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, where we consider the case of finite-time blow up, this gives a characterization of all 1-equivariant, degree 1 wave maps in the energy regime [E(Q), 3E(Q)).

U (t, r, ω) = (ψ(t, r), ω) → (sin ψ(t, r) cos ω, sin ψ(t, r) sin ω, cos ψ(t, r)), 1991 Mathematics Subject Classification. 35L05, 35L71.

Introduction

This paper is the companion article to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]. Here we continue our study of the equivariant wave maps problem from 1 + 2 dimensional Minkowski space to 2dimensional surfaces of revolution. In local coordinates on the target manifold, (M, g), the Cauchy problem for wave maps is given by

U k = -η αβ Γ k ij (U )∂ α U i ∂ β U j (1.1) (U, ∂ t U )| t=0 = (U 0 , U 1 ),
where Γ k ij are the Christoffel symbols on T M . As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] we will, for simplicity, restrict our attention to the case when the target (M, g) = (S 2 , g) with g the round metric on the 2-sphere, S 2 . Our results here apply to more general compact surfaces of revolution as well, and we refer the reader to [6, Appendix A] for more details.

In spherical coordinates, (ψ, ω) → (sin ψ cos ω, sin ψ sin ω, cos ψ), on S 2 , the metric, g, is given by the matrix g = diag(1, sin 2 (ψ)). In the case of 1-equivariant wave maps, we require our wave map, U , to have the form where (r, ω) are polar coordinates on R 2 . In this case, the Cauchy problem (1.1) reduces to ψ tt -ψ rr -1 r ψ r + sin(2ψ) 2r 2 = 0 (1.2) (ψ, ψ t )| t=0 = (ψ 0 , ψ 1 ).

Wave maps exhibit a conserved energy, which in this equivariant setting is given by

E(U, ∂ t U )(t) = E(ψ, ψ t )(t) = ∞ 0 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr = const.,
and they are invariant under the scaling ψ(t, r) := (ψ(t, r), ψ t (t, r)) → (ψ(λt, λr), λψ t (λtλr)).

The conserved energy is also invariant under this scaling which means that the Cauchy problem under consideration is energy critical. We refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] for a more detailed introduction and history of the equivariant wave maps problem.

As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], we note that any wave map ψ(t, r) with finite energy and continuous dependence on t ∈ I satisfies ψ(t, 0) = mπ and ψ(t, ∞) = nπ for all t ∈ I for fixed integers m, n. This determines a disjoint set of energy classes H m,n := {(ψ 0 , ψ 1 ) | E(ψ 0 , ψ 1 ) < ∞ and ψ 0 (0) = mπ, ψ 0 (∞) = nπ}.

(

We will mainly consider the spaces H 0,n and we denote these by H n := H 0,n . In this case we refer to n as the degree of the map. We also define H = n∈Z H n to be the full energy space.

In our analysis, an important role is played by the unique (up to scaling) nontrivial harmonic map, Q(r) = 2 arctan(r), given by stereographic projection. We note that Q solves

Q rr + 1 r Q r = sin(2Q) 2r 2 .
(1.4)

Observe in addition that (Q, 0) ∈ H 1 and in fact (Q, 0) has minimal energy in H 1 with E(Q) := E(Q, 0) = 4. Note the slight abuse of notation above in that we will denote the energy of the element (Q, 0) ∈ H 1 by E(Q) rather than E(Q, 0). Recall that in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] we showed that for any data ψ(0) in the zero topological class, H 0 , with energy E( ψ) < 2E(Q) there is a corresponding unique global wave map evolution ψ(t, r) that scatters to zero in the sense that the energy of ψ(t) on any arbitrary, but fixed compact region vanishes as t → ∞, see [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Theorem 1.1]. An equivalent way to view this scattering property is that there exists a decomposition

ψ(t) = ϕ L (t) + o H (1) as t → ∞ (1.5)
where ϕ L (t) ∈ H 0 solves the linearized version of (1.2):

ϕ tt -ϕ rr - 1 r ϕ r + 1 r 2 ϕ = 0 (1.6)
This result was proved via the concentration-compactness/rigidity method which was developed by the second author and Merle in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF] and [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], and it provides a complete classification of all solutions in H 0 with energy below 2E(Q), namely, they all exist globally and scatter to zero. We note that this theorem is also a consequence of the work by Sterbenz and Tataru in [START_REF] Sterbenz | Regularity of wave-maps in dimension 2 + 1[END_REF] if one considers their results in the equivariant setting.

In [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] we also study degree one wave maps, ψ(t) ∈ H 1 , with energy E( ψ) = E(Q) + η < 3E(Q) that blow up in finite time. Because we are working in the equivariant, energy critical setting, blow-up can only occur at the origin in R 2 and in an energy concentration scenario. We show that if blow-up does occur, say at t = 1, then there exists a scaling parameter λ(t) = o(1 -t), a degree zero map ϕ ∈ H 0 and a decomposition ψ(t, r) = ϕ(r) + (Q (r/λ(t)) , 0) + o H (1) as t → 1.

(1.7)

Here we complete our study of degree one solutions to (1.2), i.e., solutions that lie in H 1 , with energy below 3E(Q), by providing a classification of such solutions with this energy constraint. Since the degree of the map is preserved for all time, scattering to zero is not possible for a degree one solution. However, we show that a decomposition of the form (1.7) holds in the global case. In particular we establish the following theorem: Theorem 1.1 (Classification of solutions in H 1 with energies below 3E(Q)). Let ψ(0) ∈ H 1 and denote by ψ(t) ∈ H 1 the corresponding wave map evolution. Suppose that ψ satisfies

E( ψ) = E(Q) + η < 3E(Q).
Then, one of the following two scenarios occurs:

(1) Finite time blow-up: The solution ψ(t) blows up in finite time, say at t = 1, and there exists a continuous function, λ : [0, 1) → (0, ∞) with λ(t) = o(1 -t), a map ϕ = (ϕ 0 , ϕ 1 ) ∈ H 0 with E( ϕ) = η, and a decomposition

ψ(t) = ϕ + (Q (•/λ(t)) , 0) + (t) (1.8)
such that (t) ∈ H 0 and (t) → 0 in H 0 as t → 1. (2) Global Solution: The solution ψ(t) ∈ H 1 exists globally in time and there exists a continuous function, λ : [0, ∞) → (0, ∞) with λ(t) = o(t) as t → ∞, a solution ϕ L (t) ∈ H 0 to the linear wave equation (1.6), and a decomposition

ψ(t) = ϕ L (t) + (Q (•/λ(t)) , 0) + (t) (1.9) such that (t) ∈ H 0 and (t) → 0 in H 0 as t → ∞. Remark 1. One should note that the requirement λ(t) = o(t) as t → ∞ in part (2)
above leaves open many possibilities for the asymptotic behavior of global degree one solutions to (1.2) with energy below 3E(Q). If λ(t) → λ 0 ∈ (0, ∞) then our theorem says that the solution ψ(t) asymptotically decouples into a soliton, Q λ0 , plus a purely dispersive term, and one can call this scattering to Q λ0 . If λ(t) → 0 as t → ∞ then this means that the solution is concentrating E(Q) worth of energy at the origin as t → ∞ and we refer to this phenomenon as infinite time blow-up.

Finally, if λ(t) → ∞ as t → ∞ then the solution can be thought of as concentrating E(Q) worth of energy at spacial infinity as t → ∞ and we call this infinite time flattening.

We also would like to highlight the fact that global solutions of the type mentioned above, i.e., infinite time blow-up and flattening, have been constructed in the case of the 3d semi-linear focusing energy critical wave equation by Donninger and Krieger in [START_REF] Donninger | Nonscattering solutions and blowup at infinity for the critical wave equation[END_REF]. No constructions of this type are known at this point for the energy critical wave maps studied here. In addition, a classification of all the possible dynamics for maps in H 1 at energy levels ≥ 3E(Q) remains open.

Remark 2. We emphasize that [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] goes hand-in-hand with this article and the two papers are intended to be read together. In fact, part (1) of Theorem 1.1 was established in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Theorem 1.3]. Therefore, in order to complete the proof of Theorem 1.1 we need to prove only part [START_REF] Bulut | Maximizers for the Strichartz inequalities for the wave equation[END_REF] and the rest of this paper will be devoted to that goal. The broad outline of the proof of Theorem 1.1 ( 2) is similar in nature to the proof of part [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]. With this is mind we will often refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] where the details are nearly identical instead of repeating the same arguments here.

Remark 3. We remark that Theorem 1.1 is reminiscent of the recent works of Duyckaerts, the second author, and Merle in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF][START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF][START_REF] Duyckaerts | Profiles of bounded radial solutions of the focusing, energy-critical wave equation[END_REF][START_REF] Duyckaerts | Classification of radial solutions of the focusing, energycritical wave equation[END_REF] for the energy critical semi-linear focusing wave equation in 3 spacial dimensions and again we refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] for a more detailed description of the similarities and differences between these papers. Remark 4. Finally, we would like to note that the same observations in [6, Appendix A] regarding 1-equivariant wave maps to more general targets, higher equivariance classes and the 4d equivariant Yang-Mills system hold in the context of the global statement in Theorem 1.1.

