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Abstract  

This paper investigates the application of two source separation techniques, the principal component 

analysis and the independent component analysis, to process the data from the eddy current inspection of 

riveted lap joints. An eddy current array sensor is designed for the rapid inspection of lap-joints and used 

to test a set of flawed rivet configurations featuring 1 mm to 10 mm long notches, buried down to a 4 

mm depth. Implementation methods are proposed for processing such eddy current data by means of 

both the considered source separation techniques. The signal processing results obtained from the 

experimental data are compared in terms of source separation efficiency and detection efficiency using a 

receiver operating characteristic approach. In the light of this study, both the techniques appear to be 

efficient. However, the principal component analysis better improves the defects detection, especially 

for deeply buried defects. 
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1. Introduction 

Aircrafts undergo strong thermal and mechanical constraints as well as corrosion that, with time, 

are likely to weaken and damage their structure. This is particularly true for the riveted lap joints used to 

maintain together the aluminium parts of the wings and of the fuselage. Indeed, with time, cracks may 

appear in the vicinity of the rivets [1]. If not detected, they could propagate from one rivet to the other 

and eventually lead to the wrench of a part of the riveted structure. Therefore, for ageing aircrafts, it is 

necessary to regularly and thoroughly inspect the riveted lap joints in order to detect cracks in their early 

stages, to guarantee the safety of operations as well as to optimize the maintenance procedures.  

Among the non-destructive testing (NDT) methods used for the in-service inspection of aircraft 

lap joints, the technique based on eddy currents (EC) is widely used, since it is easy to implement, robust 

and sensitive to cracks. This method basically consists in inducing EC in the electrically conductive 

medium, and in measuring the effects of their interactions with the conductivity breaks due to the 

presence of cracks inside the medium. However, in the case of riveted lap joints, three difficulties arise. 

Firstly, commercial aircrafts contain hundreds of thousands of rivets and their thorough inspection 

induces time consuming procedures. Secondly, the cracks are likely to appear in the depth of the riveted 

structure, and because of the attenuation of the EC intensity within the medium (skin effect) [2] buried 

cracks are uneasy to detect. Finally, as cracks are likely to appear next to rivet bodies, their interactions 

with the EC are likely to be masked by the interactions of the rivets themselves with the EC. Indeed, 

rivets are of much larger dimensions than the cracks and they are present all along the lap-joint structure 

thickness. For these reasons, conventional procedures carried out by means of “slide probes” are not 

entirely satisfactory. They are time consuming and prone to human error, because of the interpretation of 

the measured EC signals is difficult [3].  
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To overcome these drawbacks, over the last decades the NDE community has developed 

advanced EC systems to enhance the speed and the accuracy of the inspection, as well as signal 

processing techniques to provide automatic diagnosis tools. Among the advanced EC systems that have 

been proposed, one can mention the pulsed eddy current (PEC) sensors, designed to improve the 

subsurface defect detection by means of a broadband pulse excitation [4]. One can mention high 

sensitivity magnetometers array probes [5] as well as magneto-optical imagers [6-7] developed to 

produce a real time detection diagnosis in a large inspection area. One may also mention the eddy 

current imagers, designed to provide high-resolution EC images of large inspection areas with the 

implementation of image inversion in view [8]. With regards to the signal processing algorithms that 

have been implemented, one can mention the principal component analysis (PCA) [9], which was 

successfully used to extract relevant and robust features either from time-harmonics EC signals [10] or 

PEC signals [11] relative to defects placed next to lap-joint rivets. Furthermore, it is to be noted that 

previous works have shown that the PCA could be used as a source separation technique to discriminate 

the low magnitude EC signatures of buried defects from the dominating high magnitude EC signatures 

of rivets [8].  

In this paper, we report on the application of two source separation techniques to the signals 

delivered by an EC probe dedicated to the inspection of riveted lap joints. The paper is organized as 

follows. Section 2 describes the EC probe specifically designed for the rapid detection of defects buried 

next to rivets in multilayered aeronautical structures. Two operating modes are proposed for this device 

and they are carried out for the inspection of a riveted lap-joint mock-up featuring subsurface calibrated 

defects. Section 3 presents the basic principle and proposes implementation procedures for the two 

source separation techniques that are considered: the PCA and the independent component analysis 

(ICA). Then, in section 4, a quantitative comparison of these two techniques is done based on the results 

of the processing of the experimental data. The source separation efficiency of both PCA and ICA is 
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evaluated by means of a tailor made criterion, and their detection efficiency is characterized using a 

receiver operating characteristic approach. Finally, section 5 is on conclusions.  

