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In this paper, the expression of Weierstrass operators as differential operators on polynomials is used for the construction of associated quasi-interpolants. Then the convergence properties of these operators are studied.

Introduction

In the present paper, the general method developed by the author [START_REF] Sablonnière | Bernstein quasi-interpolants[END_REF][START_REF] Sablonnière | A family of Bernstein quasi-interpolants on[END_REF][START_REF] Sablonnière | Representation of quasi-interpolants as differential operators and applications[END_REF] for the construction of new quasi-interpolants from classical linear approximation operators is applied to Weierstrass operators. Similar studies are done in [START_REF] Mache | Approximation by Bernstein quasi-interpolants[END_REF] for Bernstein operators and in [START_REF] Mache | The method of left Baskakov quasi-interpolants[END_REF] for Baskakov quasi-interpolants (abbr. QIs). The latter is completed in [START_REF] Sablonnière | Classical and Durrmeyer-type Baskakov quasi-interpolants with applications[END_REF]. The idea can be summarized as follows : let {Q n , n ∈ N} be a sequence of linear operators defined on some functional space F with values in a finite-dimensional subspace P n of algebraic or trigonometric polynomials. Assuming that for all n ∈ N, Q n is an isomorphism of P n preserving the degree, i.e. Q n p ∈ P m for any p ∈ P m , 0 ≤ m ≤ n , very often it admits a representation in that space as a linear differential (or a difference) operator of the form

Q n = n r=0 β (n) r (x)D r
where D r is a linear differential (or difference) operator, and β

(n) r (x) is a polynomial of degree at most r. In most cases, the inverse P n := Q -1 n of Q n has also a representation of the same form

P n = n r=0 α (n) r (x)D r
In general, both families of polynomial coefficients satisfy a recurrence relation. This has been proved ( [START_REF] Diallo | Szász-Mirakyan quasi-interpolants[END_REF][START_REF] Diallo | Rate of convergence of Bernstein quasi-interpolants[END_REF][START_REF] Diallo | Rate of convergence of Szász-Mirakyan quasi-interpolants[END_REF][START_REF] Diallo | Rate of convergence of Bernstein and Szász-Mirakyan quasi-interpolants[END_REF][START_REF] Sablonnière | Representation of quasi-interpolants as differential operators and applications[END_REF]) for Bernstein and Szász-Mirakyan operators and their associated Durrmeyer versions, and also for Kantorovich operators.

Introducing the truncated inverses of order 0 ≤ r ≤ n:

P (r) n = r k=0 α (n) k (x)D k
one can associate with Q n the family of (left) quasi-interpolants {Q (r) n , 0 ≤ r ≤ n} defined by

Q (r) n p := P (r) n Q n p = r k=0 α (n) k (x)D k Q n p, ∀p ∈ P n
By construction, this operator is exact on P r and it can be extended to the functional space F. By virtue of classical theorems in approximation theory, this procedure greatly improves the convergence order of the initial operator Q n in the space F.

Since 1990, the method has been extended by several authors to various operators. For example by M.W. Müller [START_REF] Müller | The central approximation theorems for the method of the left Gamma quasi-interpolants in L p -spaces[END_REF] to Gamma operators, by A.T. Diallo [START_REF] Diallo | Szász-Mirakyan quasi-interpolants[END_REF][START_REF] Diallo | Rate of convergence of Szász-Mirakyan quasi-interpolants[END_REF][START_REF] Diallo | Rate of convergence of Bernstein and Szász-Mirakyan quasi-interpolants[END_REF] and others to Szász-Mirakyan operators. In this paper, the expression of Weierstrass operators as differential operators on polynomials is used for the construction of associated quasi-interpolants.

Then the convergence properties of these operators are studied. These operators were first used by Weierstrass for the proof of the uniform approximation of continuous functions by polynomials.

Here is an outline of the paper. In Section 2, Weierstrass operators are expressed as differential or difference operators on polynomials. In Section 3, similar expressions are given for the inverse Weierstrass operators. In Section 4, Weierstrass left quasi-interpolants are defined on the space Π of polynomials. In the same way, in Section 5, Weierstrass right quasiinterpolants are defined on the same space. In Section 6, Weierstrass quasi-interpolants are expressed in terms of polynomials derived from Hermite polynomials. In Section 7 are studied the norms of the Weierstrass left quasi-interpolants and their convergence properties. Finally, in Section 8, some methods for the effective computation of these operators are briefly described. They will be detailed in a further paper.