Preliminaries

For the reader's convenience, we recall a few facts and notations from [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] that are used frequently in what follows. We define the 1-equivariant energy space to be

H = { U ∈ Ḣ1 × L 2 (R 2 ; S 2 ) | U • ρ = ρ • U, ∀ρ ∈ SO(2)}.
H is endowed with the norm

E( U (t)) = U (t) 2 Ḣ1 ×L 2 (R 2 ;S 2 ) = R 2 (|∂ t U | 2 g + |∇U | 2 g ) dx. (2.1)
As noted in the introduction, by our equivariance condition we can write U (t, r, ω) = (ψ(t, r), ω) and the energy of a wave map becomes

E(U, ∂ t U )(t) = E(ψ, ψ t )(t) = ∞ 0 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr = const. (2.2)
We also define the localized energy as follows: Let

r 1 , r 2 ∈ [0, ∞). Then E r2 r1 ( ψ(t)) := r2 r1 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr.
Following Shatah and Struwe, [START_REF] Shatah | Geometric wave equations[END_REF], we set

G(ψ) := ψ 0 |sin ρ| dρ. (2.3)
Observe that for any (ψ, 0) ∈ H and for any r 1 , r 2 ∈ [0, ∞) we have

|G(ψ(r 2 )) -G(ψ(r 1 ))| = ψ(r2) ψ(r1) |sin ρ| dρ (2.4) = r2 r1 |sin(ψ(r))| ψ r (r) dr ≤ 1 2 E r2 r1 (ψ, 0).
We also recall from [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] the definition of the space H × L 2 .

(ψ 0 , ψ 1 ) 2 H×L 2 := ∞ 0 ψ 2 1 + (ψ 0 ) 2 r + ψ 2 0 r 2 r dr. (2.5) 
We note that for degree zero maps (ψ 0 , ψ 1 ) ∈ H 0 the energy is comparable to the H × L 2 norm provided the L ∞ norm of ψ 0 is uniformly bounded below π. This equivalence of norms is detailed in [6, Lemma 2.1], see also [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF]Lemma 2]. The space H × L 2 is not defined for maps (ψ 0 , ψ

1 ) ∈ H 1 , but one can instead consider the H × L 2 norm of (ψ 0 -Q λ , 0) for λ ∈ (0, ∞), and Q λ (r) = Q(r/λ). In fact, for maps ψ ∈ H 1 such that E( ψ) -E(Q) is small, one can choose λ > 0 so that (ψ 0 -Q λ , ψ 1 ) 2 H×L 2 E( ψ) -E(Q).
This amounts to the coercivity of the energy near Q up to the scaling symmetry.

For more details we refer the reader to [ 

E t-A λt ( ψ(t)) → 0 as A → ∞. (2.6) 
In fact, we have

E t-A λt ( ψ(t)) → 0 as t, A → ∞ for A ≤ (1 -λ)t. (2.7)
We note that Proposition 2.1 is a refinement of [31, (3.4)], see also [START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF]Corollary 1] where the case of spherically symmetric wave maps is considered. To prove this result, we follow [START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF], [START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF], and [START_REF] Shatah | Geometric wave equations[END_REF] and introduce the following quantities:

e(t, r) := ψ 2 t (t, r) + ψ 2 r (t, r) + sin 2 (ψ(t, r)) r 2 m(t, r) := 2ψ t (t, r)ψ r (t, r).
Observe that with this notation the energy identity becomes:

∂ t e(t, r) = 1 r ∂ r (r m(t, r)) , (2.8) 
which we can conveniently rewrite as

∂ t (re(t, r)) -∂ r (r m(t, r)) = 0. (2.9)
Using the notation in [START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF], we set α 2 (t, r) := r (e(t, r) + m(t, r))

β 2 (t, r) := r(e(t, r) -m(t, r))

and we define null coordinates

u = t -r, v = t + r.
Next, for 0 ≤ λ < 1 set

E λ (u) := ∞ 1+λ 1-λ u α 2 (u, v) dv (2.10) F (u 0 , u 1 ) := lim v→∞ u1 u0 β 2 (u, v) du. (2.11)
Also, let C ± ρ denote the interior of the forward (resp. backward) light-cone with vertex at (t, r) = (ρ, 0) for ρ > 0 in (t, r) coordinates.

As in [31, Section 3.1], one can show that the integral in (2.10) and the limit in (2.11) exist for a wave map of finite energy, see also [START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF]Section 2] for the details of the argument for the spherically symmetric case.

By integrating the energy identity (2.9) over the region (C + u0 \C + u1 ) ∩ C - v0 , where 0 < u 0 < u 1 < v 0 , we obtain the identity

u1 u0 β 2 (u, v) du = v0 u0 α 2 (u 0 , v) dv - v0 u1 α 2 (u 1 , v) dv. Letting v 0 → ∞ we see that 0 ≤ F (u 0 , u 1 ) = E 0 (u 0 ) -E 0 (u 1 ), (2.12) 
which shows that E 0 is decreasing. Next, note that

F (u, u 2 ) = F (u, u 1 ) + F (u 1 , u 2 ) ≥ F (u, u 1 )
for u 2 > u 1 , and thus F (u, u 1 ) is increasing in u 1 . F (u, u 1 ) is also bounded above by E (u) so

F (u) := lim u1→∞ F (u, u 1 )
exists and, as in [START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF], [START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF], we have

F (u) → 0 as u → ∞. (2.13)
Finally note that the argument in [9, Lemma 1] shows that for all 0 < λ < 1 we have

E λ (u) → 0 as u → ∞, (2.14) 
which is stated in [31, (3.3)]. To deduce (2.14), follow the exact argument in [9, proof of Lemma 1] using the relevant multiplier inequalities for equivariant wave maps established in [29, proof of Lemma 8.2] in place of [9, equation (6)]. We can now prove Proposition 2.1.

Proof of Proposition 2.1. Fix λ ∈ (0, 1) and δ > 0. Find A 0 and T 0 large enough so that

0 ≤ F (A) ≤ δ, 0 ≤ E λ ((1 -λ)t) ≤ δ
for all A ≥ A 0 and t ≥ T 0 . In (u, v)-coordinates consider the points

X 1 = ((1 -λ)t, (1 + λ)t), X 2 = (A, 2t -A) X 3 = (A, v), X 4 = ((1 -λ)t, v)
where v is very large. Integrating the energy identity (2.9) over the region Ω bounded by the line segments X 1 X 2 , X 2 X 3 , X 3 X 4 , X 4 X 1 we obtain,

E t-A λt ( ψ(t)) = - v 2t-A α 2 (A, v) dv + (1-λ)t A β 2 (u, v) du + v (1+λ)t α 2 ((1 -λ)t, v) dv. r t u v t F (A, 1 -λt) E λ ((1 -λ)t) E t-A λt ( ψ(t)) u = A Ω Figure 1.
The quadrangle Ω over which the energy identity is integrated is the gray region above.

Letting v → ∞ above and recalling that F (u, u 1 ) is increasing in u 1 we have

E t-A λt ( ψ(t)) ≤ E λ ((1 -λ)t) + F (A, (1 -λ)t) ≤ E λ ((1 -λ)t) + F (A).
The proposition now follows from (2.14) and (2.13).

We will also need the following corollaries of Proposition 2.1:

Corollary 2.2. Let ψ(t) ∈ H be a global wave map. Then

lim sup T →∞ 1 T T A t-A 0 ψ 2 t (t, r) r dr dt → 0 as A → ∞. (2.15) 
Proof. We will use the following virial identity for solutions to (1.2):

∂ t (r 2 m) -∂ r (r 2 ψ 2 t + r 2 ψ 2 r -sin 2 ψ) + 2rψ 2 t = 0. (2.16)
Now, fix δ > 0 so that δ < 1/3 and find A 0 , T 0 so that for all A ≥ A 0 and t ≥ T 0 we have

E t-A δt ( ψ(t)) ≤ δ. Then, δt 0 e(t, r)r 2 dr ≤ E( ψ(t))δt
and as long as we ensure that A ≤ 1/3t, we obtain Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for |x| ≤ 1/3, χ(x) = 0 for |x| ≥ 2/3 and χ (x) ≤ 0. Then, using the virial identity (2.16) we have

d dt ∞ 0 m(t, r)χ(r/t) r 2 dr = ∞ 0 ∂ t (r 2 m(t, r)) χ(r/t) dr - 2 t 2 ∞ 0 ψ t ψ r r 3 χ (r/t) dr = ∞ 0 ∂ r (r 2 (ψ 2 t + ψ 2 r ) -sin 2 (ψ))χ(r/t) dr -2 ∞ 0 ψ 2 t (t, r)χ(r/t) r dr + O(δ) = 1 t 2 ∞ 0 (r 2 (ψ 2 t + ψ 2 r ) -sin 2 (ψ))χ (r/t) r dr -2 ∞ 0 ψ 2 t (t, r)χ(r/t) r dr + O(δ) = -2 ∞ 0 ψ 2 t (t, r)χ(r/t) r dr + O(δ).
Integrating in t between 0 and T yields Next, note that we have

T 0 ∞ 0 ψ 2 t (t,
T A t-A t/3 ψ 2 t (t, r) r dr dt ≤ T0 A E( ψ) dt + T T0 t-A t/3
e(t, r) r dr dt

≤ (T 0 -A)E( ψ) + (T -T 0 )δ. Therefore, 1 T T A t-A 0 ψ 2 t (t, r) r dr dt ≤ Cδ + T 0 T E( ψ)
Hence, lim sup

T →∞ 1 T T A t-A 0 ψ 2 t (t, r) r dr dt ≤ Cδ for all A ≥ A 0 , which proves (2.15).
Corollary 2.3. Let ψ(t) ∈ H be a smooth global wave map. Recall that ψ(t) ∈ H implies that there exists k ∈ Z such that for all t we have ψ(t, ∞) = kπ. Then for any λ > 0 we have 