 

2. EC sensor and experimental set up 

2.1. Basic principle of the sensor  

The proposed EC sensor is made up of a transmitter consisting in a cup-core inducer fed by a 

time varying driving current Id, and of a receiver consisting in a set of pickup coils, as depicted in Figure 

1. Assuming that the exciting wave generated by the transmitter is plane and that it diffuses in a 

homogeneous material, the EC density Jz induced at depth z is given by [2]: 

                                   


fzteJJ
fz

z 


cos0  (1) 

where J0 is the EC density at the surface of the material, f denotes the frequency of the sinusoidal driving 

current Id, and  and  are the electrical conductivity and the magnetic permeability of the inspected 

material respectively. One can note from Equation (1) that the phase-shift  of the EC density at depth 

z reads: 

                                       fzz  )(  (2) 

Moreover, the standard skin depth , defined as the depth at which the EC density is such that: 

                                                    
)1exp(

0J
J   (3) 

Hence,  is given by [2]:  

                                                       
f


1

  (4) 

which means that 63% of the induced EC are concentrated between z = 0 and z = . 
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Here, the structure of the transmitter (Figure 1) is chosen so that when placed exactly above a rivet (i.e. 

when the revolution axis of the transmitter merges with the revolution axis of the rivet) the induced EC 

flow circularly around the rivet, that is, following the  coordinate of the cylindrical coordinate system 

associated with a rivet. In this way, the interactions between the EC and the rivet are limited. Indeed, the 

conductivity break due to the air gap existing between the rivet and the aluminium plates hardly 

modifies the EC flow since they are both collinear to the  coordinate. On the other hand, in the 

presence of a defect such as a crack growing from the rivet body along the r axis (Figure 1), the EC 

reach the crack perpendicularly to its orientation, in such a way that the interactions are maximum and 

give rise to a local magnetic field relative to the defect and featuring a normal component Hz of 

significant amplitude. In order to sense these interactions, a set of flat pick-up coils sensitive to Hz, is 

placed under the transmitter. The set of pick-up coils consists in a circular array of 4 coils, denoted A, B, 

C, and D (Figure 1). Each of them comprises 32 turns distributed on an 8 layers printed circuit board 

(PCB) and covers an angular sector of 90 degrees (Figure 1 and Figure 3). The four pick-up coils of the 

array can be connected either for absolute or differential measurements. In the case of absolute 

measurements, the electromotive forces (EMF) induced at the ends of A, B, C and D, respectively 

denoted EA, EB, EC and ED, are measured independently from one another; hence the EC data provided 

by the sensor are the trans-impedances ZA=EA / Id, ZB=EB / Id, ZC=EC  / Id, and ZD=ED  / Id. With regards 

to the differential measurements, the EC data are the following differential trans-impedances: 

ZAB= (EMFA - EMFB  ) / Id and ZDC = (EMFD – EMFC) / Id.  

 

2.2. Operating modes  

In this study, two operating modes are considered for the implementation of the sensor. The first 

one consists in moving the sensor along the rivet line (along the x axis, Figure 2.a.) starting from a 
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position at which the sensor is exactly centred onto a rivet, and acquiring the EC data at each position of 

the sensor. Let this continuous scanning acquisition mode be called the S-mode. The second mode 

consists in acquiring EC data only when the sensor is centred exactly on each rivet, at the Pi positions 

(Figure 2.b); this “punctual” acquisition mode is called the P-mode. Thanks to the configuration of the 

sensor the P-mode is theoretically sufficient to detect the presence of defects growing from the rivet, 

whatever their orientation. Moreover, it allows rapid inspection procedures to be implemented.  

 

2.3. Experimental set-up and EC data 

The sensor was used to inspect a laboratory made lap-joint mock-up constituted of five 

aluminium plates maintained together by removable aluminium rivets (Figure 1). The plates are 2 mm 

thick, non-magnetic and feature an electrical conductivity of  = 35 MS / m. The plates also are 

exchangeable so that calibrated defects can be placed next to the rivets, in plate n°2 or n°3 (Figure 1). 

