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Abstract. In this paper we consider the existence of multi-soliton structures
for the nonlinear Klein-Gordon equation (NLKG) in R1+d. We prove that,
independently of the unstable character of (NLKG) solitons, it is possible to
construct a N -soliton family of solutions to (NLKG), of dimension 2N , globally
well-defined in the energy space H1 × L2 for all large positive times. The
method of proof involves the generalization of previous works on supercritical
NLS and gKdV equations by Martel, Merle and the first author [3] to the
wave case, where we replace the unstable mode associated to the linear NLKG
operator by two generalized directions that are controlled without appealing to
modulation theory. As a byproduct, we generalize the linear theory described
in Grillakis-Shatah-Strauss [10] and Duyckaerts-Merle [7] to the case of boosted
solitons, and provide new solutions to be studied using the recent Nakanishi-
Schlag [24] theory.

1. Introduction

In this paper we are interested in the problem of constructing multi-soliton solutions
for some well-known scalar field equations. Let f = f(s) be a real-valued C 1-
function. We consider the nonlinear Klein-Gordon equation (NLKG) in R1+d, d ≥ 1,

∂ttu−∆u+ u− f(u) = 0, u(t, x) ∈ R, (t, x) ∈ R× Rd. (NLKG)

This equation arises in Quantum Field Physics as a model for a self-interacting,
nonlinear scalar field, invariant under Lorentz transformations (see below).

Let F be the standard integral of f :

F (s) :=

∫ s

0

f(σ)dσ. (1)

We will assume that for some fixed constant C > 0,
(A) If d = 1,

(i) f is odd, and f(0) = f ′(0) = 0, and

(ii) There exists s0 > 0 such that F (s0)− 1

2
s2

0 > 0.

(B) If d > 2, f is a pure power H1-subcritical nonlinearity: f(u) = λ|u|p−1u,
where λ > 0, p ∈ (1, 1 + 4

d−2 ).
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Prescribing f to the above class of focusing nonlinearities ensures that the corre-
sponding Cauchy problem for (NLKG) is locally well-posed in Hs(Rd)×Hs−1(Rd),
for any s > 1: we refer to Ginibre-Velo [12] and Nakamura-Ozawa [23] (when d = 2)
for more details.

Also under the above conditions, the Energy and Momentum (every integral is
taken over Rd)

E[u, ut](t) =
1

2

∫ [
|∂tu(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2 − 2F (u(t, x))

]
dx, (2)

P [u, ut](t) =
1

2

∫
∂tu(t, x)∇u(t, x) dx, (3)

are conserved along the flow.

Another important feature of equation (NLKG), still under the previous conditions,
is the fact that it admits stationary solutions of the form u(t, x) = U(x) (i.e., with
no dependence on t). Among them, we are interested in the ground-state Q = Q(x),
where Q is a positive solution of the elliptic PDE

∆Q−Q+ f(Q) = 0, Q > 0, Q ∈ H1(Rd). (4)

The existence of this solution goes back to Berestycki-Lions [1], provided the above
conditions (in particular (ii)) hold. Additionally, it is well-known that Q is radial
and exponentially decreasing, along with its first and second derivatives (Gidas-Ni-
Nirenberg [9]), and unique up to definition of the origin (see Kwong [14], Serrin and
Tang [27]).

In fact, our main result written below could be extended to more general nonlinear-
ity under an additional assumption of spectral nature, namely that the linearized
operator around Q has a standard simple spectrum. More precisely, Theorem 1
holds, as soon as f satisfies (i), (ii) and:

(iii) If d = 2, |f ′(s)| 6 C|s|peκs2 , for some p > 0, κ > 0 and all s ∈ R.
(iv) If d > 3, |f ′(s)| 6 C(1 + |s|p−1) for some p < 1 +

4

d− 2
and all s ∈ R.

(v) −∆z + z − f ′(Q)z has a unique simple negative eigenvalue, and its kernel
is given by {x · ∇Q|x ∈ Rd} and it is nondegenerate.

Assumption (v) has been checked in the cases (A) and (B) (using ODE analysis),
and is believed to hold for a wide class of functions f . (See Lemma 4.)

Since (NLKG) is invariant under Lorentz boosts, we can define a boosted ground
state (a soliton from now on) with relative velocity β ∈ Rd. More precisely, let
β = (β1, . . . , βd) ∈ Rd, with |β| < 1 (we denote | · | the euclidian norm on Rd), the
corresponding Lorentz boost is given by the (d+ 1)× (d+ 1) matrix

Λβ :=


γ −β1γ · · · βdγ
−β1γ

... Idd +
(γ − 1)

|β|2
ββT

−βdγ

 where γ :=
1√

1− |β|2
, (5)
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(ββT is the d × d rank 1 matrix with coefficient of index (i, j) βiβj). Then the
boosted soliton with velocity β is

Qβ(t, x) := Q

(
Λβ

(
t
x

))
, (6)

where with a slight abuse of notation we say that Q(t, x) = Q(x) (namely we
project on the last d coordinates). Also notice that (NLKG) is invariant by space
translation (shifts). Hence the general family of solitons is parametrized by speed
β ∈ Rd and shift (translation) x0 ∈ Rd:

(t, x) 7→ Qβ(t, x− x0).

This family is the orbit of {Q} under all the symmetries of (NLKG) (general Lorentz
transformation, time and space shifts), in particular it is invariant under these
transformations: see the Appendix A for further details.

In the rest of this work, it will be convenient to work with vector data (u, ∂tu)T .
For notational purposes, we use upper-case letters to denote vector valued functions
and lower-case letters for scalar functions (except for the scalar field Qβ).

We will work in the energy space H1(Rd) × L2(Rd) endowed with the following
scalar product: denote U = (u1, u2)T , V = (v1, v2)T , we define

〈U |V 〉 =

〈(
u1

u2

)∣∣∣∣(v1

v2

)〉
:= (u1|v1) + (u2|v2) =

∫
(u1v1 + u2v2), (7)

where (u|v) :=

∫
uv,

and the energy norm

‖U‖2 := 〈U |U〉+ (∇u1|∇u1) = ‖u1‖2H1 + ‖u2‖2L2 . (8)

It is well known (see e.g. Grillakis-Shatah-Strauss [10]) that (Q, 0) is unstable1 in
the energy space. The instability properties of Q and solution with energy slightly
above E[(Q, 0)] have recently been further studied by Nakanishi and Schlag, see [24]
and subsequent works. Their ideas are further developments of the primary idea
introduced in Duyckaerts-Merle [6], in the context of the energy critical nonlinear
wave equation (where the relevant nonlinear object is the stationary function W
which solves ∆W +W 1+4/(d−2) = 0).

In this paper, we want to understand the dynamics of large, quantized energy
solutions. More precisely, we address the question whether is it possible to construct
a multi-soliton solution for (NLKG), i.e. a solution u to (NLKG) defined on a semi-
infinite interval of time, such that

u(t, x) ∼
N∑
j=1

Qβj
(t, x− xj) as t→ +∞.

Such solutions were constructed for the nonlinear Schrödinger equation and the
generalized Korteweg-de Vries equation, first in the L2-critical and subcritical case
by Merle [18], Martel [16] and Martel-Merle [19]. These results followed from the
stability and asymptotic stability theory that these authors developed.

1This result was known in the physics literature as the Derrick’s Theorem [5].
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The existence of multi-solitons was then extended by Martel-Merle and the first
author [3] to the L2 supercritical case: in this latter case, each single soliton is
unstable, hence the multi-soliton is a highly unstable solution. It turns out that this
is also the case for scalar field equations as (NLKG). We prove that, regardless of the
instability of the soliton, one can construct large mass multi-solitons, on the whole
range of parameters β1, . . . , βN ∈ Rd distinct, with |βj | < 1 and x1, . . . , xN ∈ Rd.
More precisely, the main result of this paper is the following.

Theorem 1. Assume (A) or (B), and let β1, β2, . . . , βN ∈ Rd be a set of different
velocities

∀i 6= j, βi 6= βj , and |βj | < 1,

and x1, x2, . . . , xN ∈ Rd shift parameters.
Then there exist a time T0 ∈ R, constants C > 0, and γ0 > 0, only depending on
the sets (βj)j, (xj)j, and a solution (u, ∂tu) ∈ C ([T0,+∞), H1(Rd) × L2(Rd)) of
(NLKG), globally defined for forward times and satisfying

∀t > T0,
∥∥∥(u, ∂tu)(t, x)−

N∑
j=1

(Qβj , ∂tQβj )(t, x− xj)
∥∥∥ 6 Ce−γ0t.

