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Influence of Dissipated Energy on
Shear Band Spacing in HY-100
Steel
To analyze the formation of multiple shear bands in HY-100 steel, we consider an infi-
nitely extended layer of finite thickness subjected to shear loading. The perturbation 
approach, associated with numerical methods, is used to determine the instability modes. 
The criteria of Wright–Ockendon and Molinari are used to determine the shear band 
spacing. The hypothesis consisting in considering the proportion of plastic work dissi-
pated as heat (quantified by the Taylor–Quinney coefficient �) as independent of the 
loading path is now recognized as highly simplistic. The present study attempts to provide 
a systematic approach to the inelastic heat fraction evolution for a general loading within 
the framework of thermoviscoplastic standard modeling, including a number of material 
parameters as strain hardening, strain rate sensitivity, and thermal softening. The effect 
of each material parameter on the shear band spacing is determined by using a power 
law constitutive relation. The Johnson–Cook and power law models are used to illustrate 
the influence of the constitutive relation on the results for the adiabatic shear band 
spacing by studying the response of HY-100 steel. We have compared our results with 
available experimental results in the literature over a very wide range of strain rates 
�103–105 s�1�. In this study, we show that the variation in the Taylor–Quinney param-
eter ���� as a function of shear strain is an important parameter that plays a significant 
role in the calculation of the shear band spacing.

Keywords: adiabatic shear bands, dissipated energy, perturbation method, shear band 
spacing, HY-100 steel

1 Introduction
Adiabatic shear bands �ASBs� refer to a very narrow area where

an intense shear deformation accompanied by a rise in tempera-
ture is formed. Tresca �1� was the first who observed hot lines,
now called ASBs and concluded that at least 70% of the plastic
working was converted into heating. Taylor and Quinney �2�
found that the fraction of the plastic work converted into heat
depends upon the material; this fraction lies between 85% and
95%. Chrysochoos and Belmahjoub �3� and Mason et al. �4� as-
serted that the fraction of the plastic working converted into heat-
ing depends upon the plastic strain and the plastic strain rate.
Zener and Hollomon �5� proposed that the basic mechanism for
the formation of ASBs is a dynamic instability caused by adiabatic
heating. During the past 20 years, there has been a growing inter-
est in the ASB phenomenon because it often precedes dynamic
shear fracture and is the primary mode of failure in ductile mate-
rials under sufficiently high-rate dynamic loading. For a detailed
review of this topic, see the work of Armstrong et al. �6�, Batra
and Zbib �7�, Bai and Dodd �8�, and Wright �9�.

In some circumstances, many small bands may form throughout
a volume of the material, in which case a spread weakening oc-
curs with the possibility of multiple failures and a general frag-
mentation. In other circumstances, one band may dominate, and
therefore, the material failure is restricted to just that one location.

Grady and co-worker �10,11� obtained the shear band spacing
by accounting for momentum diffusion due to unloading within
bands. Wright and Ockendon �12� used a perturbation analysis to
characterize a dominant mode corresponding to the most probable

minimum spacing of shear bands. Thus, the wavelength of the
dominant instability mode with the maximum initial growth rate
will determine the shear band spacing. Molinari �13� extended the
work of Wright and Ockendon �12� to strain hardening materials
and has estimated the error in the shear band spacing due to the
finite thickness of a block deformed in simple shear. He showed
that the shear band spacing increases with an increase in the strain
hardening exponent. Batra and Chen �14–16� studied the effect of
thermal conductivity on shear band spacing and also showed that
it depends on the stress-strain relation used to describe the mate-
rial behavior. Daridon et al. �17� showed that the mechanical
threshold stress model predicts well the value of the shear band
spacing in the case of HY-100 steel and Ti-6Al-4V alloy. Re-
cently, Batra and Wei �18� obtained a closed-form expression for
the shear band spacing for a strain hardening, strain rate harden-
ing, and thermally softening thermoviscoplastic material de-
formed under simple shear. More recently, Lapovok et al. �19�
used a constitutive description that includes second-order gradient
terms in conjunction with the perturbation approach to account for
the shear bands formed in the equal-channel angular pressing of
magnesium alloy AZ31. They demonstrated that the shear band
spacing predicted by linear perturbation analysis is in good agree-
ment with the experimental value. The main objective of this
study is to study the influence of the Taylor–Quiney parameter on
shear band spacing. We propose a way to take into account the
influence of the shear strain on the Taylor–Quinney coefficient.

