(x) =

√

n

π

∫ +∞

−∞
V [r]

n [exp(−n(x − t)2)]f(t)dt

We thus need the expressions of derivatives of gn(x − t) in terms of Hermite polynomials.
From the definition of these polynomials (see e.g. [10, 13]), it is well known that

Hk(x) = (−1)kex2

Dke−x2 ⇒ D2ke−x2

= e−x2

H2k(x)

Therefore, introducing the new polynomials

H̃2r(s) :=
r
∑

k=0

(−1)k

4kk!
H2k(s),
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we obtain

V [r]
n [exp(−n(x − t)2)] =

r
∑

k=0

1

nk

(−1)k

4kk!
D2k[exp(−n(x − t)2)]

=
r
∑

k=0

(−1)k

4kk!
H2k(x − t) exp(−n(x − t)2) = H̃2k(x − t) exp(−n(x − t)2)

We then deduce

Theorem 3. The quasi-interpolant W
[r]
n can be written under the two following forms

W [r]
n f(x) =

√

n

π

∫ +∞

−∞
H̃2k(x − t) exp(−n(x − t)2)f(t)dt

W [r]
n f(x) :=

1√
π

∫

R

exp(−s2)H̃2r(s)f(x − s/
√

n) ds

The second expression is obtained by using the change of variable t = s/
√

n.

4.2 The polynomials H̃r

Here are the expressions of the first polynomials H̃2r, with H̃0 = 1:

H̃2(x) =
3

2
− x2, H̃4(x) =

15

8
− 5

2
x2 +

1

2
x4

H̃6(x) =
35

16
− 35

8
x2 +

7

4
x4 − 1

6
x6.

More generally, one has

Theorem 4. The general expression of polynomials H̃2r is the following

H̃2r(x) =
(2r + 1)!

r!

r
∑

p=0

(−1)r−p

4pp!

x2(r−p)

(2r − 2p + 1)!

Proof. From the definition:

H̃2r(x) :=

r
∑

k=0

(−1)k

4kk!
H2k(s) =

r
∑

j=0

(−1)jbj
x2j

2j!

From the expansion of Hermite polynomials (see e.g. [], )

H2k(s) =

we deduce

bj :=

r
∑

k=j

2k!

4k−jk!(k − j)!
=

j!

4r−j

r
∑

k=j

4r−k

(

2k

k

)(

k

j

)

.

7



Setting j := r − p, we can write as follows the expression of the theorem

H̃2r(x) =
(2r + 1)!

r!

r
∑

j=0

(−1)j

4r−j(r − j)!

x2j

(2j + 1)!
=

r
∑

j=0

(−1)jaj
x2j

2j!

where

aj :=
(2r + 1)!

r!

1

4r−j(r − j)!

1

2j + 1

Therefore, we have to prove that aj = bj for 0 ≤ j ≤ r, i.e., after simplification:

αj :=
(2r + 1)!

r!

1

(r − j)!

1

2j + 1
= βj := j!

r
∑

k=j

4r−k

(

2k

k

)(

k

j

)

This can be proved by induction on r. For r = 0, we have j = 0, thus α0 = β0 = 1.
For r = 1, we get

α0 = 3! = β0 =
1
∑

k=0

41−k

(

2k

k

)

= 4 + 2,

α1 = 3!
1

3
= 2 = β1 =

(

2

1

)

= 2

Assume that the property is true for the coefficients 0 ≤ j ≤ r of H̃2r and let us prove it

for H̃2r+2, i.e. that α
[r+1]
j = β

[r+1]
j holds for 0 ≤ j ≤ r + 1. We have respectively

α
[r+1]
j :=

(2r + 3)!

(r + 1)!

1

(r + 1 − j)!

1

2j + 1

β
[r+1]
j = j!

r+1
∑

k=j

4r+1−k

(

2k

k

)(

k

j

)

= 4β
[r]
j + j!

(

2r + 2

r + 1

)(

r + 1

j

)

=
(2r + 1)!

r!

1

(r − j)!

4

2j + 1
+

(2r + 2)!