We remark that this is the first multi-soliton result for wave-type equations. Al-
though the nonlinear object under consideration is the same as for (NLS) for ex-
ample, the structure of the flow is different (recall that all solitons are unstable for
(NLKG), irrespective of the nonlinearity). Hence we need to work in a more general
framework, the one given by a matrix description of (NLKG).

Let us describe the main steps of the proof. We first revisit the standard spectral
theory of linearized operators around the soliton, and the second order derivative
of the energy-momentum functional (see H in (14)) [10]. Since solitons are unstable
objects, it is clear that such a theory will not be enough to describe the dynamics
of several solitons. However, a slight variation of this functional (see H in (24))
turns out to be the key element to study. We describe its spectrum in great detail,
in particular we prove that this operator has three eigenvalues: the kernel zero, and
two opposite sign eigenvalues, with associated eigenfunctions Z±. After some work
we are able to prove a coercivity property for the operator H modulo the two
directions Z+ and Z−. This analysis was first conducted by Pego and Weinstein
[25] in the context of generalized KdV equations.

The rest of the work is devoted to the study of the dynamics of small perturbations
of the sum of N solitons, in particular how the two directions associated to Z±
evolve. Using a topological argument, we can show the existence of suitable initial
data for (NLKG) such that both directions remain controlled for all large positive
time, proving the main theorem. We remark that this method is general and does
not require the study of the linear evolution at large, but also a deep understanding
of suitable alternative directions of the linearized operator. A nice open question
should be the extension of this result to the nonlinear wave case, where the soliton
decays polynomially.

For the sake of easiness and clarity, we present the detailed computations in the one
dimensional case d = 1. This case encompass all difficulties, the higher dimension
case adding only indices and notational inconvenience: we will briefly describe the
corresponding differences at the end of each section.

4



Organization of this paper. In Section 2, we develop spectral aspects of the
linearized flow around Qβ , which are more subtle than in the (NLS) or (gKdV)
case. In Section 3, we construct approximate N -soliton solutions in Proposition 3,
which we do by estimation backward in time as in [18, 16, 19]. There we present
the nonlinear argument, relying in fine on a topological argument as in [3]. The
Lyapunov functional has to be chosen carefully, as we cannot allow mixed derivatives
of the form ∂txu. Finally in Section 4, we prove Theorem 1, relying on the previously
proved Proposition 3 and a compactness procedure.

Acknowlegment
We would like to thank Wilhelm Schlag for pointing us this problem and for en-
lightening discussions. We are deeply indebted to the anonymous referee, who we
thank for his thorough reading and comments which improved the manuscript sig-
nificantly.

2. Spectral theory

In this section we describe and solve two spectral problems related to (NLKG). We
will work with functions independent of time, unless specified explicitly. The main
result of this section is Proposition 2.

2.1. Coercivity of the Hessian. First of all, we recall the structure of the Hessian
of the energy around Q. Given Q = Q(x) ground state of (4) and Qβ(x) = Q(γx),
where γ = (1− β2)−1/2, we define the operators

L+ := −∂xx + Id−f ′(Q), and L+
β = −γ−2∂xx + Id−f ′(Qβ), (9)

so that L+
β is a rescaled version of L+:

L+
β (v (γx)) = (L+v) (γx) .

As a consequence of the Sturm-Liouville theory and the previous identity, we have
the following spectral properties for L+, and therefore for L+

β .

Lemma 1. The unbounded operator L+, defined in L2(R) with domain H2(R),
is self-adjoint, has a unique negative eigenvalue −λ0 < 0 (with corresponding L2-
normalized eigenfunction Q−) and its kernel is spanned by ∂xQ. Moreover, the
continuous spectrum is [1,+∞), and 0 is an isolated eigenvalue.

We recall that from standard elliptic theory, Q− is smooth, even and exponentially
decreasing in space: there exists c0 > 0 such that

∀ k ∈ N, ∀ x ∈ R, ∃ Ck, |∂kxQ−(x)| 6 Cke−c0|x|. (10)

It is not difficult to check that one can take any c0 satisfying 0 < c0 6
√

1 + λ0.

Another consequence of Lemma 1 is the following fact: L+
β has a unique negative

eigenvalue −λ0 with (even) eigenfunction Q−β (x) := Q−(γx), its kernel is spanned
by ∂xQβ and has continuous spectrum [1,+∞). Additionally, we have

Corollary 1. There exists ν0 ∈ (0, 1) such that, if v ∈ H1(R) satisfies (v|Q−β ) =

(v|∂xQβ) = 0, then (L+
β v|v) > ν0‖v‖2H1 .
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We introduce now suitable matrix operators associated to the dynamics around a
soliton. These operators will be dependent on the velocity parameter β, but for
simplicity of notation, we will omit the subscript β when there is no ambiguity.
Define2

T = Tβ := −∂xx + Id−f ′(Qβ) = L+
β − β

2∂xx, (11)

J :=

(
0 1
−1 0

)
, (12)

L :=

(
T 0
0 Id

)
, (13)

and

H := L− J
(
β∂x 0

0 β∂x

)
=

(
T −β∂x
β∂x Id

)
. (14)

The operator H is the standard second order derivative of the functional for which
the vector soliton R = (Qβ , ∂tQβ)T is an associated local minimizer. Later we
will discuss in detail this assertion. The following Proposition describes the main
spectral properties of H. Recall that 〈·|·〉 and (·|·) denote the symmetric bilinear
forms on H1(R)×L2(R) and L2(R) respectively, introduced in (7), and ‖ · ‖ is the
energy norm defined in (8).

Proposition 1. Let β ∈ R, |β| < 1. The matrix operator H, defined in L2(R) ×
L2(R) with dense domain H2(R)×H1(R), is a self-adjoint operator. Furthermore,
there exist α0 > 0, Φ0, Φ− ∈ S (R)2 (with exponential decay, along with their
derivatives) such that

HΦ0 = 0, 〈Φ0|Φ−〉 = 0, (15)

〈HΦ−|Φ−〉 < 0, (16)
and the following coercivity property holds. Let V = (v1, v2)T ∈ H1(R) × L2(R).
Then,

if 〈V |Φ0〉 = 〈V |HΦ−〉 = 0 one has 〈HV |V 〉 ≥ α0‖V ‖2. (17)

A stronger version of this result was stated by Grillakis, Shatah and Strauss in [10,
Lemma 6.2], but the proof given there contained a gap, as noted in the errata at
the end of [11, page 347]. As a replacement, the Proposition above (weaker than
the original Grillakis-Shatah-Strauss result, but adequate for our purposes) was
proposed in the errata [11], without proof. We have not found a clear definition and
meaning of the function Φ− in [11], so therefore, for the convenience of the reader,
we write the details of the proof in the following lines.

Proof of Proposition 1. It is easy to check that H is indeed a self-adjoint operator.
On the other hand, let V = (v1, v2)T . We have from (14),

〈HV |V 〉 =

〈(
Tv1 − β∂xv2

β∂xv1 + v2

)∣∣∣∣(v1

v2

)〉
= (Tv1|v1)− β(∂xv2|v1) + β(∂xv1|v2) + (v2|v2)

= (L+
β v1|v1) + β2(∂xv1|∂xv1) + 2β(v2|∂xv1) + (v2|v2)

= (L+
β v1|v1) + (β∂xv1 + v2|β∂xv1 + v2). (18)

2Do not confuse with the transpose symbol (·)T .
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Recalling the notation of Corollary 1, we define

Φ0 :=

(
∂xQβ
−β∂xxQβ

)
, Φ− :=

(
Q−β

−β∂xQ−β

)
, (19)

One can check from (18) that 〈Φ0|Φ0〉 6= 0 and 〈HΦ0|Φ0〉 = 0, since L+
β ∂xQβ = 0.

Note additionally that by parity 〈Φ−|Φ0〉 = 0. Therefore, (15) is directly satisfied.
Also notice that

HΦ− = −λ0

(
Q−β
0

)
. (20)

We now prove (17). Let V = (v1, v2)T ∈ H1(R)× L2(R) be satisfying the orthogo-
nality properties

〈V |Φ0〉 = 〈V |HΦ−〉 = 0.

Let us decompose v1 in terms of the nonpositive spectral elements of L+
β , and

L2-orthogonally:

v1 = aQ−β + b∂xQβ + q, (q|Q−β ) = (q|∂xQβ) = 0.

