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Effects of non-equilibrium noise on a quantum memory encoded in Majorana zero

modes

François Konschelle and Fabian Hassler
Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

(Dated: June 11, 2013)

In order to increase the coherence time of topological quantummemories in systems with Majorana
zero modes, it has recently been proposed to encode the logical qubit states in non-local Majorana
operators which are immune to localized excitations involving the unpaired Majorana modes. In this
encoding, a logical error only happens when the quasi-particles, subsequent to their excitation, travel
a distance of the order of the spacing between the Majorana modes. Here, we study the decay time
of a quantum memory encoded in a clean topological nanowire interacting with an environment with
a particular emphasis on the propagation of the quasi-particles above the gap. We show that the
non-local encoding does not provide a significantly longer coherence time than the local encoding.
In particular, the characteristic speed of propagation is of the order of the Fermi velocity of the
nanowire and not given by the much slower group velocity of quasi-particles which are excited just
above the gap.

PACS numbers: 74.78.Na, 03.67.–a, 74.40.Gh, 72.70.+m,

Since their introduction to condensed matter about
a decade ago, Majorana zero modes attract a lot
of interests, especially regarding their quantum in-
formation perspectives.1–3 On the one hand, their
non-Abelian statistics can be used to manipulate the
quantum states,2,4–6 opening interesting possibilities in
the recently proposed scheme of topological quantum
computation.3 On the other hand, the possibility to effi-
ciently store quantum information encoded in Majorana
zero modes seems very promising.7

A Majorana zero mode is described by a self-adjoint

operator γi = γ†
i . Distinct Majorana modes obey the

fermionic anticommutation relations {γi, γj} = 2δij .
7,8

Due to the fact that they break the U(1) symmetry of
electric charge conservation down to Z2, it is natural
to search for them emerging in superconducting systems
where they appear as boundary states in chiral p-wave
nanowires.1 Even so there is no occupation operator as-
sociated with a single Majorana mode due to the fact that
γ†γ = γ2 = 1, two Majorana modes can be combined to
a single conventional fermionic mode c = 1

2 (γ1+iγ2) with

the corresponding number operator c†c = 1
2 (1 + iγ1γ2).

This fact in turn indicates that in electronic systems
emergent Majorana modes will always appear in pairs.
Surprisingly, a situation is possible where the two Majo-
rana modes γ1 and γ2 belonging to a single fermionic
mode c are spatially separated from each other (un-
paired), more precisely they are totally delocalized at
the two ends of a superconducting nanowire. These two
delocalized modes γ1 and γ2 when taken together repre-
sent a fermionic mode at zero energy which encodes the
parity of the total number of fermions in the system. Be-
cause the fermion parity is a conserved quantity for an
isolated superconductor, a quantum state encoded in a
wire hosting Majorana modes is in principle immune to
decoherence and thus serves as an interesting implemen-
tation of a quantum memory.

Due to the superselection rule, superposition of dif-

ferent parity states are unphysical. Thus, in order to
encode a qubit of information in the Majorana modes
of a topological wire, the previous picture has to be
slightly modified: in fact due to the conservation of the
total fermion parity, four Majorana modes γ1, . . . , γ4
at the edges of two wires are needed to encode a single
qubit (see Fig. 1). As the total fermion parity operator
P ≡ −γ1γ2γ3γ4 = ±1 is a conserved quantity, the rela-
tive parity between the two wires encodes the qubit state
Z = iγ1γ2 = iPγ3γ4.

7

Since there is not any known example of a natural
topological (chiral p-wave) superconductor at the mo-
ment, Majorana modes have been proposed to emerge
in a closely related realization: a semiconducting
nanowire with strong spin-orbit effect, in a magnetic
field, and proximity coupled to a conventional (s-wave)
superconductor.9,10 For this geometry, the presence of
Majorana modes may have already been observed last
year,11–15 see Ref. 16 for a discussion.

Nevertheless, the presence of a rather small proxim-
ity induced gap alters the robustness of the quantum
memory encoding: the zero-energy ground state is not
enough isolated to be efficiently protected, and the ex-
citations of the zero-energy modes above the energy gap
destroy the quantum memory.17,18 The failure of the en-
coding comes from the absence of a topological protection
for any local one-dimensional system at non-vanishing
temperatures.19 If a perturbation is strong enough to ex-
cite one of the localized zero-energy mode (say γ1 for
instance) into an excited quasi-particle above the energy
gap, the sign of the corresponding Majorana mode flips
resulting in a qubit sign-error.

To overcome this problem, Akhmerov recently pro-
posed a non-local qubit encoding, hereafter called a
macro-Majorana encoding, which is in principle robust
to local excitations.20 The robustness originates from the
localization of the excitations in a portion of space con-
taining one of the unpaired Majorana modes (see Fig. 1
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FIG. 1: The different options to encode a qubit into Majo-
rana modes: the most basic choice is to encode the qubit in
the localized Majorana modes γi, represented by gray disks at
the end of the two light gray wires which are located on top of
a superconductor. A local interaction pumping the energy ∆
into the system decoheres the qubit when the Majorana wave-
function excites a quasi-particle above the superconducting
gap. In the macro-Majorana encoding, the Majorana modes
are replaced by non-local operators Γi which involve the lo-
calized Majorana mode γi and the parity of the number of
fermions (quasi-particles) in the area Si surrounded by the
dashed curves. In this encoding the qubit only decoheres
when a Majorana mode excites a quasi-particle mode above
the gap which subsequently travels the distance L/2 (with L
the wire’s length) where it crosses into the next dashed region.

for a schematic picture). Then, the total system can for-
mally be cut into distinct sections Si, each of them having
only one Majorana mode γi. As long as the excitation
quasi-particles do not enter into an adjacent region, a

non-local Majorana operator Γi = γi
∏

x∈Si
(−1)c

†
xcx can

be defined as the product of the Majorana mode γi and
the fermion parity of the neighboring cloud of the con-
ventional electronic states cx which is unaffected by this
process. With these macro-Majorana operators, the log-
ical qubit states can be defined by the logical Pauli op-
erators Z̃ = iΓ1Γ2 = iP̃Γ3Γ4 and X̃ = iΓ2Γ3 = iP̃Γ1Γ4

with P̃ = −Γ1Γ2Γ3Γ4 the total fermion parity of the sys-
tem. Then, the eigenstates associated with these parity
operators are robust quantum states as long as only the
interaction with the environment only generates local-
ized quasi-particles. Thus, the macro-Majorana proposal
is particularly efficient to encode the quantum memory
into a topological vortex, as e.g., in Ref. 21. In this
setup, one usually suffers from the presence of an ex-
tremely small minigap, allowing for excitations at very
low energies thereby rendering the Majorana modes very
fragile. By introducing the macro-Majorana operator Γi

encapsulating both the Majorana mode γi plus the sur-
rounding cloud of excited states, the Majorana modes Γi

become immune to localized excitations inside the vortex
cores thus solving the minigap problem.20