Weierstrass operator as differential or difference operator on polynomials

Setting g n (u) := n π exp(-nu 2 ), the Weierstrass operator ([3], [START_REF] Devore | Constructive approximation[END_REF] p.15) is defined as

W n f (x) := (f * g n )(x) = +∞ -∞ f (t)g n (x -t)dt = +∞ -∞ f (x -t)g n (t)dt
The first integral is called the first form of the Weierstrass operator

W n f (x) = n π +∞ -∞ exp(-n(x -t) 2 )f (t)dt
Similarly, the second integral is called the second form of the Weierstrass operator. It can also be written, with the change of variable t = s/ √ n:

W n f := n π +∞ -∞ f (x -t) exp(-nt 2 )dt = 1 √ π +∞ -∞ f (x -s/ √ n) exp(-s 2 )ds
It is linked to the heat kernel [START_REF] Jorgenson | The ubiquitous heat kernel[END_REF] 

K(t, x) := 1 (4πt) 1/2 e -x 2 /4t by the relation g n (u) = K( 1 4n , x).

W n as differential operator

According to formulas (7.4.4) and (7.4.5) of [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], we have Lemma 1. (i) The even moments of the function exp(-x 2 ) are given by

M 2k := 1 √ π +∞ -∞ e -s 2 s 2k ds = 1 √ π Γ(k + 1/2) (ii)
The absolute odd moments of the function exp(-x 2 ) are given by

M 2k+1 := 2 √ π +∞ 0 e -s 2 s 2k+1 ds = 1 √ π Γ(k + 1)
Denoting monomials by m p (x) = x p , then we first have

W n m 0 = m 0 and W n m 1 = m 1 .
Then, we get successively: 

W n m 2 = m 2 + 1 2n m 0 , W n m 3 = m 3 + 3 2n m 1 , W n m 4 = m 4 + 3 n m 2 + 3 4n 2 m 0 , W n m 5 =
W n = I + k≥1 1 4 k k! 1 n k D 2k Proof. By definition, W n m r (x) = √ n √ π R (x -t) r e -nt 2 dt = r j=0 (-1) j r j x r-j √ n √ π R t j e -nt 2 dt
and, using the change of variable s = √ n t, we get

W n m r (x) = r j=0 (-1) j r j x r-j n -j/2 1 √ π R s j e -s 2 ds
Finally, we obtain the desired result:

W n m r (x) = [r/2] k=0 r 2k x r-2k n -k M 2k = [r/2] k=0 1 4 k k! 1 n k D 2k m r q.e.d.
Remark. The formal power series (abbr. fps) k≥0 X 2k /k!4 k n k is the expansion of the function exp(X 2 /(4n)), therefore the differential form of the Weierstrass operator can be written

W n = exp(D 2 /(4n)) = k≥0 D 2k 4 k k!n k 2.2 W n as difference operator Let δf (x) = f (x + h/2) -f (x -h/2
). We start from the formula giving derivatives in terms of centered finite differences (see [START_REF] Butzer | Central factorial numbers, their main properties and some applications[END_REF])

D p f (x)/p! = k≥p t(k, p)δ 2k f (x)/(2k)!
where the coefficients t(k, p) are the central factorial numbers (abbr. cfn) of the first kind defined by

x [n] := n k=0 t(n, k)x k with x [0] = 1, x [1] = x, and x [n] = x n-1 k=1 x + n 2 -k for all n ≥ 2.
Then we obtain

W n = k≥0 D 2k (4n) k k! = k≥0 (2k)! (4n) k k!   ℓ≥k t(2ℓ, 2k) δ 2ℓ 2ℓ!   = ℓ≥0   k≤ℓ (2k)! (4n) k k! t(2ℓ, 2k)   δ 2ℓ 2ℓ!
that we can write

