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Error Modelling and Experimental
Validation of a Planar 3-PPR
Parallel Manipulator with Joint
Clearances
This paper deals with the error modelling and analysis of a 3-PPR planar parallel manipu-
lator with joint clearances. The kinematics and the Cartesian workspace of the manipulator
are analyzed. An error model is established with considerations of both configuration errors
and joint clearances. Using this model, the upper bounds and distributions of the pose
errors for this manipulator are established. The results are compared with experimental
measurements and show the effectiveness of the error prediction model.

1 Introduction
The planar parallel manipulators (PPMs) with three identical

kinematic chains are special parallel manipulators (PMs), whose mo-
tion is confined in a plane. For this type of PM, the error modelling
and analysis are important for both design and control in order to
utilize the PMs potential of high accuracy in applications.

A number of works on accuracy analysis of parallel mecha-
nisms can be found in the literature. Ryu et al. derived a volumetric
error model and a total error transformation matrix from a differen-
tial inverse kinematic equation, which includes all kinematic error
sources [1]. Liu et al. reported an approach of geometric error mod-
eling for lower mobility manipulators by explicitly separating the
compensatable and uncompensatable error sources affecting the pose
accuracy [2]. Yu et al. reported a simple geometric approach to com-
puting the exact local maximum position and orientation error by
illustrating several different types of 3-dof planar parallel robots [3].
S. Briot et al. proposed a method based on geometric approach for
detailed error analysis of a fully-parallel robot with three transla-
tions and one rotation that brings valuable understanding of the error
amplification problem [4].

Research focusing on the influence of joint clearances has been
reported too. Lin and Chen proposed a homogeneous error trans-
formation matrix to assess the effects of joint clearances on pose
errors [5]. Ting et al. presented a simple method to identify the
worst position and direction errors due to the joint clearance of
linkages and manipulators, which offers a geometrical model to
warranty the precision of a mechanism [6]. Fogarasy and Smith
utilized the derivatives of the closure equations to obtain a first or-
der approximation of the output error, which is called the Jacobian
method [7]. Regarding the errors of universal and spherical joints
due to clearances as a part of link errors, Lim et al. [8] analyzed the
dynamic error of a cubic parallel mechanism by using its forward
kinematics. Castelli and Venanzi applied the virtual work principle
to determine the position of the end-effector when a given external
load is applied [9, 10]. Meng et al. proposed an error model of
PMs subject to joint clearances by formulating the error prediction
model as a standard convex optimization problem [11], of which
the constraints are formed through a set of inequalities about the
joint clearances. A general error prediction model considering joint
clearances was established for serial and parallel manipulators by

∗Corresponding author.

means of differential screw theory in [12]. It was used to analyze
the kinematic sensitivity of a 3-PPR parallel manipulator to joint
clearances in [13]. Wei and Simaan proposed an approach for design-
ing inexpensive planar parallel robots with prescribed backlash-free
workspace by using preloaded flexible joints to replace the passive
joints [14]. Among the sources of errors, the influence of assembly
and manufacturing errors and actuation errors can be eliminated as
indicated in [5, 15–17] by calibration, except joint clearances due
to its low repeatability. It means that the pose errors due to joint
clearances require a special consideration. Simple and valid methods
of error modelling for PPMs are needed for accuracy analysis.

In this paper, the error analysis of PPMs is studied with con-
sideration of both configuration errors and joint clearances. An
error model is established, upon which the maximal error problem
was transformed into an optimization problem. The distributions
of global maximal pose errors in the prescribed workspace can be
formulated effectively. Moreover, the error model based on the joint
clearances was validated experimentally. The work was conducted
for a novel 3-PPR PPM with a non-symmetrical base [18], which has
a larger workspace and the same level of motion accuracy compared
to the traditional symmetrical PPMs.

This paper is organized as follows. The architecture of the
manipulator under study is presented in Sec. 2. The kinematics and
Cartesian workspace are analyzed in Sec. 3. The error prediction
model is established in Sec. 4. Sections 5 and 6 present the experi-
mental validation, in which measured results are compared with the
simulations. The work is concluded in Sec. 7.

