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Abstract—Degree peeling is used to study complex networks.
It corresponds to a decomposition of the graph into vertex groups
of increasing minimum degree. However, the peeling value of a
vertex is non-local in this context since it relies on the connections
the vertex has to groups above it. We explore a different way to
decompose a network into edge layers such that the local peeling
value of the vertices on each layer does not depend on their
non-local connections with the other layers. This corresponds to
the decomposition of a graph into subgraphs that are invariant
with respect to degree peeling, i.e. they are fixed points. We
introduce in this context a method to partition the edges of a
graph into fixed points of degree peeling, called the iterative-
edge-core decomposition. Information from this decomposition is
used to formulate a notion of vertex diversity based on Shannon’s
entropy. We illustrate the usefulness of this decomposition in
social network analysis. Our method can be used for community
detection and graph visualization.

I. INTRODUCTION

The peeling value of a node v in a network is the largest
k such that v belongs to a maximal induced subgraph with
minimum degree k [1]. In social networks, maximal induced
subgraphs with peeling value at least k may be interpreted as
some form of equilibrium for “a model of user engagement”.
In this scenario, “each player incurs a cost to remain engaged
but derives a benefit proportional to the number of engaged
neighbors”[2].

The peeling value was studied for random graphs[3] gen-
erated using the Erdös-Rényi model[4]. The maximum peeling
value of a graph (also called degeneracy) relates to other
graph theoretical measures such as the coloring number[5])
and arboricity. In [6], a peeling ordering of the vertices is used
to improve the running time of an algorithm for the maximal
cliques problem.
Degree peeling or concepts related to it are useful in network
analysis. It has been used to evaluate the relevance of com-
munities in co-authorship networks[7]. The authors proposed a
reformulation of peeling that takes into account edge weights.
Some graph decompositions based on degree peeling have been
used in [8] and [9] as an aid to provide layered visualizations
of graphs. Some aspects of internet topology[10] have been
addressed also in this context.

One of the interesting aspects of degree peeling is the
unravelling of a network hierarchy. This hierarchy is simply
obtained by partitioning the vertices of the network into groups
according to their peeling value (in increasing order). The
group with highest peeling value is called the core of the graph.
The unique group that a vertex belongs to depends not only
on the number of connections it has to vertices in its group
but also on its connections to vertices in upper groups.

Contribution: In this work we exploit the inherent locality
of vertex peeling to efficiently obtain not only a partition of the
vertex set but more importantly a partition of the edge set of
any network. The algorithm’s complexity is O(k|E|) where k
is the maximum peeling value and |E| is the number of edges.
The obtained edge partition, called here the iterative edge
core decomposition, provides simultaneously distant and close
readings of a network. It can be used to examine a network
at different levels of granularity without loosing sight of the
underlying vertex partition determined by the peel values. Each
subset of edges, in the iterative edge core decomposition,
defines a subgraph all of whose vertices have “local peeling
value” = minimum subgraph degree. Equivalently, these sub-
graphs are fixed points of degree peeling (see Figure 2 for an
example). We call each of them an edge layer. Since a vertex
can be shared among different layers we use this information
to record a vertex peeling profile. This profile is an indicator of
the vertex role in the network. Its Shannon’s entropy measures
the degree of involvement in the peeling community structure.
We exemplify our findings on a sample of social networks.

The rest of the paper is organized as follows. Notational
conventions and the basic concepts used are presented in
Section II. It also illustrates some of the main characteristics
of graphs that are fixed points of degree peeling. In Section III,
we introduce the iterative-edge-core decomposition, its main
properties, and an efficient algorithm to compute it. Section IV
indicates how to use the edge core decomposition to filter and
analyse a network at different scales and it proposes a measure
of vertex diversity based on Shannon’s entropy. Applications
of the proposed edge decomposition on a sample of social
networks is the main subject of Section V. We close with a
discussion of possible future research directions in Section VI.

II. PEELING VALUES AND FIXED POINTS

We use the term network interchangeably with graph.
We concentrate on unweighted and undirected graphs even
though most of the peeling based concepts are generalizable
to weighted and directed graphs[7].

In this section, we will use the co-appearance network of
Les Misérables[11] to illustrate the different concepts used (see
Figure 1). The vertices correspond to characters of the novel
of Victor Hugo and an edge connects two characters if they
are found together in at least one chapter.

