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ABSTRACT. This paper proposes two new approaches for the sensitivity analysis of multiobjective design

optimization problems whose performance functions are highly susceptible to small variations in the design

variables and/or design environment parameters. In both methods, the less sensitive design alternatives

are preferred over others during the multiobjective optimization process. While taking the first approach,

the designer chooses the design variable and/or parameter that causes uncertainties. The designer then

associates a robustness index with each design alternative and adds each index as an objective function

in the optimization problem. For the second approach, the designer must know, a priori, the interval of

variation in the design variables or in the design environment parameters, because the designer will be

accepting the interval of variation in the objective functions. The second method does not require any law

of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples

to highlight the contributions of the paper.

Keywords: multiobjective optimization, Pareto-optimal solutions, sensitivity analysis.

1 INTRODUCTION

Many engineering design problems are multiobjective by nature, because they often involve more

than one design objective to be optimized. These design objectives impose potentially conflicting

requirements on the technical and economic performance of a given system. A designer must

formulate an optimization problem with multiple objectives if he/she wishes to study the trade-

offs that exist between these conflicting objectives and to explore their design options.

Multiobjective engineering design problems often have design parameters with uncontrollable

variations due to noise or uncertainties. Such variations can affect outcomes significantly, such

as the performances of objective functions and/or the feasibility of the Pareto optimal solutions.
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A robust optimal solution is as good as possible with regard to the objective functions, and it

offers the lowest possible sensitivity to variations in design variables and design parameters. In

practice, all engineering designs are sensitive to uncertainties that can arise from manufactur-

ing operations, variations in material properties, the operating environment and other reasons.

Moreover, non-robust designs can be expensive to produce or to operate and can fail frequently

in service.

Figure 1 illustrates the solution of a single-objective robust optimization problem. The perfor-

mance function f (x) is minimum when the design variable x is equal to xopt . However, the

sensitivity of f (x) to variations in xopt is significant. Indeed, 1 fopt , which depicts the range

of variations in f (x) for a given range of variations in x around xopt , is large. On the contrary,

xrob is a local minimum of function f (x), and the sensitivity of f (x) to variations in xrob is very

small. Indeed, 1 frob, which depicts the range of variations in f (x) for a given range of varia-

tions in x around xrob, is small. In fact, 1 frob < 1 fopt . Accordingly, xrob is a good solution

to the single-objective robust optimization problem. In the case of a multiobjective optimization

problem, a robust optimum solution may be located in the neighborhood of the Pareto front. Such

a solution should have as little sensitivity as possible to uncertainties, because it cannot violate

any constraint and/or acceptable known variations in design objectives in the presence of uncer-

tainties. In this context, the purpose of this paper is to define a methodology to help the designer

choose one or several robust optimum solution(s) when he/she must address a multiobjective

robust design optimization problem.

Figure 1 – A robust solution vs. an optimal solution.

First, the authors provide the formulations of a multiobjective optimization problem, a robust

design problem and a multiobjective robust optimization problem. Then, a robustness index

based on the sensitivity first order Jacobian of the objective functions is introduced, and the

Pareto robustness concept is defined to deal with a multiobjective robust optimization problem.
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Then, two illustrative examples highlight the paper’s contributions. Finally, the conclusions are

discussed.

Nomenclature

fi (X) i th objective function

f(X) vector of objective functions

g j (X) j th inequality constraint function

KKT Karush-Khun-Tucker

Js global sensitivity Jacobian matrix

Jx sensitivity Jacobian matrix related to the design variables

Jp sensitivity Jacobian matrix related to the design parameters

k number of objective functions

m number of inequality constraint functions

n number of decision variables

q number of design parameters

pi i th design parameter

p vector of design parameters

pin f , psup lower and upper bounds of the design parameters

R(v) robustness index associated with the design variables X and the parameters p

S feasible region in the decision space

S sensitivity of the objective function

S diagonal matrix with the singular values in the singular value decomposition

U unitary matrix, expressed in the function space, in the singular value decomposition

v vector joining the design variables X and the parameters p

V unitary matrix expressed in the decision space in the singular value decomposition

xi i th decision variable

xi average of the ith decision variable included in the optimal set

X decision or design variables vector

X∗ non-dominated solution of a multiobjective optimization problem

Xin f ,Xsup lower and upper bounds in the decision space

λ j weighting factor for the j th inequality constraint gradient in the KKT condition

