
HAL Id: hal-00832828
https://hal.science/hal-00832828v1

Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modeling and Evaluation of Service-Based
Business Process Elasticity in the Cloud

Mourad Amziani, Tarek Melliti, Samir Tata

To cite this version:
Mourad Amziani, Tarek Melliti, Samir Tata. Formal Modeling and Evaluation of Service-Based Busi-
ness Process Elasticity in the Cloud. 22nd IEEE International Conference on Collaboration Technolo-
gies and Infrastructure (WETICE 2013), Jun 2013, Hammamet, Tunisia. pp.284–291, �10.1109/WET-
ICE.2013.42�. �hal-00832828�

https://hal.science/hal-00832828v1
https://hal.archives-ouvertes.fr

Formal Modeling and Evaluation of Service-based Business Process Elasticity in the

Cloud

Mourad Amziani∗†, Tarek Melliti†, Samir Tata∗

∗Institut Mines-Telecom, TELECOM SudParis, UMR CNRS Samovar, Evry, France
†IBISC, University of Evry Val d’Essonne, Evry, France

Abstract—Cloud computing is a new delivery model for IT
services. Cloud platforms are being increasingly used for the
deployment and execution of service-based business processes
(SBPs). Nevertheless, the provisioning of elastic infrastructures
and/or platforms is not sufficient to provide users with elasticity
at the level of SBPs. Therefore, there is a need to provide
SBPs with mechanisms to scale their resource requirements
up and down whenever possible. This can be achieved using
mechanisms for duplicating and consolidating business services
that compose the SBPs. In this paper, we propose a formal
model for SBPs elasticity in the Cloud. We show that our model
preserves the semantics of SBPs when services are duplicated
or consolidated. We also propose a formal framework for the
evaluation of elasticity strategies that decide on when and how
many resources are required to ensure elasticity of SBPs.

I. INTRODUCTION

Cloud computing is a new delivery model for IT services

based on Internet protocols. It typically involves provision-

ing of dynamically scalable and often virtualized resources

at the infrastructure, platform and software levels. Cloud

environments are being increasingly used for deploying and

executing business processes and particularly service-based

business processes (SBPs) that are made up of components

that provide business services. One of the expected facilities

of Cloud environments is elasticity at different levels.

At the platform as a service (PaaS) level, the deployed

processes should be provided with platform mechanisms that

can scale up and down whenever needed. In this context, we

have conducted studies of existing application servers and

SBP engines. These classical platforms are not elastic [10].

For that reason, we have developed a new model for service

deployment called micro-container [15]. Our approach was

based on a simple idea that consists in dedicating a micro-

container to each deployed service in Cloud environment.

Each micro-container can host and run its service and can

be then seen as a specialized container. Generated micro-

container provides minimal and personalized functionalities

to manage the life cycle of the deployed services. With this

idea we have shown the elasticity of Cloud at the PaaS

level can be ensured. We have actually conducted conclusive

experiments on classical service containers (like Apache

Axis2) to validate the elasticity of micro-containers [15].

In addition, we have shown that micro-containers can be

used to host service-based application and particularly SBPs.

Nonetheless, provisioning of elastic platforms, e.g., based

on micro-containers, is not sufficient to provide elasticity of

the deployed business process (at the Software as a Service

(SaaS) level). Therefore, SBPs should be provided with

elasticity so that they would be able to adapt to the workload

changes while ensuring the desired functional and non-

functional properties. In this paper we address elasticity at

the level of SBPs that mainly raises the following questions.

• What mechanisms should be developed to perform

elasticity of SBPs?

• How to evaluate elasticity strategies of SBPs?

Performing elasticity consists in providing Cloud environ-

ments with mechanisms that allow deployed SBPs to scale

up or down. To scale up a SBP, these mechanisms have

to create, as many copies as necessary, of some business

services (part of the considered SBP). To scale down a SBP,

they have to remove unnecessary copies of some services.

Many strategies that decide on when SBP elasticity is

performed can be proposed. Some strategies use minimal

and maximal threshold of load in each business service

to make elasticity decisions. Some others use predictive

techniques. It would be useful for a Cloud provider to have

an evaluation framework in order to make a better decision

on the elasticity strategy to adopt.

In this paper, we propose a formal model for SBP elas-

ticity and a framework to evaluate elasticity strategies.

The rest of this paper is organized as follows. In section II,

which is dedicated to the first question we raised above,

we propose a formal model for elasticity of SBPs. In this

model, processes are defined as Petri nets. Then, elasticity

operations (duplication and consolidation) are defined and

their correctness is proven. In section III, which is dedicated

to the second question we raised above, we propose a

controller that provides a framework for the evaluation of

elasticity strategies. We present how to evaluate elasticity

strategies with the proposed controller. An example, for a

proof of concept, is also detailed. Section IV presents related

work and Section V concludes the paper.