The considered defects are 500 µm wide and 2 mm high notches, and they range from 1 mm to 10 mm 

in length (Table 1). In this study, only defects oriented along the rivet line (x axis on Figure 2) are 

considered. As a consequence, only the EC data ZAB provided by pick-up coils A and B (Figure 1) are 

considered. Coils A and B are connected in series and in phase opposition in order to reject the influence 

of the rivet itself. The sensor is implemented either in S-mode or P-mode by a PC-controlled ISEL 

3 axes robot, which exhibits a 10 µm positioning accuracy in each direction. The data are acquired using 

a PC-controlled HP4192A impedance analyzer. As an example, the EC data obtained at frequency 

f2 = 1200 Hz for the inspection of a mock-up configuration comprising 9 sound rivets and one flawed 

rivet, are presented in Figure 4 (in-phase and quadrature plots) and in Figure 5 (Lissajous plot). In this 

example, the flawed rivet is positioned at P7 and features a 5 mm notch positioned in the 2
nd

 plate that 

grows from the rivet body. In S-mode the acquisition step is 1 mm; in P-mode, the distance between two 
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successive positions is Pi+1-Pi = 40 mm (i [1,..., 9]). One can note that in S-mode the presence of the 

buried defect hardly alters the shape of the EC signature of the rivet, whereas in P-mode it is clearly 

visible at position P7, which validates the concept of the sensor. However, in order to improve the 

detection of buried defects, the authors propose to implement and compare two source separation 

techniques so as to display more prominently the presence of the defects.  

3. EC data processing using source separation techniques  

Assuming that the EC data M provided by the inspection of a flawed rivet is a linear mixing of physical 

sources S, one can write: 
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where M is constituted of the in-phase (m1) and quadrature (m2) EC data provided by the sensor, T is 

the transfer matrix of the sensor, and S is composed of two sources s1 (assumed to be relative to the 

rivet) and s2 (assumed to be relative to the defect). Under these assumptions, estimating the source s2 

separately from s1 can carry out the defect detection. Since T is unknown, a direct inversion of M 

cannot be envisaged. However, the independent component analysis (ICA) or the principal component 

analysis (PCA) used as a source separation technique, are good candidates to estimate s2 from M, under 

different assumptions. Both these techniques are implemented and compared in the following sections. 

3.1. PCA Basic Principle 

In the PCA method, the sources are assumed to be centred and uncorrelated [9], so that:  
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where (
T
) denotes the conjugate transpose operator and 1 and 2 are the energy of the sources s1 and s2 

respectively. Furthermore, the column vectors of T are assumed to be orthogonal, which means that T 

can be decomposed as the product of a rotation matrix R and a dilatation matrix D:  

 

                                         














 


2

1

0

0

cossin

sincos

d

d




DRT  (7) 

 

Under these assumptions, the variance-covariance matrix MM
T
 reads: 
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Besides, the singular value decomposition of MM
T
 leads to:  
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where V is the matrix of the eigenvectors of M associated to the eigenvalues 1 and 2, arranged by 

decreasing order. One can note that Equations (8) and (9) lead to the formal identification of R and V. 

As a consequence, the PCA consists in the computation of V
T
M that leads to the estimation Ŝ  of the 

sources S, since: 
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Since the vectors of R and T appear in an unknown order, the sources are rather separated than 

estimated. Besides, the vectors of V are arranged by decreasing order of their eigenvalues. Therefore, in 

this study, the implementation of the PCA will carry out a source separation in which the first row ŝ1 of 

Ŝ is expected to be relative to the rivet (as the rivets feature the highest contribution to the EC signals) 

and the second row ŝ2 is expected to be relative to the defect (as the defects feature a lower contribution 

to the EC signals). 

3.2. PCA Implementation 

The efficiency of the source separation techniques is related to the satisfaction of the assumptions 

expressed in Equations 3 and 5, which are not entirely satisfied in the case of EC data [8]. However, the 

PCA is known to carry out a good rejection of the source of highest contribution (rivet) while estimating 

the sources of lower contribution (defects), even if the assumptions are not fully satisfied [9]. This 

feature is well fitted to the considered case of defect detection. 