1xio interval of a known uniformly distributed variation of the i th design variable

1pio interval of a known uniformly distributed variation of the i th design parameter

1 fio acceptable variation in the i th objective function due to 1v uncertainties

λ vector of λ js

σi standard deviation for the i th decision variable included in the optimal set

ωi weighting factor for the i th objective function gradient in the KKT condition

ω vector of ωis

∇ gradient operator
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2 Definitions of problems

In this section, the formulations of (i) a multiobjective optimization problem, (ii) a robust design

problem and (iii) a multiobjective robust optimization problem are given.

2.1 Multiobjective optimization problem

A general multiobjective optimization problem attempts to find the design variables X that opti-

mize a vector objective function f(X) over the feasible design space S. The determination of a

set of non-dominated solutions, the Pareto optimum solutions or non-inferior solutions X∗ can

achieve a compromise among several objective functions. The problem formulation is defined as

follows:

minimize: f(X) (1a)

subject to: gi (X) ≤ 0, i = 1, 2, . . .m. (1b)

Xinf ≤ X ≤ Xsup (1c)

where f(X) =
[

f1, f2, f3, . . . , fk
]T : Rn → R

k , with fi (X) : Rn → R as a vector with the

values of objective functions to be minimized. X is the vector that contains the design variables,

also called decision variables, defined in the space Rn . Xinf and Xsup are respectively the lower

and upper bounds of the design variables. gi (X) : Rn → R represents the i th inequality con-

straint function. Equations (1b) and (1c) define the region of feasible solutions, S, in the decision

variable space. The constraints gi (X) are “less than or equal” functions in view of the fact that

“greater or equal” functions may be converted to the first type if they are multiplied by minus

1. Similarly, the problem deals with the “minimization” of functions fi (X), given that function

“maximization” can be transformed into the former by multiplying it by minus 1.

2.1.1 Pareto optimal solution

The notion of optimum in the context of solving multiobjective optimization problems is known

as “Pareto optimal”. A solution is said to be Pareto optimal if there is no alternative to improving

one objective without worsening at least one other, that is, the feasible point X∗
S is Pareto optimal

when there is no other feasible point X ∈ S so ∀i, j, fi (X) ≤ fi (X∗) with strict inequality in at

least one condition, f j (X) < f j (X
∗).

Due to the conflicting nature of the objective functions, the Pareto optimal solutions are usually

scattered in the region S, a consequence of the solutions being unable to minimize the objective

functions simultaneously. Solving the optimization problem achieves a set of Pareto optimal

solutions defined in the decision space, after which an image of the objective functions, along

with the Pareto front, is calculated over the set of optimal solutions.

In general, solving a multiobjective optimization problem is not as simple as solving any scalar

problem. According to Schaffer (1985), Goldberg (1989) and Deb (2001), evolutionary algo-

rithms are usually best suited to determining the Pareto front.
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2.1.2 Necessary conditions for Pareto optimality

Optimizing the multiobjective problems that are expressed by Eqs. (1a-1c) are of general char-

acter, because the equations represent the problem of single-objective optimization when k = 1.

According to Miettinen (1998), as in single-objective optimization problems, the solution X∗ ∈ S
for the Pareto optimality must satisfy the Karush-Kuhn-Tucker condition, expressed as:

k
∑

i=1
ωi∇ fi (X∗) +

m
∑

j=1
λ j∇g j (X∗) = 0 (2a)

λ jg j (X
∗) = 0 (2b)

λ j ≥ 0 (2c)

ωi ≥ 0;
k
∑

i=1
ωi = 1 (2d)

where ωi is the weighting factor, positive, for the gradient of the i th objective function, calculated

at point X∗, ∇ fi (X∗). λ j represents the weighting factor for the gradient of the j th inequality

constraint function ∇g j (X∗). It is zero when the associated constraint function is not active, i.e.,

g j (X
∗) < 0.

It should be emphasized that the set of Eqs. (2a) to (2d) form the necessary conditions for X∗ to

be Pareto optimal.