II. FORMAL MODEL FOR SBPS ELASTICITY

A SBP is a business process that consists in assembling a

set of elementary IT-enabled services. These services realize

the business activities of the considered SBP. Assembling

Figure 1. SBP of the example of the online computer shopping service

services into a SBP can be ensured using any appropriate

service composition specifications (e.g., BPEL).

Elasticity of a SBP is the ability to duplicate or consoli-

date as many instances of the process or some of its services

as needed to handle the dynamics of the received requests.

Indeed, we believe that handling elasticity does not only

operate at the process level but it should operate at the level

of services too. It is not necessary to duplicate or consolidate

all the services of a considered SBP while the bottleneck

comes from some services of the SBP.

We present in the following a motivating example for our

approach (Section II-A) and then, a formal model to describe

the load of SBPs (Section II-B) and two elasticity operations

(Section II-C) and we prove their correctness (Section II-D).

A. Motivating Example

The example of Figure 1 presents a SBP for an online

computer shopping service composed of four services and

modeled in BPMN:

• Service requests (S1): receives requests to purchase a

computer (processing time = 1s).

• Service components assembly (S2): performs the as-

sembly of computer components according to the de-

sired characteristics (processing time = 60s).

• Service invoice (S3): creates the invoice related to the

purchased computer (processing time = 1s).

• Service delivery (S4): delivers the computer with its

invoice to the customer (processing time = 1s).

We suppose that the SBP receives 100 requests. The

response time of the SBP will be equal to: 62s (processing

time of a request) x 100 (number of requests) = 6200s.

One solution to improve the response time would be to

duplicate the SBP to support the load. So to support 100

requests; we will have 100 copies of the SBP in parallel

(one request by SBP). The response time for processing

all requests will be equal to: 62s (the 100 treatments are

done in parallel). This solution solves the problem of SBP

response time, but it creates a constraint on the consumption

of resources. Indeed, the disadvantage of this solution is that

it duplicates all the services of the SBP.

We think that it is not necessary to duplicate all the

services of the SBP while the bottleneck comes from a

single service of the SBP (or a certain number of services).

We think that the duplication of this service will solve the

response time problem while avoiding unnecessary resources

Figure 2. Petri net of the SBP of the online computer shopping service

consummation. So, back to our example, compared to S1,

S3 and S4, S2 is a time and resources consuming service,

it is obvious that when considering elasticity, duplicating or

consolidating instances of S2 could be enough. So, we will

have 100 copies of S2 in parallel (but only one copy of the

services S1, S3 and S4). In this case, the response time for

processing these requests will be equal to 62s.

B. SBP Modeling

To model SBPs, several techniques can be used. In our

work, we are interested in the formal aspect of the model.

So, we model the SBP using Petri nets. Many approaches

model SBPs using Petri nets, but instead of focusing on the

execution model of processes and their services, we focus on

the dynamic (evolution) of loads on each basic service of the

SBP’s composition. In our model, each service is represented

by at least one place (the set of places of each service

are related with an equivalence relation). The transitions

represent calls transfers between services according to the

behavioral specification of the SBP. The modeling of the

SBP of Figure 1 gives the Petri net shown in Figure 2.

Definition 1: A SBP load model is a Petri net N =<

P, T, Pre, Post,≡P ,≡T>:

• P : a set of places (represents the set of ser-

vices/activities involving in a SBP).

• T : a set of transitions (represents the call transfers

between services in a SBP).

• Pre : P × T → {0, 1}
• Post : T × P → {0, 1}
• ≡P⊆ P × P : an equivalence relation over P

• ≡T⊆ T × T : an equivalence relation over T .

For a place p and a transition t we give the following

notations:

• [p]≡P
= {p′|(p, p′) ∈≡P }. [t]≡T

= {t′|(t, t′) ∈≡T }
• p• = {t ∈ T |Pre(p, t) = 1}
•

•p = {t ∈ T |Post(t, p) = 1}
• t• = {p ∈ P |Post(t, p) = 1}
•

•t = {p ∈ P |Pre(p, t) = 1}

The • notation can also be naturally extended to equivalent

classes of places and/or transitions as the union of its appli-

cation to all the elements of the class e.g., [p]• =
⋃

p′∈[p]

p′•.

We extend the notation [] to a set of places and transitions

e.g., for some P ′ ⊆ P , [P ′]≡P
= {[p]≡P

|p ∈ P ′}. We

ignore the ≡T
and ≡P

if it is clear from the context.

Definition 2: Let N be a Petri net, we define a net system

S = 〈N,M〉 with M : P → N a marking that associates

to each place an amount of tokens. The marking is also

extended to equivalent classes i.e., M([p]) = Σ
p′∈[p]

M(p′).

The marking of a Petri net represents a distribution of calls

over the set of services that compose the SBP. A Petri net

system models a particular distribution of calls over the

services of a deployed SBP.