From the orthogonality conditions in (17), we have〈(
v1

v2

) ∣∣∣(Q−β
0

)〉
= 0,

so that a = 0, and hence from Corollary 1,

〈HV |V 〉 = (L+
β q|q) + (β∂xv1 + v2|β∂xv1 + v2) > ν0‖q‖2H1 > 0. (21)

We now argue by contradiction. Assume that there exists a normalized sequence
V n = (vn1 , v

n
2 )T ∈ H1(R)× L2(R) that satisfies the orthogonality properties

〈V n|Φ0〉 = 〈V n|HΦ−〉 = 0, ‖V n‖2 = 1, and such that 〈HV n|V n〉 → 0. (22)

Let us write the L2-orthogonal decomposition for each vn1 :

vn1 = bn∂xQβ + qn, (qn|∂xQβ) = 0.

Then in view of (21) and (22) applied this time to the sequence V n, qn → 0 in H1

and β∂xvn1 + vn2 → 0 in L2. Now we compute

0 = 〈V n|Φ0〉 =

∫
(vn1 ∂xQβ − vn2 β∂xxQβ)

=

∫
vn1 ∂xQβ + β

∫
(β∂xv

n
1 + oL2(1))∂xxQβ

= bn‖∂xQβ‖2L2 + β2

∫
(bn∂xxQβ + ∂xqn)∂xxQβ + o(1)

= bn(‖∂xQβ‖2L2 + β2‖∂xxQβ‖2L2)− β2

∫
qn∂xxxQβ + o(1)

Now qn → 0 in L2, so that (qn|∂xxxQβ) → 0, and hence bn → 0 as n → +∞. But
in this case, vn1 = bn∂xQβ + qn → 0 in H1 and vn2 = β∂xv

n
1 + oL2(1) → 0 in L2.

Hence ‖V n‖2 = ‖vn1 ‖2H1 + ‖vn2 ‖2L2 → 0, a contradiction to (22).

It remains to show that 〈HΦ−|Φ−〉 < 0, namely (16). Indeed,

〈HΦ−|Φ−〉 = −λ0

〈(
Q−β
0

)∣∣∣∣( Q−β
∂xQ

−
β

)〉
= −λ0‖Q−β ‖

2
L2 < 0.

�
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2.2. Eigenfunctions of the linearized flow and Hessian. It is still unclear
whether or not the coercivity property (17) – a key point in the proof of any
stability result – is useful for us, since solitons are actually unstable. It turns out
that for our purposes, we need a different version of Proposition 1, for the linearized
operator of the flow around Q. In order to state such a result, we introduce some
additional notation.

Let β ∈ R, |β| < 1 be a Lorentz parameter, and consider the operators T , J , L and
H defined in (11)-(14). Let

L = L (β) = JL =

(
0 Id
−T 0

)
, (23)

and
H =

(
−β∂x −T

Id −β∂x

)
= −HJ. (24)

Concerning this last operator, we prove the following result.

Lemma 2. Let β ∈ R, |β| < 1, γ = (1−β2)−1/2 and λ0 from Lemma 1. There are
functions Z0 = Z0,β, and Z± = Z±,β, with components exponentially decreasing in
space, satisfying the spectral equations

H Z0 = 0, and H Z± = ±
√
λ0

γ
Z±. (25)

Moreover, by the nondegeneracy of the kernel spanned by Φ0, we can assume Φ0 =
JZ0.

Proof. The proof is similar to that of [10]. In particular, we obtain explicit expres-
sions for Z0 and Z± in the following lines.

The eigenvalue problem H Z = λZ reads now, with Z(x) = (Z1(γx), Z2(γx))T ,

TZ2 + β(Z1)x + λZ1 = 0, Z1 − β(Z2)x − λZ2 = 0, (26)

Replacing Z1 in the first equation above, we get in the variable s = γx (recall that
Qβ(x) = Q(γx)),

−γ2Z ′′2 + Z2 − f ′(Q)Z2 + βγ(λZ ′2 + βγZ ′′2 ) + λ(βγZ ′2 + λZ2) = 0,

namely
− Z ′′2 + Z2 − f ′(Q)Z2 + 2βγλZ ′2 = −λ2Z2. (27)

Performing the transformation Z2(s) := Z̃2(s)eβγλs, where s ∈ R, we get

−Z̃ ′′2 + Z̃2 − f ′(Q)Z̃2 = −(β2γ2 + 1)λ2Z̃2 = −λ2γ2Z̃2.

Therefore, by virtue of Lemma 1 we can take Z̃2 = Q−(s) and λ±γ = ±
√
λ0, where

−λ0 < 0 is the first eigenvalue of the standard Schrödinger operator L+, defined in
(9). Thus,

Z±,2(s) = Q−(s)e±β
√
λ0s.

Note that from (10), Z±,2 decreases exponentially at both sides of the origin, since
|β| < 1 and β

√
λ0 −

√
1 + λ0 < 0 .

From (26), we have

Z±,1(s) = βγZ ′±,2(s) + λ±Z±,2(s)

=
[
βγ(Q−)s ± β2γ

√
λ0Q

− ±
√
λ0

γ
Q−
]
e±β
√
λ0s

8



= γ
[
β(Q−)s ±

√
λ0Q

−]e±β√λ0s.

By the same reasons as above, Z±,1 is an exponentially decreasing function. From
these identities, we have

Z±(x) =

(
γβ(Q−)s(γx)± γ

√
λ0Q

−(γx)
Q−(γx)

)
e±β
√
λ0γx

=

(
β(Q−β )x(x)± γ

√
λ0Q

−
β (x)

Q−β (x)

)
e±β
√
λ0γx. (28)

Now, we consider the computation of Z0. Replacing λ = 0 in (27), we can choose

Z0,2(s) = Q′(s), and Z0,1 = βγQ′′(s),

from which we get

Z0(x) = γ

(
Z0,1(x)
Z0,2(x)

)
= γ

(
βγQ′′(γx)
Q′(γx)

)
=

(
βQ′′β(x)

Q′β(x)

)
. (29)

It is clear that H Z0 = 0. Similarly, we have H Z± = ±
√
λ0

γ
Z±, which proves

(25). �

In order to prove Proposition 2, we need to prove the existence of two additional
functions, both associated to Z±.

Lemma 3. There exist unique functions Y±, with components exponentially de-
creasing in space, such that

HY± = Z±, 〈Φ0|Y±〉 = 0.

Moreover, Y± satisfy the additional orthogonality conditions 〈Y±|HY±〉 = 0.

Proof. Let us prove the existence of Y±. It is well-known that a necessary and
sufficient condition for existence is the following condition: it suffices to check that
Z± are orthogonal to Φ0, the generator of the kernel of H. Indeed, we have from
(25), (24), the self-adjointedness of H and Proposition 1,

〈Φ0|Z±〉 = ± γ√
λ0

〈Φ0|H Z±〉 = ∓ γ√
λ0

〈Φ0|HJZ±〉 = 0.

However, we need some additional estimates on Y±. In what follows, we write
down explicitly the equation HY± = Z±. It is not difficult to check that Y± =
(Y±,1, Y±,2)T satisfies the equations

TY±,1 − β(Y±,2)x = Z±,1, β(Y±,1)x + Y±,2 = Z±,2.

Replacing the second equation in the first one, we get (cf. (9))

L+
β Y±,1 = β(Z±,2)x + Z±,1.

Note that (β(Z±,2)x+Z±,1|∂xQβ) = 0. Therefore, Y±,1 exists and it is exponentially
decreasing, with the same rate as Z±,1 and Z±,2. A similar conclusion follows for
Y±,2.

Since Y± is unique modulo the addition of a constant times Φ0, it is clear that we
can choose Y± such that 〈Φ0|Y±〉 = 0. On the other hand, from Lemma 2,

〈Y±|HY±〉 = 〈Y±|Z±〉 = ± γ√
λ0

〈Y±|H Z±〉 = ∓ γ√
λ0

〈HY±|JZ±〉

9



= ∓ γ√
λ0

〈Z±|JZ±〉 = 0.

�

The main result of this section is the following alternative to Proposition 1.

Proposition 2. There exists µ0 > 0 such that the following holds. Let V ∈ H1×L2

such that 〈Φ0|V 〉 = 0. Then

〈HV |V 〉 ≥ µ0‖V ‖2 −
1

µ0

[
〈Z+|V 〉2 + 〈Z−|V 〉2

]
.