Furthermore, the excitation frequency can be optimized so that the assumptions are approached, 

if not entirely fulfilled [8]. Indeed, previous works have shown that the separation efficiency is enhanced 

when the frequency of the EC is chosen so that the phase-shift (Equation (2)) of the EC flowing at the 

depth of the flaw, denoted zflaw, is such that:  

                                                           
2

)(


  flawz . (11) 
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This choice is consistent with the orthogonality assumptions of the column vectors of T. According to 

this frequency optimization, we chose the frequencies f2 = 1200 Hz and f3 = 500 Hz for the detection of 

the defects positioned in the plates number 2 and 3 respectively. 

As an example, the PCA was applied to the raw EC signals of Figure 4, which were obtained at 

frequency f2 for the inspection of 9 sound rivets and of one flawed rivet featuring a 5 mm notch 

positioned in plate 2. According to the PCA results shown in Figure 6, the first PCA component ŝ1, 

which is mainly due to the rivet, is hardly modified by the presence of the defect in P7. On the other 

hand, the second PCA component ŝ2, which is mainly due to the defect, clearly highlights its presence in 

P7, whether over the whole rivet signature (S-mode) or only on the central peak of the signature (P-

mode). These results confirm the source separation ability of the PCA. 

3.3. ICA principle and implementation 

The ICA method is based on an extension of the central limit theorem [12], which states that the 

distribution of the linear mixing of two independent sources exhibits a higher gaussianity than the 

distribution of each source. The gaussianity of a signal s can be estimated by the kurtosis criterion [12], 

expressed in Equation (12), which tends to zero for a Gaussian signal: 

 

                                           
224 ])[(3])[()( ssEssEskurt  ,  (12) 

 

where E(.) denotes the expectancy. Hence, the estimation of non-Gaussian independent sources consists 

in finding the linear combination of the considered signals that maximizes the absolute value of the 

kurtosis [12]. However, the comparison of the kurtosis values is only consistent if calculated for signals 

that are centred and of unity variance.  
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Therefore, the implementation of the ICA requires a preliminary whitening step [12,13], which 

can be performed by means of a PCA of the variance-covariance matrix MM
T
 of the measurements. The 

whitened measurement matrix then reads: 

                                                           MVVM
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The implementation of the ICA then consists in researching the optimum rotation angle  = opt, so that: 
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Finally, the sources estimated by ICA read: 
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Conversely to the PCA (section 3.2.), the sources estimated using ICA are not likely to appear in a 

predefined order. Hence, the identification of the sources requires a calibration step, which is carried out 

on known flawed situations. In this study, in order to make the comparison with the PCA results easier, 

the source relative to the rivet is placed in ŝ1 and the source relative to the defect is placed on ŝ2.  

As an illustration, the ICA is implemented for the processing of the raw EC data presented in 

Figure 4.  The estimated sources of Ŝ are determined using Equation (15), and presented in Figure 7. 

One can note that like the PCA, the ICA operates a source separation in which ŝ1 is mostly due to the 

rivets, whereas ŝ2 clearly highlights the presence of the defect in P7 either in S-mode or in P-mode. 

4. Evaluation of PCA and ICA efficiency for defect detection 

In order to quantitatively compare the efficiency of the two considered source separation 

techniques, we firstly evaluate the source separation efficiency, and secondly the defect detection 

efficiency, of both PCA and ICA methods.   
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4.1. Source separation efficiency 

In this section, the source separation efficiency is studied for various flawed rivet configurations, 

and quantified by means of a separation criterion, as developed in the following subsection.  

 

 

4.1.1 Source separation ratio 

 

In order to quantitatively evaluate the efficiency of the separation, we build the normalized 

source separation ratios (NSSR) Ŝ1N and Ŝ2N, expressed in dB:   
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where Ŝ1 and Ŝ2 are the energies of the sources ŝ1 (rivet) and ŝ2 (defect) respectively, both computed on a 

window of width W+1 along the x-axis, centred onto the rivet position Pi:  
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and where Ŝ1ref and Ŝ2ref are the reference energy values of ŝ1 and ŝ2 respectively, determined from ten 

sound rivet configurations: 
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Note that for either the flawed or reference configuration, the width of the window on which the NSSR 

is calculated is defined by W = 20 in the case of S-mode EC data, and W = 0 in the case of P-mode EC 

data.  