For the topological nanowire proposal we want to
consider here, a similar macro-Majorana encoding has
not been analyzed so far. The macro-Majorana modes
(take Γ1 for example) are dephased only when the quasi-
particle after being excited close to γ1 travels to the other
half of the nanowire, crossing from S1 to S2. As long as
the quasi-particle remain localized, the quantum infor-
mation encoded in the macro-Majorana modes is intact.
If the quasi-particle on the other hand crosses the virtual
line, the logical X̃ flips resulting in a sign flip error. The

naive guess for the coherence time tcoh ≈ tFGR+L/2vg of
the macro-Majorana encoding in a clean nanowire is thus
just the sum of the time tFGR needed to excite the quasi-
particle above the superconducting gap (given by a Fermi
golden rule) plus the time L/2vg needed to travel the dis-
tance L/2 corresponding to half the length of the wire;
here, vg denotes the particles group velocity. As vg → 0
when the energy of the quasi-particle approaches the su-
perconducting gap, one would expect tcoh ≈ L/2vg, i.e.,
proportional to the length of the wire L with a possible
large prefactor due to the small vg. Moreover, includ-
ing disorder in the wire which renders the propagation
of the quasi-particle diffusive or even localizes the state
and even longer coherence time tcoh might be expected.
In this article, we address the question of the deco-

herence of a topological superconductor wire hosting two
Majorana modes at its boundaries. We shall show that
the zero-energy modes are only protected by the presence
of the gap. In particular, the length of the wire does
not help to obtain longer coherence time of the quan-
tum memory construction. This is because—at least for
a clean system—the quasi-particles responsible for the
decoherence of the qubit propagate at a velocity of the
order of the Fermi velocity vF . As the Fermi velocity is
usually rather large, the coherence time of a Majorana
wire memory is limited by the probability for an extra
quasi-particle to be excited above the gap. We illustrate
this idea in the case of the macro-Majorana construction
(see Fig. 1) for the special case of thermal noise.
The specific setup for which we obtain our results is a

system initially prepared at zero temperature (no quasi-
particles present). We then study excitations generated
by coupling the system to an environment during the
time t. The coherence time of the qubit tcoh is at low
temperatures dominated by processes which involve the
local excitation of a single quasi-particle above the prox-
imity induced gap in the nanowire. We neglect effects due
to breaking up Cooper pairs as well as the generation of
quasi-particles in the bulk superconductor as this involves
higher energy excitations. We study a toy model of a
clean, single band, spinless, chiral p-wave Bogoliubov-de
Gennes Hamiltonian. We calculate the Fermi golden rule
result for the creation of an extra excited quasi-particle
above the superconducting gap in section II, for an en-
vironment with a noise spectrum corresponding to ther-
mal noise, Lorentzian noise spectrum, or non-equilibrium
noise due to the coupling to a nearby quantum point con-
tact. We show that generically the excited quasi-particles
propagate at the Fermi velocity and that almost no ef-
fects of the group velocity vg ≪ vF are visible, see section
III. We shortly discuss the effect of disorder in section
IV.

I. MODEL AND HYPOTHESIS

Originally, Kitaev’s model involve a p-wave
superconductor.1 This state is characterized by a
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spinless Cooper-pair condensate, which satisfies Pauli
exclusion principle thanks to the odd parity symmetry
of the gap.22 A chiral p-wave superconductor can be
emulated with a conventional (s-wave) superconductor
with strong spin-orbit effect and broken time-reversal
symmetry. Indeed, the spin-orbit effect is known to
lift the inversion symmetry constraint, allowing the
superconducting gap to possess both singlet and triplet
components.23 Additionally, breaking time-reversal
symmetry will destroy Kramers degeneracy and allows
that the Majorana modes appear unpaired.24,25 Thus,
the combination of strong spin-orbit plus Zeeman effects
in a conventional superconductor in the right parameter
regime implements an effective topological superconduc-
tor hosting Majorana modes at its ends.9,10 In practice,
the superconductivity is induced by proximity effect to
a strong spin-orbit semiconducting wire, whereas the
Zeeman effect is induced by applying a magnetic field
along the wire.16

To simplify the calculations, we start with the simplest
model exhibiting Majorana modes: a spinless p-wave su-
perconducting wire. This model is particularly useful
in the clean case, when it is formally equivalent to the
experimental situation.8 In this section, we discuss the
coupling between the zero-energy modes and the excited
modes above the gap due to the interaction with an en-
vironment.
A p-wave superconductor is described by the

Bogoliubov-de Gennes (BdG) Hamiltonian in the so-
called Andreev or quasi-classical approximation,

H0 = vF p̂σ
z − vF pF τ

z +∆xτ
yσy −∆yτ

xσy (1)

where 1
2vF pF = µ0 denotes the chemical potential, the

momentum operator p̂ = −i~∂x in space representa-
tion, and the complex superconducting gap ∆0 = ∆x +
i∆y (∆x and ∆y are real) is supposed to be space-
independent—hereafter we denote ∆ = ∆0e

iϕ, ∆0 > 0
and choose ϕ = 0 because the phase of the supercon-
ducting order parameter is unimportant as we have only
a single superconductor in our setup and thus coherence
effects are absent. The σi and τ i are Pauli matrices and
act in the propagating (right/left moving particles) and
particle-hole spaces, respectively.
The BdG Hamiltonian Eq. (1) exhibits a topologically

phase with two zero-energy modes located at the two
ends of the wire.1,26 In the situation when the wire is
much longer than the coherence length L ≫ ξ = ~vF /∆,
the eigenstates of the BdG Hamiltonian H0 are approxi-
mately given by

〈x|0〉 =
√

2

ξ

(

eiπ/4

e−iπ/4

)

e−x/ξ sin(kFx) (2)

for the zero-energy state located on the left of the wire,
with ~kF = pF and H0 |0〉 = 0, and

〈x|q〉 =
√

2

L

(

−1
1

)

sin(qx) sin(kFx) (3)

for the quasi-particle at energies above the gap ∆, satisfy-
ing the relativistic dispersion relation (ε/∆)2−(ξq)2 = 1.

Note that |q〉 is an approximate eigenstate of H0 at en-
ergy ε ≈ ∆ with H0 |q〉 = ∆ |q〉+O(ℓ−1), where we have
used ℓ = L/ξ ≫ 1 as a large parameter.27 The eigenstate
|0〉 is located at the left of the wire, whereas the excited
states |q〉 are fully delocalized along the wire. The ex-
cited modes given above are written in a quasi-continuum
fashion, whereas the wire geometry would exhibit some
discrete modes. See App. A for more details, in partic-
ular for the exact solutions of H0 |q〉 = ε |q〉 satisfying
the boundary conditions 〈x = 0|q〉 = 〈x = L|q〉 = 0 of a
finite-length wire. In addition to the exact solution of the
quasi-particle state, we have also included the expression
for the second unpaired Majorana mode wave-function
located at the right end of the wire with x ≈ L which we
do not need for the following discussion.

Starting with the wire at zero-temperature, there are
no quasi-particles present and the system is characterized
by the occupation of the Majorana zero modes. We pre-
pare the system in a specific state of the two level system
spanned by the logical operators Z̃ and X̃. Initializing
the system in a specific eigenstate of X̃ (e.g., the state
to the eigenvalue +1), and turning on the interaction
with the environment it is possible that a local interac-
tion involving γ1 generates a quasi-particle located near
x ≈ 0 at energy ε ≈ ∆ just above the proximity-induced
gap. A qubit sign error happens as soon as this mobile
quasi-particle crosses from the region S1 to S2, see Fig. 1.
Alternative processes which dephase the qubit are given
by breaking up a Cooper-pair and one of the generated
particles crossing from S1 to S2 which involves at least
an energy 2∆ and the generation of quasi-particles in the
bulk superconductor which are at even higher energies.
Both of these processes are neglected in the following as
we want to concentrate on those processes which need
the least energy input from the environment and thus
are dominant at very low temperatures.