We denote by G an undirected graph with vertex set V (G)
and edge set E(G). A partition of V (G) is called a vertex
decomposition. Similarly a partition of E(G) is called an edge
decomposition. The degree of a vertex u in G and the minimum
degree are denoted by dG(u) and d−(G) respectively. The



Fig. 1. The network Les Misérables. The peeling value is color coded. The
edge coloring corresponds to our new edge decomposition (see Section III).
The 5 most diverse characters (see Section IV) are explicitly labelled.

subgraph induced by a subset of vertices S is G[S]. For a given
subset of edges L ⊆ E, the layer of G determined by L is the
subgraph G(L) = (V ′, L) where V ′ = {u ∈ V (G), ∃(u, v) ∈
L}.

Definition 1: (Peeling Value) The peeling value of a ver-
tex u ∈ V (G) denoted peelG(u) is the minimum value
i ∈ [1, dG(u)] at which u is removed from G during the
iterative removal of vertices of degree lower or equal to i.
The peeling value of an edge e ∈ E(G) denoted peelG(e) is
the minimum peeling value of its endpoints (notice it is well
defined in both directed and undirected cases).

In Figure 1, the peeling value of each character is mapped to
the vertex color. For example, the main character “Valjean”
has a peeling value of 8. The maximum peeling value of this
network is 9 (red vertices).

For RAM resident graphs, the peeling value of all vertices
can be computed efficiently in O(|E(G)|)[12]. For graphs that
do not fit in RAM, an I/O efficient external-memory algorithm
that computes an approximation to the peeling values has been
recently proposed by [13] .

The peeling value of G is the maximum peel value of all its
vertices. The peeling value of G is also called the degeneracy
of G[14]. For a graph of peeling value k, its vertices can
be ordered in a sequence (v1, . . . , vn) called Erdős-Hajnal
sequence[15] such that there are at most k edges going from
vi to (vi+1, . . . , vn).

An easy but fundamental property of peel values is that
they are a local manifestation of a global graph connectivity
phenomenon. The following result states this precisely.

Theorem 1: (Peeling Value Locality[16]) A vertex u ∈
V has at least peelG(u) neighbours with a peeling value at
least peelG(u) and at most peelG(u) neighbours with a peeling
value at least peelG(u) + 1.

The authors of the previous theorem exploit these local rela-
tions between the peeling value of a vertex and the peeling
values of its neighbours to compute peeling values by a
distributed algorithm.

Definition 2: (Peel Decomposition and Graph Cores)
The vertex peel decomposition of a graph G is the partition
induced by the peeling values of the vertices of G. The core
of G, core(G), is the maximal subset of vertices of G whose
peeling value is maximum, i.e. equal to the peeling value of
G.

In Figure 1, the vertex peel decomposition is color coded by
assigning the same color to all characters (vertices) with the
same peeling value. This vertex partition contains 8 groups.
The core of this network corresponds to the group of red
characters.

Definition 3: (Local Peeling Values) Let P be a partition
of V (G) the local peeling value of a vertex u ∈ G is equal
to peelG[P (u)](u) where P (u) is the set in P that contains u.
Similarly, if L is a partition of E(G), the local peeling value
of an edge e ∈ E(G) is equal to peelG(L(e))(e) where L(e) is
the set in L that contains e.

Definition 4: (Fixed Point) A graph F is a fixed point of
degree peeling k if core(F ) = V (F ) and the peeling value
of F is k. Equivalently, a graph F is a fixed point of degree
peeling if the vertex peel decomposition of F has only one
class and its peeling value is equal to its minimum degree.

Note that if F is a fixed point of degree peeling, the local
peeling values of elements in F do not depend on elements
with higher local peeling values. Our quest is therefore to
partition the edge set of a graph G into a union of fixed points
of degree peeling. Among all possible edge partitions of G into
fixed points of degree peeling, the one we propose is maximal
(a precise definition of maximality is given in Section III).
For the network Les Misérables, the edge coloring in Figure
1 corresponds to this decomposition. Each set of edges with
the same color forms a layer of the network and this layer
is a fixed point of degree peeling. The subgraph determined
by brown edges corresponds for example to a fixed point of
peeling value 7.

Fig. 2. An example of a random geometric subgraph in FP5.