2 Manipulator Under Study
Figure 1 presents the CAD model of the planar 3-PPR parallel

manipulator with a rigid equilateral triangle-shape moving platform
(MP). Here and throughout this paper, P and R stand for prismatic
and revolute joints, respectively. An underlined letter indicates
an actuated joint. Each leg is driven by a CAL35 actuator, a high
resolution linear motor built with an encoder of 5 microns accuracy
from SMAC company [19]. A THK linear guide of model HRW17 is
used as the active prismatic joint P. A linear bearing mounted on the
slider of the linear guide is used as the passive prismatic joint in each
leg. The ball joints in Fig. 1 are preloaded, of which joint clearance
does not exist. For the built physical prototype, the end-effector can
also be replaced by a disk-shape MP with ordinary revolute joints to
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Fig. 1 CAD model of a 3-PPR PPM.

couple the three legs, but this introduces more error sources due to
the clearances between the pin and the hole of the revolute joint.

The parameterization of the 3-PPR PPM is illustrated in Fig. 2,
where Ai, i = 1,2,3, are fixed points on the base. The x-axis of the
coordinate system Fb is parallel to the segment A1A2. The origin
P of the coordinate system Fp is located at the geometric center of
the triangle 4D1D2D3 on the moving platform and the X-axis is
parallel to the segment D1D2, where Di, i = 1,2,3, are the centers of
the revolute joints. The translational and orientational displacements
of the MP are denoted by p and φ, where p = [x, y], x and y being
the Cartesian coordinates of point P in Fb.

3 Kinematic Modelling of the 3-PPR PPM
The kinematic modelling of the manipulator is described in this

section. The workspace and singularities of the manipulator are also
analyzed based on its closure equations.

From the closed-loop kinematic chains O−Ai−Bi−Ci−Di−
P−O shown in Fig. 2, the position vector of point P can be expressed
in Fb as follows,

p = aihi + siui +divi + liwi + riki, i = 1, 2, 3 (1)

with

hi =

[
cosαi
sinαi

]
, ui =

[
cosβ′i
sinβ′i

]
, vi =

[
cosγ′i
sinγ′i

]
,

wi =

[
cosθ′i
sinθ′i

]
, ki =

[
cos(φ+ψi)
sin(φ+ψi)

]
and

β
′
i = αi +βi, γ

′
i = αi +βi + γi, θ

′
i = αi +βi + γi +θi

The inverse kinematics of the manipulator can be derived from
Eqn. (1),

si = (wT
i Eui)

−1wT
i E(p−aihi−divi− riki) (2a)

li = (uT
i Ewi)

−1uT
i E(p−aihi−divi− riki) (2b)

matrix E is the right angle rotation matrix defined as

E =

[
0 −1
1 0

]
Equation (1) establishes a system of six equations. The forward
displacements can be solved by virtue of analytical method. The

Table 1 The Design Parameters of the 3-PPR PPM

i αi[rad] β′i[rad] γ′i,θ
′
i[rad] ψi[rad] di[mm]

1 -2.781 π/2 0 π/6 114

2 -0.360 π/2 π 5π/6 27

3 1.751 0 −π/2 3π/2 42
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Fig. 3 Constant-orientation workspaces.

velocity expression of the manipulator can be derived from Eqn. (1)
as below

A
[

ṗ
φ̇

]
= Bṡ (3)

with

A =

wT
1 ET −r1wT

1 k1

wT
2 ET −r2wT

2 k2

wT
3 ET −r3wT

3 k3

 (4a)

B = diag
[

wT
1 ET u1 wT

2 ET u2 wT
3 ET u3

]
(4b)

ṡ = [ ṡ1 ṡ2 ṡ3 ]
T (4c)

where A and B are the forward and backward Jacobians of the
manipulator, respectively. The kinematic Jacobian matrix J of the
manipulator takes the form:

J = A−1B (5)

Matrix A is singular, i.e., the manipulator reaches a parallel sin-
gularity, when φ = ±π/2. Matrix B is never singular, namely, the
manipulator is free of serial singularity.

The reachable area of the moving platform with a constant
orientation can be obtained geometrically by means of search-
ing method [13, 18], where the inverse kinematics model, namely,
Eqns. (2a) and (2b), establish a system of 12 inequations by virtue
of the joint motion limits to formulate the motion constraints of the
MP. With the parameters shown in Table 1 and ri = r = 30 mm, ai =
192.34 mm, i = 1, 2, 3, constant-orientation Cartesian workspaces
for three orientations of the MP are illustrated in Fig. 3.