Let us discuss the possible interaction mechanisms
of the environment with the nanowire: in practice,
the p-wave superconductivity is induced by proxim-
ity of a strong spin-orbit semi-conductor with a con-
ventional (non-topological) superconductor.10 The noise
might originates from variations in the applied magnetic
field along the semiconductor wire generating fluctua-
tions in the induced Zeeman effect inside the wire, or
even influencing the proximity effect. This latter effect
may introduce fluctuations in the induced gap parame-
ter. Possible other sources acting on the superconduct-
ing gap are local magnetic impurities, or local Josephson
vortices resulting from imperfect deposition of the two
materials during the sample preparation. In the follow-
ing, we disregard these effects which lead to variations of
the superconducting order parameters as we believe that
they are of minor importance. On the other hand, an
imperfect contact between the superconductor and the
semiconductor and nearby fluctuating gates or mobile
charge impurities can lead to local fluctuations of the
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chemical potential. A time-dependent chemical poten-
tial µ(t) = µ0 + V (t) can be incorporated in the model
Hamiltonian (1) via

H = H0 + V (t)τz (4)

with a generic time-dependent potential V (t).
In the following, we need the interaction matrix ele-

ment M(q) = 〈q| τz |0〉. Evaluation in the limit of long
wire gives

M(q) =

√

2

ℓ

ξq

1 + (ξq)2
(5)

as the probability amplitude for the zero-energy mode to
scatter to an excited state slightly above the gap. For
convenience, we define the wave-vector ξq = sinh η and
the energy ε = ∆cosh η in term of the rapidity η, such
that

M(q) =

√

2

ℓ

sinh η

cosh2 η
(6)

in this parameterization. The reparameterization has ad-
vantages when manipulating the integrals of the following
sections, since it makes the relativistic dispersion relation
of the quasi-particles explicit (see in particular App. B).
It might be unclear whether Eq. (5) represents or not

the genuine matrix element coupling the states |0〉 and
|q〉. This is because the excited states |q〉 are not ex-

act eigenstates of H0. In particular, using the notations
of Eqs. (2,3), we easily find that 〈q|0〉 ∝ 〈q| τz |0〉 6= 0.
The exact excited states found in the App. A 2 are never-
theless orthogonal to the zero-energy mode |0〉, and the
interaction element can be shown to be exactly the one
above in the long wire limit ℓ → ∞. More explicitly,
one can show that 〈0|q〉 ∝ e−ℓ whereas 〈0| τz |q〉 ∝ ℓ−1/2

as in Eq. (5), using the exact excited states |q〉 found in
the App. A 2. To remedy the use of the approximate ex-
cited states (3) in the following calculations, we will keep
the τz matrix, and use the exact algebra 〈0| τz |0〉 = 0,
〈q| τz |0〉 = M(q) and 〈q|0〉 = 0.
We note that the interaction element M(q) does not

couple the zero-energy mode to the mode exactly at the
energy gap (corresponding to η = 0 in our parameteriza-
tion). This helps for the stability of the quantum memory

since the density of state ρ = ∂q/∂ε = (~vF tanh η)
−1

di-
verges at the gap.28

II. INTERACTION WITH THE
ENVIRONMENT: A FERMI GOLDEN RULE
APPROACH FOR THE LOCAL MAJORANA

ENCODING

In this section, we study the evolution operator asso-
ciated to our model Hamiltonian (4) in order to obtain
the probability transition of the zero-energy mode to the
quasi-continuum, according to the Fermi golden rule.29

Note that the Fermi golden rule gives the coherence time
tcoh of the local qubit encoding with γi but not of the
macro-Majorana encoding with Γi as it does not take into
account the time it takes for the excited quasi-particle to
travel the distance L/2. The Fermi golden rule is the
relevant result if one can suppose instantaneous propa-
gation along the wire or when the quantum memory is
encoded in terms of the local Majorana modes γi instead
of the macro-Majorana Γi.

18 We will first start with the
results using the Fermi golden rule approach before we
will introduce the effects of the propagation in the fol-
lowing section.
First, we suppose that the interaction potential is so

weak that the truncation at first order of the evolution
operator

U(t) ≈ U0(t) +
1

i~

∫ t

0

U †
0(τ)V (τ)τzU0(τ)dτ (7)

is valid, with U0(t) = e−itH0/~.
Then, we define the noise spectrum S(ω) in term of

the interaction potential as

〈V (t1)V (t2)〉noise =
∫

dω

2π
eiω(t2−t1)S(ω) (8)

where the average is over all configurations of the noise.29

We also assume that 〈V (t)〉noise = 0 as a nonzero average
simply leads to a redefinition of the chemical potential µ0.
The probability Pγ(t) to excite a zero-energy mode |0〉

to an arbitrary state in the quasi-continuum states |q〉 is
defined as

Pγ(t) =

∫

Ldq

π

〈

|〈q|U(t) |0〉|2
〉

noise

=
1

~2

∫

Ldq

π

∫

dω

2π
S(ω) |gFGR(ω, t)|2 (9)

with

gFGR(ω, t) =

∫ t/2

−t/2

dτe−iωτ 〈q| e iτ
~
H0τz |0〉 . (10)

For large time we can replace |gFGR(ω, t)|2 by

2πtδ (ω − ω∆ cosh η) |M(q)|2,30 where we have intro-
duced ~ω∆ = ∆ and neglected the contribution 〈q|0〉 ∝
e−ℓ valid in the limit of large ℓ.
The probability per unit time for a zero-energy mode

to get excited in any state of energy above the energy
gap is given by ΓFGR = dPγ/dt where

ΓFGR =
2

π~2

∫ ∞

0

sinh2 η

cosh3 η
S (ω∆ cosh η) dη; (11)

a result known as the Fermi golden rule.29

We are interested in the three particular forms of noise
spectrum

S(ω) =











S0 exp [−~ω/kBT ] , thermal,

S0

[

1 + (ω − ω0)
2/α2

]−1
, Lorentzian,

S0(1− ~βω) ; ~ωβ ≤ 1, QPC,

(12)
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with S0 a characteristic amplitude for the noise spectrum.
The first line corresponds to the equilibrium noise spec-
trum for a contact with a bath at temperature T . The
second line of (12) corresponds to the case of a Lorentzian
shape noise power with a center frequency ω0 and a band-
width α. In the Lorentzian model, the transition between
a quasi-monochromatic noise spectrum when α → 0 and
a quasi-white-noise with all frequencies equally excited
when α → ∞ can be described. The last model we dis-
cuss is the case of the excess noise of a quantum point
contact (QPC). In that case, S0 =

∑

n Tn(1−Tn)e
3V/π~

with Tn the n-th transmission eigenvalue of the barrier
between the wire and an electronic reservoir at zero-
temperature, V the voltage drop of the barrier, and
β = 1/eV (see e.g., Refs. 31).
We start with thermal noise. Since we are interested

in the regime when the Majorana modes are well defined,
we focus on the low temperatures regime T ≪ ∆ as oth-
erwise quasi-particle destroying the quantum memory are
ubiquitous; see Ref. 32 for a more general discussion of
the superconducting qubit systems. In the low temper-
atures limit, the integral in (11) is dominated at small
wave-vectors and we obtain

ΓFGR ≈ 2S0

π~2
e
− ∆

kBT

∫ ∞

0

z2e
− z2

2

∆

kBT dz

=

√

2

π

S0

~2

(

kBT

∆

)3/2

e
− ∆

kBT (13)

as found in the appendix of Ref. 18. The opposite (ex-
perimentally not relevant) limit ∆/kBT ≪ 1 gives a log-
arithmic correction

ΓFGR ≈ 2S0

π~2

[

π

4
− ∆

kBT
ln

∆

kBT

]

(14)

of the decay rate.
Next, we discuss the Lorentzian noise model. The

Fermi golden rule associated to the Lorentzian spectral
density can be calculated exactly, and gives

