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We consider 1-equivariant wave maps from R 1+2 → S 2 . For wave maps of topological degree zero we prove global existence and scattering for energies below twice the energy of harmonic map, Q, given by stereographic projection. We deduce this result via the concentration compactness/rigidity method developed by the second author and Merle. In particular, we establish a classification of equivariant wave maps with trajectories that are pre-compact in the energy space up to the scaling symmetry of the equation. Indeed, a wave map of this type can only be either 0 or Q up to a rescaling. This gives a proof in the equivariant case of a refined version of the threshold conjecture adapted to the degree zero theory where the true threshold is 2E(Q), not E(Q). The aforementioned global existence and scattering statement can also be deduced by considering the work of Sterbenz and Tataru in the equivariant setting.

For wave maps of topological degree one, we establish a classification of solutions blowing up in finite time with energies less than three times the energy of Q. Under this restriction on the energy, we show that a blow-up solution of degree one is essentially the sum of a rescaled Q plus a remainder term of topological degree zero of energy less than twice the energy of Q. This result reveals the universal character of the known blow-up constructions for degree one, 1-equivariant wave maps of Krieger, the fourth author, and Tataru as well as Raphaël and Rodnianski.

Introduction

Wave maps are defined formally as critical points of the Lagrangian

L(U, ∂U ) = 1 2 R 1+d η αβ ∂ α U , ∂ β U g dt dx.
Here U : (R 1+d , η) → (M, g) where η = diag(-1, 1, . . . , 1) is the Minkowski metric on R 1+d and M is a Riemannian manifold with metric g. Critical points of L satisfy the Euler-Lagrange equation

η αβ D α ∂ β U = 0,
where D is the pull-back covariant derivative on U * T M . In local coordinates on (M, g), the Cauchy problem for wave maps is given by

U k = -η αβ Γ k ij (U )∂ α U i ∂ β U j (1.1) (U, ∂ t U )| t=0 = (U 0 , U 1 ),
where Γ k ij are the Christoffel symbols on T M . Equivalently, we can consider the extrinsic formulation for wave maps. If M → R N is embedded, critical points are characterized by

U ⊥ T U M.
Here, the Cauchy problem becomes

U = η αβ S(U )(∂ α U, ∂ β U ) (U, ∂ t U )| t=0 = (U 0 , U 1 ),
where S is the second fundamental form of the embedding. One should note that harmonic maps from R d → M are wave maps that do not depend on time.

Wave maps exhibit a conserved energy,

E(U, ∂ t U )(t) = R d (|∂ t U | 2 g + |∇U | 2 g ) dx = const.,
and are invariant under the scaling (U (t, x), ∂ t U (t, x)) → (U (λt, λx), λ∂ t U (λt, λx)).

The scaling invariance implies that the Cauchy problem is Ḣs × Ḣs-1 (R d ) critical for s = d 2 , energy critical when d = 2, and energy supercritical for d > 2. For a recent review of some of the main developments in the area we refer the reader to Krieger's survey [START_REF] Krieger | Global regularity and singularity development for wave maps[END_REF].

1.1. Equivariant wave maps. In the presence of symmetries, such as when the target manifold M is a surface of revolution, one often singles out a special class of such maps called equivariant wave maps. As an example, for the sphere M = S d one requires that U • ρ = ρ • U where the equivariance class, , is a positive integer and ρ ∈ SO(d) acts on R d and on S d by rotation, in the latter case about a fixed axis.

Here we consider energy critical equivariant wave maps. We restrict out attention to the corotational case = 1, and study maps U : (R 1+2 , η) → (S 2 , g), where g is the round metric on S 2 . In spherical coordinates, (ψ, ω) → (sin ψ cos ω, sin ψ sin ω, cos ψ), on S 2 , the metric g is given by the matrix g = diag(1, sin 2 (ψ)). In the 1-equivariant setting, we thus require our wave map, U , to have the form U (t, r, ω) = (ψ(t, r), ω) → (sin ψ(t, r) cos ω, sin ψ(t, r) sin ω, cos ψ(t, r)), where (r, ω) are polar coordinates on R 2 . In this case, the Cauchy problem (1.1) reduces to ψ tt -ψ rr -1 r ψ r + sin(2ψ) 2r 2 = 0 (1.2) (ψ, ψ t )| t=0 = (ψ 0 , ψ 1 ).

We note that equivariant wave maps to surfaces of revolution such as the sphere have been extensively studied, and we refer the reader to the works of Shatah [START_REF] Shatah | Weak solutions and development of singularities of the SU (2) σ-model[END_REF], Christodoulou, Tahvildar-Zadeh [START_REF] Christodoulou | On the regularity of spherically symmetric wave maps[END_REF], Shatah, Tahvildar-Zadeh [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF][START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF], Struwe [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], and the book by Shatah, Struwe [START_REF] Shatah | Geometric wave equations[END_REF] for a summary of these developments.

In this equivariant setting, the conservation of energy becomes

E(U, ∂ t U )(t) = E(ψ, ψ t )(t) = ∞ 0 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr = const.
Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t 0 , t 1 ) must satisfy ψ(t, 0) = mπ and ψ(t, ∞) = nπ for all t ∈ I, where m, n are fixed integers. This requirement splits the energy space into disjoint classes according to this topological condition. The wave map evolution preserves these classes.

In light of this discussion, the natural spaces in which to consider Cauchy data for (1.2) are the energy classes H m,n := {(ψ 0 , ψ 1 ) | E(ψ 0 , ψ 1 ) < ∞ and ψ 0 (0) = mπ, ψ 0 (∞) = nπ}. (1.3) We will mainly consider the spaces H 0,n and we denote these by H n := H 0,n . In this case we refer to n as the degree of the map. We also define H = n∈Z H n to be the full energy space.

In the analysis of 1-equivariant wave maps to the sphere, an important role is played by the harmonic map, Q, given by stereographic projection. In spherical coordinates, Q is given by Q(r) = 2 arctan(r) and is a solution to

Q rr + 1 r Q r = sin ( 
2Q) 2r 2 . One can show via an explicit calculation that (Q, 0) is an element of H 1 , i.e., Q has finite energy and sends the origin in R 2 to the north pole and spacial infinity to the south pole. In fact, the energy E(Q) := E(Q, 0) = 4 is minimal in H 1 and simple phase space analysis shows that, up to a rescaling, (Q, 0) is the unique, nontrivial, 1-equivariant harmonic map to the sphere in H 1 . Note the slight abuse of notation above in that we will denote the energy of the element (Q, 0) ∈ H 1 by E(Q) rather than E(Q, 0).

It has long been understood that in the energy-critical setting, the geometry of the target should play a decisive role in determining the asymptotic behavior of wave maps. For equivariant wave maps, global well-posedness for all smooth data was established by Struwe in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF] in the case where the target manifold does not admit a non-constant finite energy harmonic sphere. This extended the results of Shatah, Tahvildar-Zadeh [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF], and Grillakis [START_REF] Grillakis | Classical solutions for the equivariant wave maps in 1 + 2 dimensions[END_REF], where global well-posedness was proved for targets satisfying a geodesic convexity condition. Recently, global wellposedness, including scattering, has been established in the full (non-equivariant), energy critical wave maps problem in a remarkable series of works [START_REF] Krieger | Concentration compactness for critical wave maps[END_REF], [START_REF] Sterbenz | Energy dispersed large data wave maps in 2 + 1 dimensions[END_REF], [START_REF] Sterbenz | Regularity of wave-maps in dimension 2 + 1[END_REF], [START_REF] Tao | Global regularity of wave maps III-VII[END_REF], for targets that do not admit finite energy harmonic spheres, completing the program developed in [START_REF] Tataru | On global existence and scattering for the wave maps equation[END_REF], [START_REF] Tao | Global regularity of wave maps II. Small energy in two dimensions[END_REF].

However, finite-time blow-up can occur in the case of compact targets that admit non-constant harmonic spheres. Because we are working in the equivariant, energy critical setting, blow-up can only occur at the origin and in an energy concentration scenario which amounts to a breakdown in regularity. Moreover, in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], Struwe showed that if a solution is C ∞ before a regularity breakdown occurs, then such a scenario can only happen by the bubbling off of a non-constant harmonic map.

In particular, Struwe showed that if a solution, ψ(t, r), with smooth initial data ψ(0) = (ψ(0), ψ(0)), breaks down at t = 1, then the energy concentrates at the origin and there is a sequence of times t j 1 and scales λ j > 0 with λ j 1 -t j so that the rescaled sequence of wave maps ψ j (t, r) := ψ(t j + λ j t, λ j r), λ j ψ (t j + λ j t, λ j r) converges locally to ±Q(r/λ 0 ) in the space-time norm H 1 loc ((-1, 1) × R 2 ; S 2 ) for some λ 0 > 0. Further evidence of finite time blow up for equivariant wave maps to the sphere was provided by the first author in [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF]. Recently, explicit blowup solutions have been constructed in [START_REF] Rodnianski | On the formation of singularities in the critical O(3) σ-model[END_REF] for equivariance classes ≥ 4 and in the 1-equivariant case in [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF], [START_REF] Krieger | Renormalization and blow up for the critical Yang-Mills problem[END_REF] and [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF]. In [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF], Krieger, the fourth author, and Tataru constructed explicit blow-up solutions with prescribed blow-up rates λ(t) = (1 -t) 1+ν for ν > 1 2 although it is believed that all rates with ν > 0 are possible as well. In [START_REF] Krieger | Renormalization and blow up for the critical Yang-Mills problem[END_REF], a similar result is given for the radial, energy critical Yang Mills equation. In [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF], Rodnianski and Raphaël give a description of stable blowup dynamics for equivariant wave maps and the radial, energy critical Yang Mills equation in an open set about Q in a stronger topology than the energy.

Our goal in this paper is twofold. On one hand, we study the asymptotic behavior of solutions to (1.2) with data in the "zero" topological class, i.e., ψ(0) ∈ H 0 , below a sharp energy threshold, namely 2E(Q). Additionally, we seek to classify the behavior of wave maps of topological degree one, i.e., those with data ψ ∈ H 1 , that blow up in finite time with energies below the threshold 3E(Q). In particular, we show that blow-up profiles exhibited in the works [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF], [START_REF] Rodnianski | On the formation of singularities in the critical O(3) σ-model[END_REF] and [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF] are universal in this energy regime in a precise sense described below in Section 1.3. 1.2. Global existence and scattering for wave maps in H 0 with energy below 2E(Q). We begin with a description of our results in the degree zero case. In [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], Struwe's work implies that solutions ψ(t) to (1.2) with data ψ(0) ∈ H 0 are global in time if E( ψ(0)) < 2E(Q). This follows directly from the fact that wave maps in H 0 with energy below 2E(Q) stay bounded away from the south pole and hence cannot converge, even locally, to a degree one rescaled harmonic map, thus ruling out blow-up. Recently, the first two authors together with Merle, in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF], extended this result to include scattering to zero in the regime, ψ(0) ∈ H 0 and E( ψ) ≤ E(Q) + δ for small δ > 0. It was conjectured in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF] that scattering should also hold for all energies up to 2E(Q). This conjecture is a refined version of what is usually called threshold conjecture, adapted to the case of topologically trivial equivariant data. It is implied by the recent work of Sterbenz and Tataru in [START_REF] Sterbenz | Energy dispersed large data wave maps in 2 + 1 dimensions[END_REF], [START_REF] Sterbenz | Regularity of wave-maps in dimension 2 + 1[END_REF] when one considers their results in the equivariant setting with topologically trivial data. Here we give an alternate proof of this refined threshold conjecture in the equivariant setting based on the concentration compactness/rigidity method of the second author and Merle, [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]. In particular, we prove the following: Theorem 1.1 (Global Existence and Scattering in H 0 below 2E(Q)). For any smooth data ψ(0) ∈ H 0 with E( ψ(0)) < 2E(Q), there exists a unique global evolution ψ ∈ C 0 (R; H 0 ). Moreover, ψ(t) scatters to zero in the sense that the energy of ψ(t) on any arbitrary, but fixed compact region vanishes as t → ∞. In other words, one has

ψ(t) = ϕ(t) + o H (1) as t → ∞ (1.4)
where ϕ ∈ H solves the linearized version of (1.2), i.e.,

ϕ tt -ϕ rr - 1 r ϕ r + 1 r 2 ϕ = 0 (1.5)
Furthermore, this result is sharp in H 0 in sense that 2E(Q) is a true threshold. Indeed for all δ > 0 there exists data ψ(0) ∈ H 0 with E( ψ) ≤ 2E(Q) + δ, such that ψ blows up in finite time.

Remark 1. We note that a threshold result as in Theorem 1.1 only makes sense in H 0 . Indeed, all initial data in H 1 have enough energy to blow-up by bubbling off a harmonic map in the sense of Struwe's result in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], since Q minimizes the energy in H 1 . The same goes for all higher degrees. In Section 3.1 we construct a degree zero wave map which blows up in finite time using the explicit degree one blow up solutions of Krieger, the fourth author and Tataru. This example will also help to illustrate why the twice the energy of the degree one map Q gives the sharp threshold for degree zero maps.

Remark 2. Characterizing the possible dynamics at the threshold,

ψ ∈ H 0 , E( ψ) = 2E(Q) and above E( ψ) > 2E(Q), remain open questions.
Remark 3. We briefly remark that Theorem 1.1 holds with the same assumptions and conclusions for data ψ ∈ H n,n where H n,n is defined as in (1.3). Indeed, the spaces H 0 and H n,n are isomorphic via the map (ψ 0 , ψ 1 ) → (ψ 0 + nπ, ψ 1 ). Also, we can replace the words "smooth finite energy data" in Theorem 1.1 with just "finite energy data" using the well-posedness theory for (1.2), see for example [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF].

As mentioned above, Theorem 1.1 is established by the concentration compactness/rigidity method of the second author and Merle in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF] and [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]. The novel aspect of our implementation of this method lies in the development of a robust rigidity theory for wave maps U (t) with trajectories that are pre-compact in the energy space up to certain time-dependent modulations. We note that the following theorem is independent of both the topological class and the energy of the wave map.

Theorem 1.2 (Rigidity). Let U (t, r, ω) = ((ψ(t, r), ω), ( ψ(t, r), 0)) ∈ H be a solution to (1.2) and let I max (ψ) = (T -(ψ), T + (ψ)) be the maximal interval of existence. Suppose that there exists A 0 > 0 and a continuous function λ :

I max → [A 0 , ∞) such that the set K := U t, r λ(t) , ω , 1 λ(t) ∂ t U t, r λ(t) , ω t ∈ I max is pre-compact in Ḣ1 × L 2 (R 2 ; S 2 ).
Then, I max = R and either U ≡ 0 or U : R 2 → S 2 is an equivariant harmonic map, i.e., U (t, r, ω) = (±Q(r/ λ), ω) for some λ > 0.

Remark 4. To establish Theorem 1.1 we only need a version of Theorem 1.2 that deals with data in H 0 below 2E(Q). This rigidity result in H 0 is given in Theorem 4.1 below, and states that any solution ψ ∈ H 0 with a pre-compact rescaled trajectory must be identically zero. The full result in Theorem 1.2 is established for its own interest. In fact, we use the conclusions of Theorem 1.1 in order to deduce the full classification of pre-compact solutions given in Theorem 1.2. Alternatively, we can prove Theorem 1.2 using the scattering result of [6, Theorem 1], and deduce Theorem 4.1 as a corollary. We have chosen the former approach here to illustrate the independence of our stronger rigidity results from the variational arguments given in [6, Lemma 7].

1.3. Classification of blow-up solutions in H 1 with energies below 3E(Q). We now turn to the issue of describing blow-up for wave maps in H 1 , i.e., those maps ψ(t) with ψ(t, 0) = 0 and ψ(t, ∞) = π. From here on out, any wave map that is assumed to blow-up will be also be assumed to do so at time t = 1. As mentioned above, the recent works [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF] and [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF] construct explicit blow-up solutions ψ(t) ∈ H 1 . In [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF], the blow up solutions constructed there exhibit a decomposition of the form

ψ(t, r) = Q(r/λ(t)) + (t, r) (1.6)
where the concentration rate satisfies λ(t) = (1 -t) 1+ν for ν > 1 2 , and (t) ∈ H 0 is small and regular. Here we consider the converse problem. Namely, if blow-up does occur for a solution ψ(t) ∈ H 1 , in which energy regime, and in what sense does such a decomposition always hold?

The works of Struwe, in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF] for the equivariant case, and Sterbenz, Tataru in [START_REF] Sterbenz | Regularity of wave-maps in dimension 2 + 1[END_REF] for the full wave map problem, give a partial answer to this question. As mentioned above, they show that if blow-up occurs, then along a sequence of times, a sequence of rescaled versions of the original wave map converge locally to Q in the space-time norm H 1 loc ((-1, 1) × R 2 ; S 2 ). However working locally removes any knowledge of the topology of the wave map, which is determined by the behavior of the map at spacial infinity. In this paper we seek to strengthen the results in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF] and [START_REF] Sterbenz | Regularity of wave-maps in dimension 2 + 1[END_REF] in the equivariant setting by working globally in space in the energy topology. Here we are forced to account for the topological restrictions of a degree one wave map, and in fact we use these restrictions, along with our degree zero theory, to our advantage.

In particular, we make the following observation. If a wave map ψ(t) ∈ H 1 blows up at t = 1 then the local convergence results of Struwe in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF] allow us to extract the blow up profile ±Q λn := ±Q(•/λ n ) at least along a sequence of times t n → 1. If ψ has energy below 3E(Q) the profile must be +Q(•/λ n ), and since Q ∈ H 1 as well we thus have ψ(t n ) -Q λn ∈ H 0 . Since this object should converge locally to zero, the energy of the difference should be roughly the difference of the energies, at least for large n. Hence, if ψ(t) has energy below 3E(Q) the difference ψ(t n ) -Q λn is degree zero and has energy below 2E(Q). By Theorem 1.1, we then suspect that the blow-up profile already extracted is indeed universal in this regime and that a decomposition of the form (1.6) should indeed hold, excluding the possibility of any different dynamics, such as more bubbles forming. We prove the following result:

Theorem 1.3 (Classification of blow-up solutions in H 1 with energies below 3E(Q)). Let ψ(t) ∈ H 1 be a smooth solution to (1.2) blowing up at time t = 1 with E( ψ) = E(Q) + η < 3E(Q).
Then, there exists a continuous function, λ : [0, 1) → (0, ∞) with λ(t) = o(1 -t), a map ϕ = (ϕ 0 , ϕ 1 ) ∈ H 0 with E( ϕ) = η, and a decomposition

ψ(t) = ϕ + (Q (•/λ(t)) , 0) + (t) (1.7)
such that (t) ∈ H 0 and (t) → 0 in H 0 as t → 1.

Remark 5. In the companion work [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: II[END_REF] we address the question of global solutions ψ(t) ∈ H 1 in the regime E( ψ) < 3E(Q). We can show that in this case we have a decomposition and convergence as in (1.7) with λ(t) t as t → ∞. This will give us a complete classification of the possible dynamics in H 1 for energies below 3E(Q). Of course, our results do not give information about the precise rates λ(t). We also would like to mention the recent results of Bejenaru, Krieger, and Tataru [START_REF] Bejenaru | A codimension two stable manifold of near soliton equivariant wave maps[END_REF], regarding wave maps in H 1 , where they prove asymptotic orbital stability for a co-dimension two class of initial data which is "close" to Q λ with respect to a stronger topology than the energy. Remark 6. Theorem 1.3 is reminiscent of the recent results proved by Duyckaerts, the second author, and Merle in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF], [START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF], for the energy critical focusing semi-linear wave equation in R 1+3 . In fact, the techniques developed in these works provided important ideas for the proof of Theorem 1.3. The situation for wave maps is somewhat different, however, as the geometric nature of the problem provides some key distinctions. The most notable of these distinctions is that the underlying linear theory for wave maps of degree zero is not nearly as strong as that of a semi-linear wave in R 1+3 , which causes serious problems. Indeed, as demonstrated in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF], the strong lower bound on the exterior energy in [10, Lemma 4.2] fails for general initial data in even dimensions. This difficulty is overcome by the fact that there is no self-similar blow-up for energy critical equivariant wave maps, see e.g., [START_REF] Shatah | Geometric wave equations[END_REF], which can be shown directly due to the non-negativity of the energy density.