W n = Id + ℓ≥1 β ℓ (n) δ 2ℓ 2ℓ! , with β ℓ (n) = ℓ k=1 (2k)! (4n) k t(2ℓ, 2k) for ℓ ≥ 1
The first coefficients being 

β 1 = 1 2n , β 2 = - 1 2n + 3 4n 2 , β 3 = 2 n - 15 
W n = I + 1 2n δ 2 2 + - 1 2n + 3 4n 2 δ 4 4! + 2 n - 15 4n 2 + 15 8n 3 δ 6 6! + . . . 3 
The inverse W n -operator as differential or difference operator on polynomials

Inverse of the Weierstrass operator as differential operator on Π

We look for the inverse of Weierstrass operator under the form

V n := W -1 n = I + ℓ≥1 d ℓ D 2ℓ
The problem consists in computing the inverse V n (X) of the fps W n (X):

W n (X) = 1 + k≥1 c k X k , V n (X) = 1 + ℓ≥1 d ℓ X ℓ , V n (X)W n (X) = 1
As W n = exp(D 2 /(4n)), it is straightforward to deduce V n = exp(-D 2 /(4n)), thus Theorem 2. The inverse of W n as differential operator on P is given by

V n = Id + k≥1 (-1) k D 2k (4n) k k!

Inverse of the Weierstrass operator as difference operator on Π

We use the formalism of Section 2.2:

V n = k≥0 (-1) k D 2k (4n) k k! = k≥0 (-1) k (2k)! (4n) k k!   ℓ≥k t(2ℓ, 2k) δ 2ℓ 2ℓ!   = ℓ≥0   k≤ℓ (-1) k (2k)! (4n) k k! t(2ℓ, 2k)   δ 2ℓ 2ℓ!
that we can write

V n = ℓ≥0 α ℓ (n) δ 2ℓ 2ℓ! , with α ℓ (n) = ℓ k=1 (-1) k (2k)! (4n) k k! t(2ℓ, 2k).
The first coefficients α ℓ are Definition. Considering the partial sums of order r of the inverse W-operator

α 1 = - 1 2n , α 2 = 1 2n + 3 4n
V [r] n := r k=0 1 n k (-1) k 4 k k! D 2k
one defines the Weierstrass left quasi-interpolants of order r as follows:

W [r] n := V [r] n W n := r k=0 1 n k (-1) k 4 k k! D 2k W n , 0 ≤ r ≤ n.
Using the first form of W n f , we get

W [r] n f (x) = n π +∞ -∞ V [r] n [exp(-n(x -t) 2 )]f (t)dt
We thus need the expressions of derivatives of g n (x -t) in terms of Hermite polynomials.

From the definition of these polynomials (see e.g. [START_REF] Gautschi | Orthogonal polynomials[END_REF][START_REF] Krylov | Approximate calculation of integrals[END_REF]), it is well known that

H k (x) = (-1) k e x 2 D k e -x 2 ⇒ D 2k e -x 2 = e -x 2 H 2k (x)
Therefore, introducing the new polynomials

H2r (s) := r k=0 (-1) k 4 k k! H 2k (s),
we obtain

V [r] n [exp(-n(x -t) 2 )] = r k=0 1 n k (-1) k 4 k k! D 2k [exp(-n(x -t) 2 )] = r k=0 (-1) k 4 k k! H 2k (x -t) exp(-n(x -t) 2 ) = H2k (x -t) exp(-n(x -t) 2 )
We then deduce

Theorem 3. The quasi-interpolant W [r]
n can be written under the two following forms

W [r] n f (x) = n π +∞ -∞ H2k (x -t) exp(-n(x -t) 2 )f (t)dt W [r] n f (x) := 1 √ π R exp(-s 2 ) H2r (s)f (x -s/ √ n) ds
The second expression is obtained by using the change of variable t = s/ √ n.

The polynomials Hr

Here are the expressions of the first polynomials H2r , with H0 = 1:

H2 (x) = 3 2 -x 2 , H4 (x) = 15 8 - 5 2 x 2 + 1 2 x 4 H6 (x) = 35 16 - 35 8 x 2 + 7 4 x 4 - 1 6 x 6 .