4.1.2. Source separation implementation and results  

The PCA and ICA separation methods were applied to EC data resulting from the inspection of a 

set of 20 flawed rivet configurations, featuring subsurface notches growing from the rivet body in plate 

n°2 or n°3 (Figure 1), and featuring lengths ranging from 1 mm to 10 mm, as gathered in Table 1. The 

separation efficiency is evaluated by considering the NSSR determined for both PCA and ICA methods 

applied to S-mode and P-mode EC data. As a result, Figure 8 and Figure 9 plot Ŝ2N versus Ŝ1N, for 

defects buried in the plates number 2 and 3 respectively.  

With regards to the separation results shown in Figure 8, the separation efficiency of the PCA is 

obvious. Indeed, for both the S-mode and the P-mode EC data, Ŝ2N increases monotonously with the 

defect length (ranging from 1 mm to 9 mm), while Ŝ1N is hardly modified by the presence of the defect. 

The defect source (ŝ2) is thus clearly separated from the rivet source (ŝ1), and vice versa. In the case of 

the ICA, one can note that Ŝ2N increases with the defect length for both S-mode and P-mode EC data. 

However, the length of the defect also alters Ŝ1N: the source separation is less efficient than with the 

PCA.  
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The same conclusion can be derived from the separation results obtained by PCA and ICA 

applied to the EC data relative to defects buried in plate number 3 (Figure 9). Here again, one can note 

that the PCA operates an efficient source separation, and that the poorest separation results are obtained 

with the ICA applied to P-mode EC data, too.  

Besides, Ŝ2N appears to decrease when the defects are longer than 9 mm. This behaviour 

originates from the structure of the used EC probe. Indeed, the distance between the pick-up coils and 

the revolution axis of the sensor is too short to correctly sense the magnetic field appearing at the end of 

radial defects longer than 9 mm. In these cases, the sensor sensitivity to the defect is lower, whereas the 

sensitivity to the rivet remains unchanged. As a consequence, the rejection of the rivet source becomes 

more difficult than for slightly shorter defects. 

As a conclusion, the PCA appears to be more suitable for our source separation problem. Indeed, 

the assumptions under which the PCA and ICA operate are not entirely satisfied. In particular, the 

linearity assumption expressed in Equation 5 is not completely satisfied in the case of EC techniques, 

although often assumed for simplification reasons in the case of small defects [14]. However, even in 

these conditions, the PCA operates a good rejection of the sources of large energy (rivet) when 

estimating those of lower energy (defects). This makes the PCA less sensitive than the ICA to an 

incomplete satisfaction of the assumptions.  

4.2. Defect detection efficiency  

In order to evaluate the robustness of the defect detection of the PCA and ICA techniques, we 

consider an enlarged EC data set including the effects of sensor mispositioning. The detection results are 

evaluated using the receiver operating characteristic (ROC) approach [15], as described in the next 

subsection. 
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4.2.1. Basic principle of the receiver operational characteristic  

The evaluation of the detection using the ROC approach lies in the statistical test of two 

assumptions A0 and A1:  

 

                                     A0: absence of defect 

                                     A1: presence of a defect.   (19) 

 

which are relative to the following defect detection procedure:   

 

                                                   A = A1 if Ŝ2 >  

                                                   A = A0 if Ŝ2  ,  (20) 

 

where  is an adjustable threshold value ranging from Ŝ2ref (value of Ŝ2 obtained after a source separation 

for the reference sound rivet configuration) to Ŝ2max (maximum value of Ŝ2 resulting from a source 

separation applied to the considered EC data set).  The defect detection procedure is then characterized 

by the probabilities of good detection (PGD) and of false alarm (PFA) defined by [15]:  

 

                                    PGD = probability of deciding A1 knowing A1. 