In addition, our degree zero result and the rigid topological restrictions of the problem allow us to extend the conclusions of Theorem 1.3 all the way up to 3E(Q) instead of just slightly above the energy of the harmonic map E(Q) + δ, for δ > 0 small, as is the case in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF], [START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF]. This large enegy result is similar in nature to the results for the 3d semi-linear radial wave equation in [START_REF] Duyckaerts | Profiles of bounded radial solutions of the focusing, energy-critical wave equation[END_REF], when, in the notation from [START_REF] Duyckaerts | Profiles of bounded radial solutions of the focusing, energy-critical wave equation[END_REF], J 0 = 1.

Remark 7. The results in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF], [START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF] have recently been extended by Duyckaerts, the second author, and Merle in [START_REF] Duyckaerts | Profiles of bounded radial solutions of the focusing, energy-critical wave equation[END_REF] and [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energycritical wave equation[END_REF]. In [START_REF] Duyckaerts | Classification of radial solutions of the focusing, energycritical wave equation[END_REF], a classification of solutions to the radial, energy critical, focusing semi-linear wave equation in R 1+3 of all energies is given in the sense that only three scenarios are shown to be possible; (1) type I blow-up; (2) type II blow-up with the solution decomposing into a sum of blowup profiles arising from rescaled solitons plus a radiation term; or (3) the solution is global and decomposes into a sum of rescaled solitons plus a radiation term as t → ∞.

1.4. Remarks on the proofs of the main results. In addition to the methods originating in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] and [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF], [START_REF] Duyckaerts | Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case[END_REF], the work in this paper rests explicitly on several developments in the field over the past two decades. Here we provide a quick guide to the work on which our results lie: 1.4.1. Results used in the proof of Theorem 1.1.

• Theory of equivariant wave maps developed in the nineties in the works of Shatah, Tahvildar-Zadeh, [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF], [START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF], including the use of virial identities to prove energy decay estimates. • The concentration compactness decomposition of Bahouri-Gérard, [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF].

• Lemma 2 in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF] which relates energy constraints to L ∞ estimates for equivariant wave maps. In particular, if a degree zero map has energy less than 2E(Q), then the evolution, ψ(t, r), is bounded uniformly below π. In addition, although only a weaker small data result such as [START_REF] Shatah | Geometric wave equations[END_REF]Theorem 8.1] is needed, we use the global existence and scattering result for degree one wave maps with energy below E(Q) + δ for small δ > 0, which was established in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]Theorem 1]. • Hélein's theorem on the regularity of harmonic maps which says that a weakly harmonic map is, in fact, harmonic, [START_REF] Hélein | Harmonic maps, conservation laws and moving frames[END_REF].

1.4.2.
Results used in the proof of Theorem 1.3.

• The virial identity and the corresponding energy decay estimates in [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF]. convergence along a sequence of times to Q if blow-up occurs. This allows us, a priori, to identify and extract the blow-up profile Q λn along a sequence of times, t n , which is absolutely crucial in our argument since we can then work with degree zero maps once Q λn has been subtracted from the degree one maps ψ(t n ). • The concentration compactness decomposition of Bahouri-Gérard, [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF].

• The new results on the free radial 4d wave equation established by the first, second, and fourth authors in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]. • The decomposition of degree one maps which have energy slightly above Q and the stability of this decomposition under the wave map evolution for a period of time inversely proportional to the proximity of the data to Q in the energy space established by the first author in [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF]. As we outline in the appendix, the proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.3 extend easily to energy critical 1-equivariant wave maps with more general targets. In addition, the proofs of Theorem 1.2 and Theorem 1.1 apply equally well to the equivariance classe = 2 and the 4d equivariant Yang-Mills system after suitable modifications. One should also be able to deduce these results for the equivariance classes ≥ 3 once a suitable small data theory is established for these equations, which are similar in nature to the even dimensional energy critical semi-linear wave equations in high dimensions treated in [START_REF] Bulut | Stability and Unconditional Uniqueness of Solutions for Energy Critical Wave Equations in High Dimensions[END_REF] -the difficulty here resides in the low fractional power in the nonlinearity.

However, the method we used to prove Theorem 1.3 only works, as developed here, for odd equivariance classes, = 1, 3, 5, . . . , and does not work when one considers even equivariance classes, = 2, 4, 6, . . . , or the 4d equivariant Yang-Mills system in this context. This failure of our technique arises in the linear theory in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF] for even dimensions, which provides favorable estimates for our proof scheme only when is odd. Since the 4d equivariant Yang-Mills system corresponds roughly to a 2-equivarant wave map, this falls outside the scope of our current method as well. To be more specific, one can identify the linearized -equivariant wave map equation with the 2 + 2-dimensional free radial wave equation. In the final stages of the proof of Theorem 1.3, and in particular Corollary 5.8, we require the exterior energy estimate

f Ḣ1 S(t)(f, 0) Ḣ1 ×L 2 (r≥t) for all t ≥ 0
where S(t) is the the free radial wave evolution operator. In [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF], this estimate is shown to be true in even dimensions 4, 8, 12, . . . , and false in dimensions 2, 6, 10, . . . . Without this estimate, our proof would show compactness of the error term in our decomposition in a certain suitable Strichartz space but not in the energy space.

Therefore, the full conclusion of Theorem 1.3 remains open for the 4d equivariant Yang-Mills system and the -equivariant wave map equation when is even.

1.5. Structure of the paper. The outline of the paper is as follows. In Section 2 we establish the necessary preliminaries needed for the rest of the work. We include a brief review of the results of Shatah, Tahvildhar-Zadeh, [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF] and Struwe [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF]. We also recall the concentration compactness decomposition of Bahouri, Gérard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] and adapt their theory to case of equivariant wave maps to the sphere. In particular, we deduce a Pythagorean expansion of the nonlinear wave map energy of such a decomposition at a fixed time. This type of result is crucial in the concentration compactness/rigidity method of [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]. We also establish an appropriate nonlinear profile decomposition.

In Section 3 we give a brief outline of the concentration compactness/rigidity method that is used to prove Theorem 1.1. In Section 4 we prove Theorem 1.2, which allows us to complete the proof of Theorem 1.1.

Finally, in Section 5 we establish Theorem 1.3, which relies crucially on the linear theory developed in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF].

1.6. Notation and Conventions. We will interchangeably use the notation ψ t (t, r) and ψ(t, r) to refer to the derivative with respect to the time variable t of the function ψ(t, r).

The notation X Y means that there exists a constant C > 0 such that X ≤ CY . Similarly, X Y means that there exist constants 0 < c < C so that cY ≤ X ≤ CY .

Preliminaries

We define the energy space

H = { U ∈ Ḣ1 × L 2 (R 2 ; S 2 ) | U • ρ = ρ • U, ∀ρ ∈ SO(2)}.
H is endowed with the norm

E( U (t)) = U (t) 2 Ḣ1 ×L 2 (R 2 ;S 2 ) = R 2 (|∂ t U | 2 g + |∇U | 2 g ) dx.
As noted in the introduction, by our equivariance condition we can write U (t, r, ω) = (ψ(t, r), ω) and the energy of a wave map becomes

E(U, ∂ t U )(t) = E(ψ, ψ t )(t) = ∞ 0 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr = const. (2.1)
We also define the localized energy as follows: Let r 1 , r 2 ∈ [0, ∞). Then we set

E r2 r1 ( ψ(t)) := r2 r1 ψ 2 t + ψ 2 r + sin 2 (ψ) r 2 r dr.
Following Shatah and Struwe, [START_REF] Shatah | Geometric wave equations[END_REF], we set

G(ψ) := ψ 0 |sin ρ| dρ.
Observe that for any (ψ, 0) ∈ H n and for any r 1 , r 2 ∈ [0, ∞) we have

|G(ψ(r 2 )) -G(ψ(r 1 ))| = ψ(r2) ψ(r1) |sin ρ| dρ (2.2) = r2 r1 |sin(ψ(r))| ψ r (r) dr ≤ 1 2 E r2 r1 (ψ, 0)
2.1. Properties of degree zero wave maps. As in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF], let α ∈ [0, 2E(Q)] and define the set V (α) ⊂ H 0 :

V (α) := {(ψ 0 , ψ 1 ) ∈ H 0 | E(ψ 0 , ψ 1 ) < α}
We claim that for every α ∈ [0, 2E(Q)], V (α) is naturally endowed with the norm

(ψ 0 , ψ 1 ) 2 H×L 2 = ∞ 0 ψ 2 1 + (ψ 0 ) 2 r + ψ 2 0 r 2 r dr (2.3)
To see this, we recall the following lemma proved in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF].

Lemma 2.1. [6, Lemma 2] There exists an increasing function

K : [0, 2E(Q)) → [0, π) such that |ψ(r)| ≤ K(E( ψ)) < π ∀ ψ ∈ H 0 with E(ψ) < 2E(Q) Moreover, for each α ∈ [0, 2E(Q)] we have E(ψ 0 , ψ 1 ) (ψ 0 , ψ 1 ) H×L 2
for every (ψ 0 , ψ 1 ) ∈ V (α), with the constant above depending only on α.

When considering Cauchy data for (1.2) in the class H 0 the formulation in (1.2) can be modified in order to take into account the strong repulsive potential term that is hidden in the nonlinearity:

sin(2ψ) 2r 2 = ψ r 2 + sin(2ψ) -2ψ 2r 2 = ψ r 2 +
O(ψ 3 ) r 2 Indeed, the presence of the strong repulsive potential 1 r 2 indicates that the linearized operator of (1.2) has more dispersion than the 2-dimensional wave equation. In fact, it has the same dispersion as the 4-dimensional wave equation as the following standard reduction shows.

Setting ψ = ru we are led to this equation for u:

u tt -u rr - 3 r u r + sin(2ru) -2ru 2r 3 = 0 (2.4) u(0) = (u 0 , u 1 ).
The nonlinearity above has the form N (u, r) = u 3 Z(ru) where Z is a smooth, bounded, even function and the linear part is the radial d'Alembertian in R 1+4 . The linearized version of (2.4) is just the free radial wave equation in R 1+4 , namely

v tt -v rr - 3 r v r = 0. (2.5)
Observe that for ψ(0) ∈ H 0 we have that

E( ψ(0)) ≤ ψ 2 H×L 2 := ∞ 0 ψ 2 t + ψ 2 r + ψ 2 r 2 r dr = ∞ 0 (u 2 t + u 2 r ) r 3 dr. (2.6)
If, in addition, we assume that E( ψ(0)) < 2E(Q) then, by Lemma 2.1 we also have the opposite inequality

u(0) 2 Ḣ1 ×L 2 = ψ(0) 2 H×L 2 E( ψ(0)). (2.7) 
Therefore, when considering initial data (ψ 0 , ψ 1 ) ∈ V (α) for α ≤ 2E(Q) the Cauchy problem (1.2) is equivalent to the Cauchy problem for (2.4) for radial initial data (rψ 0 , rψ 1 ) =:

u(0) ∈ Ḣ1 × L 2 (R 4 ).
The following exterior energy estimates for the 4d free radial wave equation established by the first, second, and fourth authors in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF] will play a key role in our analysis: Proposition 2.2. [8, Corollary 5] Let S(t) denote the free evolution operator for the 4d radial wave equation, (2.5). There exists α 0 > 0 such that for all t ≥ 0 we have

S(t)(f, 0) Ḣ1 ×L 2 (r≥t) ≥ α 0 f Ḣ1 (2.8)
for all radial data (f, 0)

∈ Ḣ1 × L 2 .
The point here is that this same result applies to the linearized version of the wave map equation:

ϕ tt -ϕ rr - 1 r ϕ r + 1 r 2 ϕ = 0 (2.9)
with initial data ϕ(0) = (ϕ 0 , 0). Indeed we have the following:

Corollary 2.3. Let W (t) denote the linear evolution operator associated to (2.9). Then there exists β 0 > 0 such that for all t ≥ 0 we have

W (t)(ϕ 0 , 0) H×L 2 (r≥t) ≥ β 0 ϕ 0 H (2.10)
for all radial initial data (ϕ 0 , 0) ∈ H × L 2 .

Proof. Let ϕ(t) = W (t)(ϕ 0 , 0) be the linear evolution of the smooth radial data

(ϕ 0 , 0) ∈ H × L 2 . Define v(t) by ϕ(t, r) = rv(t, r). Then v(t) ∈ Ḣ1 × L 2 (R 4
) and is a solution to (2.5) with initial data (v 0 , 0) = ( ϕ0 r , 0). Next observe that for all A ≥ 0 we have

v(t) 2 Ḣ1 (r≥A) = ∞ A v 2 r (t, r) r 3 dr = ∞ A ϕ r (t, r) r - ϕ(t, r) r 2 2 r 3 dr ≤ 2 ϕ(t) 2 H(r≥A)
Similarly we can show that ϕ(t) 2 H(r≥A) ≤ 2 v(t) 2 Ḣ1 (r≥A) . Therefore using (2.8) on v(t) we obtain

ϕ(t) 2 H×L 2 (r≥t) ≥ 1 2 v(t) 2 Ḣ1 (r≥t) ≥ α 2 0 2 v 0 2 Ḣ1 = α 2 0 2 ϕ 0 2 H which proves (2.10) with β 0 = α0 √ 2 .
2.2. Properties of degree one wave maps. Now, suppose ψ = (ψ 0 , ψ 1 ) ∈ H 1 . This means that ψ(0) = 0 and ψ(∞) = π. The H × L 2 norm of ψ is no longer finite, but we do have the following comparison:

Lemma 2.4. Let ψ = (ψ 0 , 0) ∈ H 1 be smooth and let r 0 ∈ [0, ∞). Then there exists α > 0 such that (a)

If E r0 0 ( ψ) < α, then ψ 2 H(r≤r0) E r0 0 ( ψ). (b) If E ∞ r0 ( ψ) < α, then ψ(•) -π 2 H(r≥r0) E ∞ r0 ( ψ).
(2.11)

Proof. We prove only the second estimate as the proof of the first is similar. Since G(π) = 2, by (2.2) we have for all r ∈ [r 0 , ∞) that

|G(ψ(r)) -2| ≤ 1 2 E ∞ r (ψ, 0) < α 2 .
Since G is continuous and increasing this means that ψ(r)

∈ [π -ε(α), π + ε(α)]
where ε(ρ) → 0 as ρ → 0. Hence for α small enough we have the estimate sin 2 (ψ(r)) ≥ 1 2 |ψ(r) -π| 2 for all r ∈ [r 0 , ∞] and the estimate (2.11) follows by integrating this.

Let Q(r) := 2 arctan(r). Note that (Q, 0) ∈ H 1 is the unique (up to scaling) time-independent, solution to (1.2) in H 1 . Indeed, Q has minimal energy in H 1 and E(Q, 0) = 4. One way to see this is to note that Q satisfies rQ r (r) = sin(Q) and hence for any 0 ≤ a ≤ b < ∞ we have

G(Q(b)) -G(Q(a)) = b a |sin(Q(r))| Q r (r) dr = 1 2 E b a (Q, 0)
Letting a → 0 and b → ∞ we obtain E(Q, 0) = 2G(π) = 4. To see that E(Q, 0) is indeed minimal in H 1 , observe that we can factor the energy as follows:

E(ψ, ψ t ) = ∞ 0 ψ 2 t r dr + ∞ 0 ψ r - sin(ψ) r 2 r dr + 2 ∞ 0 sin(ψ)ψ r dr = ∞ 0 ψ 2 t r dr + ∞ 0 ψ r - sin(ψ) r 2 r dr + 2 ψ(∞) ψ(0) sin(ρ) dρ
Hence, in H 1 we have

E(ψ, ψ t ) ≥ ∞ 0 ψ 2 t r dr + 4 = ∞ 0 ψ 2 t r dr + E(Q) (2.12)
We shall also require a decomposition from [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF] which amounts to the coercivity of the energy near to ground state Q, up to the scaling symmetry. Lemma 2.5. [5, Proposition 2.3] There exists a function δ : (0, ∞) → (0, ∞) such that δ(α) → 0 as α → 0 and such that the following holds: Let ψ = (ψ, 0) ∈ H 1 . Define

α := E( ψ) -E(Q) > 0 Then there exists λ ∈ (0, ∞) such that ψ -Q(•/λ) H ≤ δ(α) Note that one can choose λ > 0 so that E λ 0 ( ψ) = E 1 0 (Q) = E(Q)/2.
We will also need the following consequence of Lemma 2.5 that is also proved in [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF].

Corollary 2.6. [5, Corollary 2.4] Let ρ n , σ n → ∞ be two sequences such that ρ n σ n . Let ψ n (t) ∈ H 1 be a sequence of wave maps defined on time intervals [0, ρ n ] and suppose that

ψ n (0) -(Q, 0) H×L 2 ≤ 1 σ n .
Then

sup t∈[0,ρn] ψ n (t) -(Q, 0) H×L 2 = o n (1) as n → ∞
Remark 8. We refer the reader to the proof of [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF]Corollary 2.4] and the remark immediately following it for a detailed proof of Corollary 2.6. We have phrased the above result in terms of sequences of wave maps because this is the form in which it will be applied in Section 5. Also, we note that in [START_REF] Côte | Instability of nonconstant harmonic maps for the (1 + 2)-dimensional equivariant wave map system[END_REF] the notation • 2 H is used to denote the nonlinear energy, E(•), of a map, whereas here • H is defined as in (2.3). Both Lemma 2.5 and Corollary 2.6 hold with either definition.

Properties of blow-up solutions. Now let ψ(t) ∈ H be a wave map with maximal interval of existence

I max ( ψ) = (T -( ψ), T + ( ψ)) = R.
By translating in time, we can assume that T + ( ψ) = 1. We recall a few facts that we will need in our argument. From the work of Shatah and Tahvildar-Zadeh [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF], Jia and and second author [START_REF] Jia | Asymptotic decomposition for semilinear wave and equivariant wave map equations[END_REF], and from Appendix B to this paper, we have the following results: Lemma 2.7. [32, Lemma 2.2] Let ψ(t) ∈ H on the interval [0, 1). For any λ ∈ (0, 1] we have 

E 1-t λ(1-t) ( ψ(t)) = 1-t λ(1-t) ψ 2 t (t, r) + ψ 2 r (t,
( ψ) = 1. Then we have 1 1 -t 1 t 1-s 0 ψ2 (s, r) r dr ds → 0 as t → 1
Proof. As above Lemma 2.7 for smooth wave maps was proved in [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF]Lemma 2.3]. See Appendix B for an argument extending this result to ψ(t) ∈ H.

As in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF], we can use Lemma 2.8 to establish the following result. The proof is identical to the argument given in [10, Corollary 5.3] so we do not reproduce it here.

Corollary 2.9. [10, Corollary 5.3] Let ψ(t) ∈ H be a solution to (1.2) such that T + ( ψ) = 1. Then, there exists a sequence of times {t n } 1 such that for every n and for every σ ∈ (0, 1 -t n ), we have

1 σ tn+σ tn 1-t 0 ψ2 (t, r) r dr dt ≤ 1 n (2.13) 1-tn 0 ψ2 (t n , r) r dr ≤ 1 n (2.14)
Note that (2.14) follows from (2.13) by letting σ → 0 in (2.13) and recalling the continuity of the map t → ψ(t,

•) from [0, 1) → L 2 .
We now recall a result of Struwe, [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], which will be essential in our argument for degree 1.

Theorem 2.10. [37, Theorem 2.1] Let ψ(t) ∈ H be a smooth solution to (1.2) such that T + ( ψ) = 1. Let {t n }
1 be defined as in Corollary 2.9. Then there exists a sequence {λ n } with λ n = o(1 -t n ) so that the following results hold: Let

ψ n (t, r) := (ψ(t n + λ n t, λ n r), λ n ψ(t n + λ n t, λ n r)) (2.15)
be the wave map evolutions associated to the data ψ n (r) := ψ(t n , λ n r). And denote by U n (t, r, ω) := (ψ n (t, r), ω) the full wave maps. Then,

U n (t, r, ω) → U ∞ (r, ω) in H 1 loc ((-1, 1) × R 2 ; S 2
) where U ∞ is a smooth, non-constant, 1-equivariant, time independent solution to (1.1), and hence U ∞ (r, ω) = (±Q(r/λ 0 ), ω) for some λ 0 > 0. We further note that after passing to a subsequence, U n (t, r, ω) → U ∞ (r, ω) locally uniformly in

(-1, 1) × (R 2 -{0}).
Moreover, with the times t n and scales λ n as above, we have

1 λ n tn+λn tn 1-t 0 ψ2 (t, r) r dr dt = o n (1). (2.16)
Remark 9. We note that we have altered the selection procedure by which the sequence of times t n is chosen in the proof of Theorem 2.10. In [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF], after defining a scaling factor λ(t), Struwe uses Lemma 2.8 to select a sequence of times t n via an argument involving Vitali's covering theorem, and he sets λ n := λ(t n ). Here we do something different. Given Lemma 2.8 we use the argument in [10, Corollary 5.3] to find a sequence t n → 1 so that (2.13) and (2.14) hold. Now we choose the scales λ(t) as in Struwe and for each n we set σ = λ n := λ(t n ) and we establish (2.16), which is exactly [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF]Lemma 3.3]. The rest of the proof of Theorem 2.10 now proceeds exactly as in [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF].