Definition 3: Given a net system S = 〈N,M〉 we say that

a transition t is fireable in the marking M , noted by M [t〉
iff ∀p ∈• t : M(p) ≥ 1. A class of transitions is fireable in

M , M [[t]〉, iff ∃t′ ∈ [t] : M [t′〉
Definition 4: The firing of a transition t in marking M

changes the marking to M ′ s.t. ∀p : M ′(p) = M(p) +
(Post(t, p)−Pre(p, t)). We note the transition by M [t〉M ′.

We extend the transition notation to classes using M [[t]〉M ′

where M ′ ∈ {M ′′|∃t′ ∈ [t] : M [t′〉M ′′}.

C. Elasticity Operations

Place Duplication: When a service has a lot of calls,

it will be overloaded and this can lead to loss of QoS. A

solution to this overflow problem is to duplicate the service

without changing underlying SBP. Hereafter, we give the

definition of an operator that duplicates a service.

Definition 5: Let S = 〈N,M〉 be a net system and let

p ∈ P , the duplication of p in S by a new place pc (6∈ P),

noted as D(S, p, pc), is a new net system S′ = 〈N ′,M ′〉 s.t

• P ′ = P ∪ {pc}
• T ′ = T ∪T ′′ with T ′′ = {tc|t ∈ (•p∪ p•)∧ tc = η(t)}

(η(t) generates a new copy of t which is not in T).

• Pre′ : P ′ × T ′ → {0, 1}
• Post′ : T ′ × P ′ → {0, 1}
• ≡P ′⊆ P ′ ×P ′ with ≡P ′=≡P ∪{(p, pc)}. The place p

and its copy are equivalent.

• ≡T ′⊆ T ′×T ′ with ≡T ′=≡T ∪{(t, tc)|tc ∈ T ′′}. Each

transition is equivalent to its copy.

• M ′ : P ′ → N with M ′(p′) = M(p′) if p′ 6= pc and 0
otherwise.

The Pre′ (respectively Post′) functions are defined as

follow:

Pre′(p′, t′) =

Pre(p′, t′) p′ ∈ P ∧ t′ ∈ T

Pre(p′, t) t ∈ T ∧ t′ ∈ (T ′ \ T)
∧t′ ∈ [t]≡

T ′

∧p′ ∈ (P \ {p})
Pre(p, t) t ∈ T ∧ t′ ∈ (T ′ \ T)

∧t′ ∈ [t]≡
T ′

∧ p′ = pc

0 otherwise.

Post′ can be obtained by replacing Pre by Post.

Place Consolidation: When a service has few calls, the

containers that host its instances use more resources than

required. As a dual operator to duplication we define the

consolidation operator that removes a copy of a service.

Definition 6: Let S = 〈N,M〉 be a net system and let

p, pc be two places in N with (p, pc) ∈≡P ∧p 6= pc, the

consolidation of pc in p, noted as C(S, p, pc), is a new net

system S′ = 〈N ′,M ′〉 s.t

• N ′: is the net N after removing the place pc and the

transitions (pc)• ∪• pc

• M ′ : P ′ → N with M ′(p) = M(p) + M(pc) and

M ′(p′) = M(p′) if p′ 6= p.

We call well-defined net any net where the equivalent

relation over places and transitions are composed of copies

resulted from duplication and/or consolidation operators.

Definition 7 (Well-defined Net): Let N0 be a net where

≡P0
and ≡T0

are the identity relations. We call here well-

defined net, any net N resulted from a finite application of

duplication and/or consolidation operators on N0.

Proposition 1: Let N be a well-defined net, the following

properties are held on N :

∀t1, t2 ∈ T : [t1] = [t2] ⇒ [•t1] = [•t2] ∧ [t•1] = [t•2] (1)

∀p1, p2 ∈ P, t ∈ T : p1, p2 ∈ (•t ∪ t•)
⇒ p1 = p2 ∨ [p1] ∩ [p2] = ∅ (2)

∀t ∈ T : |[t]| =
∏

p∈(•t∪t•)

|[p]| (3)

Proof: The proof of equations 1 and 2 can be derived

from the definition of the duplication and consolidation

operators. We prove equation (3) by recurrence. Consider

a well-defined net system S = 〈N,M〉. If ≡T and ≡P are

the identity relations, then we have the equation 3 holds for

N this because of |[x]| = 1 for any x ∈ P ∪ T .

Consider now ≡T and ≡P are different from the identity

relations in S and suppose that equation 3 is true for S i.e.,

|[t]≡T
| =

∏

p∈(•t∪t•)

|[p]≡P
|

By equations (1) and (2) we deduce for some p ∈ (•t ∪ t•)
(w.l.o.g let we take p ∈• t) that:

|p• ∩ [t]≡T
| =

|[t]≡T
|

[p]≡P

=
∏

p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P
|.