ψ(t) -ψ(t, ∞) L ∞ (r≥λt) → 0 as t → ∞. ( 2 
ψ(t) -(ψ(t, ∞), 0) 2 H×L 2 (λt≤r≤t-A) → 0 as A → ∞. (2.18)
Proof. Say ψ(t) ∈ H k . Observe that Corollary 2.3 shows that for t 0 large enough we have, say, |ψ(t, r) -kπ| ≤ π 100 for all t ≥ t 0 and r ≥ λt. This in turn implies that for t ≥ t 0 we can find a C > 0 such that

|ψ(t, r) -kπ| 2 ≤ C sin 2 (ψ(t, r)) ∀ t ≥ t 0 , r ≥ λt. Now (2.18) follows directly from (2.6).
The first step in the proof of Corollary 2.3 is the following lemma:

Lemma 2.5. Let ψ(t) ∈ H be a smooth global wave map. Let R > 0 and suppose that the initial data

ψ(0) = (ψ 0 , ψ 1 ) ∈ H 1 satisfies supp(∂ r ψ 0 ), supp(ψ 1 ) ⊂ B(0, R).
Then for any t ≥ 0 and for any A < t we have

ψ(t) -ψ(t, ∞) L ∞ (r≥t-A) ≤ E( ψ) A + R t -A . (2.19) 
Proof. By the finite speed of propagation we note that for each t ≥ 0 we have supp(ψ r (t)) ⊂ B(0, R + t). Hence, for all t ≥ 0 we have

|ψ(t, r) -ψ(t, ∞)| ≤ ∞ r |ψ r (t, r )| dr ≤ R+t r ψ 2 r (t, r ) r dr 1 2 R+t r 1 r dr 1 2 ≤ E( ψ) log t + R r . Next observe that if r ≥ t -A then log t + R r ≤ log 1 + A + R r ≤ log 1 + A + R t -A ≤ A + R t -A .
This proves (2.19).

Proof of Corollary 2.3. Say ψ(t) ∈ H k , that is ψ(t, ∞) = kπ for all t.
First observe that by an approximation argument, it suffices to consider wave maps

ψ(t) ∈ H k with initial data ψ(0) = (ψ 0 , ψ 1 ) ∈ H k with supp(∂ r ψ 0 ), supp(ψ 1 ) ⊂ B(0, R)
for R > 0 arbitrary, but fixed. Now, let t n → ∞ be any sequence and set

A n := √ t n .
Then, for each r ≥ λt n we have

|ψ(t n , r) -kπ| ≤ ψ(t n ) -kπ L ∞ (λtn≤r≤tn-An) + ψ(t n ) -kπ L ∞ (r≥tn-An) .
By Lemma 2.5 we know that

ψ(t n ) -kπ L ∞ (r≥tn-An) ≤ E(ψ) √ t n + R t n - √ t n → 0 as n → ∞. (2.20)
Hence it suffices to show that

ψ(t n ) -kπ L ∞ (λtn≤r≤tn-An) → 0 as n → ∞.
To see this, first observe that (2.20) implies that

ψ(t n , t n -A n ) → kπ as n → ∞. Therefore it is enough to show that ψ(t n ) -ψ(t n , t n -A n ) L ∞ (λtn≤r≤tn-An) → 0 as n → ∞. (2.21)
With G defined as in (2.3) we can combine (2.4) and Proposition 2.1 to deduce that for all r ≥ λt n we have

|G(ψ(t n , r)) -G(ψ(t n , t n -A n ))| ≤ 1 2 E tn-An λtn ( ψ(t n )) → 0.
as n → ∞. This immediately implies (2.21) since G is a continuous, increasing function.

3.

Profiles for global degree one solutions with energy below 3E(Q)

In this section we carry out the proof of Theorem 1.1 [START_REF] Bulut | Maximizers for the Strichartz inequalities for the wave equation[END_REF]. We start by first deducing the conclusions along a sequence of times. To be specific, we establish the following proposition:

Proposition 3.1. Let ψ(t) ∈ H 1 be a global solution to (1.2) with E( ψ) = E(Q) + η < 3E(Q).
Then there exist a sequence of times τ n → ∞, a sequence of scales λ n τ n , a solution ϕ L (t) ∈ H 0 to the linear wave equation (1.6), and a decomposition

ψ(τ n ) = ϕ L (τ n ) + (Q (•/λ n ) , 0) + (τ n ) (3.1) such that (τ n ) ∈ H 0 and (τ n ) → 0 in H × L 2 as n → ∞.
To prove Proposition 3.1 we proceed in several steps. We first construct the sequences τ n and λ n while identifying the large profile, Q(•/λ n ). Once we have done this, we extract the radiation term ϕ L . In the last step, we prove strong convergence of the error

(τ n ) := ψ(τ n ) -ϕ L (τ n ) -(Q (•/λ n ) , 0) → 0 in the space H × L 2 .
3.1. The harmonic map at t = +∞. Here we prove the analog of Struwe's result [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF]Theorem 2.1] for global wave maps of degree different than zero, i.e., ψ(t) ∈ H\H 0 for all t ∈ [0, ∞). This will allow us to identify the sequences τ n , λ n and the harmonic maps Q(•/λ n ) in the decomposition (3.1). Theorem 3.2. Let ψ(t) ∈ H\H 0 be a smooth, global solution to (1.2). Then, there exists a sequence of times t n → ∞ and a sequence of scales λ n t n so that the following results hold: Let

ψ n (t, r) := ψ(t n + λ n t, λ n r), λ n ψ(t n + λ n t, λ n r) (3.2)
be the global wave map evolutions associated to the initial data

ψ n (r) := (ψ(t n , λ n r), λ n ψ(t n , λ n , r)).
Then, there exists λ 0 > 0 so that

ψ n → (±Q(•/λ 0 ), 0) in L 2 t ([0, 1); H 1 × L 2 ) loc .
We begin with the following lemma, which follows from Corollary 2.2 and is the global-in-time version of [6, Corollary 2.9]. The statement and proof are also very similar to [START_REF] Duyckaerts | Profiles of bounded radial solutions of the focusing, energy-critical wave equation[END_REF]Lemma 4.4] and [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF]Corollary 5.3]. Lemma 3.3. Let ψ(t) ∈ H be a smooth global wave map. Let A : (0, ∞) → (0, ∞) be any increasing function such that A(t) ∞ as t → ∞ and A(t) ≤ t for all t. Then, there exists a sequence of times t n → ∞ such that 

∀A(t) ∞ with A(t) ≤ t as t → ∞, ∀δ > 0, ∀T 0 > 0, ∃τ ≥ T 0 so that sup σ>0 1 σ τ +σ τ t-A(τ ) 0 ψ2 (t, r) r dr dt ≤ δ.
So we assume that (3.3) fails. Then,

∃A(t) ∞ with A(t) ≤ t as t → ∞, ∃δ > 0, ∃T 0 > 0, ∀τ ≥ T 0 , ∃σ > 0 so that 1 σ τ +σ τ t-A(τ ) 0 ψ2 (t, r) r dr dt > δ. (3.4)
Now, by Corollary 2.2 we can find a large A 1 and a T 1 = T 1 (A 1 ) > T 0 so that for all T ≥ T 1 we have

1 T T A1 t-A1 0 ψ2 (t, r) r dr dt ≤ δ/100. (3.5)
Since A(t) ∞ we can fix T > T 1 large enough so that A(t) ≥ A 1 for all t ≥ T . Define the set X as follows:

X := σ > 0 : 1 σ T +σ T t-A(T ) 0 ψ2 (t, r) r dr dt ≥ δ .
Then X is nonempty by (3.4). Define ρ := sup X. We claim that ρ ≤ T . To see this assume that there exists σ ∈ X so that σ ≥ T . Then we would have

T + σ ≤ 2σ.
This in turn implies, using (3.5), that 1 2σ

T +σ T t-A(T ) 0 ψ2 (t, r) r dr dt ≤ 1 T + σ T +σ A1 t-A1 0 ψ2 (t, r) r dr dt ≤ δ/100
where we have also used the fact that A(T ) ≥ A 1 . This would mean that

1 σ T +σ T t-A(T ) 0 ψ2 (t, r) r dr dt ≤ δ/50,
which is impossible since we assumed that σ ∈ X. Therefore ρ ≤ T . Moreover, we know that

T +ρ T T -A(T ) 0 ψ2 (t, r) r dr dt ≥ δρ. (3.6)
Now, since T + ρ > T > T 1 > T 0 we know that there exists σ > 0 so that

T +ρ+σ T +ρ t-A(T +ρ) 0 ψ2 (t, r) r dr dt > δσ.
Since A(t) is increasing, we have A(T ) ≤ A(T + ρ) and hence the above implies that which means that ρ + σ ∈ X. But this contradicts that fact that ρ = sup X.

The rest of the proof of Theorem 3.2 will follow the same general outline of [35, proof of Theorem 2.1]. Let ψ(t) ∈ H 1 be a smooth global wave map.

We begin by choosing a scaling parameter. Let δ 0 > 0 be a small number, for example δ 0 = 1 would work. For each t ∈ (0, ∞) choose λ(t) so that

δ 0 ≤ E 2λ(t) 0 ( ψ(t)) ≤ 2δ 0 . (3.8)
Then using the monotonicity of the energy on interior cones we know that for each |τ | ≤ λ(t) we have

E λ(t) 0 ( ψ(t + τ )) ≤ E 2λ(t)-|τ | 0 ( ψ(t + τ )) ≤ E 2λ(t) 0 ( ψ(t)) ≤ 2δ 0 . (3.9)
Similarly, we have

δ 0 ≤ E 2λ(t)+|τ | 0 ( ψ(t + τ )) ≤ E 3λ(t) 0 ( ψ(t + τ )). (3.10)
Lemma 3.4. Let ψ(t) ∈ H\H 0 and λ(t) be defined as above. Then we have λ(t) t as t → ∞.