4 Error Modelling of a 3-PPR PPM
Here, a methodology introduced in [20] was used to derive the

error model of the MP pose with regard to variations in the actuated
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Fig. 2 Parameterization of the 3-PPR PPM.

xO

y

Ai

Bi

Ci

li+δli

X

ψi+δψi

ui

hi

vi wi

ki

ai+δai αi+δαi 

 si+δsi 

 βi+δβi 

 γi+δγi 

 di+δdi 
+δ  

 ri+δri 

θi+δθi 

Di

Y

P

iD
i

i

(x+δx, y+δy)

Fig. 4 Parameterization of the ith leg.

and passive joints as well as in the Cartesian coordinates of points
Ai, Bi, Ci and Di, i = 1,2,3.

4.1 Error Prediction Model. The clearance in the revolute
joint between the ith leg and the moving platform is characterized
by the small displacement between points Di and point D′i as shown
in Fig. 4. Upon differentiation of Eqn. (1), we obtain the positioning
error of point P with respect to each leg

δp = δaihi +aiδαiEhi +δsiui + siδβ
′
iEui +δdivi

+diδγ
′
iEvi +δliwi + liδθ

′
iEwi +δρini

+δriki + ri(δφ+δψi)Eki, i = 1, 2, 3 (6)

where

δβ
′
i = δαi +δβi

δγ
′
i = δαi +δβi +δγi (7)

δθ
′
i = δαi +δβi +δγi +δθi

where δp and δφ are the positioning and orientation errors of the
moving platform expressed in Fb, respectively. Moreover, δai, δαi,
δsi, δβi, δdi, δγi, δli, δθi, δri and δψi denote variations in the geo-
metric parameters illustrated in Fig. 4. In addition, δρi is a small
displacement between point Di and point D′i due to the clearance
in the ith revolute joint and ni = [cosϕi, sinϕi]

T , as illustrated in
Fig. 5(b). Substituting Eqn. (8) into (6) and eliminating the idle
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variation δli lead to

wT
i ET

δp = δaiwT
i ET hi +δαi

[
wT

i (aihi + siui +divi)+ li
]

+δsiwT
i ET ui +δβi

[
wT

i (siui +divi)+ li
]

+δdiwT
i ET vi +δγi(diwT

i vi + li)+ liδθi

+δρiwT
i ET ni +δriwT

i ET ki + ri(δφ+δψi)wT
i ki

(8)

Equation (8) can be cast in vector form:

A

 δx
δy
δφ

 = Ha

 δa1
δa2
δa3

+Hα

 δα1
δα2
δα3

+B

 δs1
δs2
δs3


+Hβ

 δβ1
δβ2
δβ3

+Hd

 δd1
δd2
δd3

+Hγ

 δγ1
δγ2
δγ3


+Hθ

 δθ1
δθ2
δθ3

+Hρ

 δρ1
δρ2
δρ3


+Hr

 δr1
δr2
δr3

+Hψ

 δψ1
δψ2
δψ3

 (9)

where all Hq, q ∈ {a, α, β, d, γ, θ, ρ, r, ψ}, are 3× 3 matrices as
given in Appendix A. Moreover, assuming that A is nonsingular,
the multiplication of Eqn. (9) by A−1 leads to

 δx
δy
δφ

 = Ja

 δa1
δa2
δa3

+Jα

 δα1
δα2
δα3

+J

 δs1
δs2
δs3

+Jβ

 δβ1
δβ2
δβ3


+Jd

 δd1
δd2
δd3

+Jγ

 δγ1
δγ2
δγ3

+Jθ

 δθ1
δθ2
δθ3


+Jρ

 δρ1
δρ2
δρ3

+Jr

 δr1
δr2
δr3

+Jψ

 δψ1
δψ2
δψ3

 (10)

with

Jq = A−1Hq, q ∈ {a, α, β, d, γ, θ, ρ, r,ψ} (11)

where J and Jq are the sensitivity coefficients of the MP pose of the
manipulator to variations in terms of coordinates of each link [20].
It will be more useful to find the sensitivity coefficients in the co-
ordinates of all joint positions, namely, points Ai,Bi,Ci and Di. By
making use of