                                    PFA = probability of deciding A1 knowing A0  (21) 

 

which are used to plot the ROC curve in the (PFA, PGD) plane (or ROC plane), so that:  

 

                                                 ROC() = (PFA(), PGD ())  (22) 
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In the (ROC) plane, the point M(1,0), for which PGD = 1 and PFA = 0, is the optimal detection point 

while M(0,1) is the worst detection point, where the detection is systematically false, and point M(1,1) 

where any signal value provokes a detection, whatever true or false. ROC curves evolving above the 

M(0,0) – M(1,1) path in the ROC plane are generally considered to be relative to valid detection 

algorithms. Besides, the threshold value  that minimizes the distance from the ROC curve to the 

optimal detection point M(1,1) is generally considered as providing the best detection adjustment [15]. 

Moreover, it has been demonstrated that the area under the ROC curve (AUC) is an appropriate criterion 

to quantitatively compare the efficiency of different detection methods [16]. In the following section, the 

ROC approach is implemented and the AUC criterion is calculated to quantitatively compare the 

detection results given by the ICA and PCA source separation methods. 

 

4.2.1. Implementation and results 

An enlarged set of EC data relative to flawed and sound rivet configurations was built so as to include 

experimental discrepancies due to sensor mispositioning. To do so, 10 sound rivet configurations and the 

20 flawed rivet configurations of Table 1 are considered. For these 30 configurations, the acquisition of 

the EC data is repeated with various probe lift-offs l0  {0 µm, 50 µm, 100 µm, 150 µm} and various 

starting points of the probe displacement along the x-axis, x0  {0 µm, 250 µm, 500 µm} (Figure 2). As 

a result, 120 EC data relative to sound rivet configurations, as well as 240 EC data relative to flawed 

configurations are considered, for each EC acquisition mode. Then, we apply the detection algorithm of 

Equation (18) to the S-mode and P-mode EC data processed by PCA and ICA, and we compute the PGD 

and PFA according to Equation (19). The resulting ROC curves are shown in Figure 10 and Figure 11 

for the detection of defects placed in the second and third plates, respectively. The AUC, which were 
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computed for the considered detection cases, are gathered in Table 2. According to Figure 10 and Table 

2 (defects in plate n°2) the PCA and ICA detection results are quite close, however, the ACI shows 

slightly better detection results, possibly due to a better robustness to the experimental noise (sensor 

mispositioning). On the other hand, considering the detection results of the defects in plate n°3 (Figure 

11 and in Table 2), one can note that the PCA based detection obviously shows better performance. Such 

results can be attributed to the ability of the PCA to reject the source of high energy (rivet) when 

estimating the lower source (defect), which is particularly relevant for the detection of deeply buried 

defects in spite of experimental noise. Furthermore, one can note that both the PCA and the ICA based 

detection algorithms applied to P-mode EC data give lower detection results than when applied to S-

mode EC data. Indeed, the P-mode EC data are relative to a unique acquisition point (W = 0 in Equation 

(17)) and therefore they are more sensitive to the sensor positioning than the S-mode data that are 

constituted of 41 acquisition points (W = 20). Nevertheless, as far as the acquisition time is concerned, 

the P-mode is quite interesting since the EC data are acquired without sensor scanning operations. 

 

5. Conclusion  

In this paper the authors consider the EC signals provided by an original EC array sensor 

designed for the rapid inspection of aeronautical riveted lap joints. The sensor was used either in a 

conventional scanning mode, or in a punctual mode in which a single sensor position is required to 

inspect a rivet area. The measured signals were then processed using PCA and ICA based source 

separation techniques, in order to improve the detection of defects buried within the lap joint and partly 

masked by the presence of the rivets. The sources separations techniques were implemented for the 

detection of 1 mm to 10 mm long notches, buried down to a 4 mm depth next to rivets. For these 

configurations, the two separation techniques were quantitatively compared in terms of source 
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separation efficiency, and defect detection efficiency using a ROC curve analysis. Both ICA and PCA 

methods appear to be suited for defect detection, however the PCA has proved to be more efficient to 

highlight the presence of defects in the case of deeply buried defects. Further works will focus on the 

extension of the method to the detection of defect of any orientation, as well as on the implementation of 

multifrequency source separation techniques, so as to consider defect characterization. 

 

6. Acknowledgements 

This work was partly supported by grants from Région Ile-de-France in the framework of the 

competitiveness cluster SYSTEM@TIC PARIS-REGION (Digital Production project). 