Proof. It is enough to prove that 〈Φ0|V 〉 = 〈Z+|V 〉 = 〈Z−|V 〉 = 0 imply

〈HV |V 〉 ≥ µ0‖V ‖2,
for some µ0 > 0, independently of V . In order to prove this assertion, we first
assume β 6= 0 and decompose orthogonally V and Y± (cf. the previous Lemma) as
follows

V = Ṽ + α−Φ− + α0Φ0, Y± = Ỹ± + δ0Φ0 + δ±Φ−, (30)
with

〈Ṽ |Φ0〉 = 〈Ỹ±|Φ0〉 = 〈Ṽ |HΦ−〉 = 〈Ỹ±|HΦ−〉 = 0. (31)
Since 〈Φ0|Φ−〉 = 〈Φ0|V 〉 = 〈Φ0|Y±〉 = 0 and 〈Φ−|HΦ−〉 < 0, it is clear that
α0 = δ0 = 0 and α−, δ± are well-defined. Moreover,

Claim. For all β ∈ (−1, 1)\{0}, Ỹ+ and Ỹ− are linearly independent as L2(R)2

vector-valued functions with real coefficients.

Indeed, to see this, assume that there is λ̃ 6= 0 such that Ỹ+ = λ̃Ỹ−. Then, from
the previous decomposition and Lemma 3,

Z+ − λ̃Z− = H(Y+ − λ̃Y−) = (δ+ − λ̃δ−)HΦ−. (32)

This identity contradicts (28) and (19), which establish that Z+ and Z− have
essentially different rates of decay at infinity, different to that of HΦ−, for all
β 6= 0, which makes (32) impossible.

The analysis is now similar to that in [7, Lemma 5.2]. We have from (30),

〈HV |V 〉 = 〈HṼ + α−HΦ−|Ṽ + α−Φ−〉 = 〈HṼ |Ṽ 〉+ α2
−〈HΦ−|Φ−〉. (33)

On the other hand, since 〈Z±|V 〉 = 0, we have from Lemma 3,

0 = 〈Y±|HV 〉 = 〈Ỹ± + δ±Φ−|HṼ + α−HΦ−〉 = 〈Ỹ±|HṼ 〉+ α−δ±〈HΦ−|Φ−〉.
Similarly,

0 = 〈HY±|Y±〉 = 〈HỸ±|Ỹ±〉+ δ2
±〈HΦ−|Φ−〉.

We get then

〈HV |V 〉 = 〈HṼ |Ṽ 〉 − 〈Ỹ−|HṼ 〉〈Ỹ+|HṼ 〉√
〈HỸ+|Ỹ+〉〈HỸ−|Ỹ−〉

. (34)

Consider

a := sup
W∈Span(Ỹ+,Ỹ−)\{~0}

∣∣∣∣∣∣ 〈Ỹ+|HW̃ 〉√
〈HỸ+|Ỹ+〉〈HW |W 〉

· 〈Ỹ−|HW̃ 〉√
〈HỸ−|Ỹ−〉〈HW |W 〉

∣∣∣∣∣∣ .
10



Recall 〈H · |·〉 is positive definite on Span(Φ0,Φ−)⊥. Hence apply Cauchy Schwarz’s
inequality to both terms of the product: it transpires that a 6 1. Furthermore, if
a = 1 (as Span(Ỹ+, Ỹ−) is finite dimensional), there exists W of norm 1 such that
both terms are in the equality case in the Cauchy-Schwarz inequality, i.eW and Ỹ+

are linearly dependent, and W and Ỹ− are also linearly dependent. But it would
then follow that Ỹ+ and Ỹ− are linearly dependent, a contradiction the above claim.
This proves a < 1.
Now using H-orthogonal decomposition on Span(Φ0,Φ−)⊥, we deduce that

∀ W ∈ Span(Φ0,Φ−)⊥,

∣∣∣∣∣∣ 〈Ỹ−|HW 〉〈Ỹ+|HW 〉√
〈HỸ+|Ỹ+〉〈HỸ−|Ỹ−〉

∣∣∣∣∣∣ 6 a〈HW |W 〉.
By (34), (31) and (17), we get

〈HV |V 〉 > (1− a)〈HṼ |Ṽ 〉 > α0(1− a)‖Ṽ ‖2 > 0.

and so (33) implies 〈HṼ |Ṽ 〉 > α2
−|〈HΦ−|Φ−〉|.

We then conclude that, for C = 4
(1−a) max

(
1
α0
, ‖Φ−‖2
|〈HΦ−|Φ−〉|

)
,

C〈HV |V 〉 > C(1− a)〈HṼ |Ṽ 〉

>
C(1− a)

2
(〈HṼ |Ṽ 〉+ α2

−|〈HΦ−|Φ−〉|)

> 2‖Ṽ ‖2 + 2α2
−‖Φ−‖2 > ‖Ṽ + α−Φ−‖2 = ‖V ‖2.

Finally, if β = 0, we proceed as follows. First of all, we have from (28) and (19),

Z± = Q−
( ±√λ0

1

)
, Φ0 = Q′

(
1
0

)
,

so that 〈Φ0|V 〉 = 〈Z±|V 〉 = 0 imply (v1|Q′) = (v1|Q−) = (v2|Q−) = 0, where
V = (v1, v2)T . Therefore,

〈HV |V 〉 = (L+v1|v1) + (v2|v2) > ν0‖V ‖2.
�

2.3. Extension to higher dimensions. The equivalent of Lemma 1 (and there-
fore assumption (iv) of the Introduction) in dimension d ≥ 2 has the form

Lemma 4. Assume d > 2 and assumption (B) holds. L+ has exactly one negative
eigenvalue, and its kernel is spanned by (∂xi

Q)i=1,...,d. Its continuous spectrum is
[1,+∞).

Proof. See Maris [15] and McLeod [17]. �

As mentioned in the Introduction, this result is open for general nonlinearity f . In
that case, we need to assume that it holds, i.e. assumption (v).

The null directions for H are now the d-dimensional vector space spanned by the

functions Φ0,i =

(
∂iQ

β.∇∂iQ

)
. In the proof of Lemma 2, one should rather per-

form the transformation Z̃2 = Z2e
−γλβ·x. The rest of the arguments is dimension

insensitive.
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3. Construction of approximate N-solitons

In this section we prove Theorem 1. Again, we will give a detailed proof in the one
dimensional case d = 1, and point out how to extend the proof in higher dimension,
which is done in a similar fashion as in [16].

3.1. The topological argument. We continue with the same notation as in the
previous section. In particular, we fix β ∈ (−1, 1) and consider now the time-
dependent, boosted soliton given by

Qβ(t, x) = Q(γ(x− βt)), γ = (1− β2)−1/2.

Additionally, we suppose given N different velocities β1, . . . , βN ∈ (−1, 1), already
arranged in such a way that

− 1 < β1 < β2 < . . . < βN < 1, (35)

and N translation parameters x1, . . . , xN ∈ R, such that Qβj
(t, x − xj) is the

associated soliton solution of velocity βj and shift xj , j = 1, . . . , N .

Finally, we introduce some notation. Given B a real Banach space, x ∈ B and
r > 0, we denote

BB(x, r) = {y ∈ B | ‖x− y‖B 6 r}
the closed ball in B centered at x of radius r and ‖ · ‖B is the associated Banach
norm on B.

Lemma 5 (Modulation). There exist L0 > 0 and ε0 > 0 such that the following
holds for some C > 0. For any L > L0 and 0 < ε < ε0, t0 ∈ R, if U ∈ H1(R)×L2(R)
is sufficiently near a sum of solitons whose centers are sufficiently far apart,∥∥∥∥∥∥U −

N∑
j=1

(
Qβj

∂tQβj

)
(t0, · − yj)

∥∥∥∥∥∥ 6 ε, min
{
|yj − yi| | i 6= j

}
> L,

then there exist shifts ỹj = ỹj(βj , t0) such that if we define

R̃j(x) :=

(
Qβj

∂tQβj

)
(0, x− ỹj), (36)

R̃(x) :=

N∑
j=1

R̃j(x), (37)

V (x) := U(x)− R̃(x), (38)

then
‖V ‖ 6 Cε, and 〈V |(R̃j)x〉 = 0. (39)

Also, the map U 7→ (V, (ỹj)j) is a C 1-diffeomorphism around
∑N
j=1

(
Qβj

∂tQβj

)
(t0, x−

yj). In such case, we say that U can be modulated into (V, (ỹj)j).