Let we create a net system S′ by duplicating p. Then by

definition of duplication we will add |p• ∩ [t]≡T
| of copies

of t, So:

|[t]≡
T ′
| = |[t]≡T

|+ |p• ∩ [t]≡T
| =

(

∏

p∈(•t∪t•)

|[p]≡P
|

)

+

(

∏

p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P
|

)

=

(

∏

p′∈(•t∪t•)∧p′ 6=p

|[p′]≡P
|

)

∗ (1 + |[p′]≡P
|) =

(

∏

p′∈(•t∪t•)∧p′ 6=p

|[p′]≡
P ′
|

)

∗ (|[p′]≡
P ′
|) =

∏

p′∈(•t∪t•)

|[p′]≡
P ′
|

Figure 3. Example of the elasticity of a SBP

The proof of the equation (3) for consolidation can be done

in the same manner.

Example 1: Figure 3-(a) shows an example of nets system

that represents the SBP computer shopping described previ-

ously. The relations ≡P and ≡T are the identity relations.

Figure 3-(b) is the resulted system from the duplication of

s2 1. Figure 3(c) is the consolidation of the place s2 1 in

its copy s2 2. The boxes represent the equivalence relations.

D. Correctness of Elasticity Operations

In order to guarantee that the semantics of the SBP is

preserved by duplication and consolidation operators we

must prove that according to some equivalence relation,

any sequence of transformation on a SBP is equivalent,

according to some properties, to the original one. In our

case here, as mentioned previously, the Petri net of a SBP

does not denote an execution model but a dynamic view on

the evolution of the SBP load (the marking). Therefore, we

want to keep the same view of load evolution regardless of

any transformation of a net. In order to do so, the following

two properties have to be preserved:

Property 1: By any transformation of the net using dupli-

cation/consolidation operators, we do not lose or create SBP

invocations i.e., the load in terms of the number of requests

of all the copies of a given service must be the same as the

load of the original one without duplications/consolidations.

Property 2: The dynamics in terms of load evolution of

the original process must be preserved in the transformed

one i.e., for any reachable load distribution in the original

net there is an equivalent (according to property 1) reachable

load distribution in the transformed net.

We give now a definition of an equivalence relation

between net systems that cover the two previous properties.

Definition 8 (Equivalence relation): Let S = 〈N,M〉
and S′ = 〈N ′,M ′〉 be two net systems. Let ρ1 : [P]≡P

→
[P ′]≡

P ′
(resp. ρ2 : [T]≡T

→ [T ′]≡
T ′

) be two bijective

functions that associates to each equivalent class in P (resp.

in T) an equivalent class in P ′ (resp. in T ′). We use ρ as

the union of the two functions. Two net systems S and S′

are equivalent according to ρ, noted by S ∼ρ S′, iff:

(a) ∀p ∈ P : M([p]≡P
) = M ′(ρ([p]≡P

))
(b) ∀t ∈ T : M [t〉M1 ⇒ ∃t′ ∈ ρ([t]≡T

) : M ′[t′〉M ′
1 ∧

〈N,M1〉 ∼ρ 〈N ′,M ′
1〉

(c) ∀t′ ∈ T ′ : M ′[t′〉M ′
1 ⇒ ∃t ∈ ρ−1([t′]≡

T ′
) :

M [t〉M1 ∧ 〈N,M1〉 ∼ρ 〈N ′,M ′
1〉

Proposition 2: Let N be a well-defined net and t a

transition. If we consider {p1,, pn} =• t ∪ t• then we

have: ∀p′1,, p
′
n ⊆ P :

∧

i=1...n

p′i ∈ [pi] ⇒ ∃t′ ∈ [t] :

{p′1,, p
′
n} =• t′ ∪ t′•

Proof: The proposition states that any combination of

places taken from the equivalence classes of the pre-places

of a transition is also a set of pre-places of one of its copies

(resp. post-places). While by definition we can show that for

any transitions t, t′ s.t. (t, t′) ∈≡T
we have |•t| = |•t′| and

|t•| = |t′•| by the constraints of the equations (1) to (3) we

can conclude the proof of the proposition.

Proposition 3: Let S = 〈N,M〉 and S′ = 〈N ′,M ′〉 =
D(S, p1, p

c
1). Let ρ defined as the union of ρ1([p]≡P

) =
[p]≡

P ′
for any p ∈ P and ρ2([t]≡T

) = [t]≡
T ′

for any t ∈ T .

Let now some M1 ,M ′
1 two reachable markings, respectively

from M and M ′, such that ∀p ∈ P : M1([p]≡P
) =

M ′
1(ρ([p]≡P

)) then we have:

∃t ∈ T : M1[t〉 ⇔ ∃t′ ∈ ρ([t]≡T
) : M ′

1[t
′〉.