More generally, one has

Theorem 4. The general expression of polynomials H2r is the following

H2r (x) = (2r + 1)! r! r p=0 (-1) r-p 4 p p! x 2(r-p) (2r -2p + 1)! Proof.
From the definition:

H2r (x) := r k=0 (-1) k 4 k k! H 2k (s) = r j=0 (-1) j b j x 2j 2j!
From the expansion of Hermite polynomials (see e.g. [], )

H 2k (s) = we deduce b j := r k=j 2k! 4 k-j k!(k -j)! = j! 4 r-j r k=j 4 r-k 2k k k j .
Setting j := r -p, we can write as follows the expression of the theorem

H2r (x) = (2r + 1)! r! r j=0 (-1) j 4 r-j (r -j)! x 2j (2j + 1)! = r j=0 (-1) j a j x 2j 2j!
where

a j := (2r + 1)! r! 1 4 r-j (r -j)! 1 2j + 1
Therefore, we have to prove that a j = b j for 0 ≤ j ≤ r, i.e., after simplification:

α j := (2r + 1)! r! 1 (r -j)! 1 2j + 1 = β j := j! r k=j 4 r-k 2k k k j
This can be proved by induction on r. For r = 0, we have j = 0, thus α 0 = β 0 = 1. For r = 1, we get

α 0 = 3! = β 0 = 1 k=0 4 1-k 2k k = 4 + 2, α 1 = 3! 1 3 = 2 = β 1 = 2 1 = 2
Assume that the property is true for the coefficients 0 ≤ j ≤ r of H2r and let us prove it for H2r+2 , i.e. that α

[r+1] j = β [r+1] j
holds for 0 ≤ j ≤ r + 1. We have respectively

α [r+1] j := (2r + 3)! (r + 1)! 1 (r + 1 -j)! 1 2j + 1 β [r+1] j = j! r+1 k=j 4 r+1-k 2k k k j = 4β [r] j + j! 2r + 2 r + 1 r + 1 j = (2r + 1)! r! 1 (r -j)! 4 2j + 1 + (2r + 2)! (r + 1)!(r + 1 -j)! = (2r + 1)! (r + 1)!(r + 1 -j)! 1 2j + 1 (4(r + 1)(r + 1 -j) + 2(r + 1)(2j + 1)) = (2r + 1)! (r + 1)!(r + 1 -j)! (2r + 2)(2r + 3) 2j + 1 = 1 2j + 1 (2r + 3)! (r + 1)!(r + 1 -j)! = α [r+1] j
, q.e.d.

Remark.

It would be possible to express Weierstrass left quasi-interpolants in delta-form

W [r] n = V [r] n W n = W n + r ℓ=1 β ℓ (n) δ 2ℓ 2ℓ! W n
However, this will not be developed here.

Right W n -quasi-interpolants on polynomials

Definition. Considering the partial sums of order r of the inverse W-operator

V [r] n := r k=0 1 n k (-1) k 4 k k! D 2k
one defines the right Weierstrass quasi-interpolants of order r as follows:

W [r] n f := W n V [r] n f := W n r k=0 1 n k (-1) k 4 k k! D 2k f 5.1 Representation of W [r] n in D-form
Using the first form of W n f , we get

W [r] n f (x) = n π +∞ -∞ exp(-n(x -t) 2 )]V [r] n f (t)dt
Using the second form, we get

W n f := n π +∞ -∞ f (x -t) exp(-nt 2 )dt = 1 √ π +∞ -∞ f (x -s/ √ n) exp(-s 2 )ds
we get the representations

W [r] n f (x) = n π +∞ -∞ exp(-nt 2 )V [r] n f (x -t)dt = 1 √ π +∞ -∞ exp(-s 2 )V [r] n f (x -s/ √ n)ds

Representation of W [r]

n in δ-form

V n = ℓ≥0 α(n, ℓ) h ℓ δ ℓ ℓ!
Using the first form of W n f , we get

W [r] n f (x) = n π +∞ -∞ exp(-n(x -t) 2 )]V [r] n f (t)dt
Using the second form of W n f , we get the representations

W [r] n f (x) = n π +∞ -∞ exp(-nt 2 )V [r] n f (x -t)dt = 1 √ π +∞ -∞ exp(-s 2 )V [r] n f (x -s/ √ n)ds
Remark. The right W n -quasi-interpolants in D-form seem to be less interesting than the left ones since they explicitly use the derivatives of the function to be approximated. Yet the representation in δ-form seem to be more interesting since it only uses values of f at integer points. However, we do not develop their study in the present paper and we postpone it to a future work.