[
δaix
δaiy

]
=

[
cosαi −ai sinαi
sinαi ai cosαi

][
δai
δαi

]
(12a)[

δbix
δbiy

]
=

[
cosβi −si sinβi
sinβi si cosβi

][
0

δβi

]
(12b)[

δcix
δciy

]
=

[
cosγi −di sinγi
sinγi di cosγi

][
δdi
δγi

]
(12c)[

δdix
δdiy

]
=

[
cosψi −ri sinψi
sinψi ri cosψi

][
δri
δψi

]
(12d)

Eqn. (10) is transformed as

[
δp
δφ

]
= J

 δs1
δs2
δs3

+Jθ

 δθ1
δθ2
δθ3

+Jρ

 δρ1
δρ2
δρ3

+JA


δa1x
δa1y
δa2x
δa2y
δa3x
δa3y



+JB


δb1x
δb1y
δb2x
δb2y
δb3x
δb3y

+JC


δc1x
δc1y
δc2x
δc2y
δc3x
δc3y

+JD


δd1x
δd1y
δd2x
δd2y
δd3x
δd3y

 (13)

where δaix and δaiy (δbix and δbiy, δcix and δciy, resp.) are the
positioning errors of point Ai (Bi, Ci, resp.), i = 1, 2, 3, along x- and
y-axis, namely, the variations in the Cartesian coordinates. Notice
that δdix and δdiy denote the positioning errors of points D′i along X-
and Y -axis, namely, the variations in the Cartesian coordinates of D′i.
The 3×6 matrices JA, JB, JC and JD can be found in Appendix A.
Equation (13) can be written in the following form,[

δp
δφ

]
= Jerrδδδvar (14)

where

Jerr =
[

J Jθ Jρ JA JB JC JD
]

(15a)

δδδvar =
[

δsT
δθθθ

T
δρρρT δaT

δbT
δcT

δdT ]T (15b)

with

δs =

 δs1
δs2
δs3

 , δθθθ =

 δθ1
δθ2
δθ3

 , δρρρ =

 δρ1
δρ2
δρ3

 , δe =

 δe1
δe2
δe3


δei =

[
δeix δeiy

]T
, e ∈ {a, b, c, d}, i = 1, 2, 3

where Jerr is the global sensitivity Jacobian matrix and δδδvar is a
vector containing all variations. For a given posture, all submatrices
except Jρ are known.

4.2 Modelling the Joint Clearances. Figure 5 illustrates
the assembly errors and clearances in the prismatic and revolute
joints. δdai, δβi, δγai, δθai, i = 1, 2, 3, are the assembly errors and
δdix, δdiy correspond to the manufacturing errors. Moreover, ∆σgi,
∆τgi, ∆τbi, ∆ρi are the displacements due to joint clearances. Then
we have:

δdi = δdai +∆σgi, δγi = δγai +∆τgi, δθi = δθai +∆τbi

The errors due to the clearances in the linear guides are characterized
by the following constraints [11]:

−2εgi ≤ Lg∆τgi +2∆σgi ≤ 2εgi (16a)

−2εgi ≤−Lg∆τgi +2∆σgi ≤ 2εgi (16b)

where εgi specifies the lateral clearance and Lg is the length of the
linear guide block. Alternatively, the errors in the linear bearing are
constrained by the following condition:

−εθi ≤ ∆τbi ≤ εθi (17)
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Fig. 5 Geometric errors and joint clearances related to the ith leg: (a) prismatic joint, (b) revolute joint.

where εθi is the upper bound of ∆τbi. Figure 5(a) demonstrates the
tolerances of the linear guides and bearing. The clearance in the
three revolute joints meet the following constraint:

0≤ ∆ρi ≤ εri, i = 1, 2, 3 (18)

where εri is the range of variations ∆ρi due to the joint clearance
shown in Fig. 5(b).