7. References 

1. Ramakrishnan R, Jury D. Characterization of defects and damage in rivet holes in a crown lap 

joint of a commercial aircraft at design service goal. In: Proceedings of 9th Joint 

FAA/DoD/NASA Aging Aircraft Conference, Atlanta, USA, 2006. 

2. Libby HL, Introduction to electromagnetic nondestructive test methods. New York: Robert 

Kriegger Publisher Company, 1979. 

3. Moore D and Spencer F. Interlayer Crack Detection Results Using Sliding Probe Eddy Current 

Procedures, in: Proceedings of 10th Asia-Pacific Conference on Non-Destructive Testing, 

Brisbane, Australia, 2001.  

4. Chen T, Tian G Y, Sophian A, Que P. Feature extraction and selection for defect classification of 

pulsed eddy current NDT, NDT&E International 41 (2008) 467– 476. 

5. Dolabdjian C, Wache G, Perez L. Improvement in the detection of subsurface fatigue cracks 

under airframe fasteners using improved rotating giant magneto-resistance magnetometer head. 

INSIGHT  2007; 49(3): 133-136. 



 19 

6. Fitzpatrick GL, Thomes DK, Skaugset RL, Shih EYC, Shih WCL. Magneto-optic / eddy current 

imaging of aging aircrafts, Material Evaluation. 1993; 51(12): 1402-1407. 

7. Development of an improved magneto optic/eddy current imager, final report DOT/FAA/AR-

97/37, Office of Aviation Research, Washington DC 1998, 20591. 

8. Le Diraison Y, Joubert P-Y, Placko D. Characterization of subsurface defects in aeronautical 

riveted lap-joints using multi-frequency eddy current imaging. NDT & E International 2009; 42 

(2): 133-140.   

9. Jolliffe T.  Principal Component Analysis, Springer Verlag, New York, 2002 

10. Lingvall F, Stepinski T. Automatic Detecting and Classifying Defects During Eddy Current 

Inspection of Riveted Lap Joints. NDT&E International 2000; 33(1): 47–55.   

11. Sophian A, Tian GY, Taylor D, Rudlin J. A Feature Extraction Technique Based On Principal 

Component Analysis For Pulsed Eddy Current NDT. NDT&E International 36 (2003) 37-41. 

12. Hyvärinen A, Karhunen J, Oja E. Independent Component Analysis, John Wiley and sons; 

2001. 

13. Mardia KV, Kent JT and Bibby JM. Multivariate Analysis, New York: Academic Press, 2000. 

14. Sabbagh HA and Sabbagh LD, An eddy current model for 3D-inversion. IEEE Trans on 

Magnetics, (4): 282-291, 1986 

15 Egan JP. Signal detection theory and ROC analysis, Series in cognition and perception, New 

York, Academic press, 1975. 

16 Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning 

algorithms pattern recognition letters, 30(7): 1145-1159, 1997.  

 

 



 20 

Hz Rivet with surface crack

Cup core inducer

(transmitter)

Flat pickup coil 

array (receiver)

Eddy currents

6mm

40mm

12mm

1
2

3
4
5

plate

2mm

c
A B

D

C

Buried 

notch

(void)

Exciting coil

coil

r



z

 

Figure 1. EC sensor configuration and inspected riveted lap joint 
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Figure 2. Operating modes 
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Figure 3. Array sensor general view and flat 8-layer circular pick-up coil array 
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Figure 4. EC signal obtained in S-mode (continuous line) and P-mode (square markers) at 

1200Hz for the inspection of 10 rivets (9 rivets are sound, and the rivet in position P7 features a 5mm 

notch growing from the rivet, in plate 2. Amplitudes of in-phase and quadrature signals are in arbitrary 

units.  
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Figure 5. Lissajous plot of the EC signals of Figure 4, S-mode data (black lines: sound rivets; 

grey lines: flawed rivet) and P-mode data (square markers).  
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Figure 6. Results of the PCA applied to the EC data of Figure 4. a) Modulus of estimated source 

ŝ1, b) Modulus of estimated source ŝ2. S-mode data (continuous line), P-mode data (square markers).  
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Figure 7. Results of the ICA applied to the EC data of Figure 4. a) Modulus of estimated source 

ŝ1, b) Modulus of estimated source ŝ2; S-mode data (continuous line), P-mode data (square markers).  
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PCA S-mode PCA P-mode ICA S-mode ICA P-mode