(r + 1)!(r + 1 − j)!

=
(2r + 1)!

(r + 1)!(r + 1 − j)!

1

2j + 1
(4(r + 1)(r + 1 − j) + 2(r + 1)(2j + 1))

=
(2r + 1)!

(r + 1)!(r + 1 − j)!

(2r + 2)(2r + 3)

2j + 1

=
1

2j + 1

(2r + 3)!

(r + 1)!(r + 1 − j)!
= α

[r+1]
j , q.e.d. �

Remark. It would be possible to express Weierstrass left quasi-interpolants in delta-form

W [r]
n = V [r]

n Wn = Wn +
r
∑

ℓ=1

βℓ(n)
δ2ℓ

2ℓ!
Wn

However, this will not be developed here.
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5 Right Wn-quasi-interpolants on polynomials

Definition. Considering the partial sums of order r of the inverse W-operator

V [r]
n :=

r
∑

k=0

1

nk

(−1)k

4kk!
D2k

one defines the right Weierstrass quasi-interpolants of order r as follows:

W
[r]
n f := WnV [r]

n f := Wn

(

r
∑

k=0

1

nk

(−1)k

4kk!
D2kf

)

5.1 Representation of W
[r]

n in D-form

Using the first form of Wnf , we get

W
[r]
n f(x) =

√

n

π

∫ +∞

−∞
exp(−n(x − t)2)]V [r]

n f(t)dt

Using the second form, we get

Wnf :=

√

n

π

∫ +∞

−∞
f(x − t) exp(−nt2)dt =

1√
π

∫ +∞

−∞
f(x − s/

√
n) exp(−s2)ds

we get the representations

W
[r]
n f(x) =

√

n

π

∫ +∞

−∞
exp(−nt2)V [r]

n f(x − t)dt =
1√
π

∫ +∞

−∞
exp(−s2)V [r]

n f(x − s/
√

n)ds

5.2 Representation of W
[r]

n in δ-form

Vn =
∑

ℓ≥0

α(n, ℓ)
hℓδℓ

ℓ!

Using the first form of Wnf , we get

W
[r]
n f(x) =

√

n

π

∫ +∞

−∞
exp(−n(x − t)2)]V [r]

n f(t)dt

Using the second form of Wnf , we get the representations

W
[r]
n f(x) =

√

n

π

∫ +∞

−∞
exp(−nt2)V [r]

n f(x − t)dt =
1√
π

∫ +∞

−∞
exp(−s2)V [r]

n f(x − s/
√

n)ds

Remark. The right Wn-quasi-interpolants in D-form seem to be less interesting than the
left ones since they explicitly use the derivatives of the function to be approximated. Yet the
representation in δ-form seem to be more interesting since it only uses values of f at integer
points. However, we do not develop their study in the present paper and we postpone it to
a future work.
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6 Norms of the Weierstrass left Quasi-Interpolants

From the expression

W [r]
n f(x) :=

1√
π

∫

R

exp(−s2)H̃2r(s)f(x − s/
√

n) ds

we first deduce the majoration

|W [r]
n f(x)| ≤ 1√

π

∫

R

exp(−s2)|H̃2r(s)|ds, ‖f‖∞ = 1

6.1 Exact value of the norm

Theorem 5. The infinite norm of W
[r]
n is given by the expression

Nr := ‖W [r]
n ‖∞ =

1√
π

∫

R

exp(−s2)|H̃2r(s)|ds

Proof. Let f be the function defined by f(x) = sgn(H̃2r(s)), then ‖f‖∞ = 1 and W
[r]
n f(x) =

1√
π

∫

R
exp(−s2)|H̃2r(s)|ds = Nr, q.e.d. �

6.2 Strong majoration of the norm

From [10] (chapter 1, p.31), we know that

e−t2/2|H2p(t)| ≤ 2p
√

2p!

and we deduce

e−t2/2|H̃2r(t)| ≤
r
∑

p=0

1

4pp!
e−t2/2|H2p(t)| ≤ σr :=

r
∑

p=0

√
2p!