π~2ΓFGR

2S0
=

α

ω∆
Im

{

1

z20
+

π

4z20

(

2− z20
)

− 2

z20

√

z20 − 1 artanh

√

z0 + 1

z0 − 1

}

(15)

with z0 = (ω0 + iα)/ω∆.
The decay time ΓFGR is plotted on Fig. 2 for different

values of α with respect to the resonance frequency ω0

of the noise spectrum. The superconducting gap is well-
visible in this plot. For small enough α, i.e., for quasi-
monochromatic noise, the decay time ΓFGR is negligible
as long as the noise resonance frequency ω0 is smaller
than the frequency associated with the superconduct-
ing gap ω∆, and then it has a peak a little bit above
the ω0/ω∆ = 1 angular frequency. It then decays first
exponentially when ω0 > ω∆, then as a power law for
ω0/ω∆ ≫ 1. For broader spectrum, the decay rate no

0.4

0.3

0.2

0.1

0
2 6 7 810 ω0/ω∆

3 5

π~2ΓFGR

S0

α/ω∆ = 1

0.5

0.1

FIG. 2: Decay rate ΓFGR of the qubit encoded in the zero
modes of a topological superconducting wire in an environ-
ment having a Lorentzian noise spectrum, Eq. (15), as a func-
tion of the center frequency ω0. The different curves corre-
spond to different values of the broadening α/ω∆ = 0.1, 0.5, 1
as indicated in the plot. The condition ω0 = ω∆ corresponds
to a Lorentzian noise spectrum with its maximum amplitude
at the energy gap.

longer vanishes for frequencies below the gap, but rather
it becomes more flat over larger frequencies: the gap fre-
quency is no more a characteristic frequency since one
can pump a lot of frequencies with approximately the
same amplitude. For even larger bandwidths, i.e., in the
white noise limit, one pumps all the frequencies at an ap-
proximately equal amplitude, so the amplitude to switch
to any high-energy level is almost flat. It is noteworthy
that a broad enough noise spectrum can by itself poisons
the system with quasi-particles. We believe this poison-
ing is not intimately related to our topological model for
the superconducting wire, and may be a more general
issue valid for any kind of superconducting system. Of
course, our model predicts the first excited states to be
at energy ∆ since the zero-energy mode is populated in
our system, whereas the conventional superconductivity
would have an excitation energy above 2∆.

Finally, the Fermi golden rule for a QPC leads to the
result

π~2ΓFGR

4S0
= arctan

1 +
√

1− β2

β
− β

2
ln

√

1− β2 + 1
√

1− β2 − 1

+
β

2

√

1− β2 − π

4
(16)

which is plotted in Fig. 3 as a function of β. For large
voltage difference between the wire and the environment
(small β), the transition amplitude is high, then decay
and goes algebraically to zero for smaller voltages. When
eV ≥ 1, the barrier is no more transmitting, and the
excitation probability Γ goes to zero.
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FIG. 3: Fermi golden rule decay rate ΓFGR of the quantum
memory in proximity to a quantum point contact, Eq. (16),
as a function of β = (eV )−1 representing the inverse voltage
drop across the contact.

III. PROPAGATION ALONG THE WIRE AND
DECOHERENCE IN THE MACRO-MAJORANA

ENCODING

In this section, we evaluate the probability for a quasi-
particle to be excited by an environment and to propa-
gate to the second half of a clean wire. This mechanism
is responsible for a qubit-flip, then destroying the quan-
tum memory in the macro-Majorana encoding of Fig. 1.
Our goal is to calculate the expression

PΓ(t) =

∫ L

L/2

〈

|〈x|U(t) |0〉|2
〉

noise
dx (17)

which is the macro-Majorana equivalent of the corre-
sponding expression Pγ(t) for the local encoding. We
will show that the excited wave-packet propagates at an
effective velocity close to the Fermi velocity. This section
also shows how the Fermi golden rule is recovered when
more microscopic details are taken into account. Indeed,
we will explain that the Fermi golden rule is a valid result
at intermediate times (at infinite times, the probability
saturates, at small times it goes like t2).33,34 Although
the excited quasi-particle should propagate at a group
velocity corresponding to the energy ~ω (Fig. 4), we will
find that the vanishing of the matrix element M(q) close
to the gap only allows excitation of quasi-particles whose
group velocity essentially is given by the Fermi velocity.
Starting from Eq. (17), we arrive after some algebra at

PΓ(t) =
1

~2

∫ L

L/2

dx

∫

dω

2π
S(ω)g2(ω, x, t) (18)

with35

g(ω, x, t) =

∫ t/2

−t/2

dτ
[

e−iωτ 〈x| eiH0τ/~τz |0〉
]

(19)

a generalization of gFGR of the last section. The evalu-
ation of (19) is rather involved and we have moved the

g2(ω, x, t)ω2

∆
ξ

ω∆t

v
g
t
=

2
x

v
F
t
=

2
x

500 1000 1500

16

100

2.4

FIG. 4: Comparison between the asymptotic evaluation of
g2(ω, x, t) and the exact numerical results for a given ω and
x, as a function of time t for x/ξ = 12 and ω/ω∆ = 1.01. The
plots represent the probability distribution for a quasi-particle
excited at an energy ~ω to reach the point x in the time t.
We compare the exact result (solid line) with the asymptotic
expansions Eq. (20) (dashed curve in the main panel) and
Eq. (21) (dashed curve in the inset). We have indicated the
two relevant time-scale 2x/vg corresponding to the group ve-
locity and 2x/vF corresponding to the Fermi velocity.

details to App. B. As a result, the two following asymp-
totic regimes are found written with the dimensionless
variables x̃ = x/ξ, t̃ = ω∆t and ω̃ = ω/ω∆, represent-
ing position and time, and the noise spectrum frequency
rescaled by the superconducting characteristic length and
frequency, respectively:

g((ω − ω∆)t ≫ 1)ω∆ ≈ 4√
ξ

[

sin
(

x̃
√
ω̃2 − 1

)

ω̃

− 4√
π

x̃

t̃3/2

sin

(

(ω̃ − 1)
t̃

2
+

π

4

)

ω̃ − 1









(20)

for large time (ω − ω∆)t ≫ 1 and

g(vF t ≫ x ≫ vgt)ω∆≈ 8√
πξ

x̃

t̃3/2

√

(t̃/2)2 − x̃2

ω̃
√

(t̃/2)2 − x̃2 − t̃/2

× cos

(

√

(

t̃/2
)2 − x̃2 − ω̃

t̃

2
+

π

4

)

(21)

when vF t ≫ x and ωx ≫ vF t
√

ω2 − ω2
∆. The velocity

vg = vF
√

1− ω2
∆/ω

2 represents a group velocity corre-
sponding to the excitation at the frequency ω. Note that
for ω & 1, we have vg ≪ vF whereas for ω ≫ 1 vg ≈ vF .
We discuss the results of g(ω, x, t) for a specific po-

sition x and frequency ω as a function of t, see Fig. 4:
initially, i.e., for t ≤ x/vF , no quasi-particle propagation
has taken place and g(ω, x, t) ≈ 0. At intermediary times
x/vF ≤ t ≤ x/vg equation (21) is valid and the proba-
bility density to have an extra quasi-particle at position
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(a)

(b)

(c)

16

2000 x/ξ

g2(ω, x, t)ω2

∆ξ

x
=

v g
t/
2

x
=

v g
t/
2

x
=

v g
t/
2

16

0 100

4

0 100

x/ξ

g2(ω, x, t)ω2

∆ξ

x/ξ

g2(ω, x, t)ω2

∆ξ

FIG. 5: Plot of g2(ω, x, t) as a function of x with vF t =
1200ξ for different frequencies ω̃ = ω/ω∆. (a): ω̃ = 1.1,
vgt/2 ≈ 500ξ ; (b): ω̃ = 1.01, vgt/2 ≈ 85ξ; (c): ω̃ = 1.001,
vgt/2 ≈ 25ξ. The two first plots are well approximated by a
sine function, according to Eq. (20) up to the group velocity
vgt/2; see the discussion below Eq. (21). The position vgt/2 is
represented by the dot-dashed vertical line in each plot. The
bottom plot (c) corresponds to a frequency very close to the
superconducting gap, when Eq. (20) is not valid.

x oscillates and grows as time is passing up to an (ap-
parent) divergence at the group velocity vg. For large
times t ≥ x/vg equation (20) is valid and the proba-
bility density saturates to a finite value, establishing a
totally delocalized quasi-particle probability distribution
(first term of Eq. (20)) when t → ∞. In between these
two regimes, there is a monotonous increase of the prob-
ability amplitude which we will discuss in more details
below.