Proof. This is the classical modulation result, stated as in [3, Lemma 2]. See [30, 31]
for more details. �
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In what follows, we introduce additional notation. We assume that U can be mod-
ulated into (V, (ỹj)j).
For any j = 1, . . . , N (cf. Proposition 1 and Lemma 2 for the definitions), let{

Z±,j(s) := Z±(γj(s− ỹj)), Z0,βj (s) := Z0(γj(s− ỹj)),
Φ0,j(s) := Φ0(γj(s− ỹj)), Φ−,j(s) := Φ−(γj(s− ỹj)),

(40)

where γj := (1− β2
j )−1/2, and

a±,j := 〈V |Z∓,j〉, (41)

along with the vectors

a+ = (a+,j)j , a− = (a−,j)j , and ỹ = (ỹj)j . (42)

Finally, we fix a constant γ0 given by

γ0 := min
{1

4

√
λ0 min{ 1

γ 1

,
1

γ 2

, . . . ,
1

γN
},

1

4
min{γ1, γ2, . . . , γN}min{β1, β2 − β1, . . . , βN − βN−1}

}
> 0. (43)

Assume now ε ∈ (0, ε0) and L ≥ L0, where ε0 and L0 are obtained in by Lemma 5.
Given t ∈ R, let us consider the centers

yj = yj(t) := βjt+ xj , j = 1, . . . , N,

where the velocities βj and the shifts xj are given by (35). It is clear that there
exists T0 ∈ R such that, for all t ≥ T0, the yj satisfy

min
{
|yj − yi| | i 6= j

}
≥ L.

From now on, we fix t ≥ T0. Consider the corresponding sum of solitons R(t, x)
associated to these parameters, namely

R(t, x) :=

N∑
j=1

Rj(t, x) =

N∑
j=1

(
Qβj

∂tQβj

)
(0, x− yj). (44)

Then, according to Lemma 5, if U ∈ H1(R)×L2(R) satisfies ‖U−R(t)‖ 6 ε, then U
can be modulated. Moreover, up to increasing T0, we can assume that e−γ0T0 < ε0.
Thus we can define our shrinking set.

Definition 1 (Shrinking set V (t)). For t > T0, we define the set

V (t) ⊂ BH1×L2(R(t), ε0)

in the following way: U ∈ V (t) if and only if U can be modulated into (V, ỹ) where
(cf. (36) and (42))

V = U −
N∑
j=1

R̃j(t),

with

‖V ‖ 6 e−γ0t, |ỹj(t)− βjt− xj | 6 e−γ0t, (45)

‖a+‖`2 6 e−3γ0t/2, ‖a−‖`2 6 e−3γ0t/2. (46)
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Definition 2. We denote by ϕ = (u, ∂tu)T the flow of the (NLKG) equation, that
is, given S0 ∈ R and U0 ∈ H1(R)× L2(R),

t 7→ ϕ(S0, t, U0) (47)

is the solution to (NLKG) with initial data U0 at time S0 (with values in H1×L2).

In most of what we do, we will have t 6 S0 so that U0 can be thought of as a final
data, and we work backwards in time. The key result of this section is the following
construction of an approximate N -soliton.

Proposition 3 (Approximate N -soliton). There exist T0 > 0 such that the follow-
ing holds. For any S0 > T0, there exist a final data U0 such that

∀t ∈ [T0, S0], ϕ(S0, t, U0) ∈ V (t).

At this point, the solution φ(S0, t, U0) depends on S0. To prove Theorem 1, we will
need to derive such a solution independent of S0, which we will do via a compactness
argument in the next (and last) section 4.

Our goal is now to prove Proposition 3.

Fix S0 > T0. Consider an initial data U0 at time S0 such that U0 ∈ V (S0). Due to
the blow-up criterion for (NLKG), and the fact that R(t) defined in (44) is bounded
in H1(R)×L2(R), we have that ϕ(S0, t, U0) is defined at least as long as it belongs
to BH1×L2(R(t), 1). In particular, ϕ(S0, t, U0) does not blow-up as long as it belongs
to V (t), and we can define the (backward) exit time

T ∗(U0) := inf {T ∈ [T0, S0] | ∀t ∈ [T, S0], ϕ(S0, t, U0) ∈ V (t)} .

Notice that we could have T ∗(U0) = S0. Our goal is to find U0 ∈ V (T0) such that
T ∗(U0) = T0.

In order to show such an assertion, we will only consider some very specific initial
data, namely U0 ∈ V (S0) such that (see (42))

• U0 ∈ R(S0) + Span((Z±,j)j=1,...,N ),
• a−(S0) = 0, and
• a+(S0) ∈ BRN (0, e−3γ0S0/2).

These conditions can be satisfied due to the almost orthogonality of Z±,j , and this
is the content of the following

Lemma 6 (Modulated final data). Let S0 > T0 be large enough. There a exist
a C 1 map Θ : BRN (0, 1) → V (S0) as follows. Given a+ = (a+,j)j ∈ BRN (0, 1),
U0 =: Θ(a+) ∈ V (S0) such that U0 can be modulated into (V0, ỹ) and the associated
parameters (42) satisfy

a+(S0) = e−3γ0T0/2a+, a−(S0) = 0. (48)

Moreover,
‖V0‖ ≤ Ce−3γ0T0/2. (49)

Proof. The main idea is to consider the map BR2N (0, 1) → BR2N (0, 1), b± 7→ a±,
where a± corresponds to the data U0 = R(S0) +

∑
±,j b±,jZ±,j , and to invoke the

implicit mapping theorem. We refer to [3, Lemma 3] and its proof in [3, Appendix
A] for full details. �
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If T ∗ := T ∗(U0) > T0, by maximality, we also have that for the function ϕ(S0, T
∗, U0),

at least one of the inequalities in the definition of V (T ∗) is actually an equality.
It turns out that the equality is achieved by a+(T0) only, and that the rescaled
quantity e3γ0T

∗/2a+(t) is transverse to the sphere at t = T ∗. This is at the heart
of the proof and is the content of the following

Proposition 4. Let a+ ∈ BRN (0, 1), and assume that its maximal exit time is
(strictly) greater that T0:

T ∗ = T ∗(Θ(a+)) > T0.

Denote, for all t ∈ [T ∗, S0], the associated modulation (V (t), ỹ(t)) of ϕ(t, T0,Θ(a+)),
defined in (47). Then, for all t ∈ [T ∗, S0],

‖V (t)‖ 6 1

2
e−γ0t, |ỹj(t)− βjt− xj | 6

1

2
e−γ0t, (50)

‖a−(t)‖`2 6
1

2
e−3γ0t/2, (51)

and
‖a+(T ∗)‖`2 = e−3γ0T

∗/2. (52)
Furthermore, a+(T ∗) is transverse to the sphere, i.e.,

d

dt
(e3γ0t‖a+(t)‖2`2)

∣∣∣∣
t=T∗

< 0.

For the sake of continuity, we postpone the proof of Proposition 4 until the next
paragraph, and conclude the proof of Proposition 3 here, assuming Proposition 4.

Let us state a few direct consequences of Proposition 4, (their proofs will also be
done in the next paragraph 3.2).

Corollary 2. We have the following properties.
(1) The set of final data which give rise to solutions which exit strictly after T0

Ω := {a+ ∈ BRN (0, 1) | T ∗(Θ(a+)) > T0}
is open (in BRN (0, 1)).

(2) The map Ω → R, a+ 7→ T ∗(Θ(a+)) ∈ R is continuous (we emphasize that
the data belong to Ω).

(3) The exit is instantaneous on the sphere:

if ‖a+‖`2 = 1, then T ∗(a+) = S0. (53)

We are now in a position to complete the proof of Theorem 1.

End of the proof of Proposition 3. We argue by contradiction. Assume that all pos-
sible a+ ∈ BRN (0, 1) give rise to initial data U0 = Θ(a+) ∈ V (S0) and correspond-
ing solutions ϕ(S0, t, U0) that exit V (t) strictly after T0, i.e.

assume that Ω = BRN (0, 1). (54)

Given U0 ∈ V (T0), we denote Φ(U0) the rescaled projection of the exit spot

Φ(U0) = e3γ0T
∗(U0)/2a+(T ∗(U0)),

so that Φ(U0) ∈ BRN (0, 1). Let us finally consider the rescaled projection of the
exit spot Ψ, defined as follows:

Ψ : BRN (0, 1)→ BRN (0, 1), a+ 7→ Ψ(a+) = Φ ◦Θ(a+).
15



Corollary 2 then translates into the following properties for Ψ:
• Ψ : BRN (0, 1)→ SN−1 is continuous (like T ∗, Φ and Θ);
• If ‖a+‖`2 = 1, Ψ(a+) = a+ (cf. (53) and (48)); i.e Ψ|SN−1 = Id.