Norms of the Weierstrass left Quasi-Interpolants

From the expression

W [r] n f (x) := 1 √ π R exp(-s 2 ) H2r (s)f (x -s/ √ n) ds
we first deduce the majoration

|W [r] n f (x)| ≤ 1 √ π R exp(-s 2 )| H2r (s)|ds, f ∞ = 1
6.1 Exact value of the norm

Theorem 5. The infinite norm of W [r]
n is given by the expression

N r := W [r] n ∞ = 1 √ π R exp(-s 2 )| H2r (s)|ds
Proof. Let f be the function defined by f (x) = sgn( H2r (s)), then f ∞ = 1 and n ∞ is majoris?ed by the following constant independent of n:

W [r] n f (x) = 1 √ π R exp(-s 2 )| H2r (s)|ds = N r , q.e.d.

Strong majoration of the norm

W [r] n ∞ ≤ C r := r + √ 2 
Proof. Using the above majoration, we obtain

N r = 1 √ π R exp(-s 2 )| H2r (s)|ds ≤ σ r √ π R exp(-s 2 /2)ds = √ 2 σ r
The quantity σ r can be majorised as follows

σ r = 1 + r p=1 1.3 . . . 2p -1 2.4 . . . 2p ≤ 1 + r √ 2 10 
Therefore we finally obtain We can observe the slow increase of the norms of Weierstrass quasi-interpoants.

√ 2 σ r ≤ C r = r + √ 2 q.e.d.

Convergence properties of WQIs

From the definition

W n f (x) := 1 √ π +∞ -∞ f (x + s/ √ n) exp(-s 2 )ds
or the properties of the heat kernel, it is clear that

lim n→+∞ W n f (x) = f (x) ∀f ∈ C(R)
The same result holds for the WQIs since W

[r] n f (x) is a finite linear combination of derivatives of W n f with coefficients tending to zero when n → ∞. The problem is to show that the convergence order is improved for smooth functions.

Convergence order of the operator W n

For f ∈ C 3 (R), we use the Taylor expansion

f (x + s/ √ n) = f (x) + s √ n f ′ (x) + s 2 2n f ′′ (x) + r n (x, s)
where

r n (x, s) := 1 2 x+s/ √ n x (x + s/ √ n -u) 2 f (3) (u)du
, and as M 2 = 1 2 , we deduce

W n f (x) = f (x) + 1 4n f ′′ (x) + R n (x), R n (x) = 1 √ π +∞ -∞ r n (x, s) exp(-s 2 )ds
Now, we majorize the expression

n(W n f (x) -f (x)) - 1 4 f ′′ (x) = nR n (x)
Using the change of variable u = x + t/ √ n, t ∈ [0, s], we get

nR n (x) = 1 2 √ πn +∞ -∞ s 0 (s -t) 2 f (3) (x + t/ √ n)dt
and also the majoration

s 0 (s -t) 2 f (3) (x + t/ √ n)dt ≤ f (3) ∞ |s| 0 (|s| -t) 2 ds = f (3) ∞ 1 3 |s| 3
By Lemma 1, we know that M 3 = 1 √ π , thus we get

|nR n (x)| ≤ 1 6π √ n f (3) ∞ ⇒ lim nR n (x) = 0,
and we finally obtain

lim n→∞ n(W n f (x) -f (x)) = 1 4 f ′′ (x)
In a similar way, one obtains successively lim n 2 (W [1] n f (x) -f (x)) = -

1 32 f (4) (x)
and lim n 3 (W [2] n f (x) -f (x)) = 1 384 f (6) (x) for f ∈ W 5,∞ (R) and f ∈ W 7,∞ (R) respectively. Let us now study the general case.

7.2

The remainder g -W [r] g on polynomials

The aim of this section is to give an expression of the remainder g -W [r] g for g ∈ P.