2.2 Robust design problem

The concept of robust design was first used by Taguchi (1993). He introduced the concept of

parameter design to improve the quality of a product whose manufacturing process involves

significant variability or noise. Robust design aims at minimizing the sensitivity of performance

to variations without controlling the causes of these variations. In the last decades, several authors

contributed to the formulation and the improvement of robust design problems.

To deal with robustness, a set of design parameters p =
[

p1, p2, p3, . . . pq
]T
should be consid-

ered. Those parameters cannot be adjusted by the designer and are thus uncontrollable, such as

the cost of the steel used in ship construction. The design variables

X =
[

x1, x2, x3, . . . xn
]T

can also be subjected to uncontrollable variations for the reasons of manufacturing errors, wear-

ing or other uncertainties, although their nominal value is fixed.

A general multiobjective robust design optimization problem aims to find the design variables

that optimize a vector objective function, f(X,p), and to minimize its range of variations

1f(X,p) =
[

1 f1,1 f2,1 f3, . . . 1 fk
]T
over the feasible design space S. The determination of

a set of non-dominated solutions achieves a compromise among several objective functions that

Pesquisa Operacional, Vol. 32(3), 2012
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consider variations in the design variables and parameters. Calling vT =
[

XTpT
]

, the problem

formulation can be defined as follows:

minimize: f(X,p), (3a)

1f(X,p)

over X =
[

x1, x2, x3, . . . xn
]T

(3b)

subject to: gi (X,p) + 1gi (X,p) ≤ 0, i = 1, 2, . . .m. (3c)

Xinf ≤ X ≤ Xsup (3d)

v− 1vinf ≤ v ≤ v+ 1vsup (3e)

All sets of equation (3) are general for search robust solutions of multiobjective optimization

problems.

Sundaresan et al. (1993) developed a procedure that incorporates uncertainties in design vari-

ables and variations in constraints due to these uncertainties. Chase et al. (1996) presented the

direct linearization method for tolerance analyses of 2D and 3D mechanical assemblies. Chen

et al. (1996) studied two broad categories of problems, namely, (i) Type 1 problems, which

minimize variations in performance caused by variations in noise factors (uncontrollable param-

eters), and (ii) Type 2, which minimize variations in performance caused by variations in control

factors (design variables). Ben-Tal and Nemirovski (1998, 2002) proposed a study of convex

optimization problems for which the data, in the present notation p, is not specified exactly.

Instead, the data are known only to belong to a given uncertainty set. They developed models for

uncertain Linear, Conic Quadratic and Semidefinite programming problems. Kalsi et al. (2001)

introduced a technique to reduce the effects of uncertainty and incorporated flexibility in the

design of complex engineering systems involving multiple decision makers. Parkinson (2000)

used a deterministic method of robust design to determine the optimum nominal dimensions of

an assembly in order to improve the assembly quality. Bertsimas et al. (2004) have proposed

a robust constrained optimization method for linear programming problems where the matrix of

coefficients belongs to a known uncertainty set that is bounded. They have shown that this kind

of problem is still linear programming. Bertsimas and Sim (2004) also focused on linear pro-

gramming problems, seeking to reduce the level of conservatism of the robust solutions in terms

of probabilistic bounds of constraint violations. They have shown that their method retains the

advantages of the linear framework and offers full control over the degree of conservatism for

every constraint. Thus, their method provides a probabilistic guarantee that the robust solution

will be feasible with high probability.

The solutions of the presently proposed methods will always be feasible, and all nominal values

of problem parameters, p, are known. For the first method, described in section 3.1, no additional

information is needed to search the less sensitive solutions under variations of p and eventually

variations in the decision variables X. For the second method, described in the section 3.2, these

variations must be bounded. Both of these methodologies can be incorporated in any nonlinear

multiobjective optimization algorithm.
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In the next section, the authors propose a simplified approach to searching for less sensitive

alternatives when solving multiobjective optimization problems.

3 A SIMPLIFIED MULTIOBJECTIVE ROBUST OPTIMIZATION PROBLEM

Given that a robust optimal solution is as good as possible with regard to the objective functions

and that it is as least sensitive as possible to variations in design variables and design parameters,

this section presents two methods where robust design alternatives are preferred over others

during the multiobjective optimization process.