We denote by FPk the class of graphs that are fixed points
of degree peeling k. They are also called strongly k-degenerate
graphs in [17]. FPk includes well-known classes of graphs.
For example, the class FP1 corresponds to forests (without
isolated vertices), cliques of size n are in FPn−1, k-regular
graphs are in FPk, and one can easily exhibit less obvious
graph classes (see Figure 2). For fixed points F ∈ FPk, the
peel value locality property captured by theorem 1 can be re-
stated as: “a vertex u ∈ V (F ) has at least k neighbours of



peeling value k”. The size of the maximum clique in F ∈ FPk

is bounded above by k + 1. Bounds on the minimum and
maximum number of edges of F are given in the following
proposition.

Proposition 1: (E(F ) Size) Let F ∈ FPk a fixed point of
degree peeling with n vertices, we have

kn

2
≤ |E(F )| ≤ kn−

(

k + 1

2

)

(1)

The lower bound of Inequality (1) is the number of edges
in a k-regular graph with n vertices. The upper bound is
the number of edges in a edge-maximal FPk graphs with n
vertices i.e. graphs such that an edge can not be added between
two independent vertices without increasing the maximum
peeling value[17]. Graphs generated using the Barabási-Albert
model[18] with a clique of size k as seed for example are in
this case, edge maximal FPk. More generally, the construction
of any “edge-maximal” FPk graph goes as follows: from a
clique of size k iteratively add (n−k) vertices linked to exactly
k vertices. This property indicates that the average degree of
an FPk graph with n vertices is αk with 1 ≤ α ≤ 2. Any k-
connected subgraph or connected component of an FPk graph
is a fixed point with peeling value k.

III. DECOMPOSITION INTO FIXED POINTS OF DEGREE

PEELING

In this section we present two different decompositions of a
graph into fixed points of degree peeling. In principle, a peeling
based vertex decomposition into fixed points can be obtained
by first partitioning the vertex set into groups, according to
their peeling values, and then recursively applying the peel
decomposition to the subgraphs induced by each set in the
partition. Since the peeling value can not increase one can stop
the recursion when the peeling value remains the same. In other
words, the recursion will end when fixed points are reached
(see an example in Figure 3(a)). This divisive decomposition is
just one possible partition into fixed points. Observe however
that the partition may not be maximal, in the sense that some
of the obtained fixed points could be merged to obtain fixed
points of higher peeling value. Notice that the same idea could
be used to partition the edges. The resulting decomposition can
also be non-maximal.

Among all possible vertex or edge decompositions into
fixed points of degree peeling, the two we propose respect
the following maximality property.

Definition 5: (Maximal FP decomposition) For a graph
G, a vertex or edge decomposition P into fixed points is said
to be maximal iff P does not contain two fixed points of the
same peeling value and for any sub-collection S of P whose
vertex union is U , core(G[U ]) is equal to the fixed point of
maximum peeling value in S.

Notice that the maximality of an FP decomposition im-
plies that the merging of sets in the decomposition will always
result in fixed points with peeling value lesser or equal to the
maximum peeling value of its components. Notice also that
any vertex with local peeling value ki has at most (kj − 1)
connections to a fixed point Pj of peeling value kj > ki.

As an illustration, in Figure 3(b), we can find a larger FP4

by adding to the red set the two vertices labelled 4 that are not
in the set. Equivalently, if P is a maximal edge decomposition
then there is no subset of edges that can be moved to a fixed
point of higher peeling value without damaging the fixed point
property.

A simple and efficient approach to obtain a maximal
partition into fixed points is to iteratively remove the core
vertices and all its connections or alternatively remove just
the edges with both end points on the core. In the first case
we obtain a vertex partition into maximal fixed points and in
the second case we obtain our desired edge partition into fixed
points.
In both cases, we are iteratively peeling vertices or edges in
the core starting with the initial graph core. We refer to both of
these methods as “backward peeling”. Backward vertex peeling
produces what we call an “iterative vertex core decomposition”
and backward edge peeling produces our desired “iterative
edge core decomposition”. These simple methods are formally
stated below in Algorithm 1 and 2. Their complexity is
O(k|E|) where k is the maximum peeling value of G. Their
correctness follows directly from the first principle properties
of the peel values stated in Section 2. Since the main focus of
this paper is the edge partition into fixed points, we discuss
further the properties of the iterative edge core decomposition
although similar statements can be proved for the iterative
vertex core decomposition. Figure 3(c) and 3(d) illustrate the
differences between the iterative vertex core decomposition
and the iterative edge core decomposition.