These two affirmations contradict the Brouwer’s Theorem. Hence our assumption
(54) is wrong, and there exists a+ such that the solution U(t) = ϕ(S0, t,Θ(a+))
satisfies T+(Θ(a+)) = T0. In particular U(t) ∈ V (t) for all t ∈ [T0, S0], and U0 :=
U(S0) = Θ(a+) satisfies the conditions of Proposition 3. �

3.2. Bootstrap estimates. This paragraph is devoted to the last remaining re-
sults needed to complete Proposition 3: Proposition 4 and Corollary 2

Proof of Proposition 4. Step 1. First, we introduce some notation. Consider the
flow ϕ(t) = ϕ(S0, t,Θ(a+)) given by Proposition 4, and valid for all t ∈ [T ∗, S0].
From Lemma 5, we have

ϕ(t) = R̃(t) + V (t), (55)
where

R̃(t, x) =

N∑
j=1

R̃j(t, x), R̃j(t, x) = (Qβj , ∂tQβj )T (x− ỹj(t)), (56)

ỹj(t) = βjt+ x̃j(t), (57)

and
V (t) = (v1(t), v2(t))T .

Additionally, from the equation satisfied by ϕ, we have

ϕt =

(
0 Id

∂2
x − Id 0

)
ϕ+

(
0

f(u)

)
,

where ϕ = (u, ut)
T . Replacing the decomposition (55), we have

Vt =

(
0 Id

∂2
x − Id +f ′(Qβj ) 0

)
V +Rem(t) = LjV +Rem(t), (58)

with Lj := L (βj) defined in (23),

Rem(t) :=

(
0 Id

∂2
x − Id 0

)
R̃− R̃t +

(
0

f(u)− f ′(Qβj
)v1

)
=

N∑
k=1

x̃′k(t)∂x

(
Qβk

−βk∂xQβk

)
+

(
0

f(
∑N
k=1Qβk

+ v1)−
∑N
k=1 f(Qβk

)− f ′(Qβj
)v1

)
.

First of all, note that from (19) we have
(

∂xQβk

−βk∂xxQβk

)
= Φ0,k. If we take the scalar

product of (58) with (R̃j)x, then the orthogonality (39) (coming from modulation)
leads to the estimate

|x̃′j(t)| 6 C(‖V (t)‖+ e−3γ0t), (59)
valid for all j = 1, . . . , N . Indeed, we have

〈(R̃j)x|Vt〉 = 〈(R̃j)x|LjV 〉+ 〈(R̃j)x|Re(t)〉.
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Note that from (57)

〈(R̃j)x|Vt〉 = −〈(R̃j)xt|V 〉 = (βj + x̃′j(t))〈∂xxR̃j |V 〉.
Consequently

|〈(R̃j)x|Vt〉| ≤ C(1 + |x̃′j(t)|)‖V (t)‖.
On the other hand,

〈(R̃j)x|LjV 〉 =

〈(
∂xQβj

∂xtQβj

) ∣∣∣( v2

−Tβjv1

)〉
=

〈(
∂xQβj

−Tβj∂xtQβj

) ∣∣∣(v2

v1

)〉
,

so that
|〈(R̃j)x|LjV 〉| ≤ C‖V (t)‖.

Finally, we deal with the term 〈(R̃j)x|Rem(t)〉. From the definition of Rem(t) we
have

〈(R̃j)x|Rem(t)〉 =

N∑
k=1

x̃′k(t)〈(R̃j)x|Φ0,k〉

+
(
∂xtQβj

∣∣∣f( N∑
k=1

Qβk
+ v1

)
−

N∑
k=1

f(Qβk
)− f ′(Qβj

)v1

)
.

Since (R̃j)x = Φ0,j , we get

〈(R̃j)x|Φ0,j〉 = ‖Φ0,j‖2,
and if k 6= j,

|〈(R̃j)x|Φ0,k〉| = |〈Φ0,j |Φ0,k〉| ≤ Ce−3γ0t.

Now if x ∈ [mjt,mj+1t], then for all p 6= j (see (43)),

|Qβp(t, x)| ≤ Ce−3γ0t.

Therefore, inside this region (note that if d ≥ 2 then f is a pure power nonlinearity)∥∥∥f( N∑
k=1

Qβk
+ v1

)
−

N∑
k=1

f(Qβk
)− f ′(Qβj

)v1

∥∥∥
L2
≤ Ce−3γ0t + C‖V (t)‖2.

On the other hand, if x /∈ [mjt,mj+1t]

|∂xtQβj
| ≤ Ce−3γ0t.

In conclusion, we have(
∂xtQβj

∣∣∣f( N∑
k=1

Qβk
+v1

)
−

N∑
k=1

f(Qβk
)−f ′(Qβj

)v1

)
≤ Ce−3γ0t+C‖V (t)‖2. (60)

Collecting the preceding estimates we get (59).

Step 2. Control of degenerate directions. The next step of the proof is to con-
sider the dynamics of the associated scalar products a±,j(t) and a0,j(t) introduced
in (41).

Lemma 7. Let a±,j(t) and a0,j(t) be as defined in (41). There is a constant C > 0,
independent of S0 and T ∗ > T0, such that for all t ∈ [T ∗, S0],∣∣∣∣a′±,j(t)± √λ0

γj
a±,j(t)

∣∣∣∣ 6 C‖V (t)‖2 + Ce−3γ0t. (61)
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Proof. We prove the case of a−,j(t). The other case is similar. We compute the time
derivative of a−,j using (56) and (58), and we choose γ0 > 0 as small as needed,
but fixed.

a′−,j(t) = −ỹ′j(t)〈(Z+,j)x|V (t)〉+ 〈Z+,j |Vt(t)〉

= −x̃′j〈(Z+,j)x|V (t)〉+ 〈(L ∗j − βj∂x)Z+,j |V (t)〉+

N∑
k=1

x′k〈Φ0,k|Z+,j〉

+O(‖V (t)‖2 + e−3γ0t).

From Lemma 3 we have 〈Φ0,j |Z+,j〉 = 0. Therefore, since L ∗j − βj∂x = Hj , where
Hj := H (Qβj ) (cf. (24)), we have from Lemma 2 and (59),

a′−,j(t) =

√
λ0

γj
a−,j(t) +O(|x′j |‖V (t)‖+ ‖V (t)‖2 + e−3γ0t)

=

√
λ0

γj
a−,j(t) +O(‖V (t)‖2 + e−3γ0t). �

Step 3. Lyapunov functional. Let L0 > 0 be a large constant to be chosen later.
Let (φj)j=1,...,N be a partition of the unity of R placed at the midpoint between
two solitons. More precisely, let

φ ∈ C∞(R), φ′ > 0, lim
−∞

φ = 0, lim
+∞

φ = 1. (62)

We have3, for all L > L0,
N∑
j=1

φj(t, x) ≡ 1, φj(t, x) = φ
(x−mjt

L

)
− φ

(x−mj+1t

L

)
, (63)

where mj := 1
2 (βj + βj−1), with j = 2, . . . , N − 1, and m1 := −∞, mN = +∞. We

introduce the j-th portion of momentum

Pj [ϕ](t) :=
1

2

∫
φjutux dx, ϕ = (u, ut)

T , (64)

and the modified Lyapunov functional

F [ϕ](t) := E[ϕ](t) + 2

N∑
j=1

βjPj [ϕ](t), (65)

with E[ϕ] being the energy defined in (2). Our first result is a suitable decomposition
of F [u] around the multi-soliton solution.

Lemma 8. Let V (t) = (v1(t), v2(t))T be the error function defined in Proposition
4. There is a positive constant C > 0 such that∣∣∣F [ϕ](t)−

N∑
j=1

〈HjV |V 〉
∣∣∣ 6 C‖V (t)‖3 +

C

L
e−2γ0t, (66)

where
〈HjV |V 〉 :=

∫
φj(v

2
2 + (v1)2

x + v2
1 − f ′(Qβj )v2 + 2βjv2(v1)x). (67)

3Do not confuse the constant L in (63) with the operator L in (13).
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Proof. From the decomposition

ϕ(t) = (u, ut)(t) = (R̃1, R̃2)T + (v1, v2)T (t), (68)

we have

F [ϕ](t) =
1

2

∫
(u2
t + u2

x + u2 − F (u)) +

N∑
j=1

βj

∫
φjutux

=
1

2

∫
(R̃2

2 + (R̃1)2
x + R̃2

1 − 2F (R̃1)) +

N∑
j=1

βj

∫
R̃2(R̃1)x φj

+

∫ [
R̃2v2 + (R̃1)x(v1)x + R̃1v1 − f(R̃1)v1 +

N∑
j=1

βj(R̃2(v1)x + v2(R̃1)x)φj
]

+
1

2

∫
(v2

2 + (v1)2
x + v2

1 − f ′(R̃1)v2
1) +

N∑
j=1

βj

∫
v2(v1)x φj

−
∫

(F (R̃1 + v1)− F (R̃1)− f(R̃1)v1 −
1

2
f ′(R̃1)v2

1)

=: I1 + I2 + I3 + I4.