Proof. Suppose ψ ∈ H k for k ≥ 1. It suffices to show that for all λ > 0 we have λ(t) ≤ λt for all t large enough. Fix λ > 0. By Corollary 2.3 we have

ψ(t) -kπ L ∞ (r≥λt) → 0 (3.11)
as t → ∞. For the sake of finding a contradiction, suppose that there exists a sequence t n → ∞ with λ(t n ) ≥ λt n for all n ∈ N. By (2.4) and (3.11) we would then have that (3.8) as long as we ensure that δ 0 < 2.

E 2λ(tn) 0 ( ψ(t n )) ≥ E λtn 0 ( ψ(t n )) ≥ 2G(ψ(t n , λt n )) → 2G(kπ) ≥ 4 > 2δ 0 , which contradicts
We can now complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Let λ(t) be defined as in (3.8). Choose another scaling parameter A(t) so that A(t) → ∞ and λ(t) ≤ A(t) t for t → ∞, for example one could take A(t) := max{ λ(t), t 1/2 } where λ(t) := sup 0≤s≤t λ(s). By Lemma 3.3 we can find a sequence t n → ∞ so that by setting λ n := λ(t n ) and A n := A(t n ) we have lim 

ψ n (t, r) := ψ(t n + λ n t, λ n r), λ n ψ(t n + λ n t, λ n r) .
and write the full wave maps in coordinates on S 2 as U n (t, r, ω) := (ψ n (t, r), ω). Observe that we have

1 0 rn 0 ψ2 n (t, r) r dr dt → 0 as n → ∞ (3.12)
where r n := (t n -A n )/λ n → ∞ as n → ∞ by our choice of A n . Also note that

E( ψ n (t)) = E( ψ(t n + λ n t)) = E( ψ) = C.
This implies that the sequence

ψ n is uniformly bounded in L ∞ t ( Ḣ1 × L 2 ). Note that (2.4) implies that ψ n is uniformly bounded in L ∞ t L ∞ x .
Hence we can extract a further subsequence so that

ψ n ψ ∞ weakly in L 2 t (H 1 × L 2
) loc and, in fact, locally uniformly on [0, 1) × (0, ∞). By (3.12), the limit

ψ ∞ (t, r) = (ψ ∞ (r), 0) ∀(t, r) ∈ [0, 1) × (0, ∞)
and is thus a time-independent weak solution to (1.2) on [0, 1)×(0, ∞). This means that the corresponding full, weak wave map Ũ∞ (t, r, ω

) = U ∞ (r, ω) := (ψ ∞ (r), ω) is a time-independent weak solution to (1.1) on [0, 1) × R 2 \ {0}. By Hélein's theorem [16, Theorem 2], U ∞ : R 2 \ {0} → S 2
is a smooth finite energy, co-rotational harmonic map. By Sacks-Uhlenbeck, [START_REF] Sacks | The existence of minimal immersions of 2-spheres[END_REF], we can then extend U ∞ to a smooth finite energy, co-rotational harmonic map U : R 2 → S 2 . Writing U (r, ω) = (ψ ∞ (r), ω), we have either ψ ∞ ≡ 0 or ψ ∞ = ±Q(•/λ 0 ) for some λ 0 > 0.

Following Struwe, we can also establish strong local convergence

ψ n → (ψ ∞ , 0) in L 2 t ([0, 1); H 1 × L 2 ) loc (3.13)
using the equation (1.1) and the local energy constraints from (3.9): 

E 1 0 ( ψ n (t)) ≤ 2δ 0 , E 1 0 (ψ ∞ ) ≤ 2δ 0 ,
δ 0 ≤ E 3 0 ( ψ n (t)
) uniformly in n for each |t| ≤ 1. Therefore we can conclude that there exists λ 0 > 0 so that ψ ∞ (r) = ±Q(r/λ 0 ).

As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], the following consequences of Theorem 3.2, which hold for global degree one wave maps with energy below 3E(Q), will be essential in what follows.

Corollary 3.5. Let ψ(t) ∈ H 1 be a smooth global wave map such that E( ψ) < 3E(Q). Then we have

ψ n -Q(•/λ 0 ) → 0 as n → ∞ in L 2 t ([0, 1); H) loc , (3.14) 
with ψ n (t, r), {t n }, {λ n }, and λ 0 as in Theorem 3.2.

Corollary 3.5 is the global-in-time analog of [6, Corollary 2.13]. For the details, we refer the reader to [6, Proof of Lemma 2.11, Lemma 2.12, and Corollary 2.13]. At this point we note that we can, after a suitable rescaling, assume, without loss of generality, that λ 0 in Theorem 3.2, and Corollary 3.5, satisfies λ 0 = 1.

Arguing as in [6, Proof of Proposition 5.4] we can also deduce the following consequence of Theorem 3.2. Proposition 3.6. Let ψ(t) ∈ H 1 be a smooth global wave map such that E( ψ) < 3E(Q). Then, there exists a sequence α n → ∞, a sequence of times τ n → ∞, and a sequence of scales λ n τ n with α n λ n τ n , so that

(a) As n → ∞ we have lim n→∞ τn-An 0 ψ2 (τ n , r) r dr → 0, (3.15) 
where As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] we will also need the following simple consequence of Proposition 3.6.

A n → ∞ satisfies λ n ≤ A n τ n . (b) As n → ∞ we have lim n→∞ αnλn 0 ψ r (τ n , r) - Q r (r/λ n ) λ n 2 + |ψ(τ n , r) -Q(r/λ n )|
Corollary 3.7. Let α n , λ n , and τ n be defined as in Proposition 3.6. Let β n → ∞ be any sequence such that β n < c 0 α n for some c 0 < 1. Then, for every 0 < c 1 < C 2 such that C 2 c 0 < 1 there exists βn with c 

1 β n ≤ βn ≤ C 2 β n such that ψ(τ n , βn λ n ) → π as n → ∞. ( 3 
( ψ) = E(Q) + η < 3E(Q).
Then there exists a solution ϕ L (t) ∈ H 0 to the linear wave equation (1.6) so that for all A ≥ 0 we have

ψ(t) -(π, 0) -ϕ L (t) H×L 2 (r≥t-A) → 0 as t → ∞. (3.18)
Moreover, for n large enough we have

E( ϕ L (τ n )) ≤ C < 2E(Q). ( 3 

.19)

Proof. To begin we pick any α n → ∞ and find τ n , λ n as in Proposition 3.6. Now let β n → ∞ be any other sequence such that β n α n . By Corollary 3.7 we can assume that

ψ(τ n , β n λ n ) → π (3.20)
as n → ∞. We make the following definition:

φ 0 n (r) = π -π-ψ(τn,βnλn) βnλn r if 0 ≤ r ≤ β n λ n ψ(τ n , r) if β n λ n ≤ r < ∞ (3.21) φ 1 n (r) = 0 if 0 ≤ r ≤ β n λ n ψ(τ n , r) if β n λ n ≤ r < ∞. (3.22) 
We claim that (2.4) we have

φ n := (φ 0 n , φ 1 0 ) ∈ H 1,1 and E( φ n ) ≤ C < 2E(Q). Clearly φ 0 n (0) = π and φ 0 n (∞) = π. We claim that E ∞ βnλn ( φ n ) = E ∞ βnλn ( ψ(τ n )) ≤ η + o n (1). (3.23) Indeed, since ψ(τ n , β n λ n ) → π we have G(ψ(τ n , β n λ n )) → 2 = 1 2 E(Q) as n → ∞. Therefore, by
E βnλn 0 (ψ(τ n ), 0) ≥ 2G(ψ(τ n , β n λ n )) ≥ E(Q) -o n (1) for large n which proves (3.23) since E ∞ βnλn ( ψ(τ n )) = E ∞ 0 ( ψ(τ n )) -E βnλn 0 ( ψ(τ n )).
We can also directly compute E βnλn 0 (φ 0 n , 0). Indeed,

E βnλn 0 (φ 0 n , 0) = βnλn 0 π -ψ(τ n , β n λ n ) β n λ n 2 r dr + βnλn 0 sin 2 π-ψ(τn,βnλn) βnλn r r dr ≤ C |π -ψ(τ n , β n λ n )| 2 → 0 as n → ∞. Hence E( φ n ) ≤ η + o n (1)
. This means that for large enough n we have the uniform estimates E( φ n ) ≤ C < 2E(Q). Therefore, by [6, Theorem 1.1], (which holds with exactly the same statement in H 1,1 as in H 0 = H 0,0 ), we have that the wave map evolution φ n (t) ∈ H 1,1 with initial data φ n is global in time and scatters to π as t → ±∞. The scattering statement means that for each n we can find initial data φ n,L so that the solution, S(t) φ n,L , to the linear wave equation (1.6) satisfies

φ n (t) -(π, 0) -S(t) φ n,L H×L 2 → 0 as t → ∞.
Abusing notation, we set

φ n,L (t) := S(t -τ n ) φ n,L .
By the definition of φ n and the finite speed of propagation observe that we have

φ n (t -τ n , r) = ψ(t, r) ∀r ≥ t -τ n + β n λ n .
Therefore, for all fixed m we have

ψ(t) -(π, 0) -φ m,L (t) H×L 2 (r≥t-τm+βmλm) → 0 as t → ∞, (3.24) 
and, in particular