Alternatively, we can understand the function
g2(ω, x, t) at a fixed time t as a function of position x, see
Fig. 5. For not too small energies ~ω, Fig. 5 (a) and (b),
the main part of quasi-particle probability distribution is
situated at x ≤ vgt/2 where the result (20) is valid. This

ω
2

∆

∫ L

L/2

g2(ω, x, t)dx ω
2

∆

∫ L

L/2

g2(ω, x, t)dx

(v
g
t
−
L
)/
ξ

(v
g
t
−
L
)/
ξ

(a) (b)

0 ω∆tω∆t
10000 100

0

80

160

0

80

FIG. 6: Integrated probability amplitude
∫ L

L/2
g2(ω, x, t)dx as

a function of time t for a fixed length of the wire L = 40ξ and
for an environment exciting at frequencies ω = 1.2ω∆ (left
panel), and ω = 1.01ω∆ (right panel). A comparison with
the linear slope of (vgt − L)/ξ of Eq. (24) is provided. The
approximation is rather good for large frequencies (left panel)
whereas it fails for small frequencies (right panel).

suggests to approximate g2(ω, x, t) as

g2(ω, x, t) ≈ 16 sin2(x̃
√
ω̃2 − 1)

ω2
∆ξω̃

2
Θ(tvg/2− x), (22)

i.e., using the first contribution of Eq. (20) which en-
capsulates the position and frequency dependency of the
quasi-particles delocalization, and to neglect space con-
tributions above distance vgt/2; here, Θ(x) denotes the
unit-step function.
As a consistency check of this approximation, let us

now discuss how to recover the Fermi golden rule (11) in
the long time limit. Since the Fermi golden rule does not
take into account the space dependency of the probabil-

ity, we have to define Pγ(t) =
∫ L

0

〈

|〈x|U(t) |0〉|2
〉

noise
dx

as the probability for an extra quasi-particle to be found
anywhere in the wire. In comparison with the definition
(17) corresponding to the macro-Majorana encoding, Pγ

corresponds to the local Majorana encoding. Using the
result Eq. (22), we obtain

Pγ(t) ≈
8

π~2

∫

dω
S(ω)

ω2

∫

vgt̃

2vF

0

sin2
(

x̃
√

ω̃2 − 1
)

dx̃.

(23)

For vg t̃/vF ≫
(

ω̃2 − 1
)−1/2

, the sine function in
the integral can be approximated by its mean value
sin2

(

x̃
√
ω̃2 − 1

)

≈ 1/2, and we end up with exactly the
Fermi golden rule (11), provided we use the definitions
ω = ω∆ cosh η and vg = vF tanh η.
Returning to the task to evaluate PΓ using the approx-

imation (22) for g2(ω, x, t). The result is (neglecting fast
oscillatory terms)

PΓ(t) ≈ 4

π~2ξ

∫

dω
S(ω)

ω2
(vgt− L)Θ (vgt− L) (24)
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ω∆t
0 200 400

0

2

PΓ(t)×
(

π!
2
ω∆e

∆/kBT

S0

)

t
=

L
/v

F

FIG. 7: Plot of PΓ(t) in units of S0 exp(−∆/kBT )/π~
2ω∆

from Eq. (17), with respect to time t̃ = ω∆t, for a thermal
noise, when ∆/kBT = 20 and ℓ = 50. We also represented the
characteristic time L/vF corresponding to the propagation
with the Fermi velocity vF see the discussion in the main
text.

for a comparison of the exact result with the approx-
imation given above see Fig. 6. This result seems to
indicates that the qubit start to dephase at a charac-
teristic time L/vg. Note however that last equation is
only correct away from the regime with ω ≈ ω∆ where
vg ≈ vF since the approximation (22) is not valid in this
limit. In fact for energies close to the gap with ω ≈ ω∆

there is no sharp feature visible in PΓ associated with the
group velocity instead PΓ monotonously grows starting
at a time L/vF . In App. B this result is associated to
the fact that the saddle point giving the contribution at
L/vg becomes broad right in the regime where vg ≪ vF .
In conclusion, we find that there is only a sharp feature
at the group velocity visible in the case where vF ≈ vg
and for the case vg ≪ vF where we would expect an in-
crease of the coherence of the quantum memory due to
the slow motion of the quasi-particle the corresponding
feature is washed out. As an example, we have numeri-
cally calculate PΓ for a thermal environment in Fig. 7 at
temperature ∆ = 20kBT . From the plot, it is clear that
the characteristic time for the decoherence of the quan-
tum memory is given L/vF which corresponds to a char-
acteristic speed vF of the involved quasi-particles even
though in a naive picture only particles close to the gap
with vg ≪ vF are excited. The example of the thermal
noise shows that we can approximate coherence time of
the macro-Majorana encoding as tcoh ≈ tFGR+L/vF even
for low temperatures. For typical systems tFGR ≫ L/vF
and thus the macro-Majorana encoding does not pro-
vide better stability than the local encoding via γi. The
quantum memory encoded in the Majorana modes is only
protected due to the gap. In particular, any kind of lo-
cal interaction at frequencies ω ≥ ω∆ in the proximity
of the location of the Majorana mode is sufficient to im-
mediately (up to a small correction of magnitude L/vF )
destroy the quantum memory.

IV. DISCUSSION: DOES DISORDER HELP TO
LOCALIZE THE QUASI-PARTICLES?

Since we have found that the length of the wire does
not increase the coherence time of the quantum memory
in the clean limit studied so far, one might wonder if
disorder which decreases the speed of propagation of the
quasi-particles might help to increase the coherence time.
For the toric code in 2D, it has been shown that disorder
helps to localize the quasiparticles and thus increases the
storage time of the quantum memory36,37 and similar
results have been obtained for a 1D setting very similar
to the one studied here38.
It is quite clear that it is not possible to enter the

regime where the motion of the quasiparticles is diffu-
sive or where they are even localized as p-wave super-
conductivity is known to be fragile to impurities.39,40 In-
deed, p-wave superconductivity has only a particle-hole
symmetry, in contrast to the conventional s-wave super-
conductivity, which also is time-reversal symmetric and
is therefore immune to non-magnetic impurities. Thus,
having a Majorana wire which is strongly disordered does
not help increasing the robustness of the Majorana mode
wire encoding as the p-wave proximity effect is suppressed
when increasing the disorder strength. The case of a
moderate disorder requires more careful attention. As
the physics is not universal in this case, it is necessary to
study a more realistic model of the nanowire including
multiple modes, s-wave pairing, spin-orbit, and a Zee-
man field in this case.10,40 For the moderately dirty sys-
tem, a quasi-classical approach superconducting trans-
port in the form of the Eilenberger equations can be em-
ployed which can be perturbatively expanded for a small
amount of impurities.41,42 A study using the quasi-two-
dimensional version of the s-wave Eilenberger equation
in the presence of strong spin-orbit effect, moderate Zee-
man interaction and few amount of disorder is outside
the scope of the present manuscript and thus postponed
for further studies.