A. Iterative Vertex Core Decomposition via Backward Peeling

Algorithm 1 computes a vertex decomposition of G into
fixed points of degree peeling. It relies on the fact that, for
any graph G, core(G) is a fixed point of degree peeling. After
the removal of core(G), the peeling value of the remaining
vertices will directly drop if they were connected to the core.
This operation can affect other vertices due to the iterative
computation of peeling values. This means that in each ob-
tained fixed point F of peeling value k, all vertices in F have
a local peeling value lower or equal to their global peeling
value in G.

Algorithm 1: Iterative Vertex Core decomposition of G.

Input: G = (V,E)
Output: C = (C1, . . . , Cl), each Ci is a fixed point.

1 G′ ← G;
2 C ← ∅;
3 while V (G′) > 0 do
4 C ← C ∪ {core(G′)};
5 G′ ← G′[V (G′)− core(G′)];
6 end
7 return C;

Notice that this iterative vertex core decomposition discards
the connections between the different groups in the graph. This
is one of the main reasons we introduce the following iterative
edge core decomposition.



(a) Recursive peeling vertex decom-
position (non-maximal).

(b) Another non-maximal vertex de-
composition.

(c) Iterative Vertex Core decomposi-
tion

(d) Iterative Edge Core decomposi-
tion

Fig. 3. Four different decompositions of a graph into fixed points of degree peeling. The induced subgraphs formed by taking all vertices in a hull is a fixed
point of degree peeling. Pale yellow represents the lowest peeling value 0 and red represents the highest peeling peeling value 4. Vertices are labelled according
to their peeling value. The decomposition a) is not maximal since the subgraph induced by the union of the yellow sets has a peeling value of 2. b) is not
maximal since two vertices labelled 4 have 4 connections to a FP4 fixed point.

B. Iterative Edge Core Decomposition via Backward Peeling

The iterative edge core decomposition (see Algorithm 2)
assign to each edge a value that corresponds to the peeling
value of its endpoints at the first time they belong to the core.
In the example given in Figure 3(d), removing the edges within
the red hull leaves most of the vertices in the core isolated.
Three of them have connections to the rest of the graph. The
leftmost one has actually enough connections to be part of the
next core (of peeling value 3) but after that it is also isolated.
The idea here is that all the vertices that belong to a fixed
point will not be similar, in the sense that some of them can
actually be part of other fixed points.

Algorithm 2: Iterative Edge Core decomposition of G.

Input: G = (V,E)
Output: L = (L1, . . . , Lp), each Li is a fixed point.

1 G′ ← G;
2 L ← ∅;
3 while E(G′) > 0 do
4 A = {(u, v) ∈ E(G′), u ∈ core(G′)∧v ∈ core(G′)}

L ← L ∪ {A};
5 E(G′)← E(G′)−A;
6 end
7 return C;

The maximum number of iterations of Algorithm 2 is
bounded by k. Indeed, removing the edges of the core reduces
the peeling value by at least 1. The size of the resulting
partition is therefore at most k. The peeling value of vertices
is computed at each iteration and this operation can be done
in O(|E(G)|). This decomposition is maximal according to
Definition 5 (see Theorem 2).

Theorem 2: The edge decomposition L computed by Al-
gorithm 2 is maximal (see Property 5).

Proof: To simplify notation, we assume that each set L =
(L1, L2, . . . , Lp) corresponds to the subset of vertices in the
subgraph determined by each layer. First, the decomposition
L does not contain two fixed points with the same peeling
value. Indeed, Algorithm 2 returns the fixed points formed by
the core in a strictly decreasing order of their peeling value.
If we assume now that L is not maximal (see Definition 5).
It must exist a subcollection S of L whose vertex union is U
and such that core(G[U ]) is not equal to the fixed point of
maximum peeling value of a fixed point in S.

We argue first that S can not contain L1 = core(G). Indeed,
the set L1 is, as core of G, the core of any induced subgraph of
G that contains L1. Now L1 is not in S, Li 6⊆ U . Now, since
L1 6∈ S, the subset U is actually a subset of (V − L1). The
same reasoning could be applied to show that S can not contain
L2 = core(G[V − L1]), L3 = core(G[V − L1 − L2]) etc.
Finally, the subset of U must be a subset of (V −

⋃p

i=1 Li) = ∅.
However there are no subset S of L with an empty vertex
union. Therefore, such set does not exist and L is maximal.

