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Kármán's flows on a single and between two infinite coaxial rotating disks are famous examples of self-similar solutions of the Navier-Stokes equations. Considering the shrouded two disk systems, numerical investigations of the steady axisymmetric solutions have shown the existence of a so called pseudo-similar region where the velocity profiles are homothetic. In the present work, the corresponding three parameter model is derived.

INTRODUCTION

Rotating flows have long drawn much attention because of both technical and theoretical interests. At the beginning of the XX th century, the early studies have been dedicated to the deflection of the surface-layer oceanic circulation driven by the wind. Then, less than two decades later, Kármán initiated the study of self-similar flows on single and between two infinite coaxial rotating disks [START_REF] Von Kármán | Uber laminare und turbulent reibung[END_REF][START_REF] Batchelor | Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow Quart[END_REF]. These flows constitute an outstanding example of self-similar solutions of the Navier-Stokes equations, originally used for the study of inflexional instability in three-dimensional boundary layers [START_REF] Stuart | On the non-linear mechanisms of wave disturbances in stable and unstable paralell flows[END_REF].

Stimulated by the observations of Nansen in 1898, the theory carried out by Ekman in 1905 opened the way to the understanding of the fundamental mechanism giving rise to the steady upper-layer of the wind driven current [START_REF] Ekman | On the influence of the Earth's rotation on ocean currents[END_REF] (for example, see [START_REF] Pedlosky | Geophysical dynamics[END_REF]). In the framework of the Rossby similitude, the convective term is neglected with respect to the viscous term. In the rotating frame of reference attached to the Earth, the equations of motion are thus reduced to the linear balance between the Coriolis force, the pressure gradient and the eddy friction stress in the β-plan. Therefore, the velocity field is the result of the superposition of geostrophic and non geostrophic parts associated with the pressure gradient and the friction respectively.

In 1921, Kármán studied the incompressible viscous flow engendered by rotating plan which can be viewed as an infinite disk depicted in Fig. 1-a.

REV. ROUMAINE MATH. PURES APPL., 56 (2011), 1, [START_REF] Stuart | On the non-linear mechanisms of wave disturbances in stable and unstable paralell flows[END_REF][START_REF] Von Kármán | Uber laminare und turbulent reibung[END_REF][15][16][17][18][19] Assuming that, far from the disk, the flow is wholly normal to the disk, the Navier-Stokes equations degenerate to a one-parameter system of Ordinary Differential Equations (ODE) named after him. The parameter γ is the ratio of the angular velocities

γ = Ω 1 Ω 0 ,
where In 1996, we considered the shrouded two disk systems depicted in Fig. 1-c. In particular, the steady axisymmetric flows were investigated numerically. Adapting [START_REF] Mamun | Asymmetry and Hopf bifurcation in spherical Couette flow[END_REF] a time-stepping pseudo-spectral code [START_REF] Quéré | Etude de la transition à l'instationnaire des écoulements de convection naturelle en cavité différentiellement chauffée par méthodes spectrales Chebyshev[END_REF], the steady states were carried by mean of a Newton-Raphson's method [START_REF] Cousin-Rittemard | Contribution à l'étude des instabilités des écoulements axisymétriques en cavités interdisques de type rotor-stator[END_REF]. However, the Kármán self-similar [START_REF] Batchelor | Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow Quart[END_REF] does not describe the steady solution of the shrouded two disk configuration [START_REF] Dijkstra | The flow between two finite rotating disks enclosed by a cylinder[END_REF][START_REF] Owen | Flow and heat transfer in rotating disc systems[END_REF]. In [START_REF] Cousin-Rittemard | Description of the boundary layers of steady flows between coaxial disks in rotor-stator configuration[END_REF], it was shown that the Reynolds number based on H yields a good description of the steady flows and measures the thickness of the boundary layers. In [START_REF] Cousin-Rittemard | Structure of steady flows between coaxial disks in rotor-stator configuration[END_REF], a self-similar solution was shown to exist surrounding the axis, with a recirculating zone near the end-wall. Between these two zones there is a pseudo-similar region where velocity profiles are homothetic. The radial extension of the self-similar zone was studied for aspect ratios within a range [START_REF] Bödewadt | Die Drehstromung uber festem grunde[END_REF][START_REF] Mamun | Asymmetry and Hopf bifurcation in spherical Couette flow[END_REF]. For a tolerance of 1% for the superposition of the velocity profile, the self-similar zone was shown to be confined in the vicinity of the rotation axis for radial positions r ≤ 1H where H is the height of the cavity. For radial positions greater than H, numerical experiments suggested that there exists a zone where the velocity profiles obey an homothetic law as a function of the aspect ratio r = ax + h for r ∈ [h, (a -1)H] where h depends on the boundary conditions (see Fig. 2). The so-called pseudo self-similar zone described he self-similar property of the solution on a part of the domain.

In the present work, the family of the rescaled three-parameter model is derived where the aditional parameter is the aspect ratio

a = R H ,
where R is the radial extension of the disks of the enclosed two disk system.