We will also need the following consequences of Theorem 2.10:

Lemma 2.11. Let ψ(t) ∈ H be a solution to (1.2) such that T + ( ψ) = 1. Let {t n }
1 and {λ n } be chosen as in Theorem 2.10. Define ψ n (t, r), ±Q(r/λ 0 ) as in (2.15). Then

ψ n ∓ Q(•/λ 0 ) → 0 as n → ∞ in L 2 t ((-1, 1); H loc ) (2.17)
where H is defined as in (2.3).

Proof. We prove the case where the convergence in Theorem 2.10 is to +Q(r/λ 0 ). Let Q λ0 (r) = Q(r/λ 0 ). By Theorem 2.10, we know that

R 1+2 |∂ t ψ n (t, r)| 2 + |∂ r (ψ n (t, r) -Q λ0 (r))| 2 χ(t, r) r dr dt + R 1+2 |ψ n (t, r) -Q λ0 (r)| 2 χ(t, r) r dr dt -→ 0 as n → ∞ (2.18) for all χ ∈ C ∞ 0 ((-1, 1) × R 2 )
, radial in space. Hence to prove (2.17), it suffices to show that

R 1+2 |ψ n (t, r) -Q λ0 (r)| 2 r 2 χ(t, r) r dr dt → 0 as n → ∞
for all χ as above. Next, note that if for fixed δ > 0,

χ(t, r) satisfies supp(χ(t, •)) ⊂ [δ, ∞), we have R 1+2 |ψ n (t, r) -Q λ0 (r)| 2 r 2 χ(t, r) r dr dt ≤ δ -2 R 1+2 |ψ n (t, r) -Q λ0 (r)| 2 χ(t, r) r dr dt → 0 as n → ∞,
with the convergence in the last line following from (2.18). Hence, from here out we only need to consider χ with suppχ(t,

•) ⊂ [0, 1]. Referring to Struwe's argument in [37, Proof of Theorem 2.1, (ii)],
we note that by construction, λ n and λ 0 are such that

E 1 0 ( ψ n (t)) < ε 1 , E 1 0 (Q λ0 ) < ε 1 uniformly in |t| ≤ 1
and uniformly in n, where ε 1 > 0 is a fixed constant that we can choose to be as small as we want. Recalling that for each t, ψ(t, 0) = Q(0) = 0 and using (2.2), this implies that

|G(ψ n (t, r))| ≤ 1 2 ε 1 , |G(Q λ0 (r))| ≤ 1 2 ε 1 for all r ∈ [0, 1].
In particular, we can choose ε 1 small enough so that

|ψ n (t, r)| < π 8 , |Q λ0 (r)| < π 8 for all r ∈ [0, 1].
Using the above line we then can conclude that there exists c > 0 such that

(ψ n (t, r) -Q(r/λ 0 ))(sin(2ψ n (t, r)) -sin(2Q λ0 (r))) ≥ c(ψ n (t, r) -Q(r/λ 0 )) 2 (2.19)
for all r ∈ [0, 1], and |t| ≤ 1. Consider the equation

(-∂ tt + ∂ rr + 1 r ∂ r )(ψ n (t, r) -Q λ0 (r)) = sin(2ψ n (t, r)) -sin(2Q λ0 (r)) r 2 . Now, let χ ∈ C ∞ 0 ((-1, 1) × R 2 ) satisfy supp(χ(t, •)) ⊂ [0, 1].
Multiply the above equation by (ψ n (t, r) -Q λ0 (r))χ(t, r), and integrate over R 1+2 . Then, integrating by parts and using the strong local convergence in (2.18) we can deduce that

R 1+2 (sin(2ψ n (t, r)) -sin(2Q λ0 (r)))(ψ n (t, r) -Q(r/λ 0 )) r 2 χ(t, r) r dr dt → 0
as n → ∞. The lemma then follows by combining the above line with (2.19).

Lemma 2.12. Let ψ(t) ∈ H be a wave map that blows up at time t = 1. Then, there exists a sequence of times tn → 1 and a sequence of points

r n ∈ [0, 1 -tn ) such that ψ( tn , r n ) → ±π as n → ∞ Proof.
If not, then there exists a δ 0 > 0 such that for every time t ∈ [0, 1) we have

|ψ(t, r)| ∈ R -[π -δ 0 , π + δ 0 ] for all r ∈ [0, 1 -t)
. Now let t n , λ n and ψ n (t, r) and ±Q λ0 be as in Theorem 2.10 and Lemma 2.11.

Choose 0 < R 1 < R 2 < ∞ so that |Q λ0 (r)| > π -δ0 2 for r ∈ [R 1 , R 2 ] and choose N large enough so that [λ n R 1 , λ n R 2 ] ⊂ [0, 1 -t n -λ n t) for all t ∈ [0, 1]
and for all n ≥ N . This implies that

|ψ n (t, r) ∓ Q λ0 (r)| ≥ δ 0 2 ∀n ≥ N, ∀r ∈ [R 1 , R 2 ],
and for all t ∈ [0, 1]. But this provides an immediate contradiction with the convergence in (2.17).

Corollary 2.13. Let ψ(t) ∈ H 1 be a wave map that blows up at time

t = 1 such that E( ψ) < 3E(Q). Recall that ψ(t) ∈ H 1 means that ψ(t, 0) = 0, ψ(t, ∞) = π.
Then we have

ψ n -Q(•/λ 0 ) → 0 as n → ∞ in L 2 t ((-1, 1 
); H loc ), with ψ n (t, r), t n , and λ n defined as in Theorem 2.10. In addition, there exists another sequence of times tn → 1 and a sequence of points

r n ∈ [0, 1 -tn ) such that ψ( tn , r n ) → π as n → ∞
Proof. We use the energy bound E( ψ) < 3E(Q) to eliminate the possibility that the convergence in Theorem 2.10 is to -Q(r/λ 0 ) instead of to +Q(r/λ 0 ). Suppose that in fact we had in (2.17) that

ψ n + Q(•/λ n ) → 0 in L 2
t ((-1, 1); H loc ). Lemma 2.12 then gives a sequence of times tn → 1 and a sequence r n ∈ [0, 1 -tn ) such that

ψ( tn , r n ) → -π (2.20)
as n → ∞. Now recall that ψ(t) ∈ H 1 . Using the above along with (2.2) we see that

2E(Q) = 8 ← 2 |G(ψ( tn , r n )) -2| ≤ E ∞ rn (ψ( tn ), 0
)) On the other hand, we can use (2.20) and (2.2) again to see that

E(Q) = 4 ← 2 |G(ψ( tn , r n ))| ≤ E rn 0 (ψ( tn ), 0)
Putting this together we see that we must have E( ψ) ≥ 3E(Q) which contradicts our initial assumption on the energy.

2.4. Profile Decomposition. Another essential ingredient of our argument is the profile decomposition of Bahouri and Gerard [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]. Here we restate the main results of [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] and then adapt these results to the case of 2d equivariant wave maps to the sphere of topological degree zero. In fact the results for the 4d wave equation stated here first appeared in [START_REF] Bulut | Maximizers for the Strichartz inequalities for the wave equation[END_REF] as the decomposition in [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] was performed only in dimension 3. In particular, we recall the following result:

Theorem 2.14. [1, Main Theorem] [3, Theorem 1.1] Consider a sequence of data u n ∈ Ḣ1 ×L 2 (R 4 ) such that u n Ḣ1 ×L 2 ≤ C.
Then, up to extracting a subsequence, there exists a sequence of free 4d radial waves V j L ∈ Ḣ1 × L 2 , a sequence of times {t j n } ⊂ R, and sequence of scales {λ j n } ⊂ (0, ∞), such that for w k n defined by

u n,0 (r) = k j=1 1 λ j n V j L (-t j n /λ j n , r/λ j n ) + w k n,0 (r) (2.21) u n,1 (r) = k j=1 1 (λ j n ) 2 V j L (-t j n /λ j n , r/λ j n ) + w k n,1 (r)
we have, for any j ≤ k, that

(λ j n w k n (λ j n t j n , λ j n •), (λ j n ) 2 w k n (λ j n t j n , λ j n •)) 0 weakly in Ḣ1 × L 2 (R 4 ). (2.22)
In addition, for any j = k we have

λ j n λ k n + λ k n λ j n + t j n -t k n λ j n + t j n -t k n λ k n → ∞ as n → ∞. (2.23)
Moreover, the errors w k n vanish asymptotically in the sense that if we let w k n,L (t) ∈ Ḣ1 ×L 2 denote the free evolution, (i.e., solution to (2.5)), of the data w k n ∈ Ḣ1 ×L 2 , we have

lim sup n→∞ w k n,L L ∞ t L 4 x ∩L 3 t L 6 x (R×R 4 ) → 0 as k → ∞. (2.24) 
Finally, we have the almost-orthogonality of the Ḣ1 × L 2 norms of the decomposition:

u n 2 Ḣ1 ×L 2 = 1≤j≤k V j L (-t j n /λ j n ) 2 Ḣ1 ×L 2 + w k n 2 Ḣ1 ×L 2 + o n (1) (2.25)
as n → ∞.

The norms appearing in (2.24) are dispersive and examples of Strichartz estimates, see Lindblad, Sogge [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF] and Sogge's book [START_REF] Sogge | Lectures on non-linear wave equations[END_REF] for more background and details. For our purposes here, it will often be useful to rephrase the above decomposition in the framework of the 2d linear wave equation (1.5). Using the right-most equality in (2.6) together with the identifications

ψ n (r) = ru n (r) ϕ j L (-t j n /λ j n , r/λ j n ) = r λ j n V j L (-t j n /λ j n , r/λ j n ) γ k n (r) = rw k n ,
we see that Theorem 2.14 directly implies the following decomposition for sequences ψ n ∈ H 0 with uniformly bounded H × L 2 norms. In particular, by (2.7), the following corollary holds for all sequences

ψ n ∈ H 0 with E( ψ n ) ≤ C < 2E(Q).
Corollary 2.15. Consider a sequence of data ψ n ∈ H 0 that is uniformly bounded in H × L 2 . Then, up to extracting a subsequence, there exists a sequence of linear waves ϕ j L ∈ H 0 , (i.e., solutions to (1.5)), a sequence of times {t j n } ⊂ R, and a sequence of scales {λ j n } ⊂ (0, ∞), such that for γ k n defined by

ψ n,0 (r) = k j=1 ϕ j L (-t j n /λ j n , r/λ j n ) + γ k n,0 (r) ψ n,1 (r) = k j=1 1 λ j n φj L (-t j n /λ j n , r/λ j n ) + γ k n,1 (r)
we have, for any j ≤ k, that

(γ k n (λ j n t j n , λ j n •), λ j n γ k n (λ j n t j n , λ j n •)) 0 weakly in H × L 2 .
In addition, for any j = k we have

λ j n λ k n + λ k n λ j n + t j n -t k n λ j n + t j n -t k n λ k n → ∞ as n → ∞. (2.26)
Moreover, the errors γ k n vanish asymptotically in the sense that if we let γ k n,L (t) ∈ H 0 denote the linear evolution, (i.e., solution to (1.5)) of the data γ k n ∈ H 0 , we have

lim sup n→∞ 1 r γ k n,L L ∞ t L 4 x ∩L 3 t L 6 x (R×R 4 ) → 0 as k → ∞.
Finally, we have the almost-orthogonality of the H ×L 2 norms of the decomposition:

ψ n 2 H×L 2 = 1≤j≤k ϕ j L (-t j n /λ j n ) 2 H×L 2 + γ k n 2 H×L 2 + o n (1) (2.27)
as n → ∞.

In order to apply the concentration-compactness/rigidity method developed by the second author and Merle in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], we need the following "Pythagorean decomposition" of the nonlinear energy (2.1): Lemma 2.16. Consider a sequence ψ n ∈ H 0 and a decomposition as in Corollary 2.15. Then this Pythagorean decomposition holds for the energy of the sequence:

E( ψ n ) = k j=1 E( ϕ j L (-t j n /λ j n )) + E( γ k n ) + o n (1)
as n → ∞.

Proof. By (2.27), it suffices to show for each k that

∞ 0 sin 2 (ψ n ) r dr = k j=1 ∞ 0 sin 2 ϕ j L (-t j n /λ j n ) r dr + ∞ 0 sin 2 γ k n r dr + o n (1).
We will need the following simple inequality:

sin 2 (x + y) -sin 2 (x) -sin 2 (y) = -2 sin 2 (x) sin 2 (y) + 1 2 sin(2x) sin(2y) (2.28) |x| |y| .
Since at some point we will need to make use dispersive estimates for the 4d linear wave equation the argument is clearer if, at this point, we pass back to the 4d formulation. Recall that this means we set

ψ n (r) = ru n (r) ϕ j L (-t j n /λ j n , r/λ j n ) = r λ j n V j L (-t j n /λ j n , r/λ j n ) γ k n (r) = rw k n .
Since we have fixed k, we can, by an approximation argument, assume that all of the profiles V j (0, •) are smooth and supported in the same compact set, say B(0, R).

We seek to prove that

∞ 0 sin 2 (ru n ) r dr - k j=1 ∞ 0 sin 2 r λ j n V j L (-t j n /λ j n , r/λ j n ) r dr - ∞ 0 sin 2 rw k n r dr = o n (1).
Using the inequality (2.28) k -1 times, we can reduce our problem to showing the following two estimates:

∞ 0 V j L (-t j n /λ j n , r/λ j n ) (λ j n ) V i L (-t i n /λ i n , r/λ i n ) (λ i n ) r dr = o n (1) for i = j (2.29) ∞ 0 V j L (-t j n /λ j n , r/λ j n ) (λ j n ) w k n (r) r dr = o n (1) for j ≤ k. (2.30)
From here the proof proceeds on a case by case basis where the cases are determined by which pseudo-orthogonality condition is satisfied in (2.26).

Case 1:

λ i n λ j n .
In this case we may assume, without loss of generality, that λ j n = λ i n = 1 for all n. By (2.26) we then must have that t i n -t j n → ∞ as n → ∞. This means that either t i n or t j n , or both tend to ∞ as n → ∞. To prove (2.29) we rely on the t -3 2 point-wise decay of free waves in R 4 . Indeed, we have

∞ 0 V j L (-t j n , r) V i L (-t i n , r) r dr ≤ R+|t j n | 0 V j L (-t j n , r) 2 r dr 1 2 R+|t i n | 0 V i L (-t i n , r) 2 r dr 1 2 t j n -1/2 t i n -1/2 = o n (1).
Next we prove (2.30). First suppose that t j n → ∞. Then we have

∞ 0 V j L (-t j n , r) w k n (r) r dr ≤ R+|t j n | 0 V j L (-t j n , r) 2 r dr 1 2 × ∞ 0 w k n (r) 2 r dr 1 2 w k n Ḣ1 t j n -1 2 = o n (1)
where the second inequality follows from the point-wise decay of free waves in R 4 and Hardy's inequality. Finally consider the case where t j n ≤ C. Then we can assume, after passing to a subsequence and translating the profile, that t j n = 0 for every n. In this case, then we know that w k n 0 weakly in Ḣ1 and hence w k n → 0 strongly in, e.g., L 3 loc (R 4 ) as n → ∞. And we have

∞ 0 V j L (0, r) w k n (r) r dr ≤ R 0 V j L (0, r) 3 2 dr 2 3 R 0 w k n (r) 3 r 3 dr 1 3 ≤ C(R) w k n L 3 (B(0,R)) = o n (1). Case 2: µ ij n = λ i n λ j n → 0 and |t j n | λ j n + |t i n | λ i n ≤ C as n → ∞.
We can assume, by translating the profiles, that t i n = t j n = 0 for all n. We begin by establishing (2.29).

Changing variables we have

∞ 0 V j L (0, r/λ j n ) (λ j n ) V i L (0, r/λ i n ) (λ i n ) r dr = R 0 V j (0, r) µ ij n V i (0, µ ij n r) r dr ≤ R 0 V j L (0, r) 2 r dr 1 2 R 0 (µ ij n ) 2 V i L (0, µ ij n r) 2 r dr 1 2 ≤ C Rµ ij n 0 V i L (0, r) 2 r dr 1 2 = o n (1),
where the last line follows from the fact that Rµ ij n → 0 as n → ∞. Next we prove (2.30). Again, we change variables to obtain

∞ 0 V j L (-t j n /λ j n , r/λ j n ) (λ j n ) w k n (r) r dr = R 0 V j L (0, r) λ j n w k n (λ j n r) r dr ≤ R 0 V j L (0, r) 3 2 r dr 2 3 R 0 (λ j n ) 3 w k n (λ j n r) 3 r 3 dr 1 3 = o n (1),
where the last line tends to 0 as n → ∞ since (2.22) implies that

λ j n w k n (λ j n •) → 0 in L 3 loc (R 4 ).
Cases 3:

µ ij n = λ i n λ j n → 0 , |t j n | λ j n + |t i n | λ i n → ∞
This remaining case can be handled by combining the techniques demonstrated in Case 1 and Case 2 using either the point-wise decay of free waves or (2.22) when applicable. We leave the details to the reader.

We will state the remaining results in this section in the 4d setting for simplicity. The transition back to the 2d setting is straight-forward and is omitted.

Next, we exhibit the existence of a non-linear profile decomposition as in [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]. We will employ the following notation: For a profile decomposition as in (2.21) with profiles {V j L } and parameters {t j n , λ j n } we will denote by {V j } the non-linear profiles associated to {V j L (-t j n /λ j n ), V j L (-t j n /λ j n )}, i.e., the unique solution to (2.4) such that for all -t j n /λ j n ∈ I max (V j ) we have

lim n→∞ V j (-t j n /λ j n ) -V j L (-t j n /λ j n ) Ḣ1 ×L 2 = 0
The existence of the non-linear profiles follows immediately from the local wellposedness theory for (2.4) developed in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF] in the case that -t j n /λ j n → τ j ∞ ∈ R. If -t j n /λ j n → ±∞ then the existence of the nonlinear profile follows from the existence of wave operators for (2.4).

We will make use of the following result on several occasions.

Proposition 2.17. Let u n ∈ Ḣ1 × L 2 be a uniformly bounded sequence with a profile decomposition as in Theorem 2.14. Assume that the nonlinear profiles V j associated to the linear profiles V j L all exist globally and scatter in the sense that

V j L 3 t (R;L 6 
x ) < ∞. Let u n (t) denote the solution of (2.4) with initial data u n . Then, for n large enough, u n (t, r) exists globally in time and scatters with

lim sup n→∞ u n L 3 t (R;L 6 x ) < ∞.
Moreover, the following non-linear profile decomposition holds:

u n (t, r) = k j=1 1 λ j n V j t -t j n λ j n , r λ j n + w k n,L (t, r) + z k n (t, r)
with w k n,L (t, r) as in (2.24) and

lim k→∞ lim sup n→∞ z k n L 3 t L 6 x + z k n L ∞ t Ḣ1 ×L 2 = 0. (2.31)
The proof of Proposition 2.17 is similar to the the proof of [10, Proposition 2.8] and we give a sketch of the argument below. In the current formulation, the argument is easier than the one given in [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF] since here we make the simplifying assumption that all of the non-linear profiles exist globally and scatter. We also refer the reader to [24, Proof of Proposition 3.1] where the essential elements of the argument are carried out in an almost identical setting.

The main ingredient in the proof of Proposition 2.17 is the following non-linear perturbation lemma which we will also make use of later as well. For the proof of the perturbation lemma we refer the reader to [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]Theorem 2.20], and [START_REF] Lawrie | Scattering for wave maps exterior to a ball[END_REF]Lemma 3.3]. In the latter reference a detailed proof in an almost identical setting is provided which can be applied verbatim here. 