4.3 Maximum Pose Errors of the Moving Platform with
Joint Clearances. The pose errors due to the assembly and actua-
tion errors can be determined from Eqn. (14), while the errors due to
joint clearances will be solved by virtue of an optimization method.
When only joint clearances are considered, the relationship between
the pose errors and joint clearances becomes:[

δp
δφ

]
= Jc

errδδδ
c
var (19)

with

Jc
err =

[
Jθ Jd Jγ Jρ

]
3×12 =

[
Jc

err,x
T Jc

err,y
T Jc

err,φ
T
]T

(20a)

δδδ
c
var =

[
∆τb1 ∆τb2 ∆τb3 ∆σg1 ∆σg2 ∆σg3 ∆τg1 ∆τg2 (20b)

∆τg3 ∆ρ1 ∆ρ2 ∆ρ3
]T

where Jc
err,x, Jc

err,y, Jc
err,φ are three 1×12 submatrices corresponding

to the first, the second and the third rows of Jc
err. The maximum

positioning error along x-axis, y-axis and the maximum orientation

error of the MP, namely, δxmax, δymax and δφmax, can be obtained
by solving the following optimization problem:

δζ
2
max ≡ max

(
Jc

err,ζδδδ
c
var

)2
for x, y, φ ∈Ω (21)

S.T. −2εgi ≤ Lg∆τgi +2∆σgi ≤ 2εgi

−2εgi ≤−Lg∆τgi +2∆σgi ≤ 2εgi

−εθi ≤ ∆τbi ≤ εθi

0≤ ∆ρi ≤ εri

0≤ ϕi ≤ 2π

i = 1, 2, 3, ζ ∈ {x, y, φ}

where Ω denotes the Cartesian workspace of the manipulator defined
in Sec. 3. Optimization problem of Eqn. (21) aims at finding sepa-
rately the maximum positioning errors along the x-axis and y-axis
and the maximum orientation error of the moving platform. Note
that the three maximum errors are subject to the same constraints,
hence, the optimization problems are written in a generalized form.

The maximum positioning error δpmax is obtained by solving

5



the following optimization problem:

δp2
max ≡ max

(
Jc

err,pδδδ
c
var
)T (Jc

err,pδδδ
c
var
)

for x, y, φ ∈Ω

(22)

S.T. −2εgi ≤ Lg∆τgi +2∆σgi ≤ 2εgi

−2εgi ≤−Lg∆τgi +2∆σgi ≤ 2εgi

−εθi ≤ ∆τbi ≤ εθi

0≤ ∆ρi ≤ εri

0≤ ϕi ≤ 2π

i = 1, 2, 3

where Jc
err,p =

[
Jc

err,x
T Jc

err,y
T ]T . The foregoing optimization prob-

lems are solved using the Matlab fmincon function. According to
the product catalogues, the clearance in the lateral direction of the
linear guide is equal to 3µm, namely, 2εgi = 2εg = 3µm. As a con-
sequence, the errors due to the linear guides are negligible. δaix and
δaiy are set to zero too. Finally, the maximum position error and
the maximum orientation error of the MP can be evaluated from
Eqn. (21) and Eqn. (22) for any configuration of the manipulator by
known joint clearances and geometric tolerances.

5 Experimental Setup and Measurement Errors
A main purpose of the work is to experimentally validate the er-

ror model developed. To this end, experiments have been conducted
in which the position and orientation of the MP were measured with
a vision-based system composed of a single CCD camera. The ex-
perimental setup is shown in Fig. 6(a) and its specifications are given
hereafter:

• DVT 554c smart camera with 1280×1024 pixel resolution
(7.4 µm×7.4 µm pixels) from Cognex [21] was fixed right
above the MP for pose measurements.
• Intellect 1.5.1, a vision software from Cognex [22], was used
to establish the communication with the camera via data cable
as shown in Fig. 6(b). The Blobs are used to locate markers on
the MP.

With this system, the position and orientation measurement accura-
cies are equal to 0.01mm and 0.01deg, respectively.

5.1 Measurements. Before the measurements, the system
was calibrated. A standard calibration paper with markers of 2 cm
spacing from Cognex was used to establish the reference frame. The
calibration method is described in the Intellect 1.5 Guide [22].

5.1.1 Assembly Errors. In measuring configuration error,
the first linear guide was used as the y-axis of the reference frame,
which means δβ1 = 0. The measurement is illustrated in Fig. 7.
Four holes on each linear guide were used as the markers. δβ2 and
δβ3 can be obtained by means of the Intellect software. Similarly,
a perfect regular component with four uniformly distributed holes
was used to measure the assembly errors δγai and δθai by means of
face to face alignments. The measured assembly errors are listed in
Table 2.

5.1.2 Joint Clearances. Figure 8 illustrates the method used
to measure the clearance in the linear bearing. Pushing the right
end of the shaft back and forth and measuring the difference of the

π/2+δβ3

π/2+δγ1

W/2+d1+δd1

Fig. 7 Measurement of the assembly errors.