This study is organized as follows. In Sec. 2, the system of
governing equations for one-dimensional simple shearing defor-
mation is formulated. In Sec. 3, we introduce the thermoviscoplas-
tic constitutive laws used in this study. The perturbation method to
find the instability strain and the shear band spacing is presented
in Sec. 4. If we take into account the fact that the fraction of the
plastic work converted into heat depends on the shear strain, we
show that this has a considerable influence on spacing between
bands. We use a power law constitutive relation to analyze the
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ffect of each material parameter on the shear band spacing. To
tudy the influence of the constitutive model on the results of the
diabatic shear band spacing, we compare the results from the
ower law and the Johnson–Cook model �20�. At low strain rates,
he assumption of a constant Taylor–Quinney parameter leads to a
ignificant underestimation of the shear band spacing.

Formulation of the Problem
In this study, we consider a layer with finite thickness 2h in the
direction, whereas it is infinite in the shear x direction and in the

ut-of-plane z direction �Fig. 1�. At the upper and lower surfaces,
onstant velocities �V are applied, parallel to the x direction. We
ssume that all physical quantities are uniform along the x and z
irections so that the deformation depends only on the space co-
rdinate y, which leads to the vanishing convection term in the
eat equation. We neglect the elastic effects, we assume incom-
ressibility, and we consider adiabatic conditions at the bound-
ries. Therefore, the governing equations are given by

�
�v
�t

=
��

�y
�1�

�c
�T

�t
− k

�2T

�y2 = ������̇ �2�

�̇ =
�v
�y

�3�

quation �1� is the momentum balance, relation �2� is the energy
quation, and relation �3� is the compatibility equation. Here, v, �̇,
, and T are, respectively, the particle velocity, the plastic shear
train rate, the shear stress, and the absolute temperature. The
arameters �, c, k, and ���� are, respectively, the mass density,
he specific heat, the thermal conductivity, and the Taylor–
uinney coefficient, which represents the fraction of the plastic
ork converted into heat. To model the evolution of the fraction
f the plastic work converted into heat, according to the shear
eformation, we propose the following empirical relation:

���� = 1 − �0e−�1� �4�
sing the experimental results �see Fig. 2� of Chrysochoos and
elmahjoub �3� obtained for quasi-static loading, the constants �0
nd �1 are calculated by simple fitting. As �0 is imposed by the
nitial condition at zero shear strain, �1 can be easily found by
tting the rest of the curve. The values of these parameters are
espectively equal to 0.45 and 10.

In order to complete the problem description, we need to intro-
uce a material constitutive relation expressed in the following
eneral form:

� �5�

�6�

Fig. 1 Geometry used for shear analysis

� = ��� , ̇  ,T�
The initial conditions are given by

v�y,0� = 0,  T�y,0� = Ti, ��y,0� = 0

The considered boundary conditions are
• A constant velocity V parallel to the shear direction is ap-
plied at the boundaries

v�− h,t� = − V, v�+ h,t� = + V for t � 0 �7�
• At high strain rates, which are considered in this study, adia-

batic conditions are assumed at the boundaries

�T

�y
�− h,t� = 0 and

�T

�y
�+ h,t� = 0 for t � 0 �8�

In the above equations, t represents time.

3 Viscoplastic Constitutive Relations
It is well documented that the existence of a maximum on the

stress-strain curve is a necessary condition for the occurrence of
adiabatic shear bands. This maximum is due to the competition
between the stabilizing effect of the hardening and the strain rate
and the destabilizing effect of the thermal softening. Therefore,
we must use a thermoviscoplastic relation, which takes these three
effects into account. In this study, we will use the power law and
the Johnson–Cook models and compare results from both models
to the available experimental results in the literature.