IV. USES OF THE ITERATIVE EDGE CORE

DECOMPOSITION

In this section, we indicate how to use the edge core
decomposition to filter and analyse a network at different
scales. We also propose a measure of vertex diversity based
on Shannon’s entropy.

Network analysis at different scales. The iterative edge
decomposition focuses on local peel values and since it is
maximal each edge gets assigned to its highest possible layer.
Each layer locality is captured by the fact that it is a fixed
point of degree peeling. The usual peel decomposition fails to
incorporate locality since the vertices of peeling value k could
very well form an independent set. The peel decomposition
tends to produce more layers than our iterative edge core
decomposition.

Peeling based decompositions can be paraphrased using a
terrain metaphor. Each local max corresponds in the network
to a subset of vertices whose peeling value does not depend on
the vertices with higher peeling values. The core of the network
is the overall maximum. The iterative edge core decomposition
follows a top-down approach. Its computation jumps from the
overall maximum to subsequent levels of local “plateaux”.

Network Filtering and Community Structure. Peeling
values can be used to filter out vertices with few connections.
In the iterative edge core decomposition, vertices of peeling
value k are present in layers with peeling value at most k.
The lowest layer Lp may contain vertices of peeling value 1
but also their sparse connections between vertices from layer
p or above. As an illustration, consider a network formed by
two cliques of different sizes linked by an edge. This bridge
edge will fall into the lowest layer of the decomposition. Some
layers can be filtered out to make the community structure (if
any) more apparent. By associating with each vertex the first



time that it appears in the iterative edge core decomposition,
we can keep track of the proportion of recently added vertices
to any layer. Sudden proportion changes between consecutive
levels are an indicator of a possible community structure.
Notice that the iterative edge core decomposition is more likely
to detect communities than the vertex peel decomposition since
edge partitioning inherently allows vertex overlaps between
communities[19].

Vertex Diversity. For a given vertex u, the edges adjacent
to u in G can be partitioned into different classes given
by the iterative edge core decomposition. We assosiate with
each vertex a profile vector containing its peeling information
according to the iterative edge core decomposition.

Definition 6: For a graph G and its iterative edge core
decomposition L = (L1, . . . , Lp), the profile of a vertex
u ∈ V (G) denoted profile(u) is a sequence of integers
(l1, . . . , lp) where each li indicates the number of edges
adjacent to u that are part of the layer Li.

Notice that the number of times a vertex u is detected as part of
a layer, in the iterative edge core decomposition, corresponds
to the number of non-zero entries in the vector profile(u).
The sum of the entries in the profile vector of u is equal to
the degree of u. Vertex profiles are used next to assess the
diversity of a vertex.

Definition 7: (Vector Majorization[20], Shannon’s
Entropy[21] and Vertex Diversity) For a vector u in
Rk, let p(u) = (p1(u), p2(u), . . . , pk(u)) denote the vector
obtained by sorting the entries of u from largest to smallest.
A vector v in Rk is said to be majorized by a vector u

in Rk iff for 1 ≤ l < k,
∑l

j=1 pj(v) ≤
∑l

j=1 pj(u) and
∑k

j=1 pj(v) =
∑k

j=1 pj(u).

Let H(profile(u)) be the Shannon’s entropy of the profiles
normalized by the degree.

H(profile(u)) = −

p
∑

i=1

li

dG(u)
log2

(

li

dG(u)

)

(2)

Notice that for two vertices u and v, if profile(v) is ma-
jorized by profile(u) then H(profile(v)) ≥ H(profile(u)).
Therefore, we can rank vertices using the entropy of their
profiles. We call this measure vertex diversity. Namely, the
diversity of vertex u is H(profile(u)).

Notice that the diversity of a vertex in this case does not
solely depends on its peeling value or its highest layer in the
iterative edge core decomposition. A vertex that is not part
of the core of the graph can still have a bigger diversity than
vertices from the core.