Dial indicator

Ls

Shaft

Flange

δLB

Fig. 8 Measurement of the angular clearance in the linear bearing.

Table 2 Measurements of Assembly Errors

i δβi[rad] δγai[rad] δθai[rad] δdai[mm]

1 0 0.016 -0.028 -0.12

2 0.014 0.020 -0.022 -0.08

3 -0.010 0.020 0.034 0.15

two counts δLB, the value of δLB/Ls was adopted as the bound of
angular clearance. For the revolute joint clearances, the diameters of
the joint pin and the cylinder were measured, respectively. The half
value of the difference of the two measurements was adopted as the
clearance bound. The bounds of the joint clearances were found as:

εθi = εθ = 0.0012 rad, i = 1,2,3

εr1 = 0.039 mm, εr2 = 0.036 mm, εr3 = 0.037 mm

5.2 Pose Errors of MP. The measurements were conducted
with two cases:

Case 1: a case with only clearances in the passive prismatic
joints
Case 2: a case with clearances in both passive prismatic and
revolute joints

The two cases were physically implemented with two different
shapes for the moving platform in Sec. 2, respectively, namely, the
equilateral triangle MP (4-shape MP) and the disk-shape MP (#-
shape MP), which are associated with Cases 1 and 2. We first fixed
on the MP a calibration paper with 2×2 marks of 2 cm separation
in Case 1. Then, i× j uniformly distributed points were measured

6



                  

Smart camera 

MP with marks 

3-PPR PPM 
Controller 

Actuator 

(a)

Blob 1
Blob 4

Blob 3 Blob 2

(b)

Fig. 6 A vision-based system for the moving platform pose measurement: (a) experimental setup, (b) measurement interface.

throughout the Cartesian workspace of the manipulator. During the
measurements, the actuators were locked to eliminate the the errors
in the actuators. At the (i, j) point, the MP was slightly pushed
bidirectionally along the x-axis, y-axis and rotated about the z-axis,
respectively. The corresponding readings were noted as (x, y, φ)

i j
+t

and (x, y, φ)
i j
−t , t ∈ {x, y, r}, respectively. The measured positioning

and orientation errors at the (i, j) point are defined as:

δxi j = max{xi j
+t , xi j

−t}−min{xi j
+t , xi j

−t} (23a)

δyi j = max{yi j
+t , yi j

−t}−min{yi j
+t , yi j

−t} (23b)

δφ
i j = max{φi j

+t , φ
i j
−t}−min{φi j

+t , φ
i j
−t} (23c)

δpi j = max{δpi j
t }, δpi j

t =

√
(xi j

+t − xi j
−t)

2 +(yi j
+t − yi j

−t)
2 (23d)

6 Results and Discussion

In this section, the predicted maximum pose errors from the
model and measured errors from the experiments are presented and
compared.

6.1 Error Distributions for Case 1. Figure 9 represents
the error distribution of the moving platform for a given orientation
φ = 0. Figure 9(a) shows that the simulated δxmax is constant for
a given y coordinate and decreases slightly with the y-coordinate.
δxmax is bounded between 0.196 mm and 0.256 mm, while δymax
and δφmax are both constant, their values being equal to 0.100 mm
and 0.221 deg, respectively. The y-coordinate of point P, the geomet-
ric center of the MP, and the orientation of the MP depend only on
the first and second prismatic actuators because of the partial motion
decoupling of the manipulator. Therefore, the maximum position
error of the MP along the y-axis and its maximum rotation error
occur when ∆τbi, i = 1, 2, reach their lower or upper bounds. As a
result, both δymax and δφmax remain constant throughout the Carte-
sian workspace of the manipulator. From Fig. 9(c), it is apparent that
the maximum positioning error δpmax of the MP is symmetrical with
respect to the x-axis. The root-mean-square deviation (RMSD) val-
ues between the simulations and measurements are equal to 50 µm,
30 µm, 51 µm and 0.057 deg, for δx, δy, δp and δφ, respectively.
From Fig. 9, it is noteworthy that there is a good correlation between
the measured positioning errors and the simulated ones. On the other
hand, the differences between the measured orientation errors of the
MP and the simulated ones are noticeable. To some extent, this is
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(a) Maximum error along x-axis (b) Maximum error along y-axis

(c) Maximum positioning error (d) Maximum orientation error

Fig. 9 Comparison of error distributions for Case 1 with a constant orientation φ = 0: The green surface is obtained from simulation while black points
from measurements.

due to the reason that angular measurement is more sensitive to the
random error and influence of environments, etc, than the positional
measurement.