Let us consider the term I1. Since R̃2 = −
∑N
j=1 βj(Qβj

)x and (R̃1)x =
∑N
j=1(Qβj

)x,
one has

I1 =
1

2

N∑
j=1

∫ [
β2
j (Qβj

)2
x + (Qβj

)2
x +Q2

βj
− 2F (Qβj

)− 2β2
j (Qβj

)2
x

]
+O(e−3γ0t)

=
1

2

∫ [
Q2
x +Q2 − 2F (Q)

] N∑
j=1

1

γj
+O(e−3γ0t).

Now we consider I2. Integrating by parts, we have

I2 =

∫
v2

[
R̃2 + (R̃1)x

N∑
j=1

βjφj

]

−
∫
v1

[
(R̃1)xx − R̃1 + f(R̃1) + (R̃2)x

N∑
j=1

βjφj

]
−

N∑
j=1

βj

∫
v1R̃2(φj)x.

Note that

R̃2 + (R̃1)x

N∑
j=1

βjφj =

N∑
k=1

[−βk(Qβk
)x + (Qβk

)x

N∑
j=1

βjφj ] =

N∑
k=1

(Qβk
)x

N∑
j 6=k

βjφj .

Hence ∫
v2

[
R̃2 + (R̃1)x

N∑
j=1

βjφj

]
= O(e−3γ0t).

On the other hand,∫
v1

[
(R̃1)xx − R̃1 + f(R̃1) + (R̃2)x

N∑
j=1

βjφj

]
= O(e−3γ0t).
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Finally, ∣∣∣∣∣∣
N∑
j=1

βj

∫
v1R̃2(φj)x

∣∣∣∣∣∣ 6 C‖v1‖L2(R)e
−2γ0t.

Gathering the above estimates, we get

|I2| 6 Ce−3γ0t.

Let us consider the integral I3. Since
∑
j φj = 1, we have

I3 =
1

2

N∑
j=1

∫
φj(v

2
2 + (v1)2

x + v2
1 − f ′(R̃1)v2

1 + 2βjv2(v1)x)

=
1

2

N∑
j=1

∫
φj(v

2
2 + (v1)2

x + v2
1 − f ′(Qβj

)v2
1 + 2βjv2(v1)x)− 1

2

∑
k 6=j

∫
φjf

′(Qk)v2
1

− 1

2

N∑
j=1

∫
φj

(
f ′(

N∑
k=1

Qβk
)−

N∑
k=1

f ′(Qβk
)
)
v2

1 .

Fix ` ∈ {1, . . . , N − 1}. If x ∈ [m`t,m`+1t], then for all p 6= `,

|Qβp
(t, x)| ≤ Ce−2γ0t.

Therefore, for all x ∈ [m`t,m`+1t],∣∣∣∣∣f ′(
N∑
k=1

Qβk
(t, x))−

N∑
k=1

f ′(Qβk
(t, x))

∣∣∣∣∣ ≤ Ce−γ0t.
Repeating the same argument for each `, and using (50), we get

I3 =
1

2
〈HjV |V 〉+O(e−3γ0t).

Finally, we consider I4. It is not difficult to check that

|I4| 6 C‖V ‖3.
Collecting the above results, we get finally (66). �

Our next result describes the variation of the momentum Pj .

Lemma 9. There exists C > 0 independent of time and L, such that for all t ∈
[T ∗, S0],

|Pj [ϕ](t)− Pj [ϕ](S0)| 6 C

L
e−2γ0t. (69)

Proof. A simple computation using (NLKG) shows that

∂tPj [ϕ](t) = −1

4

∫
u2
t (φj)x −

1

4

∫
u2
x(φj)x +

1

4

∫
u2(φj)x

− 1

2

∫
F (u)(φj)x +

1

2

∫
utux(φj)t. (70)

Indeed, one has

∂tPj [ϕ](t) =
1

2

∫
utux(φj)t +

1

2

∫
ututxφj +

1

2

∫
uttuxφj

=
1

2

∫
utux(φj)t +

1

4

∫
(u2
t )xφj +

1

2

∫
(uxx − u+ f(u))uxφj

20



=
1

2

∫
utux(φj)t −

1

4

∫
u2
t (φj)x −

1

4

∫
(u2
x − u2 + 2F (u))(φj)x,

as desired. Now, from the decomposition (68) we replace above to obtain (compare
with (60))

|∂tPj [ϕ](t)|

6 C

(
e−3γ0t

L
+

∫
v2

2(φj)x +

∫
(v1)2

x(φj)x +

∫
v2

1(φj)x +

∫
F (v1)(φj)x

)
.

From the smallness condition of v, we get finally

|∂tPj [ϕ](t)| 6 C

L
e−2γ0t,

as desired. The conclusion follows after integration in time. �

The previous Lemma and the energy conservation law imply the following

Corollary 3. There exists C > 0 independent of time and L > 0 such that, for all
t ∈ [T ∗, S0],

|F [ϕ](t)−F [ϕ](S0)| 6 C

L
e−2γ0t. (71)

Now we use the coercivity associated to Hj . A standard localization argument (see
e.g. [21]), Proposition 2 and (41) give

N∑
j=1

〈HjV |V 〉 ≥ ν0‖V (t)‖2 − 1

ν0
(‖a+‖2`2 + ‖a−‖2`2),

for an independent constant ν0 > 0. From this coercivity estimate, using (71) and
(66), the initial bound (49), and bounding the terms in a± by (46), we get that for
some C > 0

∀t ∈ [T ∗, S0], ‖V (t)‖ 6 C√
L
e−γ0t + Ce−3/2γ0t.

Therefore, for L > 4C2, we improve the first condition in (45), to get (50). We can
now integrate of the modulation equation (59) for x̃′j(t) we get the second estimates
in (50) (by increasing L is necessary).
Now, using (61) on a′−(t) and integrating in time, we improve in a similar way the
conditions in (46), to obtain (51). In conclusion, (52) must be satisfied.

Step 4. Transversality. For notation, let N (a+, t) := e3γ0t‖a+(t)‖2`2 . Using the
expansion (61), we compute

d

dt
N (a+, t) =

N∑
j=1

e3γ0ta′+,j(t)a+,j(t) + 3γ0N (a+, t)

= −e3γ0t
√
λ0

N∑
j=1

|a+,j(t)|2

γj
+O(e3γ0t(‖V (t)‖2L2 + e−2γ0t)‖a+(t)‖`2)

+ 3γ0N (a+, t)

6 −(2c0 − 3γ0)N (a+, t)−O(e3γ0t(‖V (t)‖2L2 + e−2γ0t)‖a+(t)‖`2),
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where c0 = 1
2

√
λ0 mini{1/γi} > 0. Note that from (43) we have 2c0 − 3γ0 > γ0 >

0. Now, at time T ∗ = T ∗(a+), ‖V (T ∗)‖L2 = O(e−γ0T
∗
), whereas ‖a+(T ∗)‖`2 =

e−3γ0T
∗/2, i.e. N (a+, T ∗) = 1 , hence

d

dt
N (a+, t)

∣∣∣∣
t=T∗(a+)

6 −(2c0 − 3γ0) +O(e−γ0T
∗/2).

Choosing T0 larger if necessary, and as T ∗ > T0 for all a+, we get

d

dt
N (a+, t)

∣∣∣∣
t=T∗(a+)

6 −1

2
γ0 < 0. (72)

This concludes the proof of Proposition 4. �

We end this paragraph with the proof of Corollary 2.

Proof of Corollary 2. Let us now show that Ω is open and that the mapping a+ 7→
T ∗(a+) is continuous. Let a+ ∈ Ω. We recall that N (a+, t) = e3γ0t‖a+(t)‖2`2 . By
(72), for all ε > 0 small, there exists δ > 0 such that

• N (a+, T
∗(a+)− ε) > 1 + δ, and

• for all t ∈ [T ∗(a+) + ε, S0] (possibly empty), N (a+, t) < 1− δ.
By continuity of the flow of the (NLKG) equation, it follows that there exists η > 0
such that the following holds. For all ã+ ∈ BRN (0, 1) such that ‖ã+ − a+‖ 6 η,
then |N (ã+, t)−N (a+, t)| 6 δ/2 for all t ∈ [T ∗(a+)−ε, S0]. In particular, ã+ ∈ Ω
and

T ∗(a+)− ε 6 T ∗(ã+) 6 T ∗(a+) + ε.