 

Figure 8. Separation efficiency of PCA and ICA methods, applied to the S-mode and P-mode EC 

data relative to the inspection of the reference sound rivet configuration (square markers) and flawed 

rivet configurations (triangle markers) for defect buried in plate n°2. Defect lengths range from 1 mm to 

10 mm. The used EC frequency is f2 = 1200 Hz. 
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Figure 9. Separation efficiency of PCA and ICA methods, applied to the S-mode and P-mode EC 

data relative to the inspection of the reference sound rivet configuration (square markers) and flawed 

rivet configurations (triangle markers) for defects buried in plate n°3. Defect lengths range from 1 mm to 

10 mm. The used EC frequency is f3 = 600 Hz.  
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Figure 10. ROC curves relative to the detection of the defects buried in plate n°2, by the means of ICA 

and PCA applied onto S-mode and P-mode EC data. Defect lengths range from 1 mm to 10 mm (Table 

1).  
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Figure 11. ROC curves relative to the detection of the defects buried in plate n°3, by the means of ICA 

and PCA applied onto S-mode and P-mode EC data. Defect lengths range from 1 mm to 10 mm (Table 

1). 
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9. Tables  

 

Depth in the lap joint Notch height Notch aperture Notch length Used EC frequency 

Plate n°2 2 mm 500 µm 1, 2, 3… to 10 mm f2 = 1200 Hz 

Plate n°3 2 mm 500 µm 1, 2, 3… to 10 mm f3 = 600 Hz 

Table 1. Notch features and inspection frequency of the flawed rivet configurations  

 

Depth in the lap joint PCA S-

mode 

PCA P-

mode 

ICA S-

mode 

ICA P-

mode 

Plate n°2 0.958 0.956 0.963 0.976 

Plate n°3 0.990 0.904 0.930 0.854 

 

Table 2. Area under curve for the ROC curves relative to the defect detection 
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10. Figure captions 

 

Figure 1. EC sensor configuration and inspected riveted lap joint  

 

Figure 2. Operating modes 

 

Figure 3. Array sensor general view and flat 8-layer circular pick-up coil array  

 

Figure 4. EC signal obtained in S-mode (continuous line) and P-mode (square markers) at 

1200Hz for the inspection of 10 rivets (9 rivets are sound, and the rivet in position P7 features a 5mm 

notch growing from the rivet, in plate 2. Amplitudes of in-phase and quadrature signals are in arbitrary 

units.  

Figure 5. Lissajous plot of the EC signals of Figure 4, S-mode data (black lines: sound rivets; 

grey lines: flawed rivet) and P-mode data (square markers). 

 

Figure 6. Results of the PCA applied to the EC data of Figure 4. a) Modulus of estimated source 

ŝ1, b) Modulus of estimated source ŝ2. S-mode data (continuous line), P-mode data (square markers).  

 

Figure 7. Results of the ICA applied to the EC data of Figure 4. a) Modulus of estimated source 

ŝ1, b) Modulus of estimated source ŝ2; S-mode data (continuous line), P-mode data (square markers). 
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Figure 8. Separation efficiency of PCA and ICA methods, applied to the S-mode and P-mode EC 

data relative to the inspection of the reference sound rivet configuration (square markers) and flawed 

rivet configurations (triangle markers) for defect buried in plate n°2. Defect lengths range from 1 mm to 

10 mm. The used EC frequency is f2 = 1200 Hz. 

 

Figure 9. Separation efficiency of PCA and ICA methods, applied to the S-mode and P-mode EC 

data relative to the inspection of the reference sound rivet configuration (square markers) and flawed 

rivet configurations (triangle markers) for defects buried in plate n°3. Defect lengths range from 1 mm to 

10 mm. The used EC frequency is f3 = 600 Hz. 

 

Figure 10. ROC curves relative to the detection of the defects buried in plate n°2, by the means 

of ICA and PCA applied onto S-mode and P-mode EC data. Defect lengths range from 1 mm to 10 mm 

(Table 1). 

 

Figure 11. ROC curves relative to the detection of the defects buried in plate n°3, by the means 

of ICA and PCA applied onto S-mode and P-mode EC data. Defect lengths range from 1 mm to 10 mm 

(Table 1). 

 

 