V. CONCLUSION

We have discussed in details the interaction of a clean
topological superconductor wire with an environment,
with the particular emphasis on the propagation of the
excited quasi-particles above the energy gap. The prop-
agation of the quasi-particles becomes important when
one considers the macro-Majorana encoding of the quan-
tum memory. In particular, one would expect that in
this encoding a longer wire would increase the coherence
time of the memory. Calculating the coherence time us-
ing the system-environment coupling as a perturbation,
we found that the quasi-particle excitations generically
propagate at the Fermi velocity (section III) and that
no sharp feature associated with a possible slower group
velocity is present. As the Fermi velocity is typically
rather large, this result implies that the macro-Majorana
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encoding is not more robust than the local encoding for
the case of 1D nanowires. In particular, we have shown
that the probability to excite the zero-energy mode into
excited quasi-particle above the superconducting gap is
the principal mechanism of decay of the quantum mem-
ory encoded in a Majorana clean wire. This work puts
strong constraints on the usefulness of Majorana fermions
as a quantum memory as the coherence time is only dic-
tated by the size of the gap without an additional benefit
due to the length of the wire.
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Appendix A: p-wave superconducting wire of length
L

In this appendix, we discuss the general solutions of
the Bogoliubov-de Gennes Hamiltonian associated with
a superconducting system in the p-wave state. Then we
calculate the midgap states associated with the boundary
of a semi-infinite p-wave wire in contact with a topolog-
ically trivial vacuum of particle. Finally, we discuss the
finite length wire system embedded in vacuum. We cal-
culate both the zero-energy Majorana modes located at
the two ends of the wire, in addition to the full spec-
trum of excited quasi-particles states. We also discuss
shortly the limiting case of a wire longer than the super-
conducting coherence length, the regime studied in the
main paper.
The model at hand is a spinless p-wave Bogoliubov-de

Gennes (BdG) Hamiltonian

HBdG =

(

p2

2m
− µ0

)

τz +∆x
p

pF
τx −∆y

p

pF
τy (A1)

with p the momentum, m the effective mass of the elec-
trons, µ0 = p2F /2m the chemical potential, pF the Fermi
momentum, and ∆0 = ∆x+ i∆y the superconducting or-
der parameter. The Pauli matrices τ i act on the particle-
hole space, and are useful to describe the symmetries of
the system. The p-wave model is used for exotic phase
of superfluid and superconductors (see Refs. 22,43 for
instance), and exhibits two topological sectors in one di-
mension, being in the class D, with only a particle-hole
(P-type) symmetry P = Kτx such that {H,P} = 0 with
K the complex conjugation operator, see e.g., Refs. 44,45.
When the gap is small with respect to the Fermi level

∆ ≪ µ0, one can describe the physics of supercon-
ductivity in the linear approximation of the spectrum

close to the Fermi level, the so-called Andreev or quasi-
classic approximation. It supposes the chemical poten-
tial µ0 = vF pF /2 to be the Fermi level, and then to
expand the band structure (p2 − p2F ) close to the Fermi
level, where we must specify the direction of propaga-
tion. We can in practice do that in a 4 × 4 Hamiltonian
constructed from HBdG. Then, the linearization approx-
imation also requires to specify the direction of propaga-
tion p/pF ≈ sgn(p) for the gap. We then obtain H0 of
the full text, see Eq. (1). Note that due to the projec-
tion in the propagation basis, both HBdG and H0 have
the same P-type symmetry with P = Kτx. In short,
the Andreev approximation must preserve the topologi-
cal classification, at the expense of doubling the number
of degrees of freedom. This doubling in the degrees of
freedom is nevertheless compensated by the degeneracy
of H0, since [H0, τ

zσz ] = 0. Defining the Hamiltonians
(using ∆x = ∆cosϕ and ∆y = ∆sinϕ with ϕ the super-
conducting phase)

Hpσ =

(

σvF (p− σpF ) σ∆eiϕ

σ∆e−iϕ −σvF (p− σpF )

)

(A2)

with σ = ±1 representing the two sectors (i.e., the eigen-
values) of τzσz . One mixes these sectors when showing
that

Φ± = α1

(

±eiϕ

eiγ

)

eipF x/~e±
x
ξ
sin γ

+ α2

(

±eiϕ

e−iγ

)

eipF x/~e∓
x
ξ
sin γ+

+ α3

(

∓eiϕ

eiγ

)

e−ipF x/~e∓
x
ξ
sin γ+

α4

(

∓eiϕ

e−iγ

)

e−ipF x/~e±
x
ξ
sin γ (A3)

is a superposition of the solutions of Hp+ and Hp− at
the same energy. The index notation in Φ± represents
the two different energies ±∆cosγ, and the αi are con-
stants. We parametrized ε/∆ = cos γ for the ener-
gies below the gap. The solutions above the gap are
found by the substitution γ 7→ −iη such that the real
exponential become some plane-wave with wave-vector
parametrized as qξ = sinh η and ε/∆ = cosh η, and thus
(ε/∆)2 − (qξ)2 = 1 corresponds to a relativistic disper-
sion relation above the gap. Below the gap the dispersion
relation parametrizes a circle.

1. Midgap states for a semi-infinite wire

We calculate the midgap state at the interface of a
semi-infinite wire in the half-line x > 0 with a vacuum
located at x < 0 for ϕ = 0. We essentially follow Ref. 26.
This simple example of the Andreev scattering formal-
ism allows us to explicitly construct the second quantized
version of the Majorana mode, as is usually discussed in
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literature. This might be useful for some readers, since
the pure wave-function formalism is not so widely used
when discussing Majorana mode physics.
We can concentrate on the positive energy eigenstates

Φ+ only from Eq. (A3). Only the exponential decaying
waves must be considered in the semi-infinite geometry.
At the x = 0 interface, the wave function going to the
left must be equal to the right moving wave, since there
is a particle vacuum in the x < 0 space. Then, we impose
Φ(x = 0) = 0. This leads to the wave-function

Φ0 = 2αi

(

1
−i

)

e−x/ξ sin(kFx) (A4)

where the amplitude of the normalization constant α =
Neiφ is determined by the normalization condition as
N = (2ξ)−1/2 (we separate the scales L ≫ ξ ≫ 2πk−1

F ),
whereas the phase convention is given by the necessity
for the spinor Φ0 to describe a real (self-adjoint) solution
of the particle-field operator (second quantized version
of the Bogoliubov-de Gennes formalism) for symmetry
reason, in particular since {H0,P} = 0. Then, we choose
φ = −π/4. This leads to

Φ0 =

√

2

ξ

(

eiπ/4

e−iπ/4

)

e−x/ξ sin(kFx) (A5)

such that the second-quantized operator representation
is (the second quantized version of the spinor are repre-
sented by hats, and c and c† are the usual annihilation
and creation operator for fermionic particles)

Φ̂0(x) =
1√
ξ

∫

dx

{

e−x/ξ sin(kFx)

×
[

eiπ/4c(x) + e−iπ/4c†(x)
]

}

(A6)

and we clearly have Φ̂†
0 = Φ̂0. We also remark that

Φ0 = KτxΦ0, and is thus invariant under the particle-
hole symmetry of the model. Finally, note that the mode
we have found is a zero energy mode ε = ∆cos γ = 0.
As a final remark for this section, note that the pres-

ence of the Fermi scale kFx is mandatory for the func-
tion Φ(x) to be an explicit wave-function satisfying the
proper boundary condition Φ(0) = 0. When sin(kFx) is
neglected in the above expressions, it is not possible to
attribute a momentum to the wave-function. Said dif-
ferently, omitting the sin(kFx) factor leads to unphysical
imaginary eigenvalues of the momentum operator (which
is not Hermitian for wavefunctions with Φ(0) 6= 0). Here,
it is easy to show that the wave-function Φ(x) minimizes
the Heisenberg uncertainty relation.