(R 4 )) ∩ C 1 (I; L 2 (R 4 )) radial functions satisfying for some A > 0 u L ∞ (I; Ḣ1 ×L 2 ) + v L ∞ (I; Ḣ1 ×L 2 ) + v L 3 t (I;L 6 x ) ≤ A eq(u) L 1 t (I;L 2 x ) + eq(v) L 1 t (I;L 2 x ) + w 0 L 3 t (I;L 6 x ) ≤ ε ≤ ε 0 (A)
where eq(u) := u + u 3 Z(ru) in the sense of distributions, and w 0 (t) := S(tt 0 )( u -v)(t 0 ) with t 0 ∈ I arbitrary, but fixed and S denoting the free wave evolution operator in R 1+4 . Then,

u -v -w 0 L ∞ t (I; Ḣ1 ×L 2 ) + u -v L 3 t L 6 x ≤ C 0 (A)ε In particular, u L 3 t (I;L 6 x ) < ∞. Proof of Proposition 2.17. Set v k n (t, r) = k j=1 1 λ j n V j t -t j n λ j n , r λ j n
We would like to apply Lemma 2.18 to u n and v k n for large n and we need to check that the conditions of Lemma 2.18 are satisfied for these choices. First note that eq(u n ) = 0. We claim that eq(v

k n ) L 1 t L 2
x is small for large n. To see this, observe that

eq(v k n ) = k j=1 N V j n (t, r) -N   k j=1 V j n (t, r)  
where we have used the notation V j n (t, r) := 1

λ j n V j t-t j n λ j n , r λ j n and N (v) = v 3 Z(rv)
as in (2.4). Using the simple inequality sin(2ru) + sin(2rv) -sin(2r(u + v))

2r 3 = 2 sin(2ru) sin 2 (rv) + 2 sin(2rv) sin 2 (ru) 2r 3 u 2 |v| + v 2 |u| (2.32)
together with the pseudo-orthogonality of the times and scales in (2.23) and arguing as in the proof of Lemma 2.16 we obtain eq(v

k n ) L 1 t L 2 x → 0 as n → ∞ for any fixed k. Next it is essential that lim sup n→∞ k j=1 V j n L 3 t L 6 x ≤ A < ∞ (2.33)
uniformly in k, which will follow from the small data theory together with (2.25).

The point here is that the sum can be split into one over 1 ≤ j ≤ j 0 and another over j 0 ≤ j ≤ k . The splitting is performed in terms of the free energy, with j 0 being chosen so that lim sup n→∞ j0<j≤k

V j L (-t j n /λ j n ) 2 Ḣ1 ×L 2 < δ 2 0
where δ 0 is chosen so that the small data theory applies. Using again (2.23) as well as the small data scattering theory one now obtains lim sup n→∞ j0<j≤k

V j n 3 L 3 t L 6 x = j0<j≤k V j 3 L 3 t L 6 x ≤ C lim sup n→∞   j0<j≤k V j L (-t j n /λ j n ) 2 Ḣ1 ×L 2   3 2
with an absolute constant C. This implies (2.33). Now the desired result follows directly from Lemma 2.18.

In Section 5 we will require a few additional results from [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]. We restate these results here for completeness. First, we note that for a profile decomposition as in Theorem 2.14, the Pythagorean decompositions of the free energy remain valid even after a space localization. In particular we have the following:

Proposition 2.19. [8, Corollary 8] Consider a sequence of radial data u n ∈ Ḣ1 × L 2 (R 4 ) such that u n Ḣ1 ×L 2 ≤ C,
and a profile decomposition of this sequence as in Theorem 2.14. Let {r n } ⊂ (0, ∞) be any sequence. Then we have

u n 2 Ḣ1 ×L 2 (r≥rn) = 1≤j≤k V j L (-t j n /λ j n ) 2 Ḣ1 ×L 2 (r≥rn/λ j n ) + w k n 2 Ḣ1 ×L 2 (r≥rn) + o n (1)
as n → ∞.

Next, we will need a fact about solutions to the free 4d radial wave equation that is also established in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]. The following result is the analog of [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF]Claim 2.11] adapted to R 4 . In [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF] it is proved in odd dimensions only.

Lemma 2.20. [8, Lemma 11] [10, Claim 2.11] Let w n (0) = (w n,0 , w n,1 ) be a uniformly bounded sequence in Ḣ1 × L 2 (R 4 ) and let w n (t) ∈ Ḣ1 × L 2 (R 4 ) be the corresponding sequence of radial 4d free waves. Suppose that

w n L 3 t L 6 x → 0 as n → ∞. Let χ ∈ C ∞ 0 (R 4
) be radial so that χ ≡ 1 on |x| ≤ 1 and suppχ ⊂ {|x| ≤ 2}. Let {λ n } ⊂ (0, ∞) and consider the truncated data

v n (0) := ϕ(r/λ n ) w n (0),
where either ϕ = χ or ϕ = 1 -χ. Let v n (t) be the corresponding sequence of free waves. Then

v n L 3 t L 6
x → 0 as n → ∞.

Outline of the Proof of Theorem 1.1

The proof of Theorem 1.1 follows from the concentration-compactness/rigidity method developed by the second author and Merle in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF]. This method provides a framework for establishing global existence and scattering results for a large class of nonlinear dispersive equations. We begin with a brief outline of the argument adapted to our current situation. For data ψ(0) ∈ H 0 denote by ψ(t) the nonlinear evolution to (1.2) associated to ψ(0). Define the set S := { ψ(0) ∈ H 0 | ψ(t) exists globally and scatters to zero as t → ±∞} Our goal is then to prove that

{ ψ(0) ∈ H 0 | E( ψ) < 2E(Q)} ⊂ S
This will be accomplished by establishing the following three steps. First, we recall the following global existence and scattering result proved in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF], for data in H 0 with energy ≤ E(Q).

Theorem 3.1. [6, Theorem 1 and Corollary 1] There exists a small δ > 0 with the following property. Let ψ(0) = (ψ 0 , ψ 1 ) ∈ H 0 be such that E( ψ) < E(Q) + δ. Then, there exists a unique global evolution ψ ∈ C 0 (R; H 0 ) to (1.2) which scatters to zero in the sense of (1.4).

This shows that S is not empty. We remark that Theorem 3.1 gives more than what is needed for the rest of the argument. A small data global existence and scattering result such as [6, Theorem 2] would suffice to show that S is not empty. In fact, the proof of Theorem 1.1, and in particular Theorem 4.1 provide an independent alternative to the proof of scattering below E(Q) + δ given in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF].

Next, we argue by contradiction. Assume that Thereom 1.1 fails and suppose that E(Q) < E * < 2E(Q) is the minimal energy level at which a failure to the conclusions of Theorem 1.1 occurs. We then combine the concentration compactness decomposition given in Corollary 2.15, the nonlinear perturbation theory in Lemma 2.18, and the nonlinear profile decomposition in Proposition 2.17 to extract a so-called critical element, i.e., a nonzero solution ψ * ∈ C 0 (I max ( ψ * ); H 0 ) to (1.2) whose trajectory in H 0 is pre-compact up to certain time-dependent scaling factors arising due to the scaling symmetry of the equation. Here I max ( ψ) is the maximal interval of existence of ψ * . To be specific, we can deduce the following proposition: Proposition 3.2. [6, Proposition 2 and Proposition 3] Suppose that Theorem 1 fails and let E * be defined as above. Then, there exists a nonzero solution ψ * (t) ∈ H 0 to (1.2), (referred to as a the critical element), defined on its maximal interval of existence I max ( ψ * ) 0, with

E( ψ * ) = E * < 2E(Q)
Moreover, there exists A 0 > 0, and a continuous function λ :

I max → [A 0 , ∞) such that the set K := ψ * t, r λ(t) , 1 λ(t) ψ * t, r λ(t) t ∈ I max is pre-compact in H × L 2 .
Remark 10. As noted above, the Cauchy problem (1.2), for data ψ(0) ∈ V (α) with α ≤ 2E(Q) is equivalent to the Cauchy problem for the 4d nonlinear radial wave equation, (2.4), via the identification ru = ψ. Hence, it suffices to carry out the small data global existence and scattering argument, as well as the concentration compactness decomposition and the extraction of a critical element on the the level of the 4d equation (2.4) for u. We remark that in this setting, scattering in the sense of (1.4) is equivalent to u X (R 1+4 ) < ∞ where X is a suitably chosen Strichartz norm. For example, X = L 3 t L 6

x will do.

Remark 11. In the proof of Theorem 1.1, the requirement that E( ψ(0)) < 2E(Q) arises in the concentration compactness procedure. Indeed, in order to ensure that the critical element ψ * described in Proposition 3.2 lies in H 0 one needs to require that any sequence of data { ψ n (0)} with energies converging from below to the minimal energy level E * , also have uniformly bounded H × L 2 norms. This is only guaranteed when E * < 2E(Q) by Lemma 2.1. In this case, one obtains a sequence of data u n (0), via the identification ru n = ψ n , that is uniformly bounded in Ḣ1 × L 2 (R 4 ) and on which one is free to perform the concentration compactness decomposition as in [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] and extract a critical element u * as in [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF], [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF]. We can then define ψ * := r u * .

Remark 12. For the proof that the function λ(t) described in Proposition 3. The final step, referred to as the rigidity argument, consists of showing any solution ψ(t) ∈ H 0 with the aforementioned compactness properties must be identically zero, which provides the contradiction. This part of the concentration compactness/rigidity method is what allows us to extend the result in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF] to all energies below 2E(Q) and we will thus carry out the proof in detail in the next section.

3.1. Sharpness of Theorem 1.1 in H 0 . Before we begin the rigidity argument, we first show that Theorem 1.1 is indeed sharp in H 0 by demonstrating the following claim: for all δ > 0 there exist data ψ(0) ∈ H 0 with E(ψ) ≤ 2E(Q) + δ, such that the corresponding wave map evolution, ψ(t), blows up in finite time. This follows easily from the blow-up constructions of [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF] or [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF].

Fix δ 0 > 0. By [START_REF] Krieger | Renormalization and blow up for charge one equivariant critical wave maps[END_REF] or [START_REF] Raphaël | Stable blow up dynamics for the critical corotational Wave map and equivariant Yang-Mills problems[END_REF] we can choose data u(0) ∈ H 1 such that

E( u(0)) ≤ E(Q) + δ, δ δ 0
such that the corresponding wave map evolution u(t) ∈ H 1 blows up at time t = 1. In other words, the energy of u(t) concentrates in the backwards light cone,

K(1, 0) := {(t, r) ∈ [0, 1] × [0, 1] | r ≤ 1 -t}, emanating from the point (1, 0) ∈ R × [0, ∞], i.e., lim t 1 E 1-t 0 ( u(t)) ≥ E(Q)
where

E b a (u, v) = b a (u 2 r + v 2 + sin 2 (u) r 
2 ) r dr. Now define ψ(0) ∈ H 0 as follows:

ψ(0, r) = u(0, r) if r ≤ 2 π -Q(λr) if r ≥ 2
where λ > 0 is chosen so that π -Q(2λ) = u(0, 2). We note that the existence of such a λ follows form the fact that we can ensure that u(0, r) > 0 for r > 1. To see this, observe that since u(t) blows up at time t = 1 and thus must concentrate at least E(Q) inside the light cone we can deduce by the monotonicity of the energy that E 1 0 ( u(0)) ≥ E(Q). Now choose δ < E(Q). If we have u(0, r) ≤ 0 for any r > 1 we would need at least E ∞ r (u(0), 0) ≥ E(Q) to ensure that u(0, ∞) = π. This follows from the minimality of

E(Q) in H 1 . However E ∞ r (u(0), 0) ≤ δ < E(Q). Now observe that E( ψ(0)) = E 2 0 ( u(0)) + E ∞ 2 (π -Q) ≤ E( u) + E(Q) ≤ 2E(Q) + δ.
Let ψ(t) denote the wave map evolution of the data ψ(0). By the finite speed of propagation, we have that ψ(t, r) = u(t, r) for all (t, r) ∈ K(0, 1) and hence lim

t 1 E 1-t 0 ( ψ(t)) = lim t 1 E 1-t 0 ( u(t)) ≥ E(Q)
which means that ψ(t) blows up at t = 1 as desired. Note that if one wishes to construct blow-up data in H 0 that maintains the smoothness of u(0), one can simply smooth out ψ(0, r) in a small neighborhood of the point r = 2 using an arbitrarily small amount of energy.

We again remark that the questions of determining the possible dynamics at the threshold, E( ψ) = 2E(Q), and above it, E( ψ) > 2E(Q), are not addressed here and remain open.

Rigidity

In this section we prove Theorem 1.2 and complete the proof of Theorem 1.1. We begin by establishing a rigidity theory in H 0 which will allow us to deduce Theorem 1.1. We then use the conclusions of Theorem 1.1 together with the proof of Theorem 4.1 to establish Theorem 1.2. Theorem 4.1 (Rigidity in H 0 ). Let ψ(t) ∈ H 0 be a solution to (1.2) and let I max (ψ) = (T -(ψ), T + (ψ)) be the maximal interval of existence. Suppose that there exist A 0 > 0 and a continuous function λ : I max → [A 0 , ∞) such that the set

K := ψ t, r λ(t) , 1 λ(t) ψ t, r λ(t) t ∈ I max (4.1)
is pre-compact in H × L 2 . Then, I max = R and ψ ≡ 0.

We begin by recalling the following virial identity:

Lemma 4.2. Let χ R (r) = χ(r/R) ∈ C ∞ 0 (R) satisfy χ(r) = 1 on [-1, 1] with supp(χ) ⊂ [-2, 2]
. Suppose that ψ is a solution to (1.2) on some interval I 0. Then, for all T ∈ I we have

χ R ψ | rψ r T 0 = - T 0 ∞ 0 ψ2 r dr dt + T 0 O(E ∞ R ( ψ(t))) dt. (4.2)
Proof. Since ψ is a solution to (1.2) we have

d dt χ R ψ | rψ r = χ R ψ | rψ r + χ R ψ | r ψr = χ R (ψ rr + 1 r ψ r - sin(2ψ) 2r 2 ) rψ r + χ R ψ | r ψr = - ∞ 0 ψ2 r dr + ∞ 0 (1 -χ R ) ψ2 r dr - 1 2 ∞ 0 ψ2 + ψ 2 r - sin 2 (ψ) r 2 χ R r 2 dr. Observe that ∞ 0 (1 -χ R ) ψ2 r dr E ∞ R ( ψ).
Finally, noting that χ R (r) = 1 R χ (r/R), we obtain

∞ 0 1 2 ψ2 + ψ 2 r - sin 2 (ψ) r 2 χ R r 2 dr 2R R ψ2 + ψ 2 r + sin 2 (ψ) r 2 r R χ r R r dr E ∞ R ( ψ).
Hence we can conclude that

d dt χ R ψ | rψ r = - ∞ 0 ψ2 r dr + O(E ∞ R ( ψ(t))
).

An integration from 0 to T proves the lemma.

With the virial identity (4.2), we can begin the proof of Theorem 4.1. This will be done in several steps and is inspired by the arguments in [10, Proof of Theorem 2]. To begin, we recall from [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] that any wave map with a pre-compact trajectory in H × L 2 as in (4.1) that blows up in finite time is supported on the backwards light cone. ] Let ψ(t) ∈ H 0 be a solution to (1.2) such that I max ( ψ) is a finite interval. Without loss of generality we can assume T + ( ψ) = 1. Suppose there exists a continuous function λ : I max → (0, ∞) so that K, as defined in (4.1), is pre-compact in H × L 2 . Then

0 < C 0 (K) 1 -t ≤ λ(t).
And, for every t ∈ [0, 1) we have

supp( ψ(t)) ∈ [0, 1 -t).
We can now begin the proof of Theorem 4.1.

Proof of Theorem 4.1.

Step 1:

First we show that I max (ψ) = R. Assume that T + ( ψ) < ∞ and we proceed by contradiction. Without loss of generality, we may assume that T + ( ψ) = 1. By Lemma 4.3, we can deduce that 0 < C0(K) 1-t ≤ λ(t) and supp( ψ(t)) ∈ [0, 1 -t). In addition, we know, by Lemma 2.7, (see [START_REF] Struwe | Equivariant wave maps in two space dimensions[END_REF] or the argument in [33, Lemma 2.2]), that self similar blow-up for 2d wave maps is ruled out; note that the argument in [START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF] applies only to smooth wave maps. See Appendix B for how to extend this result to solutions in H 0 . This implies that there exists a sequence {τ n } ⊂ (0, 1) with τ n → 1 such that

1 λ(τ n )(1 -τ n ) < 1 as n → ∞.
Hence, we can extract a further subsequence {t n } → 1 and apply Corollary 2.9 with σ = 1 λ(tn) to obtain, for every n, the bound

λ(t n ) tn+ 1 λ(tn ) tn ∞ 0 ψ2 (t, r) r dr dt ≤ 1 n . (4.3) 
Note that above we have used the fact that supp( ψ(t)) ∈ [0, 1 -t). Next, with t n as above, define a sequence in H 0 by setting

ψ n (0) = (ψ 0 n , ψ 1 n ) := ψ t n , r λ(t n ) , 1 λ(t n ) ψ t n , r λ(t n )
.

The nonlinear evolutions associated to our sequence

ψ n (t) := ψ t n + t λ(t n ) , r λ(t n ) , 1 λ(t n ) ψ t n + t λ(t n ) , r λ(t n ) are then solutions to (1.2) with E( ψ n ) = E( ψ). Observe that 1 0 ∞ 0 ψ2 n (t, r) r dr dt → 0 as n → ∞. (4.4)
Indeed, by (4.3) we have that

1 0 ∞ 0 ψ2 n r dr dt = λ(t n ) tn+ 1 λ(tn ) tn ∞ 0 ψ2 (t, r) r dr dt → 0 as n → ∞.
We now proceed as follows. By the compactness of K we can find ψ ∞ (0) = (ψ 0 ∞ , ψ 1 ∞ ) ∈ H 0 and a subsequence of { ψ n (0)} such that we have strong convergence

ψ n (0) → ψ ∞ (0) as n → ∞ in H × L 2 .
Note that this also implies strong convergence in the energy topology, i.e., ψ n (0) → ψ ∞ (0) in H 0 . In particular, we have

E( ψ ∞ (0)) = E( ψ n (0)) = E( ψ). (4.5) 
Now, let ψ ∞ (t) ∈ H 0 denote the forward solution to (1.2) with initial data ψ ∞ (0) on its maximal interval of existence [0, T + (ψ ∞ )). Choose T 0 ∈ (0, T + (ψ ∞ )) with T 0 ≤ 1. Using Lemma 2.18 for the equivalent 4-dimensional wave equation (2.4), the strong convergence of ψ n (0) to ψ ∞ (0) in H × L 2 implies that for large n, the nonlinear evolutions ψ n (t) and ψ ∞ (t) remain uniformly close in Therefore we have ψ∞ ≡ 0 on [0, T 0 ]. Since ψ = 0 is the unique harmonic map in H 0 we necessarily have that ψ ∞ ≡ 0. But, by (4.5) we then have 0

H × L 2 for t ∈ [0, T 0 ]. Indeed, we have sup t∈[0,T0] ψ n (t) -ψ ∞ (t) H×L 2 = o n (1). ( 4 
= E( ψ ∞ ) = E( ψ n ) = E( ψ)
. Hence ψ ≡ 0, which contradicts our assumption that ψ = 0 blows up at time t = 1.

Step 2: By Step 1, we have reduced the proof of Theorem 4.1 to the case I max = R, and hence λ : R → [A 0 , ∞). By time symmetry we can, without loss of generality, work with nonnegative times only and thus consider λ(t

) : [0, ∞) → [A 0 , ∞).
First note that since K is pre-compact in H × L 2 and since λ(t) ≥ A 0 we have that for all ε > 0 there exists an R = R(ε) such that for every t ∈ [0, ∞)

E ∞ R(ε) ( ψ(t)) < ε. Also, observe that for all T > 0 we have χ R ψ | rψ r T 0 RE( ψ). (4.7) 
Now, fix ε > 0 and fix R large enough so that sup t≥0 E ∞ R ( ψ) < ε. Then, Lemma 4.2 together with (4.7) implies that for all T ∈ [0, ∞) we have

1 T T 0 ∞ 0 ψ2 r dr dt R T E( ψ) + ε. This shows that 1 T T 0 ∞ 0 ψ2 r dr dt → 0 as T → ∞. (4.8) 
Next, we claim that there exists a sequence {t n } with t n → ∞ such that To see this, we begin by defining a sequence τ n as follows. Set

τ 0 = 0, τ n+1 := τ n + 1 λ(τ n ) = n k=0 1 λ(τ k )
.