3.1 Power Law. In order to analyze the influence of each
material parameter on the shear band spacing, it is useful to use a
constitutive relation with a simple form and decoupled terms for
defining the strain hardening, strain rate hardening, and thermal
softening behaviors of the material. Therefore, we used in this
study the power law as reference behavior. Different authors, Mo-
linari and Clifton �21�, Molinari �22�, and Batra and Chen �15�,
described the stress-strain curves for dynamic loading by

���,�̇,T� = �0� �

�0
�n� �̇

�̇0
�m� T

T0
��

�9�

where �0 is the yield stress of the material in a quasi-static simple
shear test, n and m characterize the strain and strain rate hardening
of the material and �	0 is its thermal softening. �̇0 is a reference
shear rate. T0 is a reference temperature and T is the current tem-
perature. �0 is the strain at which the stress level �=�0, provided
that �̇= �̇0 and T=T0. For the HY-100 steel, the power law model
parameters are given in Table 1 �15�.

3.2 Johnson–Cook model. Johnson and Cook �20� proposed
a phenomenological model for metals subjected to large strains,

Fig. 2 Experimental and theoretical Taylor–Quinney param-
eter as function the plastic strain
high strain rates, and high temperatures. The Johnson–Cook
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odel has enjoyed much success because of its simplicity and the
vailability of parameters of various materials of interest. This
odel expresses the flow shear stress by

���,�̇,T� = �A + B�N��1 + C ln� �̇

�̇0
���1 − � T − T0

Tm−T0
�M�

�10�

here � is the plastic shear strain and �̇0 is a reference shear strain
ate. T0 and Tm are, respectively, the initial �or the reference�
emperature and the melting temperature. The coefficients A, B, N,

, and C are constitutive parameters. In the right hand side of Eq.
10�, the first term gives the stress as a function of the strain
ardening coefficient B and the strain hardening exponent N; the
econd term represents instantaneous strain rate sensitivity; and
he last term represents the temperature dependence of the flow
tress. Here, C is the strain rate parameter and M is the thermal
oftening parameter. The Johnson–Cook model parameters for the
Y-100 steel are given in Table 2 �15�.

Perturbation Analysis

We consider the homogeneous solutions ��0��t�, v�0��t�, ��0��t�,
nd T�0��t� for shear stress, velocity, shear strain, and temperature,
espectively. The stability of the homogeneous solution is ana-
yzed by adding a small perturbation to the basic solution at a time
pecified by t0 �see for instance Refs. �13,16��


s�y,t,t0� = 
s�0�e��t−t0�ei�y, t  t0 �11�

here 
s�0�= �
v�0� ,
��0� ,
��0� ,
T�0�� and y is the position along
he layer thickness. The quantities 
v�0�, 
��0�, 
��0�, and 
T�0�

haracterize the amplitude at time t0 of the perturbation. The pa-
ameter � is the wave number of the perturbation and � is the
nverse of the characteristic time, called growth rate of the pertur-
ation. The fundamental solution is stable when the real part of �
s negative, Re���	0, and unstable when Re����0.

The form of the perturbed solution is given by

s�y,t,t0� = s�0��y,t� + 
s�y,t,t0� �12�

ere, s= �v ,� ,� ,T�. By substituting the solution �Eq. �11�� into
he governing equations �1�–�5� and after a linearization in 
s0, we
et

A�t0,�,�� · 
s0 = 0 �13�

his set of linear equations admits a nontrivial solution only if the
eterminant of the matrix A is equal to zero. This leads to a cubic
quation for the growth rate � of the perturbation