2pp!

which leads to the following majoration of the norm

Theorem 6. The norm ‖W [r]
n ‖∞ is majoris?ed by the following constant independent of n:

‖W [r]
n ‖∞ ≤ Cr := r +

√
2

Proof. Using the above majoration, we obtain

Nr =
1√
π

∫

R

exp(−s2)|H̃2r(s)|ds ≤ σr√
π

∫

R

exp(−s2/2)ds =
√

2 σr

The quantity σr can be majorised as follows

σr = 1 +

r
∑

p=1

√

(

1.3 . . . 2p − 1

2.4 . . . 2p

)

≤ 1 +
r√
2

10



Therefore we finally obtain

√
2 σr ≤ Cr = r +

√
2 q.e.d. �

Table of the first values of Nr and Cr

r 1 2 3 4 5 6 7 8 9 10

Nr 1.14 1.22 1.28 1.33 1.37 1.40 1.43 1.45 1.47 1.49√
2 σr 2.41 3.28 4.07 4.81 5.51 6.18 6.83 7.46 8.07 8.66

Cr 2.41 3.41 4.41 5.41 6.41 7.41 8.41 9.41 10.41 11.41

We can observe the slow increase of the norms of Weierstrass quasi-interpoants.

7 Convergence properties of WQIs

From the definition

Wnf(x) :=
1√
π

∫ +∞

−∞
f(x + s/

√
n) exp(−s2)ds

or the properties of the heat kernel, it is clear that

lim
n→+∞

Wnf(x) = f(x) ∀f ∈ C(R)

The same result holds for the WQIs since W
[r]
n f(x) is a finite linear combination of deriva-

tives of Wnf with coefficients tending to zero when n → ∞. The problem is to show that
the convergence order is improved for smooth functions.

7.1 Convergence order of the operator Wn

For f ∈ C3(R), we use the Taylor expansion

f(x + s/
√

n) = f(x) +
s√
n

f ′(x) +
s2

2n
f ′′(x) + rn(x, s)

where rn(x, s) := 1
2

∫ x+s/
√

n
x (x + s/

√
n − u)2f (3)(u)du, and as M2 = 1

2 , we deduce

Wnf(x) = f(x) +
1

4n
f ′′(x) + Rn(x), Rn(x) =

1√
π

∫ +∞

−∞
rn(x, s) exp(−s2)ds

Now, we majorize the expression

n(Wnf(x) − f(x)) − 1

4
f ′′(x) = nRn(x)

11



Using the change of variable u = x + t/
√

n, t ∈ [0, s], we get

nRn(x) =
1

2
√

πn

∫ +∞

−∞

(∫ s

0
(s − t)2f (3)(x + t/

√
n)dt

)

and also the majoration

∣

∣

∣

∣

∫ s

0
(s − t)2f (3)(x + t/

√
n)dt

∣

∣

∣

∣

≤ ‖f (3)‖∞
∫ |s|

0
(|s| − t)2ds = ‖f (3)‖∞

1

3
|s|3

By Lemma 1, we know that M3 = 1√
π
, thus we get

|nRn(x)| ≤ 1

6π
√

n
‖f (3)‖∞ ⇒ limnRn(x) = 0,

and we finally obtain

limn→∞ n(Wnf(x) − f(x)) = 1
4f ′′(x)

In a similar way, one obtains successively

limn2(W [1]
n f(x) − f(x)) = − 1

32
f (4)(x)

and

limn3(W [2]
n f(x) − f(x)) =

1

384
f (6)(x)

for f ∈ W 5,∞(R) and f ∈ W 7,∞(R) respectively. Let us now study the general case.

7.2 The remainder g − W [r]g on polynomials

The aim of this section is to give an expression of the remainder g − W [r]g for g ∈ P.

Vn =
∑

k≥0

ak(n)D2k, V [r]
n =

r
∑

k=0

ak(n)D2k, ak(n) = (−1)k/(4n)kk!