First we establish that τ n → ∞ as n → ∞. If not, then up to a subsequence we would have τ n → τ ∞ < ∞. This would imply that

τ ∞ = ∞ k=0 1 λ(τ k ) < ∞ which means that lim k→∞ 1 λ(τ k ) = 0. But this is impossible since λ(τ k ) → λ(τ ∞ ) < ∞
by the continuity of λ. Now, suppose that (4.9) fails for all subsequences {t n } ⊂ {τ n }. Then there exists ε > 0 such that for all k,

τ k+1 τ k ∞ 0 ψ2 r dr dt ≥ ε 1 λ(τ k )
.

Summing both sides above from 1 to n gives

τn+1 0 ∞ 0 ψ2 r dr dt ≥ ε n k=1 1 λ(τ k ) = ετ n+1
which contradicts (4.8). Hence there exists a sequence {t n } such that (4.9) holds. Moreover, since λ(t) ≥ A 0 > 0 for all t ≥ 0 we can extract a further subsequence, still denoted by {t n }, such that (4.9) holds and all the intervals [t n , t n + 1 λ(tn) ] are disjoint.

Next, with t n as above, define a sequence in H 0 by setting

ψ n (0) = (ψ 0 n , ψ 1 n ) := ψ t n , r λ(t n ) , 1 λ(t n ) ψ t n , r λ(t n )
.

The nonlinear evolutions associated to our sequence

ψ n (t) := ψ t n + t λ(t n ) , r λ(t n ) , 1 λ(t n ) ψ t n + t λ(t n ) , r λ(t n ) are then global solutions to (1.2) with E( ψ n ) = E( ψ). Observe that 1 0 ∞ 0 ψ2 n (t, r) r dr dt → 0 as n → ∞.
(4.10) Indeed, by (4.9) we have that

1 0 ∞ 0 ψ2 n r dr dt = λ(t n ) tn+ 1 λ(tn ) tn ∞ 0 ψ2 r dr dt → 0 as n → ∞.
We now proceed as follows. By the pre-compactness of K we can find ψ ∞ (0) = (ψ 0 ∞ , ψ 1 ∞ ) ∈ H 0 and a subsequence of { ψ n (0)} such that we have strong convergence

ψ n (0) → ψ ∞ (0) as n → ∞ in H × L 2 .
Note that this also implies strong convergence in the energy topology, i.e., ψ n (0) → ψ ∞ (0) in H 0 . In particular, we have

E( ψ ∞ (0)) = E( ψ n (0)) = E( ψ). (4.11) 
Now, let ψ ∞ (t) ∈ H 0 denote the forward solution to (1.2) with initial data ψ ∞ (0) on its maximal interval of existence [0, T + (ψ ∞ )). Choose T 0 ∈ (0, T + (ψ ∞ )) with T 0 ≤ 1.

Using Lemma 2.18 for the 4-dimensional wave equation (2.4), the strong convergence of ψ n (0) to ψ ∞ (0) in H × L 2 implies that for large n the nonlinear evolutions ψ n (t) and ψ ∞ (t) remain uniformly close in

H × L 2 in t ∈ [0, T 0 ]. Indeed, we have sup t∈[0,T0] ψ n (t) -ψ ∞ (t) H×L 2 = o n (1). (4.12)
Hence, combining (4.10) with (4.12) we have

0 ← 1 0 ∞ 0 ψ2 n (t, r) r dr dt ≥ T0 0 ∞ 0 ψ2 n (t, r) r dr dt = T0 0 ∞ 0 ψ2 ∞ (t, r) r dr dt + o n (1).
Therefore we have ψ∞ ≡ 0 on [0, T 0 ]. Since ψ = 0 is the unique harmonic map in H 0 we necessarily have that ψ ∞ ≡ 0. But, by (4.11) we then have 0 = E(ψ ∞ , 0) = E( ψ n ) = E( ψ). Hence ψ ≡ 0 as desired.

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that Theorem 1.1 fails. Then by Proposition 3.2 there would exist a nonzero critical element ψ * that satisfies the assumptions of Theorem 4.1. But by Theorem 4.1, ψ * ≡ 0, which is a contradiction.

To conclude, we prove Theorem 1.2.

Proof of Theorem 1.2.

Step 1: First we show that I max ( U ) = R. We argue by contradiction. Assume that T + ( U ) < ∞. Without loss of generality, we may assume that T + ( U ) = 1.

Applying the exact same argument as in Step 1 of the proof of Theorem 4.1 up to (4.4) we can construct a sequence of solutions

U n (t) ∈ Ḣ1 × L 2 (R 2 ; S 2 ) to (1.2) such that U n (0) = (U 0 n , U 1 n ) := U t n , r λ(t n ) , ω , 1 λ(t n ) ∂ t U t n , r λ(t n ) , ω with E( U n ) = E( U ) and 1 0 R 2 ∂ t U 2 n (t) dx dt → 0 as n → ∞. (4.13) 
From this we obtain the following conclusions: (i) Extracting a subsequence we have

U n U ∞ weakly in Ḣ1 loc ([0, 1] × R 2 ; S 2 ) and hence U ∞ (t) is a weak solution to (1.2) on [0, 1]. (ii) By the pre-compactness of K we can, in fact, ensure that U n (0) → U ∞ (0)
strongly in Ḣ1 × L 2 (R 2 ; S 2 ). This implies that Putting this all together, we have a time independent weak solution U ∞ ∈ H to (1.2) for t ∈ [0, 1]. By Hélein's Theorem [START_REF] Hélein | Harmonic maps, conservation laws and moving frames[END_REF]Theorem 1] we know that U ∞ is, in fact, harmonic. Since U = 0 and U = (±Q, ω) are the unique harmonic maps up to scaling in H we necessarily have that either U ∞ = 0 or U ∞ (r, ω) = (Q( λ•), ω) for some λ > 0. Hence, by (4.14), we can deduce that either E( U ) = 0 or E( U ) = E(Q, 0). The former case implies that U ≡ 0. If the latter case occurs, then U (t) can either be an element of H 0 , H 1 , or of H -1 since all the higher topological classes, H n for |n| > 1, require more energy. If U (t) ∈ H 0 then it is global in time and scatters by Theorem 1.1. If U (t) ∈ H 1 or H -1 then we have U (t, r, ω) = (±Q( λr), ω) for some λ > 0 since (Q, 0), respectively (-Q, 0), uniquely minimizes the the energy in H 1 , respectively H -1 . In either case, this provides a contradiction to our assumption that I max = R.

E( U ∞ ) = E( U n ) = E( U ) (4.
Step 2:

Again we apply the exact same argument given in Step 2 of the proof of Theorem 4.1 and we construct a sequence of solutions U n (t) ∈ Ḣ1 × L 2 (R 2 ; S 2 ) to (1.2) such that

U n (0) = (U 0 n , U 1 n ) := U t n , r λ(t n ) , ω , 1 λ(t n ) ∂ t U t n , r λ(t n ) , ω with E( U n ) = E( U ) and 1 0 R 2 ∂ t U 2 n (t) dx dt → 0 as n → ∞. (4.15)
We thus obtain the following conclusions:

(i) Extracting a subsequence we have U n U ∞ weakly in Ḣ1 loc ([0, 1] × R 2 ; S 2 ) and hence U ∞ (t) is a weak solution to (1.2) on [0, 1]. (ii) By the pre-compactness of K we can extract a further subsequence with

U n (0) → U ∞ (0) strongly in Ḣ1 × L 2 (R 2 ; S 2
). This implies that Putting this all together, we have a time independent weak solution U ∞ ∈ H to (1.2) for t ∈ [0, 1]. By Hélein's Theorem [START_REF] Hélein | Harmonic maps, conservation laws and moving frames[END_REF]Theorem 1] we know that U ∞ is, in fact, harmonic. Since U = 0 and U = (±Q, ω) are the unique harmonic maps up to scaling in H we necessarily have that either U ∞ = 0 or U ∞ (r, ω) = (±Q( λ•), ω) for some λ > 0. Hence by (4.16) we can deduce that either E( U ) = 0 or E( U ) = E(Q, 0). The former case implies that U ≡ 0. Arguing as in the conclusion to Step 1, the latter case implies that either

E( U ∞ ) = E( U n ) = E( U ) ( 4 
U (t) ∈ H 0 or U (t) ∈ H ±1 . If U (t) ∈ H ±1 , then U (t, r, ω) = (±Q( λr), ω) for some λ > 0. If U (t) ∈ H 0 with E( U ) = E(Q), then Theorem 1.1 shows that U (t)
is global in time and scatters to 0 as t → ∞ in Ḣ1 × L 2 (R 2 ; S 2 ) in the sense that the energy of U (t) goes to 0 as t → ∞ on any fixed but compact set V ⊂ R 2 . Finally, we observe that the pre-compactness of K renders such a scattering result impossible.

We thus conclude that either U ≡ 0 or U (t, r, ω) = (±Q( λr), ω) for some λ > 0 proving Theorem 1.2.

Universality of the blow-up profile for degree one wave maps with energy below 3E(Q)

In this section we prove Theorem 1.3. We start by first deducing the conclusions of Theorem 1.3 along a sequence of times. To be specific, we establish the following proposition:

Proposition 5.1. Let ψ(t) ∈ H 1 be a solution to (1.2) blowing up at time t = 1 with E( ψ) = E(Q) + η < 3E(Q)
Then there exists a sequence of times t n → 1, a sequence of scales λ n = o(1 -t n ), a map ϕ = (ϕ 0 , ϕ 1 ) ∈ H 0 , and a decomposition

(ψ(t n ), ψ(t n )) = (ϕ 0 , ϕ 1 ) + Q • λ n , 0 + ε(t n ) (5.1) such that ε(t n ) ∈ H 0 and ε(t n ) → 0 in H × L 2 as n → ∞.
Most of this section will be devoted to the proof of Proposition 5.1. We will proceed in several steps, the first being the extraction of the radiation term. 3). The dotted line is the piece of the function ψ( tn , •) that is chopped at r = r n in order to linearly connect to π, which ensures that φ n ∈ H 1,1 .

Extraction of the radiation term.

In this subsection we construct what we will call the radiation term, ϕ = (ϕ 0 , ϕ 1 ), in the decomposition (5.1). Lemma 5.2. There exists ϕ ∈ H 0 with E( ϕ) ≤ η < 2E(Q) so that the following holds: Denote by ϕ(t) the wave map evolution of ϕ. Then ϕ(t) ∈ H 0 is global in time and scatters to zero as t → ±∞ and we have

ϕ(t, r) + π = ψ(t, r) ∀ (t, r) ∈ {(t, r) | t ∈ [0, 1), r ∈ (1 -t, ∞)} (5.2)
Proof. To begin, let tn → 1 and r n ∈ (0, 1 -tn ] be chosen as in Corollary 2.13. We make the following definition:

φ 0 n (r) = π -π-ψ( tn,rn) rn r if 0 ≤ r ≤ r n ψ( tn , r) if r n ≤ r < ∞ (5.3) φ 1 n (r) = 0 if 0 ≤ r ≤ r n ψ( tn , r) if r n ≤ r < ∞
We claim that φ n := (φ 0 n , φ 1 n ) forms a bounded sequence in the energy space H-in fact, the sequence is in H 1,1 which is defined in (1.3). To see this we start with the claim that

E ∞ rn ( φ n ) = E ∞ rn ( ψ( tn )) ≤ η + o n (1). (5.4) Indeed, since ψ( tn , r n ) → π we have G(ψ( tn , r n )) → 2 = 1 2 E(Q) as n → ∞. Therefore, by (2.2) have E rn 0 (ψ( tn ), 0) ≥ 2G(ψ( tn , r n )) ≥ E(Q) -o n (1)
for large n which proves (5.4) since

E ∞ rn ( ψ( tn )) = E ∞ 0 ( ψ( tn )) -E rn 0 ( ψ( tn )).
We can also directly compute E rn 0 (φ 0 n , 0). Indeed,

E rn 0 (φ 0 n , 0) = rn 0 π -ψ( tn , r n ) r n 2 r dr + rn 0 sin 2 π-ψ( tn,rn) rn r r dr ≤ C |π -ψ( tn , r n )| 2 → 0 as n → ∞. Hence E( φ n ) ≤ η + o n (1)
. This means that for large enough n we have the uniform estimates E( φ n ) ≤ C < 2E(Q). Therefore, by Theorem 1.1, (which holds with exactly the same statement in H 1,1 as in H 0 = H 0,0 ), we have that the wave map evolution φ n (t) ∈ H 1,1 with initial data φ n is global in time and scatters to π as t → ±∞. We define φ = (φ 0 , φ 1 ) ∈ H 1,1 by

φ 0 (r) := π if r = 0 φ n (1 -tn , r) if r > 2(1 -tn ) φ 1 (r) := 0 if r = 0 φn (1 -tn , r) if r > 2(1 -tn )
We need to check first that φ is well-defined. First recall that by definition

φ n (r) = ψ( tn , r) ∀r ≥ 1 -tn since r n ≤ 1 -tn .
Using the finite speed of propagation of the wave map flow, see e.g., [START_REF] Shatah | Geometric wave equations[END_REF], we can then deduce that for all t ∈ [0, 1) we have

φ n (t -tn , r) = ψ(t, r) ∀ r ≥ 1 -tn + |t -tn |
Now let m > n and thus tm > tn . The above implies that

φ n ( tm -tn , r) = ψ( tm , r) = φ m (r) ∀ r ≥ 1 -tn + | tm -tn |
Therefore, using the finite speed of propagation again we can conclude that

φ n (1 -tn , r) = φ m (1 -tm , r) ∀ r > 2(1 -tn )
proving that φ is well-defined. Next we claim that

E( φ) ≤ η (5.5)
Indeed, observe that by monotonicity of the energy on light cones, see e.g. [START_REF] Shatah | Geometric wave equations[END_REF], we have

E ∞ 2(1-tn) ( φ) = E ∞ 2(1-tn) ( φ n (1 -tn )) ≤ E ∞ 1-tn ( φ n (0)) ≤ E( φ n (0)) ≤ η + o n (1)
and then (5.5) follows by taking n → ∞ above. Now, let φ(t) ∈ H 1,1 denote the wave map evolution of φ. Since φ ∈ H 1,1 and E( φ) ≤ η < 2E(Q) we can deduce by Theorem 1.1 that φ(t) is global in time and scatters as t → ±∞. Our final observation regarding φ(t) is that for all t ∈ [0, 1) we have

φ(t, r) = ψ(t, r) ∀ r > 1 -t
This follows immediately from the definition of φ and the finite speed of propagation. To be specific, fix t 0 ∈ [0, 1) and r 0 > 1 -t. Since tn → 1 we can choose n large enough so that r 0 > 2(1 -tn ) + 1 -t 0 . Then observe that by finite speed of propagation and the fact that φ(r) = φ n (1 -tn , r) for all r > 2(1 -tn ) we have

φ(t 0 , r) = φ n (t 0 -tn , r) = ψ(t 0 , r) ∀ r > r 0 > 2(1 -tn ) + 1 -t 0
and in particular for r = r 0 . Finally, we define our radiation term ϕ = (ϕ 0 , ϕ 1 ) ∈ H 0 by setting

ϕ 0 (r) := φ 0 -π ϕ 1 (r) := φ 1 .
We denote by ϕ(t) ∈ H 0 the global wave map evolution of ϕ.

Now define

a(t, r) := ψ(t, r) -ϕ(t, r).

(5.6)

We use Lemma 5.2 to show that a(t) has the following properties:

Lemma 5.3. Let a(t) be defined as in (5.6). Then a(t) ∈ H 1 for all t ∈ [0, 1) and supp(a r (t), ȧ(t)) ∈ [0, 1 -t).

(5.7)

Moreover we have

lim t→1 E( a(t)) = E( ψ) -E( ϕ). (5.8) 
Proof. First observe that (5.7) follows immediately from (5.2). Next we prove (5.8). ϕ(t) H×L 2 (r≤δ) → 0 as δ → 0, which implies in particular that ϕ(t) H×L 2 (r≤1-t) → 0 (5.9) as t → 1. Next we see that

E( a(t)) = 1-t 0 |ψ t (t) -ϕ t (t)| 2 + |ψ r (t) -ϕ r (t)| 2 + sin 2 (ψ(t) -ϕ(t)) r 2 r dr = E 1-t 0 ( ψ(t) + 1-t 0 (-2ψ t (t)ϕ(t) -2ψ r (t)ϕ r (t)) r dr + 1-t 0 ϕ 2 t (t) + ϕ 2 r (t) r dr + 1-t 0 sin 2 (ψ(t) -ϕ(t)) -sin 2 (ψ(t)) r dr = E 1-t 0 ( ψ(t)) + CE( ψ) ϕ(t) H×L 2 (r≤1-t) + C ϕ(t) 2 H×L 2 (r≤1-t) = E 1-t 0 ( ψ(t)) + o(1) as t → 1,
where on the last line two lines we used (5.9) and the fact that

sin 2 (x + y) -sin 2 (x) ≤ 2 |sin(x)| |y| + 2 |y| 2 .
(5.10) Finally, by Lemma 5.2 we observe that for all t ∈ [0, 1) we have 1) as t → 1, which completes the proof.

E ∞ 1-t ( ψ(t)) = E ∞ 1-t ( ϕ(t)). Hence, E( a(t)) = E( ψ(t)) -E ∞ 1-t ( ϕ(t)) + o(

Extraction of the blow-up profile.

Next, we use Struwe's result, Theorem 2.10, to extract a sequence of properly rescaled harmonic maps. At this point we note that we can, after a suitable rescaling and time translation, assume, without loss of generality, that the scale λ 0 in Theorem 2.10 satisfies λ 0 = 1. We prove the following result: Proposition 5.4. Let a(t) ∈ H 1 be defined as in (5.6). There exists a sequence α n with α n → ∞, a sequence of times τ n → 1 and a sequence of scales

λ n = o(1 -τ n ) and α n λ n < 1 -τ n such that (a) As n → ∞ we have ∞ 0 ȧ2 (τ n , r) r dr ≤ 1 n . (5.11) (b) As n → ∞ we have αnλn 0 a r (τ n , r) - Q r (r/λ n ) λ n 2 + |a(τ n , r) -Q(r/λ n )| 2 r 2 r dr ≤ 1 n . (5.12) (c) As n → ∞ we also have E( a(τ n ) -(Q(•/λ n ), 0)) ≤ η + o n (1), (5.13) 
which implies that for large enough n we have

E( a(τ n ) -(Q(•/λ n ), 0)) ≤ C < 2E(Q).
Proof. We begin by establishing (5.11) and (5.12). The basis for the argument is Theorem 2.10. Indeed, by Theorem 2.10 and Corollary 2.13 there exists a sequence of times t n → 0 and a sequence of scales λ n = o(1 -t n ) such that for any B ≥ 0 we have

1 λ n tn+λn tn 1-t 0 ψ2 (t, r) r dr dt → 0 1 λ n tn+λn tn Bλn 0 ψ r (t, r) - Q r (r/λ n ) λ n 2 + |ψ(t, r) -Q(r/λ n )| 2 r 2 r dr dt → 0
as n → ∞. Next observe that since ϕ(t) ∈ H 0 is a global wave map with E( ϕ) < 2E(Q), we can use the monotonicity of the energy on light cones to deduce that

sup tn≤t≤1 E 1-t 0 ( ϕ(t)) → 0 as n → ∞.
The above then implies that Using (5.14) it is also immediate that

sup tn≤t≤1 ϕ(t) H×L 2 (r≤1-t) → 0 as n → ∞. ( 5 
1 λ n tn+λn tn Bλn 0 a r (t, r) - Q r (r/λ n ) λ n 2 + |a(t, r) -Q(r/λ n )| 2 r 2 r dr dt → 0. Now, define s(B, n) := 1 λ n tn+λn tn ∞ 0 ȧ2 (t, r) r dr dt + 1 λ n tn+λn tn Bλn 0 a r (t, r) - Q r (r/λ n ) λ n 2 + |a(t, r) -Q(r/λ n )| 2 r 2 r dr dt.
We know that for all B ≥ 0 we have s(B, n

) → 0 as n → ∞. Let α n → ∞.
Then there exists a subsequence σ(n

) such that s(α n , σ(n)) → 0 as n → ∞ with α n λ σ(n) < 1 -t σ(n) .
To see this let N (B, δ) be defined so that for n ≥ N (B, δ) we have s(B, n) ≤ δ and then set σ(n) := N (α n , 1/n). Note that we necessarily have

α n λ σ(n) < 1 -t σ(n) . Then we can extract τ σ(n) ∈ [t σ(n) , t σ(n) + λ σ(n)
] so that after relabeling we have

∞ 0 ȧ2 (τ n , r) r dr + αnλn 0 a r (τ n , r) - Q r (r/λ n ) λ n 2 + |a(τ n , r) -Q(r/λ n )| 2 r 2 r dr ≤ 1 n
for every n which proves (5.11) and (5.12). Lastly, we establish (5.13). To see this, let τ n and λ n be as in (5.11) and (5.12). Observe that

E( a(τ n ) -(Q(•/λ n ), 0) = E αnλn 0 ( a(τ n ) -(Q(•/λ n ), 0)) + E 1-τn αnλn ( a(τ n ) -(Q(•/λ n ), 0)) + E ∞ 1-τn ( a(τ n ) -(Q(•/λ n ), 0)
). First, observe that (5.11) and (5.12) directly imply that

E αnλn 0 ( a(τ n ) -(Q(•/λ n ), 0)) = o n (1)
as n → ∞. Next we observe that

E ∞ αnλn (Q(•/λ n )) = E ∞ αn (Q) = o n (1). (5.15) 
Using (5.15) and the fact that a(τ n , r) = (π, 0) for every r ∈ [1 -τ n , ∞), we have that

E ∞ 1-τn ( a(τ n ) -(Q(•/λ n ), 0)) = E ∞ 1-τn ((π, 0) -(Q(•/λ n ), 0)) ≤ E ∞ αnλn (Q(•/λ n )) = o n (1). Hence it suffices to show that E 1-τn αnλn ( a(τ n ) -(Q(•/λ n ), 0)) ≤ η + o n (1). (5.16) 
Applying (5.15) again we see that the above reduces to showing that

E 1-τn αnλn ( a(τ n )) ≤ η + o n (1).
Now combine the following two facts. One the one hand, for large n, (5.8) implies that

E( a(τ n )) ≤ E( ψ) + o n (1).
On the other hand, (5.11) and (5.12) give that

E αnλn 0 ( a(τ n )) = E(Q) -o n (1)
. Putting this all together we obtain (5.16).