2. Wire of finite length L

We now discuss the situation of a finite length super-
conducting wire in the region 0 ≤ x ≤ L surrounded by a

vacuum. We will calculate the midgap states in addition
to the excited states at energies ε ≥ ∆ above the gap.
Then, we simplify the problem in the case of a long wire
ℓ = L/ξ ≫ 1, when one can focus on only half of the
Majorana states and when the excited states reduce to
sine like wave-functions.
Since we discuss a finite wire geometry, the full solution

(A3) must be used. The geometry imposes Φ(x = 0) =
Φ(x = L) = 0. One obtains

(Ξ− 1)(Ξ + 1) = 0 ; Ξ =
sinh(ℓ sin γ) cos γ

sin(kFL) sin γ
(A7)

for the dispersion relation. For a given wire length ℓ and a
given Fermi momentum kF , the dispersion relation gives
two modes γ± corresponding to Ξ = ±1, respectively.
The associated αi are



















α1 = −
(

Ξe−ikFL + e−ℓ sin γ
)

α2 = Ξe−ikFL + eℓ sin γ

α3 = ΞeikFL + eℓ sin γ

α4 = −
(

ΞeikFL + e−ℓ sin γ
)

(A8)

We obtain then

Φ =
1

N

∑

±

(

u±
v±

)

(A9)

for the eigenmodes with

u±
i

= ± sinh

(

x− L

ξ
sin γ±

)

sin(kFx)

− sinh

(

x

ξ
sin γ±

)

sin (kF (x− L)) (A10)

and

v± = cosh

(

x− L

ξ
sin γ±

)

sin(kFx) sin γ±

± cosh

(

x

ξ
sin γ±

)

sin (kF (x− L)) sin γ±

− sinh

(

x− L

ξ
sin γ±

)

cos(kFx) cos γ±

∓ sinh

(

x

ξ
sin γ±

)

cos (kF (x− L)) cos γ± (A11)

and the total wave function is a superposition of the two
spinor with indices ±. The functions u+ ± u− are rep-
resented on Fig. 8. The other functions are similar, and
are thus not represented.
For a long wire, the dispersion relation gives γ± ∼

π/2 ± e−ℓ, corresponding to a zero-energy mode up to
the exponential correction describing a pair of solutions.
This leads to two spinors

ΦL,R =
1

NL,R

(

u+ ± u−
v+ ± v−

)

(A12)
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L

0 x

L = 25ξ

L

0 x

L = 6ξ

FIG. 8: Plot of the wave-functions u+(x/L)± u
−
(x/L) given

in Eq. (A12) for different length of the p-wave superconduc-
tivity wire: the left figure is for ℓ = L/ξ = 6 whereas the right
figure corresponds to ℓ = 25. The two modes, located on the
left and right edge of the wire, are clearly separated on the
second picture. The wave-functions v+ ± v

−
look the same,

and are therefore not represented. We choose kFL = 180 for
both plots.

localized on the left and on the right of the wire, respec-
tively. Adjusting the norm and the phase of the spinor
exponentially decaying to the right, ΦL ≈ Φ0 as found in
Eq. (A5).
We now discuss the excited states in the real space

representation. They are given by the substitution γ 7→
−iη in all the previous expressions. It consists essentially
in changing all hyperbolic functions to trigonometric ones
for the functions with γ argument; the functions with
kFL are obviously not changed. The dispersion relation
reads (X − 1)(X + 1) = 0 with

X = Ξ(γ = −iη) =
sin(ℓ sinh η) cosh η

sin(kFL) sinh η
(A13)

for instance; and the amplitudes follow from Eq. (A8)
replacing Ξ by X .
The function X(η) is a cardinal sine for short η

(when cosh η ≈ 1) whereas it has accelerating oscilla-
tions at large η as sin(ℓ sinh η) (when cosh η/ sinh η =
(tanh η)−1 ≈ 1). So we can approximate the first solu-
tions for long wire ℓ ≫ 1 as

sinh η± ≈ nπ

ℓ
± (−1)n sin(kFL)

nπ

ℓ2
(A14)

with n = 1, 2, . . ., The precision increases with a power
law ℓ−1 only, but it is still sufficient. The term ℓ−2 shows
how the solutions come in pairs. We can thus combine
u+ ± u− and i(v+ ± v−) (the factor i is added in front of
the v’s such that the corresponding wave-function is real,
it corresponds to a global phase factor), where u± and
v± are the up (u) and down (v) components of the spinor
corresponding to the solutions η±, respectively. The first
excited states are plotted in Fig. 9.
In the long wire limit, a good approximation for the

excited mode is just

Φn(x) = N

(

−1
1

)

sin(kFx) sin
(πx

L

)

+O(ℓ−1) (A15)

(a)

L0 x

(b) (c)

FIG. 9: Plot of the wave-functions u++u
−
for the first excited

modes n = 1 (a) n = 2 (b), and n = 3 (c) computed from
Eq. (A14) and Eq. (A3) with the coefficients (A8) for a wire of
length ℓ = L/ξ = 55. The limit as the sine function is clearly
demonstrated. The wave-functions u+ − u

−
and i(v+ ± v

−
)

look the same, and are therefore not represented. We choose
kFL = 180 for all these plots.

with N =
√

2/L the norm of the spinor. This is the one
used in the main text, see (3). Note that in the main text,
we replace πx/L ≈ nπx/L = q such that the previous
pure sine functions are valid only for long wires and for
energies close to the gap. We numerically checked the
difference between the approximate solution (3) and the
exact ones (A8) (with proper replacement Ξ(γ) 7→ X(η)
of course) in term of the interaction matrix element (5)
without finding discrepancy in the long wire limit ℓ → ∞.

More explicitly, one can show that the complete so-
lutions Φ(x) for the excited states from Eq. (A9) (af-
ter replacement of γ 7→ −iη of course) and the solu-

tion Φ0(x) from Eq. (A5) satisfies
∫ L

0
dx

[

Φ†
0(x)Φ(x)

]

≈

e−ℓ whereas
∫ L

0 dx
[

Φ†
0(x)τ

zΦ(x)
]

≈ ℓ−1/2 in the long

wire limit. When calculating the overlap of the zero-
energy mode and the excited ones, the exponential decay
comes from the neglect in the expression of Φ0(x) of the
zero-energy mode situated at the right-end edge of the
wire, this latter scaling as e−ℓ. The calculation can be
done straightforwardly in the scale separation limit when
sin2(kFx) ≈ 1/2, but this calculation has no specific in-
terest to be written here, since the manipulation of the
expression (A9) is rather cumbersome. It nevertheless
justifies the use of the interaction element (5) in the main
text, in addition to the use of the approximate excited
states (3).