This exactly means that Ω contains a neighbourhood of a+, hence is open, and that
a+ 7→ T ∗(a+) continuous.

Finally, let us show that the exit is instantaneous on the sphere. If ‖a+‖`2 = 1,
then N (a+, S0) = 1, hence by (72), N (a+, t) > 1 for all t < S0 in a neighborhood
of S0. This means that T ∗(a+) = S0. �

3.3. Extension to higher dimension. The main part of the proof remains un-
changed. One has to work only for the definition of the Lyapunov functional. The
key point is to notice that one can find a suitable direction as in [16]. The set

M =
{
β ∈ Rd | ∀j, β · βj = 0

}
,

is of zero measure: let β̄ /∈M ; up to rescaling, we can assume |β̄| = 1. Without loss
of generality we can assume that the indexes j satisfy

−1 < (β̄ · β1) < (β̄ · β2) < · · · < (β̄ · βN ) < 1.

We use again the 1d cut-off function φ defined at Step 3 of the previous to define
the new cut-off functions

ψj(x) = φ

(
β̄ · x−mjt

L

)
− φ

(
β̄ · x−mj+1t

L

)
, where mj =

1

2
(βj + βj−1) · β̄.

Then all the computations of Step 3 of Section 3.2 follow unchanged. We refer to
[16] (Claim 1 and what follows) for further details.
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4. Proof of Theorem 1

The proof of Theorem 1 follows from Proposition 3 in a standard fashion, see e.g.
[16]. The main point is continuity of the flow for the weak H1×L2 topology. More
precisely:

Lemma 10. The (NLKG) flow is continuous for the weak H1×L2 topology. More
precisely, let Un ∈ C ([0, T ], H1 × L2) be a sequence of solutions to (NLKG), and
assume that for some M > 0,

Un(0) ⇀ U∗ in H1 × L2 − weak, and ∀n, ‖Un(t)‖C ([0,T ],H1×L2) 6M.

Define U ∈ C ([0, T+(U)), H1 × L2) be the solution to (NLKG) with initial data
U(0) = U∗. Then T+(U) > T and

∀t ∈ [0, T ], Un(t) ⇀ U(t) in H1 × L2 − weak.

Proof. This is a simple consequence of the local well posedness of (NLKG) in Hs×
Ḣs−1 for some s < 1. More precisely, we have

Theorem (Local wellposedness). There exist 0 6 sf,d < 1 such that for all s > sf,g,
the following holds. Given any data U0 = (u0, u1) ∈ Hs × Ḣs−1, there exist a
unique solution U ∈ C ([0, T+(U)), Hs × Ḣs−1) to (NLKG) such that U(0) = U0.
Furthermore,

(1) The maximal time of existence T+(U) is the same in all Hσ × Ḣσ−1 for
σ ∈ [sf,d, s]. If finite, it is characterized by

lim
t→T+(U)

‖U(t)‖Hs×Ḣs−1 = +∞.

(2) The flow is continuous, in the sense that if Un is a sequence of solu-
tion to (NLKG) such that Un(0) → U(0) in Hs × Ḣs−1, then T+(U) >
lim infn T

+(Un) and

∀t ∈ [0, T+(U)), ‖Un − U‖C ([0,t],Hs×Ḣs−1) → 0 as n→ +∞.

We refer to [29, Theorem 1.2] and the Remark following it for a proof and the
precise value of sf,d (which is not important for us).

Fix 0 < s < 1 be such that the Theorem holds. Let t ∈ [0, T ] such that t < T+(U).
Let V ∈ (D(Rd))2 and R > 0 such that Supp V ⊂ BRd(0, R).
As Un(0) ⇀ U(0) weakly in H1 ×L2(Rd), there holds by Sobolev compact embed-
ding

‖Un(0)− U(0)‖Hs×Ḣs−1(BRd (0,R+t)) → 0.

It follows by finite speed of propagation and the continuity of the flow in the local
well posedness Theorem that

‖Un(t)− U(t)‖Hs×Ḣs−1(BRd (0,R)) → 0.

Hence denoting Un = (un, ∂tun) and V = (v0, v1),

|〈Un(t)− U(t), V 〉|

=

∣∣∣∣∣
∫
|x|6R

(
(∂tun(t, x)− ∂tun(t, x))v1(x)

+∇(un − u) · ∇v0 + (un(t, x)− u(t, x))v0(x)

)
dx

∣∣∣∣
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6 ‖Un(t)− U(t)‖Hs×Ḣs−1(BRd (0,R))‖V ‖H2−s×Ḣ1−s → 0.

Therefore Un(t) ⇀ U(t) in D ′, and by the H1 × L2 bound, Un(t) ⇀ U(t) weakly
in H1 × L2.
In particular ‖U(t)‖H1×L2 6 lim infn→∞ ‖Un(t)‖ 6 M . From there, a continuity
argument shows that T+(U) > T . �

We can now prove Theorem 1. Let (Sn)n≥1 ⊂ R be a sequence that satisfies Sn > S0,
Sn increasing and Sn → +∞. From Proposition 3 there exists a sequence of final
data functions U0,n ∈ H1 × L2 such that

∀t ∈ [T0, Sn], Un(t) := ϕ(Sn, t, U0,n) ∈ V (t). (73)

(We recall that ϕ denotes the flow and is defined in (47)). Note that T0 does not
depend on Sn, and observe that there exists M independent of n such that

∀t ∈ [T0, Sn], ‖Un(t)−R(t)‖H1×L2 6Me−γ0t. (74)

Let U∗0 be a weak limit in H1 × L2 of the bounded sequence Un(T0), and define

U∗(t) = ϕ(t, T0, U
∗
0 ).

Fix t > T0. Then the previous Lemma applies on [T0, t] and shows that T+(U∗) > t
and Un(t) ⇀ U∗(t) weakly in H1 × L2. Hence (74) yields

‖U∗(t)−R(t)‖H1×L2 6 lim inf
n
‖Un(t)−R(t)‖H1×L2 6Me−γ0t.

Therefore, T+(U∗) = +∞ and U∗ is the desired multi-soliton.

Appendix A. The orbit of Q under general Lorentz transformations

In this appendix we prove that the orbit of Q under the group generated by space
and time translations, and general Lorentz transforms is

F := {(t, x) 7→ Qβ(t, x− x0) | β, x0 ∈ Rd, |β| < 1}.
We recall that we consider Q as a function of time with the slight abuse of notation
Q(t, x) = Q(x).
The map β 7→ Λβ (see (5)) is a group homomorphism from (BRd(0, 1),⊕) to
(Md+1(R), ◦), where ⊕ denotes Einstein’s velocity addition

x⊕ y =
1

1 + x · y

(
y +

x · y
|y|2

y +
√

1− |y|2
(
x− x · y

|y|2
y

))
.

In particular, Λ−βΛβ = Idd+1.

A general Lorentz transform is an element of O(1, d) ' Rd o O(d), hence can be
written in the form

ΛU,β :=


1 0 · · · 0
0
...
0

U

Λβ , where U ∈ SO(d), i.e UUT = Idd .

As Q(x) is radially symmetric, it follows that

Q

(
ΛU,β

(
t
x

))
= Q

(
Λβ

(
t
x

))
= Qβ(x),

24



hence the orbit of {Q} under general Lorentz transform is simply {Qβ |β ∈ Rd}. We
now want to parametrize the other invariances of (NLKG), that is time and space
shifts. Fortunately, the former reduce to the latter. Indeed, notice that

ββT ∼


|β|2 0 · · · 0
0
...
0

0

 , so that Idd +
γ − 1

|β|2
ββT ∼


γ 0 · · · 0
0
...
0

Idd−1

 .

(Here ∼ indicates similarity of matrices). In particular, Idd +γ−1
|β|2 ββ

T is invertible.
Then time translations for Qβ can be rethought as an adequate space shift:

Qβ(t+ t0, x) = Q

(
Λβ

(
t+ t0
x

))
= Q

(
Λβ

(
t
x

)
+ t0

(
γ
−β

))
= Q

(
Λβ

(
t
x

)
− t0

(
0
β

))
= Qβ

(
t

x− t0(Idd +γ−1
β|2 ββ

T )−1(β)

)
.

It follows that F is stable through all general Lorentz transform, time and space
shifts, hence it is the orbit of Q through the group generated by these transforma-
tions.
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