V. NETWORK SAMPLES

We illustrate the application of the iterative edge core
decomposition on four networks with different characteristics.
We use node-link diagrams generated using Tulip software[22].
In each case, the peeling values of the vertices are color coded.
The color of an edge correspond to the peeling value of its
layer in the iterative edge core decomposition. Both vertices
and edge values use the same color scale. The diversity of a
vertex (see Eq. 2) is encoded by the size of the vertex.

TABLE I. STATISTICS FOR THE ITERATIVE EDGE CORE

DECOMPOSITION OF THE MANUFACTURE NETWORK.

Layers # Vertices % New vertices Avg. Clustering Coef.

16 24 100 % 0.89

11 12 100 % 1

10 11 100 % 1

8 17 88 % 0.80

5 45 31 % 0.23

2 28 4 % 0.03

1 38 0 % 0

We also provide 3D z-ordered visualizations of the networks
by mapping into the z-axis the edge core decomposition
numbers. This method is inspired by [9].

A. A Co-Appearance Network: Les Misérables

We start with the co-appearance network Les Misérables
(see Section II). The network contains 77 vertices and 254
edges. The peel decomposition contains 8 groups. The core
of the graph (red vertices) corresponds to the “revolutionary
student club” appearing during the Paris uprising in the novel.
While some of them are very important in the novel (like
“Marius”), most of them are not and the reason they have the
maximum peeling value is because of the size of the group.
We can differentiate them by looking at their connections to
vertices of lower peeling value and this is exactly what the
iterative edge core provides (see Figure 1).

The second layer of the iterative edge core decomposition
(brown edges) contains characters such as the Thenardier
family. Their son, “Gavroche”, was part of the core but he
actually has enough connections to be grouped with them at
this level. Each layer seems to correspond to a community
in the novel. For example, the blue edges layer determines a
subgraph with 6 vertices, its density is maximum as fixed point
of peeling value 4 according to Property 1. It corresponds to
the group formed by Marius along with members of his family,
his fiance “Cosette” and the tutor of Cosette, “Valjean”.

The labels displayed in Figure 1 correspond to the names
of the five most diverse characters: Valjean, Gavroche, Cosette,
Marius, and Javert. Notice that Cosette which is a main
character in the novel appears here even if her peeling value is
relatively low when compared to the others. However, in the
iterative edge core decomposition, she is well connected in the
layers she belongs to.

B. A Social Interaction Network: The Manufacture Network

The example we now discuss is an intra-organizational
network[23] where the vertices represent 77 employees and
an edge links two employees when one of them indicates that
the other provides him useful information (at least somewhat
infrequently). The employees work in four different locations:
Paris, Frankfurt, Warsaw and Geneva (see Figure 4).

This example illustrates the usefulness of our method for
graph filtering (see Section IV). Observe a transition between
the layers 8 and 5 in terms of their proportion of new vertices
found and their average clustering coefficient (see Table I).
The first four layers (see Figure 4(a)) separate the core of
the communities induced by the locations even if they have



(a) Highest four layers. (b) Lowest three layers.

Fig. 4. Results of the iterative edge core decomposition for the Manufacture network. The graph is drawn using a force-direct layout algorithm. The positions
between a) and b) are preserved. The shape of the vertices corresponds to the different locations: Frankfurt (circles), Paris (squares), Geneva (pentagons) and
Warsaw (triangles). The edges of the graph are separated here according to the decomposition. The union of a) and b) gives the complete network.

different global peeling value. Two vertices in the center have
also enough connections to be part of the layer of peeling value
8 that groups vertices from Warsaw. Notice that those vertices
have also a high diversity. The vertices that are isolated in those
layers correspond to vertices whose number of connections
is too low or to employees whose connections are too split
between the different locations.
The last three layers (see Figure 4(b)) also bring relevant infor-
mation. The blue edges determine a fixed point of peeling value
5. This subgraph contains a substantial number of vertices from
higher layers. It suggests that even without the connections
between people from the same location, the graph structure
still allows the diffusion of information in the company. Notice
that most of the employees from Warsaw do not belong to this
subgraph. This suggests that connectivity is “stronger” between
people working in Frankfurt, Paris and Geneva.

C. The Political Blogosphere Network

This network represents the undirected links between polit-
ical blogs before the 2004 US election[24]. The 1222 blogs are
divided into two groups: liberals or conservatives (see Figure
5). The peel decomposition contains 35 clusters (the maximum
peeling value in the network). The core of the network contains
liberals blogs, vertices of peeling value between 32 and 34
are other liberal blogs connected to the core. A substantial
change happens when looking at vertices with peeling value
31 since a large proportion of them are conservative blogs.
Subsequent groups in the peel decomposition contain both
liberal and conservatives blogs.