φ n -(π, 0) -φ m,L (τ n ) H×L 2 (r≥τn-τm+βmλm) → 0 as n → ∞. (3.25) Now set ϕ n = (ϕ 0 n , ϕ 1 n ) := (φ 0 n , φ 1 n ) -(π, 0) ∈ H 0 . We have E( ϕ n ) ≤ C < 2E(Q) by construction. Therefore the sequence S(-τ n ) ϕ n is uniformly bounded in H × L 2 . Let ϕ L = (ϕ 0 L , ϕ 1 L ) ∈ H 0 be the weak limit of S(-τ n ) ϕ n in H × L 2 as n → ∞, i.e., S(-τ n ) ϕ n ϕ weakly in H × L 2
as n → ∞. Denote by ϕ L (t) := S(t) ϕ L the linear evolution of ϕ L at time t. Following the construction in [1, Main Theorem] we have the following profile decomposition for ϕ n :

ϕ n (r) = ϕ L (τ n , r) + k j=2 ϕ j L (t j n /λ j n , r/λ j n ), 1 λ j n φj L (t j n /λ j n , r/λ j n ) + γ k n (r) (3.26)
where if we label ϕ L =: ϕ 1 L , τ n =: t 1 n , and λ 1 n = 1 this is exactly a profile decomposition as in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Corollary 2.15]. Now observe that for each fixed m we can write 

ϕ n (r) -φ m,L (τ n , r) = ϕ L (τ n , r) -φ m,L (τ n , r) + k j=2 ϕ j L (t j n /λ j n , r/λ j n ), 1 λ j n φj L (t j n /λ j n , r/λ j n ) + γ k n (
ϕ n -φ m,L (τ n ) 2 H×L 2 (r≥τn-τm+βmλm) = ϕ L (τ n )-φ m,L (τ n ) 2 H×L 2 (r≥τn-τm+βmλm) + k j=2 ϕ j L (t j n /λ j n ) 2 H×L 2 (r≥τn-τm+βmλm) + γ k j 2 H×L 2 (r≥τn-τm+βmλm) + o n (1)
Note that (3.25) implies that the left-hand-side above tends to zero as n → ∞.

Therefore, since all of the terms on right-hand-side are non-negative we can deduce that

ϕ L (τ n ) -φ m,L (τ n ) 2 H×L 2 (r≥τn-τm+βmλm) → 0 as n → ∞.
Since,

ϕ L (τ n ) -φ m,L (τ n ) = S(τ n )( ϕ -S(-τ m ) φ m,L )
is a solution to the linear wave equation, we can use the monotonicity of the energy on exterior cones to deduce that ϕ L (t) -φ m,L (t) 2 H×L 2 (r≥t-τm+βmλm) → 0 as t → ∞. Combining the above with (3.24) we can conclude that

ψ(t) -(π, 0) -ϕ L (t) 2
H×L 2 (r≥t-τm+βmλm) → 0 as t → ∞. The above holds for each m ∈ N and for any sequence β m → ∞ with β m < c 0 α m . Taking β m α m and recalling that τ m → ∞ and λ m are such that α m λ m τ m we have that τ m -β m λ m → ∞ as m → ∞. Therefore, for any A > 0 we can find m large enough so that τ m -β m λ m > A, which proves (3.18) in light of the above.

It remains to show (3.19). But this follows immediately from the decomposition (3.26) and the almost orthogonality of the nonlinear wave map energy for such a decomposition, see [6, Lemma 2.16], since we know that the left-hand-side of (3.26) satisfies

E( ϕ n ) ≤ C < 2E(Q)
for large enough n. Now that we have constructed the radiation term ϕ L (t) we denote by ϕ(t) ∈ H 0 the global wave map that scatters to the linear wave ϕ L (t), i.e., ϕ(t) ∈ H 0 is the global solution to (1.2) such that ϕ(t) -ϕ L (t) H×L 2 → 0 as t → ∞.

(3.28)

The existence of such a ϕ(t) ∈ H 0 locally around t = +∞ follows immediately from the existence of wave operators for the corresponding 4d semi-linear equation. The fact that ϕ(t) is global-in-time follows from [6, Theorem 1] since (3.19) and (3.28) together imply that E( ϕ) < 2E(Q). We will need a few facts about the degree zero wave map ϕ(t) which we collect in the following lemma. Lemma 3.9. Let ϕ(t) be defined as above. Then we have

lim sup t→∞ ϕ(t) H×L 2 (|r-t|≥A) → 0 as A → ∞, (3.29) lim t→∞ E ∞ t-A ( ϕ(t)) → E( ϕ) as A → ∞. (3.30)
Proof. First we prove (3.29). We have

ϕ(t) 2 H×L 2 (|r-t|≥A) ≤ ϕ(t) -ϕ L (t) 2 H×L 2 + ϕ L (t) 2 H×L 2 (|r-t|≥A)
. By (3.28) the first term on the right-hand-side above tends to 0 as t → ∞ so it suffices to show that lim sup t→∞ ϕ L (t) 2 H×L 2 (|r-t|≥A) → 0 as A → ∞.

Since ϕ L (t) is a solution to (1.6) the above follows from [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]Theorem 4] by passing to the analogous statement for the corresponding 4d free wave v L (t) given by rv L (t, r) := ϕ L (t, r).

To prove (3.30) we note that the limit as t → ∞ exists for any fixed A due to the monotonicity of the energy on exterior cones. Next observe that we have

lim t→∞ E t-A 0 ( ϕ(t)) ≤ lim t→∞ ϕ(t) 2 H×L 2 (r≤t-A) → 0 as A → ∞ (3.31)
by (3.29) and then (3.30) follows immediately from the conservation of energy.

Now, observe that we can combine Proposition 3.8 and (3.28) to conclude that for all A ≥ 0 we have

ψ(t) -(π, 0) -ϕ(t) H×L 2 (r≥t-A) → 0 as t → ∞. (3.32)
With this in mind we define a(t) as follows:

a(t) := ψ(t) -ϕ(t) (3.33)
and we aggregate some preliminary information about a in the following lemma:

Lemma 3.10. Let a(t) be defined as in (3.33). Then a(t) ∈ H 1 for all t. Moreover,

• for all λ > 0 we have

a(t) -(π, 0) H×L 2 (r≥λt) → 0 as t → ∞, (3.34) 
• the quantity E( a(t)) has a limit as t → ∞ and

lim t→∞ E( a(t)) = E( ψ) -E( ϕ). (3.35) 
Proof. By definition we have a(t) ∈ H 1 for all t since a(t, 0) = 0, a(t, ∞) = π.

To prove (3.34) observe that for every A ≤ (1 -λ)t we have 

a(t) -(π, 0) 2 H×L 2 (r≥λt) ≤ ψ(t) -(π, 0) 2 H×L 2 (λt≤r≤t-A) + ϕ(t)
E ∞ t-A ( ψ(t)) = E( ϕ). (3.36)
Indeed, we have

E ∞ t-A ( ψ(t)) = ∞ t-A [(ψ t (t) -ϕ t (t) + ϕ t (t)) 2 + (ψ r (t) -ϕ r (t) + ϕ r (t)) 2 ] r dr + ∞ t-A sin 2 (ψ(t) -π -ϕ(t) + ϕ(t)) r dr = E ∞ t-A ( ϕ(t)) + ψ(t) -(π, 0) -ϕ(t) 2 Ḣ1 ×L 2 (r≥t-A) + O ψ(t) -(π, 0) -ϕ(t) Ḣ1 ×L 2 (r≥t-A) ϕ(t) Ḣ1 ×L 2 (r≥t-A) + ∞ t-A sin 2 (ψ(t) -π -ϕ(t) + ϕ(t)) -sin 2 (ϕ(t)) r dr = E ∞ t-A ( ϕ(t)) + O ψ(t) -(π, 0) -ϕ(t) 2 H×L 2 (r≥t-A) + O E( ϕ) ψ(t) -(π, 0) -ϕ(t) H×L 2 (r≥t-A) ,
which proves (3.36) in light of (3.30) and (3.32). In the third equality above we have used the simple trigonometric inequality:

sin 2 (x -y + y) -sin 2 (y) ≤ 2 |sin(y)| |x -y| + 2 |x -y| 2 .
Now, fix δ > 0. By (3.29), (3.36), and (3.32) we can choose A, T 0 large enough so that for all t ≥ T 0 we have

ϕ(t) H×L 2 (r≤t-A) ≤ δ, E ∞ t-A ( ψ(t)) -E( ϕ) ≤ δ, a(t) -(π, 0) 2 H×L 2 (r≥t-A) ≤ δ.
Then for all t ≥ T 0 and A as above we can argue as before to obtain

E( a(t)) = E t-A 0 ( a(t)) + O( a(t) -(π, 0) 2 H×L 2 (r≥t-A) = E t-A 0 ( ψ(t)) + O E( ψ) ϕ(t) H×L 2 (r≤t-A) + O ϕ(t) 2 H×L 2 (r≤t-A) + O a(t) -(π, 0) 2 H×L 2 (r≥t-A) = E( ψ) -E ∞ t-A ( ψ(t)) + O(δ) = E( ψ) -E( ϕ) + O(δ),
which proves (3.35).

We will also need the following technical lemma in the next section. We first estimate the first integral on the right-hand-side above. Let A n → ∞ be the sequence in Proposition 3.6, see also Remark 5,and Taking the limsup as n → ∞ of both sides and then letting A → ∞ on the right we have by (3.29) that the left-hand-side above tends to 0 as n → ∞. This concludes the proof. Remark 7. The proof of Proposition 3.12 will follow the same strategy as [6, Proposition 5.6] and we refer the reader to the outline given there for a general overview of the proof.

We begin with the following consequences of the previous sections. 

E( b n ) ≤ C < 2E(Q) (3.45)
for n large enough.