Table 1 Power law param

Parameter
�0

�MPa� �0

�̇0
�s−1�

HY-100 405 0.012 3300

Table 2 Johnson–Cook pa

Parameter
A

�MPa�
B

�MPa� N

HY-100 182.25 580.36 0.1
�2c�3 + ��c�2� ��

��̇
�

s0
+ k�2 − �0�̇0� ��

�T
�

s0
��2 + �k�2� ��

��̇
�

s0

+ �c� ��

��
�

s0
+ �0�0� ��

�T
�

s0
��2� + k�4� ��

��
�

s0
= 0 �14�

Here, the partial derivatives are evaluated for the fundamental
solution at time t0 and ���0�=�0. For the given values of �0

=�0�t0� and �, three complex roots are obtained, �i�� ,�0� �i
=1,2 ,3�. The root with the largest positive real part governs the
instability of the homogeneous solution, and is hereafter referred
to as the dominant instability mode �denoted �D�.

We consider that the zone where instability is expected to be
sufficiently narrow for deformation therein to be treated as homo-
geneous. The fundamental solution is such that the strain rate is
uniform, �̇0=V /h. The temperature can be obtained by the inte-
gration of the heat equation �2�, where the diffusion term van-
ishes, and where the constitutive law �Eq. �9� or �10�� is used to
express the stress �.

5 Results and Discussions
For the HY-100 steel modeled by the power law equation �9�,

Fig. 3 shows the dominant growth rate �D versus the wave num-
ber � for various values of the average strain. These curves have
been computed for a nominal strain rate �̇0=104 s−1, and an ini-
tial temperature equal to 298 K for varying the Taylor–Quinney
coefficient �Eq. �4��. For each value of the average strain, the
dominant growth rate increases until it attains a maximum value
�corresponding to �c� and then decreases for large �. The existence
of this maximum is characteristic of the dominant instability mode
resulting from the competition of two stabilizing effects: Inertia
restrains the growth of long-wavelength modes �small �� while
heat conduction restrains the growth of small-wavelength modes
�large ��. In what follows, the maximum dominant growth rate at
time t0 for the perturbation is called the critical growth rate �c,
and the corresponding wave number is defined as the critical wave
number �c. Figure 4 shows the dependence of the critical growth
rate �c and its corresponding wavelength Lc=2� /�c on the aver-
age strain �0 for HY-100 steel modeled by the power law. We
observe that the curves of the critical growth rate and the critical
wavelength versus the average strain have respectively a maxi-
mum �cm and a minimum Lcm. These values are obtained for two
different values of the average strain �1

0 and �2
0. In the example

considered here, since the values of �1
0 and �2

0 are very close, we
assume that �1

0��2
0. This assumption is in good agreement with

the results obtained by Molinari �13� in the case of XC18 steel.
Wright and Ockendon �12� postulated that the dominant insta-

bility mode with the maximum growth rate at time t0
�c determines

the shear band spacing

ers for HY-100 steel †15‡

T0
�K� n m �

300 0.107 0.0117 0.75

eters for HY-100 steel †15‡

C M
�̇0

�s−1�
T0
�K�

0.0227 0.7 3300 300
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Ls =
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��t0
�c�

�15�

here t0
�c corresponds to the time when the dominant instability

c�t0� is maximum.
For strain hardening materials, Molinari �13� defined the con-

ept of critical time and corresponding strain, and postulated that
he shear banding spacing is given by

Ls = min Lc��0� = min
2�

�c��0�
�16�

5.1 Effect of Material Parameters. In order to analyze the
nfluence of each material parameter on the shear band spacing,
e considered a nominal shear strain rate �̇0=104 s−1 and an

nitial temperature T0=298 K. The results are given in both cases
here the Taylor–Quinney coefficient is supposed to be constant

�=0.9� and where it evolves with the shear strain �Eq. �4��.