In the next section we will also need the following consequence of Proposition 5.4. Lemma 5.5. Let α n , λ n , and τ n be defined as in Proposition 5.4. Let β n → ∞ be any other sequence such that β n ≤ c 0 α n for all n, for some c 0 < 1. Then for every

0 < c 1 < C 2 such that C 2 c 0 ≤ 1 there exists βn with c 1 β n ≤ βn ≤ C 2 β n such that ψ(τ n , βn λ n ) → π as n → ∞
(5.17)

Proof. We first observe that we can combine (5.12) and (5.9) to conclude that

ψ(τ n ) -(Q(•/λ n ), 0) H×L 2 (r≤αnλn) → 0 (5.18)
as n → ∞. Now, suppose (5.17) fails. Then there exists δ 0 > 0, β n → ∞ with β n ≤ c 0 α n , and c 1 < C 2 , and a subsequence so that

∀n ψ(τ n , λ n r) ∈ [π -δ 0 , π + δ 0 ] ∀r ∈ [c 1 β n , C 2 β n ]
Now, since β n → ∞ we can choose n large enough so that

Q(r) ∈ [π -δ 0 /2, π) ∀r ∈ [c 1 β n , C 2 β n ]
Putting this together we have that

C2βn c1βn |ψ(τ n , λ n r) -Q(r)| 2 r dr ≥ C 2 -c 1 2c 1 2 δ 2 0
But this directly contradicts (5.18) since C 2 β n ≤ α n for every n.

5.3.

Compactness of the error. For the remainder of this section, α n , τ n and λ n will all be defined by Proposition 5.4. Next, we define b n ∈ H 0 as follows:

b n,0 (r) = a(τ n , r) -Q(r/λ n ) (5.19) b n,1 (r) = ȧ(τ n , r) = o n (1) in L 2 . (5.20) 
Our goal in this section is to complete the proof of Proposition 5.1 by showing that b n → 0 in the energy space. Indeed we prove the following result:

Proposition 5.6. Define b n = (b n,0 , b n,1 ) as in (5.19), (5.20). Then b n H×L 2 → 0 as n → ∞.
To begin, we observe that by Proposition 5.4 we have

E( b n ) ≤ C < 2E(Q)
for n large enough. Denote by b n (t) ∈ H 0 the wave map evolution with data b n ∈ H 0 . Since E( b n ) ≤ C < 2E(Q) for large n, we know from Theorem 1.1 that b n (t) ∈ H 0 is global and scatters to zero as t → ±∞.

The proof of Proposition 5.6 proceeds in several steps. We give a brief outline of the approach below to give the reader a general sense of the strategy.

• The first step in the proof of Proposition 5.6 is to show that the sequence b n does not contain any nonzero profiles. The proof of this step is reminiscent of an argument given in [10, Section 5] and in particular [10, Proposition 5.1]. Here the situation has been simplified as we have already extracted the large profile Q(•/λ n ) by means of Struwe's theorem. This result is achieved in Proposition 5.7 below. • Next, we proceed by contradiction. If we assume that the conclusion of Proposition 5.6 fails, then up to extracting a subsequence we have

b n H×L 2 ≥ δ 0 .
As we have shown in the first step that b n has no nonzero profiles, the nonlinear wave map evolution b n (t) is well approximated by the corresponding linear flow with the same initial data, which we denote by b n,L (t). Using the exterior linear estimates, Corollary 2.3, we can then deduce that the wave map flow b n (t) maintains a fixed amount of energy exterior to the light cone, viz. (5.24). • The final step is to show that (5.24) forces the original wave map, ψ(t) to concentrate energy on the boundary of the cone before the blow-up time t = 1. This is of course impossible, both by equivariance -the only concentration point can be r = 0 -and by our assumptions that the map blows up at time t = 1. The proof is a delicate argument that is based on showing that the backwards evolutions of ψ(τ n ) and b n remain close on an exterior region. Several technical difficulties arise from the fact that a Bahouri-Gerard type nonlinear profile decomposition cannot be directly applied, since ψ(τ n ) ∈ H 1 , and not in H 0 . The pieces of the decomposition must then be evolved separately, in two different steps, and we rely on finite speed of propagation, as well as on Corollary 2.6 to show that ψ(τ n + t) and b n (t) remain close throughout this process near the boundary of the cone. In particular, the nonzero amount of energy that b n (t) maintains on the exterior cone forces ψ(τ n + t) to concentrate energy there as well, which will give us a contradiction. We now begin with the proof. Proposition 5.7. Let b n ∈ H 0 and the corresponding global wave map b n (t) ∈ H 0 be defined as above. Then there exists a decomposition

b n (t, r) = b n,L (t, r) + θ n (t, r)
where b n,L (t, r) satisfies the linear wave equation

∂ tt b n,L -∂ rr b n,L - 1 r ∂ r b n,L + 1 r 2 b n,L = 0 (5.21)
with initial data b n,L (0, r) = (b n,0 , 0). Moreover, b n,L and θ n satisfy

1 r b n,L L 3 t (R;L 6 x (R 4 )) -→ 0 (5.22) θ n L ∞ t (R;H×L 2 ) + 1 r θ n L 3 t (R;L 6 x (R 4 )) -→ 0 (5.23)
as n → ∞.

Before beginning the proof of Proposition 5.7 we deduce the following corollary which will be an essential ingredient in the proof of Proposition 5.6.

Corollary 5.8. Let b n (t) be defined as in Proposition 5.7. Suppose that there exists a constant δ 0 and a subsequence in n so that b n,0 H ≥ δ 0 . Then there exists α 0 > 0 such that for all t > 0 and all n large enough we have b n (t) H×L 2 (r≥t) ≥ α 0 δ 0 (5.24)

Proof. First note that since b n,L satisfies the linear wave equation (5.21) with initial data b n,L (0) = (b n,0 , 0) we know by Corollary 2.3 that there exists a constant β 0 > 0 so that for each t ≥ 0 we have

b n,L (t) H×L 2 (r≥t) ≥ β 0 b n,0 H
On the other hand, by Proposition 5.7 we know that

b n (t) -b n,L (t) H×L 2 (r≥t) ≤ θ n (t) H×L 2 = o n (1)
Putting these two facts together gives

b n (t) H×L 2 (r≥t) ≥ b n,L (t) H×L 2 (r≥t) -o n (1) ≥ β 0 b n,0 H -o n (1) 
This yields (5.24) by passing to a suitable subsequence and taking n large enough.

To prove Proposition 5.7 we will first pass to the standard 4d representation in order to perform a profile decomposition on the sequence b n . Up to extracting a subsequence, b n ∈ H 0 forms a uniformly bounded sequence with E( b n ) ≤ C < 2E(Q). By Lemma 2.1 and the right-most equality in (2.6), the sequence u n = (u n,0 , u n,1 ) defined by

u n,0 (r) = b n,0 (r) r u n,1 (r) = b n,1 (r) r = o n (1) in L 2 (R 4 )
is uniformly bounded in Ḣ1 × L 2 (R 4 ). By Theorem 2.14 we can perform the following profile decomposition on the sequence u n :

u n,0 (r) = j≤k 1 λ j n V j L -t j n λ j n , r λ j n + w k n,0 (0, r) (5.25) 
u n,1 (r) = j≤k 1 (λ j n ) 2 V j L -t j n λ j n , r λ j n + w k n,1 (0, r) (5.26) 
where each V j L is a free radial wave in 4d and where we have for j = k:

λ j n λ k n + λ k n λ j n + t j n -t k n λ k n + t j n -t k n λ j n → ∞ as n → ∞
Moreover, if we denote by w k n,L (t) the free evolution of w k n we have for j ≤ k that

λ j n w k n,L (λ j n t j n , λ j n •), (λ j n ) 2 ẇk n,L (λ j n t j n , λ j n •) 0 ∈ Ḣ1 × L 2 as n → ∞(5.27) lim sup n→∞ w k n,L L 3 t L 6 x → 0 as k → ∞ (5.28) 
Finally,

u n 2 Ḣ1 ×L 2 = j≤k V j L -t j n λ j n 2 Ḣ1 ×L 2 + w k n (0) 2 Ḣ1 ×L 2 + o n (1) (5.29) 
It is also convenient to rephrase the above profile decomposition in the 2d formulation. We have

b n,0 (r) = j≤k ϕ j L -t j n λ j n , r λ j n + γ k n,0 (r) b n,1 (r) = j≤k 1 λ j n φj L -t j n λ j n , r λ j n + γ k n,1 (r),
where

ϕ j L -t j n λ j n , r λ j n := r λ j n V j L -t j n λ j n , r λ j n γ k n (r) := rw k n,0 (r) 
. and similarly for the time derivatives.

We make the following crucial observation about the scales λ j n . By Proposition 5.4 we have as n → ∞ that

E αnλn 0 (b n,0 , 0) → 0, (5.30) 
E ∞ 1-τn (b n,0 , 0) → 0. (5.31) 
Note that we also have that if β n → ∞ is any other sequence with β n ≤ α n then

E βnλn 0 (b n,0 , 0) → 0.
We can combine (5.30) and (5.31) with Proposition 2.19 to conclude that for each scale λ j n corresponding to a nonzero profile ϕ j we have λ n λ j n ≤ 1 -τ n (5.32) at least for n large. In particular, λ j n → 0 as n → ∞ for every j. The proof of Proposition 5.7 will consist of a sequence of steps designed to show that each of the profiles V j L (or equivalently the φ j L ) must be identically zero. Our first goal is to show that all of the time sequences {t n,j } can be taken to be ≡ 0 and that then the initial velocities of the profiles vanish, i.e., V j L (0, r) ≡ 0 for each j. This is an easy consequence of the following lemma: Lemma 5.9. In the decomposition (5.25), (5.26) we must have

lim sup n→∞ t j n λ j n < ∞ ∀ j ∈ N.
Corollary 5.10. In the decomposition (5.25), (5.26) we can assume, without loss of generality, that t j n = 0 for every n and for every j. And, in addition we then have V j L (0, r) ≡ 0 for every j.

Proof of Corollary 5.10. Since all of the sequences t j n /λ j n are bounded, we can assume (by translating the profiles) that t j n ≡ 0 for all j and for all n. In the case when t j n = 0 for all j, it is easy to see that, besides (5.29) the following Pythagorean expansion also holds

o n (1) = u n,1 2 L 2 = j≤k V j L (0) 2 L 2 + w k n,1 (0) 2 L 2 + o n (1), (5.33) 
from which it is immediate that V j 1 := V j L (0) = 0 for every j.

We now move to the proof of Lemma 5.9. We follow closely the argument in [START_REF] Duyckaerts | Erratum to[END_REF], however since there are a few technical differences, we reproduce the proof here.

Note that one way of viewing Corollary 5.10 is that, under the hypothesis, one has ability to pass from (5.29) to (5.33). For a profile decomposition of a general sequence (v n,0 , v n,1 ) in Ḣ1 × L 2 (R 4 ) with v n,1 L 2 = o n (1) this is not possible due to the following example: Let V L (t) be any nonzero free wave and let s n → ∞ be any sequence of times. Let v n,0 := 2V L (s n ) and v n,1 = 0. Then

v n,0 = V 1 L (-s 1 n ) + V 2 L (-s 2 n ), v n,1 = 0 where V 1 L (t) := V L (t), s 1 n := -s n , V 2 L (t) := V L (-t), s 2 n := s n
is a profile decomposition which does not satisfy

0 = u n,1 2 
L 2 = V 1 L (-s 1 n ) 2 L 2 + V 2 L (-s 2 n ) 2 L 2 + o n (1).
With this example in mind, the first step towards proving Lemma 5.9 is to show that such time-symmetric profiles are the only type that can arise with diverging parameters t j n /λ j n → ±∞, for a sequence (v n,0 , v n,1 ) in Ḣ1 ×L 2 (R 4 ) with v n,1 L 2 = o n [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF].

We begin by establishing the following claim. Denote by S(t) the free wave propagator in R 1+4 , i.e., for data (f, g) we set

S(t)(f, g) = cos(t √ -∆)f + sin(t √ -∆) √ -∆ g, S(t)(f, g) := (S(t)(f, g), ∂ t S(t)(f, g)).
Claim 5.11. [13, Claim 2] Let {f n , g n } be a bounded sequence of radial functions in Ḣ1 × L 2 (R 4 ) and let A n > 0 be any sequence so that

g n L 2 (r≥An) → 0 as n → ∞.
Let t n be a time sequence so that

|t n | /A n → ∞ as n → ∞. If S(-t n )(f n , g n ) (V 0 , V 1 ) ∈ Ḣ1 × L 2 ,
then,

S(t n )(f n , g n ) (V 0 , -V 1 ) ∈ Ḣ1 × L 2 .
Proof of Lemma 5.9. We argue by contradiction. Passing to the 2d formulation, assume that there exists a j 0 ≥ 1 so that ϕ j L = 0 and -t j0 n /λ j0 n → +∞. By Claim 5.12 and after reordering the profiles we can assume that

ϕ j0+1 L (t) = ϕ j0
L (-t) and t j0+1 n = -t j0 n , λ j0+1 n = λ j0 n . Recall that in Proposition 5.4 the time sequence τ n was chosen so that for every n we have

∞ 0 ȧ2 (τ n , r) r dr ≤ 1 n .
Our first observation is that there is considerable flexibility in the choice of τ n in Proposition 5.4. In fact, we claim that there exists a number τ 0 ∈ (0, 1] so that ∞ 0 ȧ2 (τ n + λ j0 n τ 0 , r) r dr → 0 as n → ∞.

(5.38)

To prove (5.38), we first show that there exists a sequence ε n → 0 so that 1

λ j0 n τn+λ j 0 n τn ∞ 0 ȧ2 (t, r) r dr dt = ε n .
Recalling that a(t) = ψ(t) -ϕ(t) and using the global regularity of ϕ we see that it suffices to show that 1

λ j0 n τn+λ j 0 n τn 1-t 0 ψ2 (t, r) r dr dt = o n (1) as n → ∞.
Note from the proof of Proposition 5.4 that τ n ∈ [t n , t n + λ n ], where t n is as in Corollary 2.9. We also have τ n + λ j0 n < 1. From this we infer that τ n + λ j0 n ≤ t n + min{1 -t n , λ j0 n + λ n }. Setting σ n = min{1 -t n , λ j0 n + λ n } we see that 1 where we have used Corollary 2.9 and (5.32) in the last line.

Next, let

E n := τ ∈ [0, 1] | ∞ 0 ȧ2 (τ n + λ j0 n τ, r) r dr ≥ ε 1 4
n .

We have

ε n = 1 λ j0 n τn+λ j 0 n τn ∞ 0 ȧ2 (t, r) r dr dt = 1 0 ∞ 0 ȧ2 (τ n + λ j0 n t, r) r dr dt. ≥ |E n | ε 1 2 n
This implies that |E n | → 0 as n → ∞. Passing to a subsequence, we can assume that

|E n | ≤ 2 -n-2 so that n≥0 E n ≤ 1 2 .
It follows that 50% of all τ 0 ∈ (0, 1] satisfy (5.38). Choosing any such τ 0 proves (5.38). Now, recall the from the definition of b n we have

ψ(τ n ) = Q(•/λ n ) + ϕ(τ n ) + j≤k ϕ j L,n (0) + γ k n (5.39)
where we write ϕ n,L for the modulated linear profiles, i.e.,

ϕ j L,n (t, r) = ϕ j L t -t j n λ j n , r λ j n , 1 
λ j n φj L t -t j n λ j n , r λ j n
Using (5.30), (5.32) and [10, Appendix B], choose a sequence λ n → 0 such that

λ n α n λ n , λ n λ n λ j0 n λ n λ j n or λ j n λ n ∀j > 1.
Set β n = λn λn → ∞ and we note that β n α n and λ n = β n λ n . Therefore, up to replacing β n by a sequence βn β n and λ n by λ n := βn λ n , we have by Lemma 5.5 and a slight abuse of notation that

ψ(τ n , λ n ) → π as n → ∞.
We define the set

J 1 ext := {j ≥ 1 | λ n λ j n }.
Note that by construction j 0 ∈ J 1 ext . Next, with λ n as above we define (f n,0 , f n,1 ) as follows:

f n,0 (r) := π -π-ψ(τn,λn) λn r if 0 ≤ r ≤ λ n ψ(τ n , r) if λ n ≤ r f n,1 (r) := ψ(τ n , r)
Then (f n,0 , f n,1 ) ∈ H 1,1 . Now let χ ∈ C ∞ 0 be defined so that χ(r) ≡ 1 for all r ∈ [2, ∞) and supp(χ) ⊂ [1, ∞). We define ψ n = (ψ n,0 , ψ n,1 ) ∈ H 0 as follows:

ψ n,0 := χ(2r/ λn )(f n,0 (r) -π) ψ n,1 := χ(2r/ λn )f n,1 (r)
By construction for n large enough we have E( ψn ) ≤ C < 2E(Q) (for a proof of this fact we refer the reader to the proof of Lemma 5.13 for a similar arguement which applies verbatim here). It follows from Theorem 1.1 that for each n, the wave map evolution ψ n (t) ∈ H 0 of the data ψ n is global in time and scatters to zero as t → ±∞. And by the finite speed of propagation, it is immediate that for all t such that 0 ≤ τ n + t < 1 we have ψ n (t, r) + (π, 0) = ψ(τ n + t, r) ∀r ≥ λ n + |t| .

(5.40)

We also define γ k n,L (0, r) := χ(2r/ λn ) γ k n,L (0, r)

Now observe that we can combine (5.39) and Proposition 2.19 to obtain the following decomposition:

ψ n (r) = ϕ(τ n , r) + j∈J 1 ext , j≤k ϕ j L,n (0) + γ k n,L (0, r) + o n (1)
where the o n (1) above is in the sense of H×L = 0

For the precise details on how to deduce (5.41) we again refer to the proof of Lemma 5.13. Next, we evaluate (5.41) at the time t = λ j0 n τ 0 note that one can extract a linear profile decomposition ( V j L , t j n , λ j n ) from the sequence ψ(λ j0 n τ 0 ) where the parameters are given by

t j n = t j n -λ j0 n τ 0 , λ j n = λ j n
Note that the profiles corresponding to the indices j 0 and j 0 + 1 are precisely ϕ j0 L (t) = ϕ j0 L (t) and ϕ j0+1 L (t) = ϕ j0+1 L (t) = ϕ j0 L (-t). In addition to this we note that by (5.40) ψ n (λ j0 n τ 0 , r) + (π, 0) = ψ(τ n + λ j0 n τ 0 , r) ∀r ≥ λ n + λ j0 n τ 0 .