Therefore, as VnWn = Id,

g − W [r]g = (Vn − V [r]
n )Wng =

∑

k≥r+1

ak(n)D2kWng

On the other hand, we have

D2kWng =
∑

ℓ≥0

bℓ(n)D2(k+ℓ)g, bℓ(n) = 1/(4n)ℓℓ!

12



thus we get

g − W [r]g =
∑

ℓ≥0

∑

k≥r+1

ak(n)bℓ(n)D2(k+ℓ)g =
∑

m≥r+1





∑

k+ℓ=m,k≥r+1

ak(n)bℓ(n)



D2mg

Let us denote by cm(n) the coefficient of D2mg. For example, we get

cr+2(n) = ar+2(n) + ar+1(n)b1(n) =
(−1)r+1

(4n)r+2(r + 2)!

(

r + 1

1

)

cr+3(n) = ar+3(n) + ar+2(n)b1(n) + ar+1(n)b2(n) =
(−1)r+1

(4n)r+3(r + 3)!

(

r + 2

2

)

More generally, for all p ∈ N, using the identity (see [18], Section 4.2.1, formula 4)

p−1
∑

i=0

(−1)i

(

r + p

i

)

= (−1)p−1

(

r + p − 1

p − 1

)

we obtain

cr+p(n) =

r+p
∑

k=r+1

ak(n)br+p−k(n) =
(−1)r+p

(4n)r+p(r + p)!

p−1
∑

i=0

(−1)i

(

r + p

i

)

hence

cr+p(n) ==
(−1)r+1

(4n)r+p(r + p)!

(

r + p − 1

p − 1

)

= (−1)p+1

(

r + p − 1

p − 1

)

ar+p(n)

Therefore we obtain

Theorem 7. For any polynomial g, there holds the following representation of the error
for the Weierstrass quasi-interpolant W [r]:

g − W [r]g =
∑

p≥1

(−1)p−1

(

r + p − 1

p − 1

)

ar+p(n)D2(r+p)g

Remarks.

1) This is another proof of the fact that W [r] is exact on P2r+1.
2) Moreover, we deduce that

nr+1(g − W [r]g) = nr+1ar+1(n)D2(r+1)g +
∑

p≥2

(−1)p−1

(

r + p − 1

p − 1

)

nr+1ar+p(n)D2(r+p)g

where the sum is finite since g ∈ Π. We also have

nr+1ar+1(n) =
(−1)r+1

4r+1(r + 1)!
and, for p ≥ 2, nr+1ar+p(n) =

(−1)r+p

4r+p(r + p)!np−1

As limn→∞ nr+1ar+p(n) = 0 for p ≥ 2, we obtain, for any polynomial g:

13



limn→∞ nr+1(g − W [r]g) = (−1)r+1

4r+1(r+1)!
D2r+2g

7.3 Convergence order of the quasi-interpolant W
[r]
n

In the general case, we have the following Voronovskaja-type result

Theorem 8. Assume that f has a bounded derivative of order 2r + 3. Then the following
limit holds

lim
n→∞

nr+1(f(x) − W [r]f(x)) =
(−1)r+1

4r+1(r + 1)!
D2r+2f(x)

Proof. We start from the expression

W [r]
n f(x) :=

1√
π

∫

R

exp(−s2)H̃2r(s)f(x + s/
√

n) ds

Taylor’s formula gives

f(x + s/
√

n) = f(x) +

2r+2
∑

k=1

sk

nk/2

f (k)(x)

k!
+ gn(x, s)

where

gn(x, s) =
1

(2r + 2)!

∫ x+s/
√

n

x
(x + s/

√
n − u)2r+2D2r+3f(u)du

For all 1 ≤ k ≤ 2r + 2, we compute the values of

M
[r]
k :=

1√
π

∫

R

exp(−s2)skH̃2r(s) ds

in function of the moments of Hermite polynomials:

µ2r,k =
1√
π

∫

R

exp(−s2)skH2r(s) ds

which are equal to zero for 0 ≤ k ≤ 2r − 1, and (see [1], formula 22.13.19, p.786, for
x = 1, P (1) = 1):

µ2r,2r :=
1√
π

∫

R

exp(−s2)s2rH2r(s) ds = r!