5.1.1 Effect of Strain Hardening. The effect of the strain hard-
ning exponent n on the shear band spacing Ls is illustrated in Fig.
. We used the parameters for HY-100 steel given in Table 1,
xcept for the strain hardening n. We note that the shear band
pacing increases monotonically with an increasing value of n.

ig. 3 Dominant growth rate �D versus the wave number � for
Y-100 steel and the power law

ig. 4 Influence of �0 on � c and Lc for HY-100 steel and the

ower law
This is in accord with the known stabilizing work hardening ef-
fect. It is noticed that for materials having a high strain hardening
exponent, the assumption of a constant coefficient of Taylor–
Quinney involves an undervaluation of the shear band spacing,
particularly for larger values of n.

5.1.2 Effect of Strain Rate Sensitivity. It is well known from
numerous studies that the rate sensitivity parameter has a stabiliz-
ing effect on the flow. Our focus here is the effect on the shear
band spacing. To investigate the effects of strain rate sensitivity,
we varied the value of the strain rate sensitivity parameter m. The
strain hardening parameter and the thermal softening parameter
were kept constant.

As shown in Fig. 6, an increase in the value of m has a stabi-
lizing effect manifesting itself by a significant increase in the
shear band spacing, and hence, a decrease in the number of shear
bands. For higher values of m, our calculations show a tendency
for the shear band spacing to saturate when the Taylor–Quinney
coefficient evolves with the shear strain. In this case, the assump-
tion of a constant Taylor–Quinney coefficient involves a notice-
able overvaluation of the shear band spacing.

5.1.3 Effect of Thermal Softening. The effects of the thermal
softening were investigated by varying the thermal softening pa-
rameter � between 0.2 and 1.0. The strain hardening exponent and

Fig. 5 Influence of the strain hardening exponent n on the
shear band spacing Ls

Fig. 6 Influence of the strain rate hardening exponent m on

the shear band spacing Ls
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he strain rate sensitivity parameter were kept constant. The re-
ults are shown in Fig. 7, where an increase in the softening pa-
ameter � has a destabilizing effect manifesting itself by a signifi-
ant decrease in the shear band spacing. For small values of �, Ls
ecreases quickly, whereas for the larger values of �, Ls tends
oward a saturation value. Our results in Fig. 7 also show that for

aterials having low thermal sensitivity, the assumption of the
onstant Taylor–Quinney coefficient involves a considerable un-
ervaluation of shear band spacing.

5.2 Influence of the Constitutive Relation. Figure 8 shows
he dependence of the critical growth rate �c and its correspond-
ng wavelength Lc=2� /�c on the average strain �0 for HY-100
teel for the Johnson–Cook model. These curves have been com-
uted for a nominal strain rate �̇0=104 s−1 and an initial tempera-
ure T0=300 K. The critical growth rate �c exhibits a maximum,
ut the critical wavelength Lc has no minimum value. Therefore,
he Molinari’s postulate does not apply for the Johnson–Cook

odel. According to Molinari’s postulate, the shear band spacing
ill be essentially zero, whereas the Wright–Ockendon definition
ives the value of Ls=1.01 mm for a constant Taylor–Quinney
oefficient, and Ls=0.97 mm for a varying Taylor–Quinney
oefficient.

However, by using the power law and for a varying Taylor–

ig. 7 Influence of the thermal softening exponent � on the
hear band spacing Ls

ig. 8 Influence of �0 on � c and Lc, for HY-100 steel and the

ohnson–Cook model
Quinney coefficient, the shear band spacing is equal to 0.73 mm
�see Fig. 4�. Consequently, we can conclude that the results ob-
tained with the two models are slightly different and that they are
in an acceptable range in comparison with the results presented in
the literature, particularly those of Nesterenko et al. �23�, where
they observed approximately 32 shear bands regularly separated
by 1 mm in the case of an austenitic stainless steel.

We note that there is a limit to the wavelength, which corre-
sponds to the size of the shear zone. The large wavelength pertur-
bation in the current analysis is 12 mm−1 and the corresponding
size of the shear band is equal to 0.53 mm. The considered size
�2h� is, in general, equal to 2 mm, and thus, all wavelength per-
turbations are inside this zone.