Proof. To prove (3.42) fix 0 < λ < 1 and observe that we have Next we prove (3.43). To see this, observe that for each n we have

b n,0 2 
H(r≤αnλn) ≤ ψ(τ n ) -Q(•/λ n ) 2 H(r≤αnλn) + ϕ(τ n ) 2 H(r≤αnλn)
. The first term on the right-hand-side tends to zero as n → ∞ by (3.16). To estimate the second term on the right-hand-side we note that for fixed A > 0 we can find n large enough so that α n λ n ≤ τ n -A and so we have

ϕ(τ n ) 2 H(r≤αnλn) ≤ ϕ(τ n ) 2 H(r≤τn-A) .
Taking the limsup as n → ∞ on both sides above and then taking A → ∞ on the right and recalling (3.29) we see that the limit as n → ∞ of the left-hand side above must be zero. This proves (3.43).

To deduce (3.44) note that

b n,0 2 
H(r≥λτn) ≤ a(τ n ) -π 2 H(r≥λτn) + Q(•/λ n ) -π 2 H(r≥λτn)
. The first term on the right-hand-side above tends to zero as n → ∞ by (3.34). The second term tends to zero since λτ n /λ n → ∞ as n → ∞.

Finally, we establish (3.45). First observe that for any fixed λ > 0, (3.44) implies that

E( b n ) = E λτn 0 ( b n ) + E ∞ λτn ( b n ) = E λτn 0 ( b n ) + o n (1)
as n → ∞. So it suffices to control E λτn 0 ( b n ). Next, observe that for n large enough, (3.31) gives that

ϕ(τ n ) H×L 2 (r≤λτn) ≤ ϕ(τ n ) H×L 2 (r≤τn-A)
and the right-hand side is small for n, A large. This means that the contribution of ϕ(τ n ) is negligible on r ≤ λτ n , and thus

E λτn 0 ( b n ) = E λτn 0 ( ψ(τ n ) -(Q(•/λ n ), 0)) + o n (1).
Next, recall that Proposition 3.6 implies that

E αnλn 0 ( ψ(τ n ) -Q(•/λ n ), 0) = o n (1), (3.46) 
which shows in particular that

E ∞ αnλn ( ψ(τ n )) ≤ η + o n (1) (3.47) 
where η := E( ψ) -E(Q) < 2E(Q). Also, (3.46) means that it suffices to show that

E λτn αnλn ( ψ(τ n ) -(Q(•/λ n ), 0)) ≤ C < 2E(Q). Note that since α n → ∞ we have E ∞ αnλn (Q(•/λ n )) = E ∞ αn (Q) = o n (1). Hence, E λτn αnλn ( ψ(τ n ) -(Q(•/λ n ), 0)) = E λτn αnλn ( ψ(τ n )) + o n (1) ≤ η + o n (1)
, which completes the proof.

Next, we would like to show that the sequence b n does not contain any nonzero profiles. This next result is the global-in-time analog of [6, Proposition 5.7] and the proof is again, reminiscent of the the arguments given in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF]Section 5].

Denote by b n (t) ∈ H 0 the wave map evolution with data b n . By (3.45) and [6, Theorem 1.1] we know that b n (t) ∈ H 0 is global in time and scatters to zero as t → ±∞.

The statements of the following proposition and its corollary are identical to the corresponding statements [6, Proposition 5.7 and Corollary 5.8] in the finite time blow-up case. Proposition 3.14. Let b n ∈ H 0 and the corresponding global wave map evolution b n (t) ∈ H 0 be defined as above. Then, there exists a decomposition

b n (t, r) = b n,L (t, r) + θ n (t, r) (3.48) 
where b n,L satisfies the linear wave equation (1.6) with initial data b n,L (0, r) := (b n,0 , 0). Moreover, b n,L and θ n satisfy

1 r b n,L L 3 t (R;L 6 x (R 4 )) -→ 0 (3.49) θ n L ∞ t (R;H×L 2 ) + 1 r θ n L 3 t (R;L 6 x (R 4 )) -→ 0 (3.50)
as n → ∞.

Before beginning the proof of Proposition 3.14 we use the conclusions of the proposition to deduce the following corollary which will be an essential ingredient in the proof of Proposition 3.12.

Corollary 3.15. Let b n (t) be defined as in Proposition 3.14. Suppose that there exists a constant δ 0 and a subsequence in n so that b n,0 H ≥ δ 0 . Then there exists α 0 > 0 such that for all t > 0 and all n large enough along this subsequence we have b n (t) H×L 2 (r≥t) ≥ α 0 δ 0 .

(3.51)

Proof. First note that since b n,L satisfies the linear wave equation (1.6) with initial data b n,L (0) = (b n,0 , 0) we know by [7, Corollary 5] and [6, Corollary 2.3], that there exists a constant β 0 > 0 so that for each t ≥ 0 we have

b n,L (t) H×L 2 (r≥t) ≥ β 0 b n,0 H .
On the other hand, by Proposition 3.14 we know that

b n (t) -b n,L (t) H×L 2 (r≥t) ≤ θ n (t) H×L 2 = o n (1).
Putting these two facts together gives

b n (t) H×L 2 (r≥t) ≥ b n,L (t) H×L 2 (r≥t) -o n (1) ≥ β 0 b n,0 H -o n (1). 
This yields (3.51) by passing to a suitable subsequence and taking n large enough.

The proof of Proposition 3.14 is very similar to the proof of [6, Proposition 5.7]. Instead of going through the entire argument again here, we establish the main ingredients of the proof and we refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] for the remainder of the argument.

Since b n ∈ H 0 and E( b n ) ≤ C < 2E(Q) we can, by [6, Corollary 2.15], consider the following profile decomposition for b n :

b n,0 (r) = j≤k ϕ j L -t j n λ j n , r λ j n + γ k n,0 (r), (3.52) b n,1 (r) 
= j≤k 1 λ j n φj L -t j n λ j n , r λ j n + γ k n,1 (r), (3.53) 
where each ϕ j L is a solution to (1.6) and where we have for each j = k:

λ j n λ k n + λ k n λ j n + t j n -t k n λ k n + t j n -t k n λ j n → ∞ as n → ∞. (3.54)
Moreover, if we denote by γ k n,L (t) the linear evolution of γ k n , i.e., solution to (1.6), we have for j ≤ k that

γ k n,L (λ j n t j n , λ j n •), λ j n γk n,L (λ j n t j n , λ j n •) 0 in H × L 2 as n → ∞ (3.55) lim sup n→∞ 1 r γ k n,L L 3 t L 6 x (R 4 ) → 0 as k → ∞. (3.56)
Finally we have the following Pythagorean expansions:

b n 2 H×L 2 = j≤k ϕ j L -t j n λ j n 2 H×L 2 + γ k n 2 H×L 2 + o n (1) (3.57)
As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], the proof of Proposition 3.14 will consist of a sequence of steps designed to show that each of the profiles ϕ j L must be identically zero. Arguing exactly as in [6, Lemma 5.9, Corollary 5.10] we can first deduce that the times t j n can be taken to be 0 for each n, j and that the the initial velocities φj L (0) must all be identically zero as well. We summarize this conclusion in the following lemma: Lemma 3.16. In the decomposition (3.52), (3.53) we can assume, without loss of generality, that t j n = 0 for every n and for every j. In addition, we then have φj L (0, r) ≡ 0 for every j.

The proof of Lemma 3.16 is identical to the proof of [6, Lemma 5.9] and the proof of [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Corollary 5.10]. We refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] for the details.

By Lemma 3.16 we can rewrite our profile decomposition as follows:

b n,0 (r) = j≤k ϕ j L 0, r/λ j n + γ k n,0 (r) (3.58) b n,1 (r) = o n (1) in L 2 as n → ∞, (3.59) 
Note that in addition to the Pythagorean expansion in (3.57) we also have the following almost-orthogonality of the nonlinear wave map energy, which was established in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Lemma 2.16]:

E( b n ) = j≤k E(ϕ j L (0), 0) + E(γ k n,0 , 0) + o n (1). (3.60)
Note that ϕ j , γ k n,0 ∈ H 0 for every j, for every n, and for every k. Using the fact that E( b n ) ≤ C < 2E(Q), (3.60) and [6, Theorem 1.1] imply that, for every j, the nonlinear wave map evolution of the data (ϕ j L (0, r/λ j n ), 0) given by 

ϕ j n (t, r) := ϕ j t λ j n , r λ j n , 1 
λ j n φj t λ j n , r λ j n ( 3 
θ k n L ∞ t (H×L 2 ) + 1 r θ k n L 3 t (R;L 6 x (R 4 )) → 0 as k → ∞. (3.63) 
Recall that we are trying to show that all of the profiles ϕ j must be identically equal to zero. As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] we can make the following crucial observations about the scales λ j n . Since we have concluded that we can assume that all of the times t j n = 0 for all n, j we first note that the orthogonality condition (3.54) implies that for j = k: Now, let k 0 be the index corresponding to the first nonzero profile ϕ k0 . We can assume, without loss of generality that k 0 = 1. By (3.64), (3.66) and [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF]Appendix B] we can find a sequence λn so that λn

λ j n λ k n + λ k n λ j n → ∞ as n → ∞.
α n λ n λ n λn λ 1 n λn λ j n or λ j n λn ∀j > 1.
Define

β n = λn λ n → ∞
and we note that β n α n and λn = β n λ n . Therefore, up to replacing β n by a sequence βn β n and λn by λn := βn λ n , we have by Corollary 3.7 and a slight abuse of notation that ψ(τ n , λn ) → π as n → ∞.

(3.67)

We define the set

J ext := {j ≥ 1 | λn λ j n }. Note that by construction 1 ∈ J ext .
The above technical ingredients are necessary for the proof of the following lemma and its corollary. The analog in the finite-time blow-up case is [6, Lemma 5.10].