Appendix B: Evaluation of Eq. (19)

In this section, we give some details about the evalu-
ation of Eq. (19). Especially, we comment the absence
of specific propagating mode at a velocity well below the
Fermi velocity.
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We start by rewriting Eq. (19) in the form46

g(ω, x, t) =
2

π
√
ξ

∫ t/2

−t/2

dτ

∫ ∞

0

dη

×
[

e−i(ω−ω∆ cosh η)τ tanh η sin

(

x

ξ
sinh η

)]

. (B1)

Then we follow asymptotic methods evaluation of
integrals.47 We first evaluate the integral over η, defining

I(x < vF τ) =

∫ ∞

0

dη tanh η sin(x̃ sinh η)eiτ̃ cosh η

=
1

2i

∫ ∞

−∞
dη tanh ηei(τ̃

√
1−ṽ2 cosh(artanh ṽ+η)) (B2)

with x̃ = x/ξ, τ̃ = ω∆τ and ṽ = x̃/τ̃ = x/vF τ . The
above expression is valid for ṽ < 1. One needs to use

I(x > vF τ) =

1

2i

∫ ∞

−∞
dη tanh ηei(τ̃

√
ṽ2−1 sinh(artanh ṽ−1+η)) (B3)

when ṽ > 1. These two limits are incompatible in the
sense that I ∼ − ln

√
x̃2 − τ̃2 when ṽ → 1. So we have a

first indication that (one of) the dominant contribution
for the complete integral appears in the limit of Fermi
velocity propagation x ≈ vF t.
For vF τ ≫ x, one can deform the integral contour to

η = z−artanh ṽ+i arcsin(tanh z) with z the new integra-
tion variable. This path goes through the saddle-point at
η0 = i

√
τ̃2 − x̃2. There is obviously no other complica-

tion in the I(x, τ) integral. Conventional evaluation then
leads to

I(x ≪ vF τ) ≈
√

π

2
e3iπ/4ei

√
τ̃2−x̃2 x̃

τ̃3/2
(B4)

for this integral limit.
The second limit vF τ ≪ x has a stationary point at

η0 = − artanh ṽ−1 + iπ/2 and its asymptotic

I(x ≫ vF τ) ≈ − π√
2
e−x̃ + i

√

π

2
e−x̃

(

τ̃√
x̃
+

τ̃2

x̃

)

(B5)

is easily obtained. For the moment we obtained a propa-
gating wave-like behavior at velocity vF for large time τ
and a Majorana localized wave-packet at position larger
than vF τ . In other words, if an observer sits at the posi-
tion x, the probability amplitude to find an extra quasi-
particle is exponentially weak for times τ < x/vF and
has a power law decay on time for longer times.
To calculate the time integral, one uses that

∫ t/2

−t/2 e
iωτdτ = 2Re

{

∫ t/2

0 eiωτdτ
}

such that one can con-

vert J(x, t) =
∫ t/2

−t/2
dτ

[

e−iωτI(x, τ)
]

into an integral

over positive τ only, since this is the only regime we calcu-
lated before. Note that J = π

√
ξg/2 is just proportional

to the g(ω, x, t) integral for which the above trick applies.

The integral J(x, t) = 2Re {j(x, t)} must be split in two
parts j(x, t) = j1(x, t) + j2(x, t) with

j1(x, t) =

∫ x/vF

0

I(x ≫ vF τ)e
−iωτdτ ∝ e−x/ξ (B6)

which disappears when one integrates g2 for long wire,
in the calculation of the PΓ(t). We will no more discuss
this regime, which can be exactly calculated if required,
but it is not relevant in the limit ℓ ≫ 1. The second
contribution reads

j2(x, t) =

∫ t/2

x/vF

I(x ≪ vF τ)e
−iωτdτ (B7)

for the propagating wave-like integral. This latter inte-
gral can be evaluated by integration by part, since the
dominant contributions arise at the boundaries. It gives

ω∆j2 ≈ −
√

π

2
e3iπ/4x̃

[

e−iω̃x̃

x̃5/2
−

ei
√

(t̃/2)2−x̃2

e−iω̃t̃/2

(t̃/2)3/2
i
√

(t̃/2)2 − x̃2

ω̃
√

(t̃/2)2 − x̃2 − t̃/2

]

(B8)

with t̃ = ω∆t, x̃ = x/ξ, and ω̃ = ω/ω∆). The expres-

sion is valid when x/vF t ≫
√

ω2 − ω2
∆/ω = vg/vF , i.e.,

when the Fermi velocity is larger than the effective group
velocity vg associated to the noise spectrum density at
frequency ω. In the following we neglect the last contri-
bution of j2, since it is time independent. Eq. (B8) leads
to Eq. (21) of the main text, after taking twice the real
part and neglecting the first line contribution, which is
not time dependent.
In the opposite limit of a large effective group velocity,

the integral j2 has a saddle-point. To take into account
this saddle-point obliged to consider the regime

(ω̃2 − 1)3/2

t̃
≪ x̃

t̃
≪

√
ω̃2 − 1

ω̃
(B9)

which in practice imposes the effective group velocity to
be close to its maximum value vg ≈ vF , since ω/ω∆ is
bounded to 1 in order to make all the results valid, which
means that there is no excitation frequencies below the
gap. In that case, the integral equals

j2(vg ≈ vF ) ≈ i
π√
2ω∆

e−ix̃
√
ω̃2−1

ω̃3/2x̃
(B10)

and thus correspond to an effective wave traveling at the
effective group velocity vg only when vg ≈ vF in order
for the condition (B9) to be verified, so this regime never
dominates in the final integral.
We carefully checked this point numerically as well.

We never found a situation when the contribution j2(vg)
is relevant, except when vg ≈ vF , in which case the con-
tribution (B10) is well weaker than the dominant contri-
bution (B8) and can be safely discarded, as we do in the
main text.
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One still has to know the long time behavior of the full
integral g(ω, x, t), when time is the largest parameter of
the integral. This can be done by rewriting

g(ω, x, t) =
4

πω∆

√
ξ

∫ ∞

1

dz

× sin
(

x̃
√
z2 − 1

)

z

sin
(

t̃ (ω̃ − z) /2
)

ω̃ − z
(B11)

after the time integration is performed. When t̃ → ∞,
the integral is peaked at z = ω̃, so the first quotient can
be ejected from the integral for the dominant contribu-
tion and the lower boundary can then be replaced by
−∞, and the remaining integral gives π. The latter ar-
gument is equivalent to saying that sin(ωt)/πω behaves
like a delta function δ(ω) when t → ∞. One obtains then

lim
τ→∞

g(ω, x, τ) =
4

ω
√
ξ
sin

(

x̃
√

ω̃2 − 1
)

(B12)

for the leading term. The next correction term is ob-
tained by an expansion at z = 1− iǫ for small ǫ. It gives
finally

g(x, (ω − ω∆)t ≫ 1) ≈ 4

ω
√
ξ
sin

(

x̃
√

ω̃2 − 1
)

− 8

ω∆

√
πξ

x̃

t̃3/2

sin

(

(ω̃ − 1)
t̃

2
+

π

4

)

ω̃ − 1
(B13)

for large time. Thus the integral goes to a finite value at
infinite time, oscillating in space with a small wave-vector
√

ω2 − ω2
∆/vF when the noise frequency approaches the

gap frequency. On top of these spatial oscillations, there
is some wiggling time behavior with long waves, too.
Eq. (B13) leads to Eq. (20) in the main text.

It is pretty difficult to compare our asymptotic expan-
sions at each step of the calculation, since all the integrals
are difficult to integrate even numerically. Nevertheless,
to compare our asymptotic results with the exact integral
J(x, t), we neglect the j1 contribution as it is exponen-
tially small; i.e., we compare (twice the real part of)
Eq. (B8) in the short time limit and Eq. (B13) valid for
long time with the numerical evaluation of the complete
integral Eq. (19). Some characteristic curves are given in
Fig. 4.
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