Proof: let t be a fireable transition from M1:

(⇔)∀p ∈• t : M1(p) ≥ 1
(⇔)∀p ∈• t : M1([p]≡P

) ≥ 1
(⇔)∀p ∈• t : M ′

1(ρ([q]≡P
)) ≥ 1

(⇔)∀p ∈• t : ∃p′ ∈ ρ([p]≡P
) : M ′

1(p
′) ≥ 1

according to proposition 2

(⇔)∃t′ ∈ [t]≡
T ′

: M ′
1[t

′〉
(⇔)∃t′ ∈ ρ([t]≡T

) : M ′
1[t

′〉
Theorem 1: Let S = 〈N,M〉 with N a well-defined nets

and let S′ = 〈N ′,M ′〉 = D(S, p1, p
c
1) we have:

S ∼ρ S′ where ρ is defined as in proposition 3.

Proof: First, by definition, ρ is a bijection.

(a) By definition of duplication, we have M ′(pc1) = 0:

∀p ∈ P : M([p]≡P
) = M ′(ρ([p]≡P

)) (4)

(b) We show now that for any two markings M1 and

M ′
1 respectively reachable from M and M ′ s.t

∀p ∈ P : M1([p]≡P
) = M ′

1(ρ([p]≡P
)) then for

all transitions fireable from M1 we can fire one of

its copies in S′ from M ′
1 and reach two markings

that conserve the marking over equivalent classes

under the same ρ (and vice versa).

Let M1[t1〉M2, according to proposition 3 we have

M ′
1[t

′
1〉M

′
2 with t′1 ∈ ρ([t1]≡T

)(t′1 ∈ [t1]≡
T ′
).

From equation 2 we know that only one place in

an equivalent class will be concerned by the firing

of t1 (idem for t′1) so:

∀p ∈ P : M2([p]≡P
) =

M1([p]≡P
) + (Post(t, p)− Pre(p, t))∧

∀p′ ∈ P ′ : M ′
2([p

′]≡
P ′
) =

M1([p
′]≡

P ′
) + (Post′(t′, p′)− Pre′(p′, t′)) (5)

We know also, by definition of the duplication:

∀p ∈ P, p′ ∈ P ′, t ∈ T, t′ ∈ T ′ : [p]≡P
⊆

[p′]≡
P ′

∧ [t]≡T
⊆ [t′]≡

T ′
⇒

Pre(p, t) = Pre′(p′, t′)∧Post(t, p) = Post′(t′, p′)
(6)

From equations (5) and (6) we conclude:

∀p ∈ P : M2([p]≡P
) = M ′

2([p]≡P ′
) (7)

and so ∀p ∈ P : M2([p]≡P
) = M ′

2(ρ([p]≡P
))

(c) The proof of point (c) is similar to (b).

We can conclude that:

〈N,M2〉 ∼ρ 〈N ′,M ′
2〉 (8)

and By induction on equations (4) and (8) we conclude that

S ∼ρ S′

Theorem 2: Let S = 〈N,M〉 with N a well-defined net

and let S′ = 〈N ′,M ′〉 = C(S, p, pc) we have:

S ∼ρ S′ where ρ is defined as in proposition 3.

Proof: For any a well-defined net system S we can

always construct a net system S0 where S is resulted from

a sequence of duplication on S0. By theorem 1 S ∼ρ S0.

If we consolidate a place in S producing the net system S′

then S′ is also a result from a sequence of duplication on

S0 and so S′ ∼ρ S0. We conclude that S ∼ρ S′

By theorem 1 and 2 we proved that for any finite sequence

of application duplication and/or consolidation operators on

a well-defined net is also a well-defined net that preserves

the semantic of the original net.

III. A FRAMEWORK FOR THE EVALUATION OF

ELASTICITY STRATEGIES

Usually, a set of policies is implemented in what is usually

called controller to guarantee some SLA properties. In our

case, we are interested in elasticity policies of services that

compose a SBP. In order to achieve this, we want to develop

a controller to provide an optimal ratio QoS and allocated

resources of a SBP. Our controller will have the capability

to perform three actions:

• Routing: Is about the way a load of services is routed

over the set of their copies. It determines under which

condition we transfer a call. We can think of routing

as a way to define a strategy to control the flow of the

load. e.g., transfer a call iff the resulted marking does

not violate the capacity of the services.

• Duplication: Is about the creation of a new copy of an

overloaded service in order to meet its workload.

• Consolidation: Is about the removing of an unnecessary

copy of a service in order to meet its workload decrease.

Figure 4. General architecture of the generic controller

If we consider the three actions that can be performed

by an elasticity controller, any combination of conditions

associated with a decision of routing, duplication and consol-

idation is an elasticity strategy. The strategy is responsible of

making decisions on the execution of elasticity mechanisms

i.e., deciding when and how to use these mechanisms.

So, it is necessary to ensure the precision of a strategy

before using it to guarantee the effectiveness of the dupli-

cation/consolidation mechanisms.

Several strategies can be used to manage the SBP elas-

ticity [6]. The abundance of possible strategies requires

their evaluation. For this, we propose a framework which

is a generic controller that allows testing, evaluation and

validation of different elasticity strategies.

A. Formal Description of the Generic Controller

As pointed out in the introduction our goal here is not to

propose an additional elasticity strategy, but a framework,

called generic controller, to evaluate different strategies.