HOMOTHETIC SELF-SIMILAR MODEL

As one member of the self-similar Kármán family of rotating flows, the key arguments merely lay on original papers of Kármán and Batchelor and can be stated as in Proposition 2.1. But, as a proof should be constructive, a self-contained proof is given. Proof. Let u, v and w be the radial, tangential and axial components of the velocity field and p be the pressure. In cylindrical polar coordinates and according to axisymmetry hypothesis, the steady Navier-Stokes equations are

1 r ∂ ∂r (ru) + ∂w ∂z = 0, (2a) ρ u ∂u ∂r - v 2 r + w ∂u ∂z = - ∂p ∂r + μ u - u r 2 , (2b) ρ u ∂v ∂r + uv r + w ∂v ∂z = μ v - v r 2 , (2c) ρ u ∂w ∂r + w ∂w ∂z = - ∂p ∂z + μ w, (2d) with f = 1 r ∂ ∂r r ∂f ∂r + ∂ 2 f ∂z 2 .
Let H and R be the characteristic length scales in r and z directions, respectively. If Ω 0 = 0, let

U ≡ RΩ 0 be the characteristic velocity in radial and tangential direction. One may replace Ω 0 by Ω 1 , the following proof holds. Let W be the characteristic axial velocity.

First, according to dimensional analysis (see e.g. [START_REF] Barenblatt | Scaling[END_REF]), we define the dimensionless coordinates and axial and radial components of the velocity field Hence, preserving the full tridimensionnality of the model, the order of dimensionless coefficient of the first term is one and the characteristic axial velocity is such that (6) U = aW.

According to the Kármán hypothesis, the axial velocity is of the form (7) w = φ(y) ≡ -2 h(y).

Thus, from the continuity equation ( 5), we deduce that the radial dimensionless velocity is

(8) u = x h .
Second, from the axial component of the momentum equation (2d), we infer that the pressure field is the superposition of radial and axial pressure fields. Let P be the characteristic pressure. Let us remark that the axial component of the momentum equation (2d) equivalently reads

4 hh = - P ρW 2 ∂p ∂y -2 ν W H h .
For example, the two choices ρW 2 or ρU 2 for the characteristic pressure are possible and respectively yields

(9) p (x, y) = -2 h 2 + a R e h + Π(x), or (10) p (x, y) = - 2 a 2 h 2 + a R e h + Π(x).
Third, taking into account of (3), ( 4), ( 6), the radial momentum equation (2b) is

u ∂u ∂x - v 2 x -2 h ∂u ∂y = - P ρ U 2 dΠ dx + 1 a R e 1 x ∂ ∂x x ∂u ∂x + a 2 ∂ 2 u ∂y 2 - u x 2
Furthermore, taking into account of ( 7), ( 8) yields The non-slip condition on the disks are (1c), (1d). Considering the boundary condition (1d) for example, the form of the tangential velocity is thus [START_REF] Pedlosky | Geophysical dynamics[END_REF] v = x g(y).

Taking into account of ( 12) and differentiating the radial momentum equation [START_REF] Owen | Flow and heat transfer in rotating disc systems[END_REF] with respect to y yields the equation (1a). Fourth, taking into account of (3), ( 4), ( 6) on one hand and of ( 7), ( 8), [START_REF] Pedlosky | Geophysical dynamics[END_REF] on the other hand, the tangential momentum equation (2c) is (1b). This ends the proof.

  Ω 1 and Ω 0 = 0 are the angular velocities of the disk and of the fluid at infinity respectively or vice versa in the case of Bödewadt flows [3]. In 1951, Batchelor extended the Kármán self-similar model introducing the two-parameter ODE model of the flow powered by the differential rotation of two infinite disks sketched in Fig. 1-b. The additional parameter is the Reynolds number based of the gap height H Re H = UH ν ,where U ≡ HΩ 0 is the characteristic velocity. Fundamentally, Batchelor thus defined the general family of the parameterized self-similar Kármán models.

Fig. 1 .

 1 Fig. 1. Configurations of the hierarchy of the steady rotationallysymmetric flows engendered by differential rotation fluid versus disks.

Fig. 2 .

 2 Fig. 2. Homothetic zone: superposition of the velocity profiles u/r, v/r and w for various boundary conditions on the envelop [4, 6].

Proposition 2 . 1 .

 21 The homothetic steady axisymmetric solution of the generalized Kármán enclosed two disk systems solves a self-similar six order ODE governed by three parameters as follows:ah = -2Re H (hh + gg ), (1a) ag = 2Re H (ghhg ), (1b) y = 0, h = 0, g = 1, h = 0, (1c) y = 1, h = 0, g = γ, h = 0. (1d)where the dimensionless radial, tangential and axial components of the velocity satisfy w = -2h(y), u = xh , v = xg(y).

( 4 )

 4 r = Rx, z = Hy, u = Uu , v = Uv , w = W w and the continuity equation (2a) equivalently reads

  h h -(h ) 2 .

On the models of the homothetic self-similar Kármán flows