Next we apply Claim 5.11 with A n = λ n /λ j0 n + τ 0 and t n = t j0 n /λ j0 n and

(f n , g n ) = (ψ(λ j0 n τ 0 , λ n •), 1 λ j0 n ∂ t ψ(λ j0 n τ 0 , λ j0 n )).
By our choice of λ n we see that

|t n | /A n → ∞ and hence weak -lim n→∞ S(t j0 n /λ j0 n )(f n , g n ) = weak -lim n→∞ S(τ 0 ) S(t j0 n /λ j0 n )(f n , g n ) = (ϕ j0 L (τ 0 ), ∂ t ϕ j0 L (τ 0 )) as well as weak -lim n→∞ S(-t j0 n /λ j0 n )(f n , g n ) = weak -lim n→∞ S(τ 0 ) S(t j0+1 n /λ j0+1 n )(f n , g n ) = (ϕ j0+1 L (τ 0 ), ∂ t ϕ j0+1 L (τ 0 )) = (ϕ j0 L (-τ 0 ), -∂ t ϕ j0 L (-τ 0 )) But the above implies that ϕ j0 L (t) = ϕ j0 L (t + 2τ 0 ).
Since ϕ j L is a solution to the linear wave equation the above implies that ϕ j0 L can only be identically 0, which contradicts the assumption that ϕ j0 L is nonzero. Now, using Corollary 5.10 we can rewrite our profile decomposition in the 2d formulation as follows.

b n,0 (r) = j≤k ϕ j 0, r

λ j n + γ k n (r) (5.42) b n,1 (r) = o n (1) in L 2 ,
where

ϕ j 0, r λ j n := r λ j n V j L 0, r λ j n γ k n (r) := rw k n,0 (r).
Note that in addition to the Pythagorean expansions given in (5.29) we also have the following almost-orthogonal decomposition of the nonlinear energy given by Lemma 2.16:

E( b n ) = j≤k E(ϕ j (0), 0) + E(γ k n , 0) + o n (1).
(5.43)

Note that ϕ j , γ k n ∈ H 0 for every j, for every n, and for every k. Using the fact that (5.43) and Theorem 1.1 imply that, for every j, the nonlinear wave map evolution of the data (ϕ j (0, r/λ j n ), 0) given by 

E( b n ) ≤ C < 2E(Q),
ϕ j n (t, r) = ϕ j t λ j n , r λ j n , 1 
λ j n φj t λ j n ,
θ k n L ∞ t (H×L 2 ) + 1 r θ k n L 3 t (R;L 6 x (R 4 )) → 0 as k → ∞. (5.45)
Now, recall that our goal is to prove that ϕ j = 0 for every j. Let k 0 be the index corresponding to the first nonzero profile ϕ k0 . Without loss of generality, we can assume that k 0 = 1. Using (5.30), (5.32) 

( ψ(τ n )) ≥ E(Q) -o n (1) which in turn implies that E ∞ λn ( ψ(τ n )) ≤ η + o n (1).
We can again use the fact that ψ(τ n , λn ) → π and (5.30) to deduce that E λn λn/2 ( ψn ) = o n (1). Putting these facts into (5.50) we obtain the claim since, by assumption, η < 2E(Q). Now, since ψn ∈ H 0 satisfies E( ψn ) ≤ C < 2E(Q), Theorem 1.1 implies that for each n, the wave map evolution ψn (t) ∈ H 0 of the data ψn is global in time and scatters to zero as t → ±∞. And by the finite speed of propagation, it is immediate that for all t such that 0 ≤ τ n + t < 1 we have ψn (t, r) + (π, 0) = ψ(τ n + t, r) ∀r ≥ ελ for all t + τ n < 1 and r ≥ ελ 1 n + t for n large enough so that λn ≤ ελ 1 n . Using the above we can finally conclude that

1 λ 1 n λ 1 n 0 ∞ ελ 1 n +t j∈Jext ,j≤k φj n (t, r) + γk n,L (t, r) 2 r dr dt ≤ 1 λ 1 n λ 1 n 0 ∞ ελ 1 n +t ȧ2 (τ n + t, r) r dr dt + o k n ≤ 1 λ 1 n λ 1 n 0 ∞ 0 ȧ2 (τ n + t, r) r dr dt + o k n = 1 λ 1 n τn+λ 1 n τn ∞ 0 ȧ2 (t, r) r dr dt + o k n ≤ 1 λ 1 n τn+λ 1 n τn 1-t 0 ψ2 (t, r) r dr dt + sup t≥τn E 1-t 0 ( ϕ(t)) + o k n = o k n .
To justify the last line above we need to show that

1 λ 1 n τn+λ 1 n τn 1-t 0 ψ2 (t, r) r dr dt = o n (1)
On the one hand, by our construction in the proof of Proposition 5.4 we have τ n ∈ [t n , t n + λ n ] where t n is as in Corollary 2.9 and Theorem 2.10. On the other hand, note that τ n + λ 1 n < 1. Putting these facts together we infer that

τ n + λ 1 n ≤ t n + min{1 -t n , λ 1 n + λ n } Therefore, if we define σ := min{1 -t n , λ 1 n + λ n } we have 1 λ 1 n τn+λ 1 n τn 1-t 0 ψ2 (t, r) r dr dt ≤ 1 λ 1 n tn+σ tn 1-t 0 ψ2 (t, r) r dr dt 1 σ tn+σ tn 1-t 0 ψ2 (t, r) r dr dt = o n (1)
where the last line above follows from Corollary 2.9. Note that we have used the fact that λ n λ 1 n in the second inequality above. This proves (5.47).

fortunately this large profile does not contribute in this exterior region. In fact, we evolve the profile decomposition with the harmonic map removed for all time exterior to the cone, and infer that some energy remains outside the light cone -in fact it concentrates on the boundary. As b n (t) actually maintains a fixed amount of energy outside the light cone, this means that ψ(τ n + t) concentrates energy there as well, and gives us a contradiction. We now begin with the details of the proof. It is convenient to carry out the argument in rescaled coordinates. Set

µ n := λ n 1 -τ n .
Since λ n = o(1 -τ n ) we have µ n → 0 as n → ∞. Now define the rescaled wave maps

g n (t, r) := ψ(τ n + (1 -τ n )t, (1 -τ n )r) h n (t, r) := ϕ(τ n + (1 -τ n )t, (1 -τ n )r).
Then g n (t) ∈ H 1 is a wave map defined on the interval [-τn 1-τn , 1), and h n (t) ∈ H 0 is global in time and scatters to 0. We then have

a(τ n + (1 -τ n )t, (1 -τ n )r) = g n (t, r) -h n (t, r). Similarly, define bn,0 (r) := b n,0 ((1 -τ n )r) bn,1 (r) := (1 -τ n )b n,1 ((1 -τ n )r)
and the corresponding rescaled wave map evolutions bn (t, r)

:= b n ((1 -τ n )t, (1 -τ n )r) ∂ t bn (t, r) := (1 -τ n ) ḃn ((1 -τ n )t, (1 -τ n )r).
Observe that we have the decomposition g n (0, r) = h n (0, r) + Q r µ n + bn,0 (r) (5.57) ġn (0, r) = ḣn (0, r) + bn,1 (r).

Note that by (5.7) we have bn,0 

= π -Q(•/µ n ) on [
+ (π, 0) -(Q, 0) H×L 2 (r≥γn) ≤ C 1 n + δ n + γ -1 n
Now, given our choice of β n , (5.65) follows from Corollary 2.6 and the finite speed of propagation. Rescaling (5.65) we have

(g n (-β n µ n /2), ∂ t g n (-β n µ n /2)) -(Q(•/µ n ), 0) H×L 2 (r≤βnµn) → 0.
This proves (5.62). Also note that by monotonicity of the energy on interior cones and the comparability of the energy and the H × L 2 in H 0 for small energies, we see that (5.64) implies that ( bn (-β n µ n /2), ∂ t bn (-β n µ n /2)) H×L 2 (r≤βnµn) → 0 (5.66)

Next we prove (5.63). First we define ĝn,0 (r) = π -π-gn(0,µnβn/2) where the o n (1) is in the sense of H × L 2 -here we also have used that β n λ n → 0 together with (5.59). Moreover, the right-hand side above, without the o n (1) term, is a profile decomposition in the sense of Corollary 2.15 because of Proposition 5.7 and Lemma 2.20. We can then consider the nonlinear profiles. Note that by construction we have gn ∈ H 0 and as usual, we can use (5.61) to show that E( gn ) ≤ C < 2E(Q) for large n. The corresponding wave map evolution gn (t) ∈ H 0 is thus global in time and scatters as t → ±∞ by Theorem 1.1. We also need to check that E( bn ) ≤ C < 2E(Q). Note that by construction and the definition of bn , we have

1 2 µnβn r if r ≤ β n µ n /2 g n (0, r) if r ≥ β n µ n /2 ĝn,1 (r) = ġn (0, r) Then, let χ ∈ C ∞ ([0, ∞))
E( bn ) ≤ E( bn ) + O ∞ 0 4r 2 β 2 n,0 µ 2 n (χ ) 2 (4r/β n µ n ) b 2 n ((1 -τ n )r) r dr + βnµn βnµn/2 sin 2 (χ(4r/β n µ n )b n,0 ((1 -τ n )r)) r dr ≤ E( bn ) + O βnλn βnλn/2 b 2 n,0 (r) r dr = E( bn ) + o n (1) ≤ C < 2E(Q), t = 0 r t t = - β n µ n 2 βnµn 2 3βnµn 2 α n µ n β n µ n Q(•/µ n ) h n (0) + bn (0) Q(•/µ n ) h n (-βnµn 2 ) + bn (-βnµn 2 )
Figure 2. A schematic depiction of the evolution of the decomposition (5.57) from time t = 0 up to t = -βnµn 2 . At time t = -βnµn 2 the decomposition (5.67) holds.

where the last line follows from Proposition 5.4 and the definition of b n,0 , since β n α n . Arguing as in the proof of (5.53), we can use Proposition 5.7, Proposition 2.17 and Lemma 2.18 to obtain the following nonlinear profile decomposition gn (t, r) = h n (t, r) + bn (t, r) + θn (t, r) θn L ∞ t (H×L 2 ) → 0 Finally observe that by construction and the finite speed of propagation we have gn (t, r) = g n (t, r) -π bn (t, r) = bn (t, r) for all t ∈ [-τ n /(1 -τ n ), 1) and r ∈ [β n µ n /2 + |t| , ∞). Therefore, in particular we have

g n (-β n µ n /2, r) -(π, 0) = h n (-β n µ n /2, r) + bn (-β n µ n /2, r) + θn (β n µ n /2, r) for all r ∈ [β n µ n , ∞) which proves (5.63).
We can combine (5.62), (5.63), (5.66), and (5.59) together with the monotonicity of the energy on interior cones to obtain the decomposition Setting ζ n := ζn (ν n ) we obtain (5.68) and (5.69). Now, combine (5.69), (5.60), and the monotonicity of the energy on light cones for the evolution of h n , we obtain:

g n (-β n µ n /2, r) = (Q(r/µ n ), 0) + h n (-β n µ n /2, r) (5.67) + bn (-β n µ n /2, r) + θn (r) θn H×L 2 → 0 Now define s n := - r 0 1 -τ n . t = 0 r t t = - β n µ n 2 ρ n µ n βnµn 2 t = s n ρ n µ n + |ν n | |s n | h n (-βnµn 2 ) + bn (-βnµn 2 ) h n (s n ) + bn (s n ) ν n
g n (s n ) -(π, 0) -bn (s n ) H×L 2 (|sn|≤r≤2|sn|) ≤ Cδ 0 K (5.71)
for n large enough. By Corollary 5.8 and (5.56), there exists β 0 > 0 so that for all t ∈ R we have bn (t) H×L 2 (r≥|t|) ≥ β 0 δ 0 By (5.58) and the monotonicity of the energy on cones we have bn (t) H×L 2 (r≥|t|+1) → 0 as n → ∞. Therefore we have bn (t) H×L 2 (|t|≤r≤1+|t|) ≥ β 0 δ 0 2 for n large enough and for all t ∈ R. Hence setting t = s n we see that the above and (5.71) imply in particular that exists C > 0 such such that g(C) = 0 and we let C * be minimal with this property. We also assume that g (C * ) = -1 and that g is periodic with period 2C * . In this case, the nonlinear wave equation of interest is given by ψ tt -ψ rr -1 r ψ r + f (ψ) r 2 = 0 (A.1) (ψ, ψ t )| t=0 = (ψ 0 , ψ 1 )

where f (ψ) = g(ψ)g (ψ). The conserved energy for this problem is given by

E( ψ(t)) = ∞ 0 ψ 2 t + ψ 2 r + g 2 (ψ) r 2 r dr = const.
To see how this extension works, we note that the small data well-posedness theory for (A.1) is given in [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF]Theorem 2]. One then needs replacements for the estimates involving the sin function in the proof of the orthogonality of the nonlinear energy, the proof of the nonlinear perturbation theory, and later in estimates involving the energy of a(t), namely (2.28), (2.32), and (5.10). But, the same type of estimates for g are easily established using the assumptions we have made on g and its derivatives and simple calculus.

For more details regarding more general metrics we refer the reader to [START_REF] Côte | Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system[END_REF]. Note that since we do not rely on [6, Lemma 7] we are able to eliminate their condition [6, (A3)].

A.2. Higher equivariance classes and the 4d-equivariant Yang-Mills system. We can also consider higher equivariance classes, > 1. Restricting our attention again to the case g(ρ) = sin(ρ), the Cauchy problem for equivariant wave maps reduces to ψ tt -ψ rr -1 r ψ r + 2 sin(2ψ) 2r 2 = 0 (A.2) (ψ, ψ t )| t=0 = (ψ 0 , ψ 1 )

For -equivariant wave maps of topological degree zero we can, as in the 1-equivariant case, consider the reduction ψ =: r u and we obtain the following Cauchy problem for u: a bounded function. In [6, Theorem 2] a suitable local well-posedness/small data theory for such a nonlinearity is addressed when = 2 and thus Theorem 1.1 follows from the same arguments in this paper. For > 2, one would need to develop a suitable well-posedness theory for (A.3). This presents some difficulties due the fractional power, 1 + 2/ , in the nonlinearity. One can also consider the 4d equivariant Yang-Mills system: The proof below will use an approximation argument. However, it is not enough to simply combine the scheme from [32, Proof of Lemma 2.2] with an approximating sequence ψ n (t) of smooth wave maps, since several of the crucial estimates from [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF] would not be uniform in n. We thus give a different argument below. We note that we do make use of some key ingredients from the argument in [START_REF] Shatah | Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds[END_REF], such as (B.1).

F αβ = ∂ α A β -∂ β A α + [A α , A β ] ∂ β F αβ + [A β , F αβ ] =
Let ψ n (0) be a sequence of smooth functions in H with where we emphasize that τ is independent of n.

To prove Lemma B.3 we introduce some notation from [START_REF] Shatah | On the Cauchy problem for equivariant wave maps[END_REF]. Denote e n (t, r) := 1 2 ∂ t (ψ n (t)) 2 + (∂ r ψ n (t)) 2 + sin 2 ψ n (t) r 2 m n (t, r) := ∂ t ψ n (t)∂ r ψ n A 2 n (t, r) := r(e n (t, r) + m n (t, r)), B 2 n (t, r) := r(e n (t, r) -m n (t, r)) We also denote by e, m, A 2 , B 2 the corresponding quantities for ψ(t).

We begin with the following key lemma. Next, let 0 < ξ 0 1 to be determined below and consider ξ with 0 < ξ ≤ ξ 0 1. For all ξ with ξ ≤ ξ ≤ ξ 0 we define h n (ξ , ξ) := Proof of Claim B.6. The proof is similar in spirit to the proof of Lemma B.4. Let ξ 0 be fixed and consider any 0 < ξ < ξ 0 . Consider in (1 + 1)-dimensions, the triangle with vertices A = (0, ξ 0 ), B ξ = ( λξ, ξ 0 ), and C ξ = (0, ξ 0 + λξ). Note that while boundary of this triangle does not correspond to a truncated light cone in the original (t, x) variables, it does correspond to a surface made up of constant t-slices and null hypersurfaces. Indeed, for each ξ < ξ 0 the line segments connecting B ξ to C ξ correspond to constant t-slices in the original coordinates. The line segment joining A to C ξ is a piece of the backwards light cone emanating from (T + , 0), i.e, it is a constant-η = 0 slice. And the line segment joining A to B ξ is also manifestly null, i.e, it is a constant-ξ = ξ 0 slice. It follows from finite speed of propagation that for any ξ 1 < ξ 2 < ξ 0 we have

[B ξ 1 ,C ξ 1 ]
e n (t, r) r dr ≤ e(t, r) r dr Hence the energy over these slices is decreasing as ξ → 0 and thus there exists a limit,

E ξ0 := lim ξ→0 [B ξ ,C ξ ]
e(t, r) r dr.

In fact, E ξ0 = 0 for any ξ 0 > 0 since any positive limit would correspond to a blow-up via concentration of energy before the time T + . Thus for any fixed > 0 we can find ξ 1 = ξ 1 ( ) small enough so that for any ξ ≤ ξ 1 we have

[B ξ ,C ξ ]
e(t, r) r dr ≤ 1 2

Thus for large enough n we can ensure that Proving Lemma B.5 requires showing that lim sup n h n (ξ, ξ) is small. So we try to propagate the smallness given by Claim B.6 from ξ 0 all the way down to ξ using (B.1) and an argument based on Grownwall's inequality.

Claim B.7. For any > 0 there exists ξ 0 , ξ 1 , with 0 < ξ 1 < ξ 0 1 such that if ξ ≤ ξ 1 , then for all 0 < ξ ≤ ξ ≤ ξ 0 we have h n (ξ , ξ) ≤ + Cη Now, applying Cauchy-Schwarz to the right-hand-side of (B.3) and applying the above we obtain, h n (ξ , ξ) ≤ h n (ξ 0 , ξ) where we note above that C is independent of n and depends only on λ. Now, note that g n (0) = g n (0, ξ , ξ 0 ) is part of the flux controlled by Lemma B.4 and hence we can choose (and fix) ξ 0 small enough so that for all ξ > 0 we have lim sup n→∞ g n (0) ≤ 1 2 Now that we have fixed ξ 0 we can now find ξ 1 > 0 small enough so that for any ξ ≤ 

+ C η 0 ξ0 ξ A 2 n (η , ξ ) (ξ ) 2 dξ

Lemma 2 .

 2 [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF].[START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] Theorem 2.20] [24, Lemma 3.3] There are continuous functions ε 0 , C 0 : (0, ∞) → (0, ∞) such that the following holds: Let I ⊂ R be an open interval, (possibly unbounded), u, v ∈ C 0 (I; Ḣ1

  2 can be taken to be continuous, we refer the reader to[START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] Lemma 4.6] and[START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case[END_REF] Remark 5.4]. The fact that we can assume that λ is bounded from below follows verbatim from the arguments given in[10, Section 6, Step 3]. See also, [19, Proof of Theorem 7.1] and [18, Proof of Theorem 5.1].

Lemma 4 . 3 .

 43 [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation[END_REF] Lemma 4.7 and Lemma 4.
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  r) r dr dt + o n (1).

14 )(

 14 iii) By (4.13) we can deduce that U∞ ≡ 0 on [0, 1].

. 16 )

 16 (iii) By (4.15) we can deduce that U∞ ≡ 0 on [0, 1].

Figure 1 .

 1 Figure 1. The solid line represents the graph of the function φ 0n (•) for fixed n, defined in (5.3). The dotted line is the piece of the function ψ( tn , •) that is chopped at r = r n in order to linearly connect to π, which ensures that φ n ∈ H 1,1 .

  First observe since ϕ(t) ∈ H 0 is a global wave map with E( ϕ) < 2E(Q) we have sup t∈[0,1]

  , r) r dr dt → 0.