In order to allow analysis and evaluation of instantiated

controller, we propose to model the controller as a high

level Petri net (HLPN). Indeed, one can by instantiating our

generic controller evaluate the performance of the imple-

mented strategies using the HLPN analysis tools.

Due to the lack of space and the heaviness of notations of

high level Petri nets, we give here, an informal definition; a

more rigorous one can be found in [9]. As classic Petri nets,

HLPN is a place-transition bipartite graph. The places are

typed, a type can be any set of values (we denote by type(p)
the type of the place p). An arc connecting a place p and a

transition t is labeled by a multiset of expressions of type

type(p). Expression of a type type(p) can be any values of

type(p), a variable or any function with domain type(p).
The transitions in HLPN can be guarded by a condition

i.e., expression of boolean type. The variables that appear

in a transition condition and the expressions of its output

arcs must be restricted to the variables that appear in the

expressions of the input arcs. A marking of HLPN is any

function that associates to each place p a multiset of type(p).
As in classical Petri nets, a HLPN system is composed of

a HLPN and a marking. A transition is fireable, given a

marking, iff there is a binding of the variables of its input

arcs that validate the condition. The firing of a transition,

given a binding, removes the instantiated multisets from

input places and adds the instantiated multiset to the output

places. Let us mention that the dynamics of an HLPN system

can be obtained by computing the reachability graph exactly

as classical Petri nets.

B. HLPN of the Generic Controller

The structure of the controller is shown in Figure 4-(b).

The controller contains one place (BP) of type net system.

The marking of this place is modified by the transitions of

the controller after each firing. As mentioned before, the

controller has three transitions:

• Routing: This transition is fireable if we can bind the

variable Z to a net system S = 〈N,M〉 where there

exists a transition t fireable in S and the predicate

Ready R(S, t) is satisfied. The firing of the Routing

transition adds the net system S after the firing of t

(Next(Z, t) returns the marking after the firing of t).

• Duplication: This transition is fireable if we can bind

the variable Z to a net system S = 〈N,M〉 where

there exists a place s and the predicate ready D is

satisfied. The firing of the Duplication transition adds

a new system resulted from the duplication of s in S.

• Consolidation: This transition is fireable if we can bind

the variable Z to a net system S = 〈N,M〉 where

there exists two copies of the same service, s and s′,

and the predicate ready C is satisfied. The firing of

the Consolidation transition adds a net system resulted

from the consolidation of s′ in S.

The execution of these actions is performed after checking

the guards of the execution of these actions (ready R,

ready D, ready C). In our controller, the conditions are

generic to allow the use of different elasticity strategies.

C. How to Evaluate Elasticity Strategies with the Controller

In this section, we will show how a strategy developer can

use our controller to evaluate an elasticity strategy. The first

step starts by instantiating the conditions of each controller

transition i.e., defining a strategy for routing, duplicating

and consolidating. Then the SBP to be controlled along with

the strategy should be defined. Then, the developer defines

the calls arrival scenario to specify the way in which calls

arrive to the SPB. Note here that it is possible to define

the calls arrival using a Poisson process or by adding a

new transition in the controller that simulates the arrival of

calls and can change at any time the marking of the net

system. Using a HLPN tool, the developer can then generate

the reachability graph of the controller. The reachability

graph contains all the possible evolutions of the SBP with

respect to the implemented strategies. The resulted graph can

then be analyzed using any model-checker. Some significant

examples of properties are given below:

• QoS violation: Let us assume that we associate for

each service a maximal threshold over which its QoS

will decrease drastically. Using temporal logic, one can

check whether it is possible to reach a situation where

one or some services have exceeded their thresholds.

• Blocked services: Let us suppose a routing strategy

that allows only transition firing iff the next marking

does not exceed the thresholds of some services. We

can check if this strategy, coupled with a duplication

strategy, would not cause a deadlock in the call transfer

i.e., there are fireable transitions in the BP net system

whereas the routing condition is no longer satisfied.

• Elasticity loop: Duplication and consolidation are costly

activities. Given an elasticity strategy, one can check

if this strategy can provoke a loop of elasticity i.e.,

a duplication followed by consolidation of the same

service while there is no (or few) calls arrival.

As we can see, many properties can be checked and many

indicators can be observed on an instantiated controller. The

only restriction is to limit the number of calls during the

analysis phase. Otherwise this would generate an infinite

reachability graph. Note that there are tools to analyze

unbounded HLPN nets but do not support any property.

D. Example of an Application of the Framework

We present hereafter an example, for a proof of con-

cept, of strategies evaluation with the controller. For that,

we implemented the controller using the SNAKES toolkit.

SNAKES is a Python library that allows the use of arbitrary

Python objects as tokens and arbitrary Python expressions

in transitions guards, etc [11].

1) Experimental Setup: In order to illustrate the fea-

sibility of our approach, we propose here to implement

two elasticity strategies inspired from the literature [8], [3].