Lemma 3.17. Let ϕ 1 , λ 1 n be defined as above. Then for all ε > 0 we have Also, for all j > 1 and for all ε > 0 we have

1 λ 1 n λ 1 n 0 ∞ ελ 1 n +t j∈Jext ,j≤k
1 λ 1 n λ 1 n 0 ∞ ελ 1 n +t ( φj n ) 2 (t, r) r drdt → 0 as n → ∞. (3.69) 
Remark 8. We refer the reader to [6, Proof of Lemma 5.10] for the details of the proof of Lemma 3.17. The proof of (3.68) is nearly identical to [6, Proof of (5.57)] the one difference being that here we use Lemma 3.11 in place of the argument following [6, equation (5.66)]. The proof of (3.69) is identical to [6, Proof of (5.58)] and we omit it here.

Note that (3.68) and (3.69) together directly imply the following result:

Corollary 3.18. Let ϕ 1 be as in Lemma 3.17. Then for all ε > 0 we have The proof of Proposition 3.14 now follows from the exact same argument as [6, Proof of Proposition 5.7]. We refer the reader to [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] for the details.

1 λ 1 n λ 1 n 0 ∞ ελ 1 n +t φ1 n (t, r) + γk n,L (t,
We can now complete the proof of Proposition 3.12.

Proof of Proposition 3.12. We argue by contradiction. Assume that Proposition 3.12 fails. Then, up to extracting a subsequence, we can find a δ 0 > 0 so that b n,0 H ≥ δ 0 (3.71) for every n. By Corollary 3.15 we know that there exists α 0 > 0 so that for all t, b n (t) H×L 2 (r≥|t|) ≥ α 0 δ 0 .

We will show that the above is, in fact, impossible by constructing a sequence of times along which the left hand side above tends to zero. It is convenient to carry out the argument in rescaled coordinates. Set

µ n := λ n τ n .
Since λ n τ n as n → ∞, our new scale µ n → 0 as n → ∞. We next define rescaled wave maps:

g n (t, r) := ψ(τ n + τ n t, τ n r), (3.72) 
h n (t, r) := ϕ(τ n + τ n t, τ n r).

(3.73) Since g n (t) and h n (t) are defined by rescaling ψ and ϕ we have that g n (t) ∈ H 1 is a global-in-time wave map and the wave map ϕ(t) ∈ H 0 is global-in-time and scatters to 0 as t → ±∞. We then have

a(τ n + τ n t, τ n r) = g n (t, r) -h n (t, r).
Similarly, we define bn,0 (r) := b n,0 (τ n r), bn,1 (r) := τ n b n,1 (τ n r)

and the corresponding rescaled wave map evolutions bn (t, r) := b n (τ n t, τ n r), ∂ t bn (t, r) := τ n ḃn (τ n t, τ n r).

After this rescaling, our decomposition becomes Next, we claim that for every n a decomposition of the form (3.74) is preserved up to a small error if we replace the terms in (3.74) with their respective wave map evolutions at some future times to be defined precisely below.

g n (0, r) = h n (0, r) + Q r µ n + bn,0 (r) ( 3 
By Corollary 3.7 we can choose a sequence γ n → ∞ with

γ n α n so that g n (0, γ n µ n ) → π as n → ∞. Define δ n → 0 by |g n (0, γ n µ n ) -π| =: δ n → 0.
Using (3.16) we define ε n → 0 by

g n (0) -(Q(•/µ n ), 0) H×L 2 (r≤αnµn) =: ε n → 0.
Finally, choose β n → ∞ so that

β n ≤ min{ √ γ n , δ -1/2 n , ε -1/2 n } g n (0, β n µ n /2) → π as n → ∞. (3.80)
As in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], we make the following claims: (i) As n → ∞ we have

g n (β n µ n /2) -(Q(•/µ n ), 0) H×L 2 (r≤βnµn) → 0. (3.81) (ii) For each n, on the interval r ∈ [β n µ n , ∞) we have g n β n µ n 2 , r -(π, 0) = h n β n µ n 2 , r + bn β n µ n 2 , r (3.82) 
+ θn β n µ n 2 , r , θn L ∞ t (H×L 2 ) → 0. We first prove (3.81). The proof is very similar to the corresponding argument in the finite-time blow-up case, see [6, Proof of (5.76)]. We repeat the argument here for completeness.

First note that we have

g n (0) -(Q(•/µ n ), 0) H×L 2 (r≤γnµn) ≤ ε n → 0.
Unscale the above by setting gn (t, r) = g n (µ n t, µ n r), which gives

(g n (0), ∂ t gn (0)) -(Q(•), 0) H×L 2 (r≤γn) ≤ ε n → 0.
Now using [6, Corollary 2.6] and the finite speed of propagation we claim that we have

(g n (β n /2), ∂ t gn (β n /2)) -(Q(•), 0) H×L 2 (r≤βn) = o n (1). ( 3 

.83)

To see this, we need to show that [6, Corollary 2.6] applies. Indeed define ĝn,0 (r) :=

     π if r ≥ 2γ n π + π-gn(0,γn) γn (r -2γ n ) if γ n ≤ r ≤ 2γ n gn (0, r) if r ≤ γ n . ĝn,1 (r) = ∂ t gn (0, r) if r ≤ γ n 0 if r ≥ γ n
Then, by construction we have ĝn ∈ H Next we prove (3.82). First we define gn,0 (r) = π -π-gn(0,µnβn/2)

+ (π, 0) -(Q, 0) H×L 2 (r≥γn) ≤ C(ε n + δ n + γ -1 n ). Now,
1 2 µnβn r if r ≤ β n µ n /2 g n (0, r) if r ≥ β n µ n /2
gn,1 (r) = ġn (0, r).

Then, let χ ∈ C ∞ ([0, ∞)) be defined so that χ(r) ≡ 1 on the interval [ Observe that we have the following decomposition:

f n (r) = h n (β n µ n /2, r) + bn (r) + o n [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF].

where the o n (1) above is in the sense of H×L 2 . Moreover, the right-hand side above, without the o n (1) term, is a profile decomposition in the sense of [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Corollary 2.15] because of Proposition 3.14 and [7, Lemma 11] or [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Lemma 2.20]. We can then consider the nonlinear profiles. Note that by construction we have f n ∈ H 0 and, as usual, we can use (3.89) to show that E( f n ) ≤ C < 2E(Q) for large n. The corresponding wave map evolution f n (t) ∈ H 0 is thus global in time and scatters as t → ±∞ by [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Theorem 1.1].

As in the proof of (3.82) it is also easy to show that E( bn ) ≤ C < 2E(Q) where here we use (3.84) instead of (3.43).

Again we can use Proposition 3.14, [6, Proposition 2.17] and [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Lemma 2.18] to obtain the following nonlinear profile decomposition f n (t, r) = h n (β n µ n /2 + t, r) + bn (t, r) + ζn (t, r), ζn L ∞ t (H×L 2 ) → 0. -→ 0 as n → ∞.

Combining the above with the decomposition (3.87) and (3.88) we obtain that bn (s n ) H×L 2 (r≥sn) → 0 as n → ∞.

(3.90)

On the other hand, combining our assumption (3.71) and Corollary 3.15 we know that there exists α 0 > 0 so that bn (s n ) H×L 2 (r≥sn) = b n (τ n s n ) H×L 2 (r≥τnsn) ≥ α 0 δ 0 .

But this contradicts (3.90).

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let a(t) be defined as in (3.33). Recall that by (3.35) we have lim t→∞ E( a(t)) = E( ψ) -E( ϕ).

(3.91) By Proposition 3.1 we have found a sequence of times τ n → ∞ so that

E( a(τ n )) → E(Q)
as n → ∞. This then implies that lim t→∞ E( a(t)) = E(Q).

We now use the variational characterization of Q to show that in fact ȧ(t) L 2 → 0 as t → ∞. To see this observe that since a(t) ∈ H 1 we can deduce by [6, (2.18)] that E(Q) ← E(a(t), ȧ(t)) ≥ ∞ 0 ȧ2 (t, r) r dr + E(Q).

Next observe that the decomposition in [6, Lemma 2.5] provides us with a function λ : (0, ∞) → (0, ∞) such that a(t, •) -Q(•/λ(t)) H ≤ δ(E(a(t), 0) -E(Q)) → 0.

This also implies that 

2t/ 3

 3 δt e(t, r) r 2 dr ≤ δt. , r) r 3 dr ≤ Cδt 2 .

  , r) r dr dt = 0. (3.3) Proof. The proof is analogous to the argument given in [11, Corollary 5.3]. We argue by contradiction. The existence of a sequence of times t n satisfying (3.3) is equivalent to the statement

  , r) r dr dt > δσ. (3.7) Summing (3.6) and (3.7) we get T +ρ+σ T t-A(T ) 0 ψ2 (t, r) r dr dt > δ(σ + ρ),

  , r) r dr dt = 0. Now define a sequence of global wave maps ψ n (t) ∈ H\H 0 by

  which hold uniformly in n for |t| ≤ 1. For the details of this argument we refer the reader to [35, Proof of Theorem 2.1 (ii)]. Finally we note that the strong local convergence in(3.13) shows that indeed ψ ∞ ≡ 0 since by (3.10) we have

Remark 5 .

 5 Proposition 3.6 follows directly from Lemma 3.3, Corollary 3.5 and a diagonalization argument. As mentioned above, we refer the reader to [6, Proposition 5.4 (a), (b)] for the details. Also note that τ n ∈ [t n , t n + λ n ] where t n → ∞ is the sequence in Proposition 3.6. Finally A n := A(t n ) is the sequence that appears in the proof of Theorem 3.2.
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 311 For any sequence σ n > 0 with λ n σ n τ n we have lim , r) r dr dt.