  , r) r dr dt = o n (1),

  be defined so that χ(r) ≡ 1 on the interval [2, ∞) and suppχ ⊂ [1, ∞). Define gn (r) := χ(4r/β n µ n )( ĝn (r) -(π, 0)) bn (r) := χ(4r/β n µ n ) bn (r) and observe that we have the following decomposition gn (r) = h n (0, r) + bn (r) + o n (1).

Figure 3 .

 3 Figure 3. A schematic depiction of the evolution of the decomposition (5.67) up to time s n . On the interval [|s n |, +∞), the decomposition (5.68) holds.

  g n (s n ) -(π, 0) H×L 2 (|sn|≤r≤1+|sn|) ≥ β 0 δ 0 4 > 0for n, K large enough. Un-scaling this we obtainψ(τ n -r 0 ) -(π, 0) H×L 2 (r0≤r≤r0+(1-τn)) ≥ β 0 δ 0 4 > 0.

u tt -u rr - 2

 2 

ψ n ( 0 )

 0 → ψ(0)strongly in H. Let ψ n (t) denote the unique solution to (1.2) with data ψ n (0). Note thatlim inf n→∞ T + ( ψ n ) ≥ T + ( ψ)and thus (passing to a subsequence) we may assume the above holds element-wise and below we will write T + = T + ( ψ). By the local Cauchy theory for (1.2) (i.e., continuous dependence) we see that the proof of Proposition B.1 reduces to proving the following lemma.Lemma B.3. Fix λ > 0 and let ψ n be as above. Then for any > 0 there exists a time τ = τ ( ) < T + ( ψ) such that for all t ∈ [τ, T + ) we have lim inf n→∞ T+-t λ(T+-t) (∂ t ψ n (t)) 2 + (∂ r ψ n (t)) 2 + sin 2 ψ n (t) r 2 r dr ≤

Lemma B. 4 ( 2 n

 42 Uniformity of the flux decay). For any > 0 there exists τ = τ ( ) < T + such that if τ ≤ t 1 ≤ t 2 < T + , then, (t, T + -t) dt ≤ .

2 n

 2 (η , ξ ) dη With this notation, Lemma B.5 is the statement that lim sup n→∞ h n (ξ, ξ) → 0 as ξ → 0. The first ingredient in the proof of Lemma B.5 is the following claim. Claim B.6. For any fixed 0 < ξ 0 1, we have lim sup n→∞ h n (ξ 0 , ξ) → 0 as ξ → 0

[B ξ 2 ,C ξ 2 ]

 22 e n (t, r) r dr where [B ξ , C ξ ] denotes the line segment connecting B ξ to C ξ . Passing to the limit as n → ∞ yields,[B ξ 1 ,C ξ 1 ] e(t, r) r dr ≤ [B ξ 2 ,C ξ 2 ]

[

  B ξ ,C ξ ] e n (t, r) r dr ≤ (B.2)for all ξ ≤ ξ 1 . Finally, the positive fluxes along the segments joining C ξ to A and joining B ξ to A are given byξ0+ λξ ξ0 B 2 n (0, ξ ) dξ , h n (ξ 0 , ξ) = λξ 0 A 2 n (η , ξ 0 ) dηSince the latter flux above is precisely h n (ξ 0 , ξ) we have by (B.2) that h n (ξ 0 , ξ) ≤ for all n large enough, as desired.

1 ξ 1 ξξ 1 ξ 2 A 2 n 2 g

 11222 ξ , ξ) (ξ )2 dξ for all n large enough. Above C > 0 is a universal constant (which may depend on λ) and from now on, given ξ we set η := λξ Proof of Claim B.7. Given ξ 0 , which will be fixed below, find ξ 1 with ξ 1 < ξ 0 small enough so that by Claim B.6 we have h n (ξ 0 , ξ) ≤ for all ξ ≤ ξ 0 . Now fix any such ξ ≤ ξ 1 and let η := λξ. By (B.1), for ξ ≤ ξ ≤ ξ 0 we have|h n (ξ , ξ)| η 0 A n (η , ξ )B n (η , ξ ) dηwhere h n means the derivative in the first slot, i.e., in ξ . We have used above that in the region r ≥ λ(T + -t) we have ξ r, with a constant depending on λ. Integrating back to ξ 0 yields,h n (ξ , ξ) ≤ h n (ξ 0 , ξ) + C η , ξ )B n (η , ξ ) dη dξ = h n (ξ 0 , ξ) + C η , ξ )B n (η , ξ ) dξ dη (B.3)We pause for a moment and consider for a given ξ the quantityg n (η , ξ , ξ 0 ) := ξ0 ξ B 2 n (η , ξ ) dξAgain using (B.1), and writing g n (η ) = g n (η , ξ , ξ 0 ) for simplicity, we deduce that|g n (η )| ξ0 ξ A n (η , ξ )B n (η , ξ ) dξ ≤ ξ0 (η , ξ ) dξ 1 n (η )It follows that for η ≤ η = λξ we have g n (η ) ≤ g n (0) + C

  application of Cauchy-Schwarz becomesh n (ξ , ξ) ≤ h n (ξ 0 , ξ)

2

 2 ξ 1 we have by Claim B.6 lim sup n→∞ h n (ξ 0 , ξ) ≤ 1 Inserting these estimates above completes the proof of the claim. To conclude we show how Lemma B.5 follows from Claim B.7 together with Grownwall's inequality, which we recall below. Lemma B.8 (Gronwall's inequality). Suppose f, g are continuous non-negative functions on the interval [x 0 , x] and for all x ∈ [x 0 , x] we have f (x ) ≤ + x x0 g(x )f (x ) dx Then, f (x) ≤ + x x0 g(x ) exp x x g(x ) dx dx

  • Struwe's characterization of blow-up, [37, Theorem 2.2], which gives H 1 loc

  2 . Using Proposition 2.17, Lemma 2.18, and Lemma 2.16 we can find a corresponding nonlinear profile decomposition ψ n (t, r) = ϕ(τ n + t, r) +

					ϕ j n (t, r) + γ	k n,L (0, r) + θ	k n (t, r) (5.41)
		j∈J 1 ext , j≤k
	where				
				k	
	lim k→∞	lim sup n→∞	θ	n	L ∞ (H×L 2 )

  H×L 2 ≤ ĝn -(Q, 0) H×L 2 (r≤γn) + ĝn -(π, 0) H×L 2 (γn≤r≤2γn)

	we then can conclude that				
	ĝn -(Q, 0)				
					1, ∞) and hence
				bn,0 H(r≥1) → 0	(5.58)
	as n → ∞.				
	Now, observe that the regularity properties of ϕ(t) imply that
	lim ρ→0	n sup	h n (0) H×L 2 (r≤ρ/(1-τn)) = 0	(5.59)
	Hence, for fixed large K, (to be chosen precisely later), we can find r 0 > 0 so that
	sup n	h n (0) H×L 2 (r≤ 3r 0 (1-τn ) ) ≤	δ 0 K	,	(5.60)
				γ n	α n

where δ 0 is as in

(5.56)

. Now, recall that α n → ∞ has been fixed. Using Lemma 5.5 we can choose γ n → ∞ with

  Proposition B.1. Let ψ(t) ∈ H be a solution to (1.2) on the time interval [0, T + ( ψ)) with T + < ∞. Let λ ∈ (0, 1). Then, We will also prove the following corollary.Corollary B.2. Let ψ(t) ∈ H be a solution to (1.2) on the time interval [0, T + ( ψ)) with T + < ∞. Then

	lim t→T+	T+-t λ(T+-t)	ψ 2 t (t) + ψ 2 r (t) +	sin 2 ψ(t) r 2	r dr = 0
	lim t→T+	1 T + -t	t	T+	0	T+-t	ψ 2 t (t , r) r dr dt = 0

0, α, β = 0, . . . , 3
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Proof. The proof follows closely the argument given in [START_REF] Duyckaerts | Erratum to[END_REF], but here we crucially use [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]Theorem 4] in place of [START_REF] Duyckaerts | Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation[END_REF]Lemma 4.1]. Denote by •, • Ḣ1 ×L 2 the inner product in Ḣ1 × L 2 . Given any radial (h 0 , h 1 ) ∈ C ∞ 0 × C ∞ 0 (R 4 ) we have S(-t n )(f n , g n ), (h 0 , h 1 )

as n → ∞. We note that the last inequality above is due our assumptions on g n . Indeed, by [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]Theorem 4] (which says roughly that radial free waves radiate most of their energy near the light cone) and since |t n | /A n → ∞, we have (0, g n ), S(t n )(h 0 , h 1 )

Ḣ1 ×L 2 = o n (1) as n → ∞. Using the fact that for any data (f, g) we have S(-t)(f, -g) = (S(t)(f, g), -∂ t S(t)(f, g))

we obtain S(-t n )(f n , g n ), (h 0 , h 1 )

Ḣ1 ×L 2 + o n (1) as n → ∞, which completes the proof. Claim 5.12. Let (v n,0 , v n,1 ) be a bounded sequence of radial functions in Ḣ1 × L 2 (R 4 ) such that v n,1 L 2 → 0 as n → ∞.

(5.34)

Then, after passing to a subsequence, there exists a profile decomposition with free waves V j L and parameters {t j n , λ j n } so that for any fixed j ∈ N we have either t j n = 0, ∀n and V j L (0) = 0, or t j n λ j n → ±∞ as n → ∞ (5. [START_REF] Sterbenz | Energy dispersed large data wave maps in 2 + 1 dimensions[END_REF] and there exists k = j so that t) and ∀n t j n = -t k n , λ k n = λ j n .

(5.36)

Proof. Fix and j ∈ N. Recall from [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] that the profile V j L with parameters {t j n , λ j n } is defined by the weak limit

(5.37)

Now, we can assume without loss of generality that either t j n = 0 for all n or that (5.35) holds. If t n,j = 0 then (5.34) and (5.37) show that ∂ t V L (0) = 0. In the latter case, we can use Claim 5.11 to extract the weak limit

This gives us the existence of the kth profile V k L precisely as in (5.36). We can now prove Lemma 5.9. and we note that β n α n and λn = β n λ n . Therefore, up to replacing β n by a sequence βn β n and λn by λn := βn λ n , we have by Lemma 5.5 and a slight abuse of notation that ψ(τ n , λn ) → π as n → ∞.

(5.46)

We define the set

Note that by construction 1 ∈ J ext . The next step consists of establishing the following claim: Lemma 5.13. Let ϕ 1 , λ 1 n be defined as above. Then for all ε > 0 we have

where lim k→∞ lim sup n→∞ o k n = 0. Also, for all j > 1 and for all ε > 0 we have

Note that (5.47) and (5.48) together directly imply the following result:

Corollary 5.14. Let ϕ 1 be as in Lemma 5. [START_REF] Duyckaerts | Erratum to[END_REF]. Then for all ε > 0 we have Proof of Lemma 5.13. We begin by proving (5.47). First recall that by the definition of b n we have the following decomposition

Next, with λn as above we define f n = (f n,0 , f n,1 ) as follows:

We define ψn = ( ψn,0 , ψn,1 ) ∈ H 0 as follows: ψn,0 := χ(2r/ λn )(f n,0 (r) -π)

ψn,1 := χ(2r/ λn )f n,1 (r)

We claim that for n large enough we have E( ψn ) ≤ C < 2E(Q). To see this, observe that

(5.50)

Next we prove (5.48). Recall that for j = 1 we have either µ j n :=

Suppose the former occurs. Then

Now suppose that µ j n → ∞. Then, changing variables as above, we have

( φj ) 2 (t, r) r drdt (5.54)

Now note that by monotonicity of the energy on exterior cones we have that for all δ > 0 there exists M > 0 such that for all t ∈ [0, ∞) we have

This implies that the right-hand side of (5.54) tends to 0 as n → ∞.

We can now conclude the proof Proposition 5.7.

Proof of Proposition 5.7. We first show that all of the profiles ϕ j in the decomposition (5.42) must be identically 0. We argue by contradiction. As above we assume that ϕ 1 = 0. By Corollary 5.14 we know that for all ε > 0 we have

Changing variables this implies that

where f (t, r) is the solution to the linear wave equation

. This is a continuous linear functional on H × L 2 . Now, by (5.27) we have

Hence, for all ε > 0 we have

Combining the above line with (5.55) we conclude that for all ε > 0 we have

Letting ε tend to 0 we obtain

is a finite energy equivariant harmonic map on R 2 -{0}. By Sacks-Uhlenbeck [START_REF] Sacks | The existence of minimal immersions of 2-spheres[END_REF] we can extend U 1 0 to a smooth equivariant harmonic map from R 2 → S 2 . But since ϕ 1 ∈ H 0 , U 1 0 must be identically equal to 0, since 0 is the unique harmonic map in the topological class H 0 . But this contradicts the fact that we assumed ϕ 1 = 0.

To complete the proof of Proposition 5.7 we note that we have now concluded that all the profiles in the decomposition (5.42) must be identically zero. Hence, we have γ k n (r) = b n,0 (r), γ k n,L =: b n,L , and θ k n = θ n and we can rewrite (5.44) as follows:

Finally, (5.22) and (5.23) are satisfied because of (5.28) and (5.45).

We can now prove Proposition 5.6.

Proof of Proposition 5.6. Assume that Proposition 5.6 fails. Then up to extracting a subsequence, we can find δ 0 > 0 so that b n,0 H ≥ δ 0 (5.56) for every n.

We will show that this implies a concentration of energy at some point r 0 > 0 and time t = 1 -r 0 < 1, which is a contradiction with our assumed blow-up time as well as with the fact that equivariance prevents concentration away from r = 0.

The key idea is to use that the wave map evolution b n (t) actually maintains a fixed amount of energy outside the light cone, as shown in Corollary 5.8. We then prove that this forces ψ to concentrate energy on the boundary of the cone. For this, we proceed in two steps, both requiring evolving a nonlinear profile decomposition backwards in time. First, we show that the evolutions of b n and ψ(τ n ) remain close on an exterior region during a time-scale on which we can control the rescaled harmonic map -in the sense of Corollary 2.6 and Proposition 2.17.

At this point, we focus the analysis outside the light cone: we need to evolve the decomposition past the time-scale on which we can control the harmonic map, but such that

We make the following claims: (i) As n → ∞ we have

+ θn -

→ 0 We first prove (5.62). Note that by Proposition 5.4 we have ( bn,0 , bn,1 ) H×L 2 (r≤αnµn) ≤ 1 n → 0.

(5.64) Using (5.59) together with α n λ n ≤ 1 -τ n → 0 as well as (5.64) and the decomposition (5.57) we can then deduce that

Unscale the above by setting gn (t, r) = g n (µ n t, µ n r) and observe that,

Now using Corollary 2.6 and the finite speed of propagation we claim that we have

To see this, we need to show that Corollary 2.6 applies. Indeed define ĝn,0 (r) :=

Then, by construction we have ĝn ∈ H 1 , and since ĝn -(π, 0) H×L 2 (γn≤r≤2γn) ≤ Cδ n

The next step is to prove the following decomposition at time s n :

We proceed as in the proof of (5.63). By (5.62) we can argue as in the proof of Lemma 5.5 and find ρ n → ∞ with ρ n β n so that

Let χ ∈ C ∞ be as above and set

Observe that we have the following decomposition:

where the o n (1) above is in the sense of H×L 2 . Moreover, the right-hand side above, without the o n (1) term, is a profile decomposition in the sense of Corollary 2.15 because of Proposition 5.7 and Lemma 2.20. We can then consider the nonlinear profiles. Note that by construction we have f n ∈ H 0 and, as usual, we can use (5.70) to show that E( f n ) ≤ C < 2E(Q) for large n. The corresponding wave map evolution f n (t) ∈ H 0 is thus global in time and scatters as t → ±∞ by Theorem 1.1.

As in the proof of (5.63) it is also easy to show that E( bn ) ≤ C < 2E(Q) where here we use (5.66) instead of Proposition 5.4.

Arguing as in the proof of (5.53) we can use Proposition 2.17 and Lemma 2.18 to obtain the following nonlinear profile decomposition

we have

By the finite speed of propagation we have that

However this contradicts the fact the ψ(t, r) cannot concentrate any energy at the point (1 -r 0 , r 0 ) ∈ [0, 1) × [0, ∞) with r 0 > 0. This concludes the proof of Propostion 5.6 and hence of Proposition 5.1 as well.

We can now finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Let a(t) be defined as in (5.6). Recall that by Lemma 5.3 we have

Over the course of the proof of Proposition 5.1 we have found a sequence of times τ n → 1 so that

as n → ∞. Since E( ψ) = E(Q) + η this implies that E( ϕ) = η since the right hand side of (5.72) is independent of t. This then implies that

We now use the variational characterization of Q to show that in fact ȧ(t) L 2 → 0 as t → 1. To see this observe that since a(t) ∈ H 1 we can deduce by (2.12) that

Next observe that the decomposition in Lemma 2.5 provides us with a function

This also implies that

as t → 1. Since t → a(t) is continuous in H for t ∈ [0, 1) it follows from Lemma 2.5 that λ(t) is continuous on [0, 1). Therefore we have established that

It remains to show that λ(t) = o(1 -t). This follows immediately from the support properties of ∇ t,r a and from (5.73). To see this observe that a(t, r) -

But this then implies that 1-t λ(t) → ∞ as t → 1. This completes the proof.

Appendix A. Higher Equivariance classes and more general targets A.1. 1-equivariant wave maps to more general targets. Theorem 1.1, Theorem 1.2, and Theorem 1.3 can be extended to a larger class of equations, namely equivariant wave maps to general, rotationally symmetric compact targets. To be specific, each of these theorems holds in the case that the target manifold M is a surface of revolution with the metric given in polar coordinates, (ρ, ω) ∈ [0, ∞)×S 1 , by ds 2 = dρ 2 + g 2 (ρ)dω 2 where g : R → R is a smooth, odd, function with g(0) = 0, g (0) = 1. In addition, in order to ensure the existence of stationary solutions to the corresponding equivariant wave map equation we need to require that there for the connection form A α and the curvature F αβ . After, making the equivariant ansatz:

one obtains the following equation for ψ:

which can be written in the form

for f (ρ) = g(ρ)g (ρ) and g(ρ) = 1/2(1 -ρ 2 ) and = 2. This equation is of the same form as (A.2) with = 2 and a more general metric g. The local wellposedness/small data scattering theory for (A.4) is addressed in [6, Theorem 2]. The proof and conclusions of Theorem 1.1 thus hold for solutions of this equation with suitable modifications as in the case of 1-equivariant wave maps to more general targets addressed above. As we mentioned in the introduction, modulo a suitable local well-posedness/small data theory, one should be able to apply our methods to prove the analog of Theorem 1.3 for the odd higher equivariance classes, = 3, 5, 7, . . . ,. The reason is that if is odd, the linearized version of equation (A.2) is a 2 + 2 dimensional free radial wave equation with 2 + 2 = 0 mod 4 for odd, and in these dimensions Proposition 2.2 holds, see [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF]Corollary 5].

However, as demonstrated in [START_REF] Côte | Energy partition for the linear radial wave equation[END_REF], Proposition 2.2 fails for = 2, 4, 6, . . . , since 2 + 2 = 2 mod 4 for even. Therefore it is impossible to prove Corollary 5.8 in these cases and our contradiction argument for the compactness of the error term b n does not go through. So our method is not suited to prove the complete conclusions of Theorem 1.3 for either the even equivariance classes or the 4d Yang-Mills system, which corresponds roughly to the case = 2. However, the rest of the argument preceding the proof of Proposition 5.1 should go through and in particular one should be able to deduce Proposition 5.7. This would allow one to conclude that the error terms b n contain no profiles and converge to zero in a Strichartz norm adapted to the nonlinearity in (A.2). This is a slightly weaker result than showing that the b n 's vanish in the energy space, but on its own, it is already quite strong.

Appendix B. Shatah and Tahvildar-Zadeh's theorem in H:

an appendix by Jacek Jendrej

In this section we prove that a self-similar blow-up rate is impossible for wave maps ψ(t) ∈ H, i.e., we prove Lemma 2.7 for maps in the energy class. This section was not included in the published version of this paper. This gap was pointed out to the authors by Jacek Jendrej, who also suggested the following proof. We also note that a direct analog of the results proved in this section were established by Jia and the second author in [17, Lemma 2.1] via an alternative argument.

We restate the goals of this section. e n (t, r) r dr ≤ h n (ξ, ξ) + g n (0, ξ, ξ + λξ).

We now conclude that the right-hand-side above can be made small uniformly in n using Lemma B.