We applied such two strategies on the same SBP system

S = 〈N,M〉 where N is the net of Figure 3-(a) and

M0=(0,0,0,0) its initial marking. An invocation (a call) of

the SBP is represented by adding a token to a copy of the

place s1 1, the invocation takes end by removing a token

from a copy of the place s4 1.

We assume in this example that each service of the SBP is

provided by a maximum and minimum threshold capacities.

Above the maximum threshold the QoS would no longer

be guaranteed and under the minimum we have an over

allocation of resources. Here are the thresholds:

• Max t(s1 1) = 12. Max t(s2 1) = 3. Max t(s3 1) =

15. Max t(s4 1) = 12.

• Min t(s1 1) = 2. Min t(s2 1) = 1. Min t(s3 1) = 3.

Min t(s4 1) = 5.

Note here that these thresholds represent the maximum

number of running instances (calls) on each service. These

thresholds are used as scaling indicators by the strategies in

order to make their elasticity decisions.

2) Elasticity Strategies: As we explained previously, the

definition of a strategy consists in instantiating the three

generic predicates ready R, ready D and ready C. We

use two threshold-based scaling algorithms:

Strategy 1: In [8] a scaling algorithm is proposed to scale

up or down an application instance in containers in response

to a change in the application instance usage. The algorithm

scales up by replicating an application instance, and scales

down by removing a replicated application instance.

• Ready D(S, s) : M(s) > Max t(s) ∧ ∄s′ ∈ [s] :
M(s′) < Max t(s′) ∧ ∃t ∈• [s] : M [t〉

• Ready C(S, s′, s) : M(s′) = 0∧M(s) 6 Min t(s)∧
∄t ∈• [s] : M [t〉

• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with

M [t〉M ′

Strategy 2: In [3] a scaling algorithm is proposed for

automated provisioning of resources. The algorithm scales

automatically the number of web servers according to a

threshold in each web server instance.

• Ready D(S, s) : M(s) > Max t(s) ∧ ∄s′ ∈ [s] :
M(s′) < Max t(s′)

• Ready C(S, s′, s) : M(s′) = 0 ∧M(s) 6 Min t(s)
• Ready R(S, t) : ∀s ∈ P : M ′(s) < Max t(s) with

M [t〉M ′

3) Evaluation of Strategies: In our experiment, we used

an invocation scenario that represents a calls arrival on the

SBP. This scenario was applied on both strategies 1 and

2. For each strategy we generate, using the SNAKES tool,

the reachability graph of the instantiated controller. This

graph represents all the possible evolutions of the SBP in

terms of routing, duplication and consolidation actions. The

analysis of this graph allows us to evaluate and compare

the strategies. As claimed before many properties can be

studied, we will focus here on two properties in order to

answer two questions:

• How does the strategy influence the workload of the

SBP face to the SBP solicitations?

• How efficient is the resources allocation by the strategy

to face the variation of the SBP solicitations?

We measure the workload of the SBP as the average of

workloads of its basic services. To do so, we implemented an

indicator which stores, at each step of the SBP evolution, the

average of the number of running instances on each of its

basic services. This indicator can be obtained by dividing

the number of tokens in the SBP net by the number of

places. Concerning resources we consider the number of

deployed services copies. We define two indicators. In the

first indicator we store, at each step of the SBP evolution, the

minimum number of each service copies needed to handle

the current number of instances. Note that each copy of

services can handle its maximum threshold instances. The

Figure 5. The evolution of average workload of services

Figure 6. The evolution of resource consumption

second indicator will store the real number of the SBP

services produced by a strategy.

The Figure 5 represents the evolution of average workload

of services. The evolution of resource consumptions is

shown in Figure 6.

4) Analysis of Results: The analysis of these figures

allows us to deduce some properties: In Figure 5, we can

see that both strategies adapt to the requests variation by

using elasticity mechanisms. This shows that these two

strategies guarantee the elasticity of the SBP. We notice

also a difference between the strategies in the reactivity

to the requests variation. We can see that the strategy 2

is more reactive than the strategy 1. Indeed, the strategy 2

causes more duplication/consolidation than strategy 1. This

difference is explained by the conditions of elasticity used

in both strategies. Indeed, the conditions of strategy 1 are

more difficult to verify than the conditions of strategy 2. So,

the controller using strategy 2 reacts faster. In Figure 6, we

can see that both strategies adapt the resources consumption

according to the resources demand which avoids resources

oversizing. Also, the resources demand never exceeds the

resources consumption. This guarantees the availability of

resources to provide required QoS and avoid over-utilization.

The use of both strategies allows a better efficiency in

resources consumption, but there is an under-utilization of

resources in some periods. The analysis of these figures

shows that the reactivity of strategy 2 does not always mean

better efficiency in resources consumption than strategy 2.

The example of Figure 6 shows that this reactivity can cause

unnecessary consumption of resources. This is explained by

the conditions of elasticity used in strategy 2 which can

cause unnecessary duplication of services.