On the other hand, a quite different picture emerges using
the 10 layers of the iterative edge core decomposition of this
network (see Figure 5(a)). Indeed, either liberal or conservative
blogs are over-represented in the layers detected (see the
statistics provided in Table II). A 3D z-oderered visualization
(see Figure 5(b)) reveals this phenomenon. Notice however,
that an edge layer can contain blogs from the “opposite” side.
This suggests that the local peeling values of the blogs mostly

come from blogs with the same affiliation. Observe that the
average clustering coefficient of the layers decreases heavily.
This can be explained by the fact that each layer contains
an important proportion of vertices already detected in the
previous layers.

TABLE II. STATISTICS FOR THE ITERATIVE EDGE CORE

DECOMPOSITION OF THE POLITICAL BLOGS NETWORK.

Layers # Vertices % Liberals % New vertices Avg. Clust. Coef.

33 66 100 % 100 % 0.72

29 95 4 % 99 % 0.5

24 120 99 % 68 % 0.26

18 186 5 % 65 % 0.14

13 206 93 % 44 % 0.09

9 315 6 % 55 % 0.05

5 383 77 % 42 % 0.03

3 382 2 % 35 % 0.02

2 373 64 % 34 % 0.02

1 706 45 % 25 % 0

D. The Air Transport Network

The Air transport network is an undirected graph where
each vertex represents the airports of a city and edges represent
a direct flight from one city to the other [25]. The network
contains 1490 nodes and 12353 edges. The size of the peel
decomposition is equal to the maximum peeling value in
this network which is 36. However, the iterative edge core
decomposition provides a partition of the edges into 12 layers
(see Figure 6). European cities appear in many layers although
the third and sixth layers (of peeling value 17 and 8) contain a
majority of Asian cities. The fact that the local peeling value
is high between those airports is difficult to spot using the peel
decomposition.

In this case, we notice two interesting aspects when looking
at the results of the iterative edge core decomposition. The
backward peeling procedure leaves a few cities isolated at



(a) Plain view obtained using a force-direct algorithm. (b) 3D z-ordered view.

Fig. 5. Results of the iterative edge core decomposition for the Political Blogs network. The graph is drawn using a force-direct layout algorithm. The shape
of the vertices corresponds to the politic orientation: liberal (circle) or conservative (square). The labels on the color scale indicate the peeling values of the
edge layers found.

(a) Plain view obtained using geographic coordinates. (b) z-ordered 3d view.

Fig. 6. Results of the iterative edge core decomposition for the Air Transport Network. The vertices coordinates correspond to the geographical positions to
the airports. Labels indicates the names of the 20 most diverse cities according to the decomposition.

each step. As a case in point, the network remaining after
the removal of all edges of local peeling value greater than 4
contains a giant connected component with 1380 airports.
A second interesting aspect is observed when looking at
airports diversity. The most diverse airport is Jeddah in Saudi
Arabia. This may because this city has a distinctive role being
very close to the Islam’s holy city of Mecca. The next most
diverse airports are: Paris, Frankfurt, London, New York City,
Sao Paulo and Beijing.

We have also applied the iterative edge core decomposition
to the Jazz network[26] (see Figure 7), University Facebook
networks or population migration networks. We will report on
these findings in a follow up paper.

VI. CONCLUSIONS

We introduced an efficient graph edge partition into fixed
points of degree peeling. Each layer in the decomposition has a

unique local peel value. The presented algorithms and technics
can be generalized to weighted networks. Information from the
decomposition allowed us to formulate a novel notion of vertex
diversity with an associated measure based on Shannon’s
entropy. We illustrated graph filtering and analysis at different
scales using 3D z-ordered node-link diagrams.

We are currently studying the mathematical properties of
fixed points of degree peeling. For example, we want to
fully characterize minimal fixed points of degree peeling.
This characterization may be useful in the understanding of
some fundamental graph streaming computations. Finally, our
decomposition can be used as a preprocessing step for a variety
of graph drawing algorithms.
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Fig. 7. Results of the iterative edge core decomposition for the Musician Jazz Network.
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