The distributions of measured errors with constant orientation
φ = π/6 are shown in Fig. 10. The simulated δxmax, as shown in
Fig. 10(a), varying from 0.224 mm to 0.253 mm, has a distribution
similar to that corresponding to φ = 0, while δymax is constant along
y-axis and increases gradually with the x-coordinate (see Fig. 10(b)),
from 0.103 mm to 0.123 mm. In Fig. 10(d), the simulated orientation
error δφmax is constant and is equal to 0.264 deg. The positioning
error δpmax, varying from 0.226 mm to 0.268 mm, increases when
the measuring point moves from the upper left corner to the lower
right corner throughout the workspace as displayed in Fig. 10(c).
The RMSD values between the simulations and measurements of
δx, δy, δp and δφ are equal to 47 µm, 34 µm, 34 µm and 0.103 deg,
respectively. Therefore, the measurements have a good correlation
with the simulations.

6.2 Error Distributions for Case 2. In Case 2, both pris-
matic and revolute joint clearances are considered. The distributions
of the maximum pose errors are shown in Figs. 11 and 12. By
comparing Fig. 11 to Fig. 9 , it can be found that the differences
between the simulation results and measurements really depend on
the orientation of the MP. For φ = 0, the RMSD values between the
simulations and measurements are equal to 77 µm, 62 µm, 81 µm
and 0.086 deg, for δx, δy, δp and δφ, respectively. Although the

difference between the simulations and experiments in Fig. 11(b)
under the given scale and unit seems larger than the other results,
however, the maximum value is around 0.5deg and the statistical
analysis also shows that the difference is acceptable.

For φ = π/6, the RMSD values between the simulations and
measurements of δx, δy, δp and δφ, are equal to 26 µm, 36 µm,
34 µm and 0.063 deg, respectively. Note that the correlation between
the simulation results and the measurements is better with φ = π/6
than φ = 0.

6.3 Discussion on Measurement Results. As shown in
Fig. 13, both for Cases 1 and 2, the measurement errors with φ= π/6
are larger than that of φ = 0, which agrees with the distributions ob-
tained from simulations. Moreover, the sample standard deviations
(SSD) of the measured orientation errors are equal to 0.052, 0.029,
0.086 and 0.034deg, respectively. This means that the measured
orientation errors have very small fluctuations among the discrete
points. The positioning performance of the robot, namely, their
accuracy, is defined in accordance to ISO 9283: 1998 [23] as:

APp = δp, APφ = δφ (24)

where δp and δφ are the measured pose errors defined in Sec. 5.2.
Figure 14 shows the accuracy of the manipulator, where the mea-
sured points covering the maximum workspace are demonstrated
in Fig. 12(a). The position accuracy in measured points is 0.2 ∼
0.35mm, while the orientation accuracy is 0.2∼ 0.45deg.
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(a) Maximum error along x-axis (b) Maximum error along y-axis

(c) Maximum positioning error (d) Maximum orientation error

Fig. 10 Comparison of error distributions for Case 1 with a constant orientation φ = π/6.

(a) Maximum positioning error (b) Maximum orientation error

Fig. 11 Comparison of error distributions for Case 2 with a constant orientation φ = 0.

The experiments show that most of the measurements line
along the boundaries established with the mathematical model, with
a few exceptions. In order to evaluate the comparison between the
simulations and measurements, we made a statistical regression anal-
ysis [24], as shown in Fig. 15 for Case 2 with a constant-orientation
φ = π/6. Most of the simulation results are distributed in the mea-
sured error bands δmea±2Amea except the orientation errors, where
δmea is the measurement error defined in Sec. 5.2 and Amea is the
accuracy of the measurement system in Sec. 5. The deviations in the

simulation results are equal to 0.02mm and 0.023deg, respectively,
as derived from the measurements of joint clearances. Although
the simulated δφ are located beyond the measured error band for
some points, the maximum difference between the two error bands is
0.086deg, which means that the simulation results are quite close to
the measurements. The possible reasons which cause disagreement
between the simulations and measurements are random and system-
atic errors, the influence of the MP inclination and elastic deflection
etc.
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(a) Maximum positioning error (b) Maximum orientation error

Fig. 12 Comparison of error distributions for Case 2 with a constant orientation φ = π/6.
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(a) Measurements of Case 1
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(b) Measurements of Case 2

Fig. 13 Boxplot of the measurements for Cases 1 and 2. No. 1 and 2 of horizontal axes stand for the measurements with constant-orientations φ = 0
and φ = π/6, respectively.
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Fig. 14 Position and orientation accuracy at five poses.