Therefore, by definition of H̃2r, one has for all k ≥:

M
[r]
k :=

1√
π

r
∑

j=0

(−1)j

4jj!

∫

R

exp(−s2)skH2j(s) ds

14



Since H2j(x) is a polynomial of even degree, it is clear that M
[r]
k := 0 for all k odd. For

k = 2p, one has

M
[r]
2p :=

r
∑

j=0

(−1)j

4jj!
µ2j,2p

Using Maple or [1] as above, we get

µ2j,2p :=
1√
π

∫

R

exp(−s2)s2pH2j(s) ds = 4jj!

(

p

j

)

Γ(p + 1/2)/
√

π

from which we deduce, for p ≤ r:

M
[r]
2p =

r
∑

j=0

(−1)j

4jj!
µ(2j, 2p) =

1√
π

Γ(p+1/2)
r
∑

j=0

(−1)j

(

p

j

)

= (−1)r

(

p − 1

r

)

1√
π

Γ(p+1/2) = 0

and for p = r + 1:

M
[r]
2r+2 = (−1)r 1√

π
Γ(r + 3/2) = (−1)r 1 · 3 · 5 . . . (2r + 1)

2r+1
= (−1)r (2r + 2)!

4r+1(r + 1)!

From that we deduce, after simplification,

W [r]f(x) = f(x) + (−1)r D(2r+2)f(x)

4r+1(r + 1)!
µ2r,k + Rn(x)

with

Rn(x) =
1√
π

∫

R

exp(−s2)H̃2r(s)) gn(x, s)ds

In order to get the result, we have still to prove that

lim
n→+∞

nr+1Rn(x) = 0

A first majoration gives

nr+1|gn(x, s)| ≤ 1√
n

1

(2r + 2)!
‖D2r+3f‖∞

∫ |s|

0
(|s| − t)2r+2dt

Therefore, as the integral is equal to |s|2r+3/(2r + 3), we get the second majoration

nr+1|Rn(x)| ≤ 1√
n

1

(2r + 3)!
‖D2r+3f‖∞

∫

R

exp(−s2)|H̃2r(s)||s|2r+3ds

It remains to prove that the integral is bounded independently of n. This is true because
first we know (Section 6.2) that e−s2 |H̃2r(s)| ≤ σre

−s2/2, thus
∫

R

exp(−s2)|H̃2r(s)|s|2r+3ds ≤ σr

∫

R

exp(−s2/2)||s|2r+3ds

which is proportional to an odd moment of the function e−s2

(Lemma 1), the coefficient
depending on r, but not on n. Finally, we get

nr+1|Rn(x)| ≤ cr√
n

⇒ lim
n→+∞

nr+1|Rn(x)| = 0, q.e.d.
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8 A short note on the computation of W-quasi-interpolants

1) The first form of W
[r]
n leads to computing the following integral for any x ∈ R

W [r]
n f(x) =

√

n

π

∫ +∞

−∞
H̃2k(x − t) exp(−n(x − t)2)f(t)dt

2) On the other hand, the second form leads to the computation of the integral

W [r]
n f(x) :=

1√
π

∫

R

exp(−s2)H̃r(s)f(x − s/
√

n) ds

Using a quadrature formula of type

∫

R

e−x2

f(x) dx ≈
k
∑

i=1

Aif(xi)

this second form is substitued for the approximate discrete operator

W
[r]
n f(x) :=

1√
π

k
∑

i=1

AiH̃r(xi)f(x − xi/
√

n)

For given values of (r, k), the values of H̃r(xi) can be computed once for all in advance.
Then, one can vary the value of n.

The quadrature formulas can be either the Gauss-Hermite ones ([1, 10]) or the trapezoidal
formula in R. In Henrici [11], chapter 11, one may find good reasons for using the quadrature
formula

Qf(h) = h
∑

k∈Z

exp(−k2h2)f(kh) ≈
∫

R

exp(−t2)f(t)dt

This topic will be developed in a further paper together with numerical examples and some
applications.
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