5.2.1 Effect of the Shear Strain Rate. For the HY-100 steel
modeled by two different constitutive relations �Johnson–Cook
and power law�, Fig. 9 shows the dependence of the shear band
spacing on the average shear strain rate. In both cases where the
Taylor–Quinney coefficient is supposed to be constant ��=0.9�
and where it evolves with the shear strain and for each one of the
two models, the shear band spacing decreases rapidly with an
increase in the average shear strain rate, and show a tendency to
saturate at high strain rates. The difference between the theoretical
predictions obtained by the two models is more important for low
nominal shear strain. For instance, in the case where the Taylor–
Quinney coefficient evolves with the shear strain, at �̇0=103 s−1,
the shear band spacing is equal to 4.187 mm and 5.581 mm, for
the power law and the Johnson–Cook models, respectively. On the
other hand at �̇0=105 s−1, Ls is equal to 0.138 mm and 0.174 mm
for the power law and the Johnson–Cook models, respectively.

We also note that the evolution of the Taylor–Quinney coeffi-
cient has an important influence on the shear band spacing Ls at
relatively low shear strain rate. When it is assumed to be constant,
the results lead to significant underestimation of the shear band
spacing in the case of the power law, and overestimation in the
case of the Johnson–Cook model. Indeed, for the nominal shear
strain rate equal to 103 s−1 and the power law, the shear band
spacing is equal to 4.051 mm if we supposed that the coefficient
of Taylor is constant, whereas by taking account the experimental
results, which show that the Taylor–Quinney coefficient evolves
with the shear strain, Ls is equal to 4.187 mm.

5.2.2 Effect of the Thermal Conductivity. Several values of
thermal conductivity are considered to illustrate its influence on
the shear band spacing. The other material parameters remain con-
stant and correspond to those of HY-100 steel. For the power law
and the Johnson–Cook model, Fig. 10 shows that the shear band

Fig. 9 Influence of the nominal strain rate on the shear band
spacing Ls for the power law and the Johnson–Cook model
spacing Ls increases in a monotonous way with the increase in
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ig. 10 Influence of the thermal conductivity on the shear
and spacing Ls for the power law and the Johnson–Cook
odel

hermal conductivity k. This result is in agreement with the stabi-
izing effect of thermal conductivity. However, the shear band
pacing obtained by the Johnson–Cook model is larger than that
btained by the power law, and the gap between the two predic-
ions increases with the thermal conductivity coefficient. Figure
0 shows also an appreciable difference between the results for
onstant and evolving Taylor–Quinney coefficient, particularly at
arge values of the thermal conductivity.

 Conclusions
We studied the thermomechanical response of the HY-100 steel

lock deformed in simple shear. The description of the deforma-
ion behavior is modeled using the power law and the Johnson–
ook model. The stability of the homogeneous solution is studied
y using the perturbation technique.

We have showed that the fraction of plastic work converted into
eat may have a significant role in the calculation of the shear
and spacing. Indeed, for materials having a high strain hardening
xponent, the assumption of a constant coefficient of Taylor–
uinney involves an underestimation of the shear band spacing.
n the other hand, for a high strain rate sensitivity parameter, we
bserve a noticeable overestimation of the shear band spacing. It
s also noted that for materials having a low thermal sensitivity,
he assumption of a constant Taylor–Quinney coefficient involves
 considerable underestimation of shear band spacing.

We show that the results obtained with the power law and the
ohnson–Cook model are different in the case of low nominal
hear strain rate and they are in an acceptable range in comparison
ith the experimental results. This difference becomes negligible

t high nominal shear strain rate.
We also showed that for materials having a high thermal con-

uctivity, it is necessary to correctly account for the evolution of

he fraction of plastic work converted into heat.
In any way, the use of a constant value for the inelastic heat
fraction constitutes a coarse and conservative simplification,
which can sometimes lead to erroneous results. This leads to the
necessity for a fine and physically based, thermomechanical refor-
mulation of the constitutive equations used in dynamic loading.
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