7 Conclusions

In this paper, the pose error of a planar parallel manipulator
was studied. A new error model was developed for PPMs with
due considerations of both configuration errors and joint clearances.
With the model, the pose error estimation problem was formulated as
an optimization problem, which can estimate maximum pose errors.
The error analysis method was deduced and explained in detail. This

method can also be applied to planar serial mechanisms.
Another contribution lies in the experimental validation of the

error model. Experiments were conducted to obtain the distribution
of pose errors throughout the workspace, the results being compared
with the errors estimated by the error model. It turns out that there is
a good correlation between the pose error simulations and measure-
ments. Moreover, the simulations show that the angular clearances
in the passive prismatic joints have much more influence on the pose
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Fig. 15 Comparison between the measurements and simulation results for Case 2 with a constant orientation φ = π/6.

errors of the moving platform than the revolute joint clearances. This
is associated with the experiments, in which the angular clearances in
the linear bearings reach their tolerance bounds as much as possible.
This suggests that one possible approach to eliminate the errors due
to joint clearances is to preload the joint. The validated work can be
used for error analysis and compensation in future work. Moreover,
other error sources such as manufacturing errors will be considered.
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Appendix A
The matrices in Eqn. (9) are given below

Ha = diag
[

wT
1 ET h1 wT

2 ET h2 wT
3 ET h3

]
(A-1a)

Hα = diag
[

wT
1 (a1h1 + s1u1 +d1v1)+ l1 wT

2 (a2h2 + s2u2 +d2v2)+ l2 wT
3 (a3h3 + s3u3 +d3v3)+ l3

]
(A-1b)

Hβ = diag
[

wT
1 (s1u1 +d1v1)+ l1 wT

2 (s2u2 +d2v2)+ l2 wT
3 (s3u3 +d3v3)+ l3

]
(A-1c)

Hd = diag
[

wT
1 ET v1 wT

2 ET v2 wT
3 ET v3

]
(A-1d)

Hγ = diag
[

d1wT
1 v1 + l1 d2wT

2 v2 + l2 d3wT
3 v3 + l3

]
(A-1e)

Hθ = diag
[

l1 l2 l3
]

(A-1f)

Hρ = diag
[

wT
1 ET n1 wT

2 ET n2 wT
3 ET n3

]
(A-1g)

Hr = diag
[

wT
1 ET k1 wT

2 ET k2 wT
3 ET k3

]
(A-1h)

Hψ = diag
[

r1wT
1 k1 r2wT

2 k2 r3wT
3 k3

]
(A-1i)

The matrices JA, JB, JC, and JD in Eqn. (13) are expressed as

JA =
[

Ja Jα

][
Aa Aα

]−1
6×6 , Aa = diag

[
h1 h2 h3

]
, Aα = diag

[
a1Eh1 a2Eh2 a3Eh3

]
(A-2a)

JB =
[

03×3 Jβ

][
Bs Bβ

]−1
6×6 , Bs = diag

[
u′1 u′2 u′3

]
, Bβ = diag

[
s1Eu′1 s2Eu′2 s3Eu′3

]
(A-2b)

JC =
[

Jd Jγ

][
Cd Cγ

]−1
6×6 , Cd = diag

[
v′1 v′2 v′3

]
, Cγ = diag

[
d1Ev′1 d2Ev′2 d3Ev′3

]
(A-2c)

JD =
[

Jr Jψ

][
Dr Dψ

]−1
6×6 , Dr = diag

[
k′1 k′2 k′3

]
, Dψ = diag

[
r1Ek′1 r2Ek′2 r3Ek′3

]
(A-2d)

with

u′i =
[

cosβi
sinβi

]
, v′i =

[
cosγi
sinγi

]
, k′i =

[
cosψi
sinψi

]
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