3. 3 .Remark 6 .

 36 Compactness of the error. For the remainder of this section, we fix α n → ∞ and find τ n → ∞ and λ n τ n as in Proposition 3.6. We define b n = (b n,0 , b n,1 ) ∈ H 0 as follows: b n,0 (r) := a(τ n , r) -Q(r/λ n ), (3.39) b n,1 (r) := ȧ(τ n , r). (3.40) As in [6, Section 5.3], our goal in this subsection is to show that b n → 0 in the energy space. Indeed we prove the following result: Proposition 3.12. Define b n ∈ H 0 as in (3.39), (3.40). Then, b n H×L 2 → 0 as n → ∞. (3.41) In light of (3.28), it is clear that Proposition 3.12 implies Proposition 3.1.

Lemma 3 . 13 .

 313 Let b n ∈ H 0 be defined as above. Then we have (a) As n → ∞ we have b n,1 L 2 → 0. (3.42) (b) As n → ∞ we have b n,0 H(r≤αnλn) → 0. (3.43) (c) For any fixed λ > 0 we have b n,0 H(r≥λτn) → 0 as n → ∞. (3.44) (d) There exists a C > 0 so that

  n , r) 2 r dr. Then (3.42) follows from (3.15), (3.29), and (3.34).

Next, recall that by Lemma 3 .

 3 13 we have b n,0 H(r≤αnλn) → 0 as n → ∞, (3.64) b n,0 H(r≥λτn) → 0 as n → ∞, ∀λ > 0 fixed. (3.65) Combining the above two facts with [6, Proposition 2.19] we can conclude that for each λ j n corresponding to a nonzero profile ϕ j we have λ n λ j n τ n as n → ∞. (3.66)

  .74) ġn (0, r) = ḣn (0, r) + bn,1 (r).(3.75)We can rephrase (3.44) and (3.43) in terms of this rescaling and we obtain:∀λ > 0 fixed, bn,0 H(r≥λ) → 0 as n → ∞,(3.76) bn,0 H(r≤αnµn) → 0 as n → ∞.

2

  the decomposition (3.85) holds.Define fn,0 (r) =π -π-gn(βnµn/2, ρnµn) ρnµnr if r ≤ ρ n µ n g n (β n µ n /2, r) if r ≥ ρ n µ n fn,1 (r) = ġn (β n µ n /2, r).Let χ ∈ C ∞ be as above and set f n (r) := χ(2r/ρ n µ n )( fn (r) -(π, 0)), bn (r) := χ(2r/ρ n µ n ) bn (β n µ n /2, r).

β n µ n 2 ρ n µ n βnµn 2 tFigure 3 .

 23 Figure 3. A schematic depiction of the evolution of the decomposition (3.85) up to time s n . On the interval [s n , +∞), the decomposition (3.87) holds.

  wave maps and originate in the work of Christodoulou and Tahvildar-Zadeh on spherically symmetric wave maps, see[START_REF] Christodoulou | On the asymptotic behavior of spherically symmetric wave maps[END_REF].

	Proposition 2.1. Let ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we
	have
	lim sup
	t→∞

4, Proposition 4.3], [6, Lemma 2.5], and [3]. 2.1. Properties of global wave maps. We will need a few facts about global solutions to (1.2). The results in this section constitute slight refinements and a few consequences of the work of Shatah and Tahvildar-Zadeh in [31, Section 3.1] on global equivariant

  Corollary 2.4. Let ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we have

	lim sup
	t→∞

.17) Before proving Corollary 2.3, we can combine Proposition 2.1 and Corollary 2.3 to immediately deduce the following result.

  .17) 3.2. Extraction of the radiation term. In this subsection we construct what we will refer to as the radiation term, ϕ L (t) ∈ H 0 in the decomposition (3.1). Proposition 3.8. Let ψ(t) ∈ H 1 be a global wave map with E

  let t n → ∞ be the sequence in Theorem 3.2. Recall that we have τ n ∈ [t n , t n + λ n ] and λ n ≤ A n t n . Observe that for n large enough we have that for each t ∈ [τ n , τ n + σ n ] we have λt ≤ t -A n . Hence, Next, note that since λ n σ n we can ensure that for n large enough we haveλ n + σ n ≤ 2σ n . Therefore, → ∞ by Lemma 3.3.Lastly we estimate the second integral on the righ-hand-side of(3.38). For each A > 0 we can choose n large enough so that λt ≤ t -A for each t ∈ [τ n , τ n + σ n ].

		1 σ n	τn+σn τn	0	λt	ψ2 (t, r) r dr dt ≤	1 σ n	τn+σn τn	0	t-An	ψ2 (t, r) r dr dt.
	1 σ n	τn+σn τn	0	t-An	ψ2 (t, r) r dr dt ≤	2 λ n + σ n	tn+λn+σn tn	0	t-An	ψ2 (t, r) r dr dt → 0
	as n So we have								
		1 σ n	τn+σn τn	0	λt	φ2 (t, r) r dr dt ≤	σ n 1	τn τn+σn	t-A

0 φ2 (t, r) r dr dt.

  .61) is global in time and scatters as t → ±∞. Moreover we have the following nonlinear profile decomposition guarranteed by [6, Proposition 2.17]:

	b n (t, r) =	ϕ j n (t, r) + γ k n,L (t, r) + θ k n (t, r)	(3.62)
	j≤k		
	where the b n (t, r) are the global wave map evolutions of the data b n , γ k n,L (t, r) is
	the linear evolution of (γ k n , 0), and the errors θ k n satisfy	
	lim sup		
	n→∞		

  H×L 2 ≤ ĝn -(Q, 0) H×L 2 (r≤γn) + ĝn -(π, 0) H×L 2 (γn≤r≤2γn)

	1 , and since
	ĝn -(π, 0) H×L 2 (γn≤r≤2γn) ≤ Cδ n
	we then can conclude that
	ĝn -(Q, 0)

  given our choice of β n , (3.83) follows from [6, Corollary 2.6] and the finite speed of propagation. Rescaling (3.83) we have(g n (β n µ n /2), ∂ t g n (β n µ n /2)) -(Q(•/µ n ), 0) H×L 2 (r≤βnµn) → 0.This proves(3.81). Also note that by monotonicity of the energy on interior cones and the comparability of the energy and the H × L 2 norm in H

0 , for small energies, we see that (3.42) and (3.77) imply that ( bn (β n µ n /2), ∂ t bn (β n µ n /2)) H×L 2 (r≤βnµn) → 0.

(3.84)

  [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] is in the sense of H × L 2 -here we also have used(3.78). Moreover, the right-hand side above, without the o n (1) term, is a profile decomposition in the sense of[START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] Corollary 2.15] because of Proposition 3.14 and [7,Lemma 11] or[START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] Lemma 2.20]. We can then consider the nonlinear profiles. Note that by construction we have gn ∈ H 0 and as in[START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], we can use (3.80) to show that E( gn ) ≤ C < 2E(Q) for large n. The corresponding wave map evolution gn (t) ∈ H 0 is thus global in time and scatters as t → ±∞ by[START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF] Theorem 1.1]. We also need to check that E( bn ) ≤ C < 2E(Q). Note that by construction and the definition of bn , we Figure 2. A schematic description of the evolution of the decomposition (3.74) from time t = 0 until time t = βnµn 2 . At time t = βnµn

		t	Q(•/µ n )	h n ( βnµn 2 ) + bn ( βnµn 2 )	
	t =	β n µ n 2	β n µ n		
		t = 0	βnµn 2	3βnµn 2	α n	r
			h n (0) + bn (0)	
			Q(•/µ n )		

2, ∞) and suppχ ⊂ [1, ∞). Define gn (r) := χ(4r/β n µ n )( gn (r) -(π, 0)) bn (r) := χ(4r/β n µ n ) bn (r) and observe that we have the following decomposition gn (r) = h n (0, r) + bn (r) + o n (1), where the o n

  Since t → a(t) is continuous in H for t ∈ [0, ∞) it follows from [6, Lemma 2.5] that λ(t) is continuous on [0, ∞). Therefore we have established that ψ(t) -ϕ(t) -(Q(•/λ(t)), 0) → 0 in H × L 2 as t → ∞.It remains to show that λ(t) = o(t). This follows immediately from the asymptotic vanishing of ∇ t,r a(t) outside the light cone and from (3.92). To see this observe that by(3.34) with λ = 1 we have that a(t, r) -(π, 0) = o(1) in H × L 2 (r ≥ t) as t → ∞. Therefore we have

	E ∞ t λ(t)	(Q) = E ∞ t (π -Q(•/λ(t))) ≤ E( a(t) -(Q(•/λ(t)), 0)) + o(1) → 0

E( a(t) -(Q(•/λ(t)), 0)) → 0 (3.92) as t → ∞.

as t → ∞. But this then implies that t λ(t) → ∞ as t → ∞. This completes the proof.
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have

where the last line follows from (3.43) since β n α n . Arguing as in [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF], we can use Proposition 3.14, [6, Proposition 2.17] and [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF]Lemma 2.18] to obtain the following nonlinear profile decomposition

Finally observe that by construction and the finite speed of propagation we have

for all t ∈ R and r ∈ [β n µ n /2 + |t| , ∞). Therefore, in particular we have

We can combine (3.81), (3.82), (3.84), and (3.78) together with the monotonicity of the energy on interior cones and the fact that Q(•/µ n ) -π H(r≥βnµn) = o n (1), to obtain the decomposition

+ bn (β n µ n /2, r) + θn (r), θn H×L 2 → 0.

(3.86) Now, let s n → ∞ be any sequence such that s n ≥ β n µ n /2 for each n. The next step is to prove the following decomposition at time s n :