IV. RELATED WORK

The elasticity in the Cloud at the IaaS level has been

extensively studied in the past. Proposed approaches use

generally sets of rules to make decisions about the elasticity

of the infrastructure to adapt the amount of resources allo-

cated according to user requests. In this kind of approaches,

several techniques based on analytical or stochastic methods

have been used. In [4], [12] the authors propose an approach

which consists in adding or removing resources to virtual

machines (VMs) to prevent over-loading and under-loading.

In [7], [2] the authors propose to calculate the optimal

number of VMs to be deployed according to demands

variations. These approaches allow the elasticity of VMs

but they are not sufficient to ensure the elasticity of the

deployed applications since they do not take into account

the nature of the application. In fact, each application has a

maximal capacity, beyond this capacity the QoS decreases

and can lead to the stuck of the container and by the same

way the crash of the application. Giving to the container

more physical resources will not solve the problem [15].

In [5] the authors propose an approach to ensure elasticity

of processes in the Cloud by adapting resources and their

non-functional properties with respect to quality and cost

criteria. Nevertheless, the authors addressed elasticity of

applications in general rather than processes particularly.

Duplication/consolidation mechanisms have been consid-

ered in the area of dynamic service deployment [14]. The

proposed mechanisms allow the duplication/consolidation

of the entire SBP and so, of all its services while the

bottleneck may come from some services. In [13], the

authors consider scaling at both the service and application

levels in order to ensure elasticity. They discuss the elasticity

at the service level as we did in our approach. Nevertheless,

the proposed approach is not based on a formal model.

In [1] we considered the elasticity of SBPs and provided

duplication and consolidation mechanisms. In this work

we go further in formally proving the correctness of our

elasticity mechanisms. In addition, we provide a framework

to evaluate duplication/consolidation based strategies.

At the best of our knowledge, the approaches for elasticity

mainly those we cite above, are interested in the IaaS level.

As stated before, ensuring elasticity at the IaaS level is not

sufficient. Similarly, ensuring elasticity at the PaaS level is

not enough to ensure elasticity of deployed SBPs. We believe

that elasticity should be tuned at different levels of Cloud

environments. We have already contributed to the elasticity

at the PaaS level [15]. The work we present in this paper is

novel in the sense that it (1) tackles the problem of elasticity

at the SaaS level and (2) is based on a formal model and (3)

proposes a framework for evaluating elasticity strategies.

V. CONCLUSION

This paper addresses the problem of elasticity of SBPs

deployed in Cloud environments. Unlike existing work,

our approach tackles the elasticity at the level of SBPs.

To perform elasticity we proposed and formalized using

Petri nets two operations: Duplication and consolidation. We

showed that our formal model preserves the semantics of

SBP. In addition, we have proposed a controller to evaluate

elasticity strategies and given an example for the proof of

concept. As perspectives of this work, we are working on

the elasticity of stateful SBPs.

REFERENCES

[1] M. Amziani, T. Melliti, and S. Tata. A generic framework for
service-based business process elasticity in the cloud. BPM,
2012.

[2] J. Bi, Z. Zhu, R. Tian, and Q. Wang. Dynamic provisioning
modeling for virtualized multi-tier applications in cloud data
center. IEEE CLOUD, 2010.

[3] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal.
Dynamic scaling of web applications in a virtualized cloud
computing environment. In ICEBE, 2009.

[4] T. N. B. Duong, X. Li, and R. S. M. Goh. A framework for
dynamic resource provisioning and adaptation in iaas clouds.
CloudCom, 2011.

[5] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong. Principles
of elastic processes. IEEE Internet Computing, 2011.

[6] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai. Exploring
alternative approaches to implement an elasticity policy. In
IEEE CLOUD, 2011.

[7] R. Han, L. Guo, Y. Guo, and S. He. A deployment platform
for dynamically scaling applications in the cloud. CloudCom,
2011.

[8] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han.
Elastic application container: A lightweight approach for
cloud resource provisioning. AINA, 2012.

[9] K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis
Methods and Practical Use. Springer, USA, 1997.

[10] M. Mohamed, S. Yangui, S. Moalla, and S. Tata. Web ser-
vice micro-container for service-based applications in cloud
environments. In WETICE, 2011.

[11] F. Pommereau. Nets in nets with snakes. In Int. Workshop
on Modelling of Objects, Components, and Agents, 2009.

[12] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in
the cloud using predictive models for workload forecasting.
IEEE CLOUD, 2011.

[13] W.-T. Tsai, X. Sun, Q. Shao, and G. Qi. Two-tier multi-
tenancy scaling and load balancing. In ICEBE, 2010.

[14] J. B. Weissman, S. Kim, and D. England. A framework
for dynamic service adaptation in the grid: Next generation
software program progress report. IPDPS, 2005.

[15] S. Yangui, M. Mohamed, S. Tata, and S. Moalla. Scalable
service containers. In CloudCom, 2011.