V n = k≥0 a k (n)D 2k , V [r] n = r k=0 a k (n)D 2k , a k (n) = (-1) k /(4n) k k! Therefore, as V n W n = Id, g -W [r] g = (V n -V [r] n )W n g = k≥r+1 a k (n)D 2k W n g
On the other hand, we have

D 2k W n g = ℓ≥0 b ℓ (n)D 2(k+ℓ) g, b ℓ (n) = 1/(4n) ℓ ℓ! thus we get g -W [r] g = ℓ≥0 k≥r+1 a k (n)b ℓ (n)D 2(k+ℓ) g = m≥r+1   k+ℓ=m,k≥r+1 a k (n)b ℓ (n)   D 2m g
Let us denote by c m (n) the coefficient of D 2m g. For example, we get

c r+2 (n) = a r+2 (n) + a r+1 (n)b 1 (n) = (-1) r+1 (4n) r+2 (r + 2)! r + 1 1 c r+3 (n) = a r+3 (n) + a r+2 (n)b 1 (n) + a r+1 (n)b 2 (n) = (-1) r+1 (4n) r+3 (r + 3)! r + 2 2
More generally, for all p ∈ N, using the identity (see [START_REF] Prudnikov | Integrals and Series[END_REF], Section 4.2.1, formula 4)

p-1 i=0 (-1) i r + p i = (-1) p-1 r + p -1 p -1 we obtain c r+p (n) = r+p k=r+1 a k (n)b r+p-k (n) = (-1) r+p (4n) r+p (r + p)! p-1 i=0 (-1) i r + p i hence c r+p (n) == (-1) r+1 (4n) r+p (r + p)! r + p -1 p -1 = (-1) p+1 r + p -1 p -1 a r+p (n)
Therefore we obtain Theorem 7. For any polynomial g, there holds the following representation of the error for the Weierstrass quasi-interpolant W [r] :

g -W [r] g = p≥1 (-1) p-1 r + p -1 p -1 a r+p (n)D 2(r+p) g Remarks. 1 
) This is another proof of the fact that W [r] is exact on P 2r+1 .

2) Moreover, we deduce that

n r+1 (g -W [r] g) = n r+1 a r+1 (n)D 2(r+1) g + p≥2 (-1) p-1 r + p -1 p -1 n r+1 a r+p (n)D 2(r+p) g
where the sum is finite since g ∈ Π. We also have

n r+1 a r+1 (n) = (-1) r+1 4 r+1 (r + 1)! and, for p ≥ 2, n r+1 a r+p (n) = (-1) r+p 4 r+p (r + p)! n p-1
As lim n→∞ n r+1 a r+p (n) = 0 for p ≥ 2, we obtain, for any polynomial g:

lim n→∞ n r+1 (g -W [r] g) = (-1) r+1 4 r+1 (r+1)! D 2r+2 g 7.
3 Convergence order of the quasi-interpolant W

[r] n

In the general case, we have the following Voronovskaja-type result Theorem 8. Assume that f has a bounded derivative of order 2r + 3. Then the following limit holds

lim n→∞ n r+1 (f (x) -W [r] f (x)) = (-1) r+1 4 r+1 (r + 1)! D 2r+2 f (x)
Proof. We start from the expression

W [r] n f (x) := 1 √ π R exp(-s 2 ) H2r (s)f (x + s/ √ n) ds
Taylor's formula gives n leads to computing the following integral for any x ∈ R

f (x + s/ √ n) = f (x) + 2r+2 k=1 s k n k/2 f (k) (x) k! + g n (x,
W [r] n f (x) = n π +∞ -∞
H2k (x -t) exp(-n(x -t) 2 )f (t)dt

2) On the other hand, the second form leads to the computation of the integral

W [r] n f (x) := 1 √ π R exp(-s 2 ) Hr (s)f (x -s/ √ n) ds
Using a quadrature formula of type

R e -x 2 f (x) dx ≈ k i=1 A i f (x i )
this second form is substitued for the approximate discrete operator

W [r] n f (x) := 1 √ π k i=1 A i Hr (x i )f (x -x i / √ n)
For given values of (r, k), the values of Hr (x i ) can be computed once for all in advance. Then, one can vary the value of n.

The quadrature formulas can be either the Gauss-Hermite ones ( [START_REF] Abramowitz | Handbook of mathematical functions[END_REF][START_REF] Gautschi | Orthogonal polynomials[END_REF]) or the trapezoidal formula in R. In Henrici [START_REF] Henrici | Applied and computational complex analysis[END_REF], chapter 11, one may find good reasons for using the quadrature formula Qf (h) = h k∈Z exp(-k 2 h 2 )f (kh) ≈ R exp(-t 2 )f (t)dt This topic will be developed in a further paper together with numerical examples and some applications.

From [ 10 ]

 10 (chapter 1, p.31), we know that e -t 2 /2 |H 2p (t)| ≤ 2 p 2p! and we deduce e -t 2 /2 | H2r (t)| ≤ r p=0 1 4 p p! e -t 2 /2 |H 2p (t)| ≤ σ r := which leads to the following majoration of the norm Theorem 6. The norm W [r]

j 4 j

 4 s/ √ n -u) 2r+2 D 2r+3 f (u)du For all 1 ≤ k ≤ 2r + 2, we compute the values of M exp(-s 2 )s k H2r (s) ds in function of the moments of Hermite polynomials:µ 2r,k = 1 √ π R exp(-s 2 )s k H 2r (s) dswhich are equal to zero for 0 ≤ k ≤ 2r -1, and (see[START_REF] Abramowitz | Handbook of mathematical functions[END_REF], formula 22.13.19, p.786, for x = 1, P (1) = 1):µ 2r,2r := 1 √ π R exp(-s 2 )s 2r H 2r (s) ds = r!Therefore, by definition of H2r , one has for all k ≥: j! R exp(-s 2 )s k H 2j (s) ds 8 A short note on the computation of W-quasi-interpolants1) The first form of W[r]

  The representation of W n as differential operator on Π is the following:

		m 5 +	5 n	m 3 +	15 4n 2 m 1 , W n m 6 = m 6 +	15 2n	m 4 +	45 4n 2 m 2 +	15 8n 3 m 0
	From that, we easily deduce the first terms of the expansion of W n as differential operator
	on polynomials	W n p = p +	1 4n	D 2 p +	1 32n 2 D 4 p +	1 384n 3 D 6 p + . . .
	More generally, we get						
	Theorem 1.							

  we get the first term of he expression of W n as difference operator :

								4n 2 +	15 8n 3
	β 4 = -	18 n	+	147 4n 2 -	105 4n 3 +	105 16n 4
	β 5 =	288 n	-	615 n 2 +	4095 8n 3 -	1575 8n 4 +	945 32n 5

  2 , α 3 = -

								2 n	+	15 4n 2 +	15 8n 3
		α 4 =	18 n	+	147 4n 2 +	105 4n 3 +	105 16n 4
	α 5 = -	288 n	+	615 n 2 +	4095 8n 3 +	1575 8n 4 +	945 32n 5
	4 Left quasi-interpolants on polynomials

4.1 Weierstrass left-quasi-interpolants : first form

  Table of the first values of N r and C r

	r	1	2	3	4	5	6	7	8	9	10
	N r √ 2 σ r 2.41 3.28 4.07 4.81 5.51 6.18 6.83 7.46 8.07 1.14 1.22 1.28 1.33 1.37 1.40 1.43 1.45 1.47	1.49 8.66
	C r	2.41 3.41 4.41 5.41 6.41 7.41 8.41 9.41 10.41 11.41

Since H 2j (x) is a polynomial of even degree, it is clear that M [r] k := 0 for all k odd. For k = 2p, one has

Using Maple or [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] as above, we get

from which we deduce, for p ≤ r:

and for p = r + 1:

From that we deduce, after simplification,

In order to get the result, we have still to prove that lim n→+∞ n r+1 R n (x) = 0 A first majoration gives

Therefore, as the integral is equal to |s| 2r+3 /(2r + 3), we get the second majoration

It remains to prove that the integral is bounded independently of n. This is true because first we know (Section 6.2) that e -s 2 | H2r (s

which is proportional to an odd moment of the function e -s 2 (Lemma 1), the coefficient depending on r, but not on n. Finally, we get

|R n (x)| = 0, q.e.d.