First, the designer chooses only the design variables and/or design parameters that are subject to

variations. With this information, a Robustness Index is associated with each design alternative.

This index is added as one more function to be optimized. In the second approach, the designer

accepts variations in the performance functions, limited in fixed intervals, knowing a priori the

range of variations in the design variables and in the design parameters.

Assuming that f is of class C2 in v, one can expand Eq. (3a) in the neighborhood of the point v0

and keep only the linear terms. Then, the following equation can be obtained:

δf = Jsδv+ e(‖δv‖2) (4a)

δvT =
[

δXT δpT
]

(4b)

Jx = ∂f/∂X (4c)

Jp = ∂f/∂p (4d)

Js =
[

JxJp
]

(4e)

where ‖ ∙‖2 denotes the Euclidian norm operator and e(v) an error function. Js is the global
sensitivity Jacobian matrix, and it describes the effect of the variations in design variables and

design parameters to the performance functions. δX and δp are the variations in the design

variables and in the design parameters, respectively. Jx is the (k × n) sensitivity Jacobian matrix
of f(v) with respect to X, and Jp is the (k × q) sensitivity Jacobian matrix of f(v) with respect
to p, respectively. If variations in the design variables are not considered, then Js = Jp. If

variations in design parameters are not considered, then Js = Jx .

Ignoring the error in Eq. (4a), an approach to a robust solution is defined as one that is as least

sensitive as possible to any variations in the decision variables and design parameters in its neigh-

borhood. Considering 1v as a closed normalized unit hyper-sphere centered at point v in the

Euclidean space Rn+q , i.e., ‖1v‖2 = 1, then Js is a linear application that maps the hyper-

sphere in a hyper-ellipsoid in the normalized function space, centered in f(v) and described by

the variations 1f(v) ∈ Rk . In Figure 2, three design alternatives are checked for their sensitivity
in the decision variable space. Since the local perturbation in the neighborhood of point A causes

a large modification in the objective values, this alternative may not be as robust as the alternative

B, because the latter does not bring on a large change in objective values, even in the presence of

a local perturbation in its vicinity.
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Suppose that pointC in Figure 2 belongs to the Pareto set and that its image is on the Pareto front.

If any constraint function is not active at this point, then the hyper-ellipsoid collapses one of its

axes. Being a Pareto solution, point C satisfies Eq. (2a), and the objective function gradients are

linearly dependent. Consequently, the variations in the performance functions occur only along

the tangent to the Pareto front.

Figure 2 – The sensitivity Jacobian matrix transforms a unitary radius ball in the

decision space into an ellipsoid in the function space.

3.1 Robustness index

The geometrical interpretation of Eq. (4a) can help one to define a Robustness Index in order to

qualify a design alternative with regard to its robustness. The sensitivity Jacobian matrix can be

decomposed by means of the singular value decomposition as follows:

Js = USVT (5)

where U is a k-by-k orthogonal matrix, S is a k-by-(k + q) diagonal matrix with non-negative
real numbers and VT denotes the transposition of V, which is a (n + q)-by-(k + q) orthogonal
matrix. The diagonal entries of S are known as the singular values of Js. The singular value

decomposition is a generalization of the decomposition of the eigenvalues and eigenvectors, and

this decomposition is applied to a square matrix. If λi is an eigenvalue of JsJ
T
s , then the singular

value σi =
√

λi . As a geometrical interpretation, the non-zero singular values, σi , are the lengths

of the semi-axes of the hyper-ellipsoid represented in Figure 2, and the related vectors in U are

the directions of these semi axes in the Rk space.

Let S be the sensitivity of the objective functions to variations δv. S can be defined as the ratio

of the Euclidean norm of variations in the objective functions, namely ‖δf‖2, and the Euclidean
norm of variations δv, namely ‖δv‖2. It turns out that S is bounded by the smallest non-zero
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singular value σmin and the largest singular value σmax of its global sensitivity Jacobian matrix,

Js, namely,

σmin ≤ S =
‖δf‖2
‖δv‖2

≤ σmax (6)

Equation (6) shows that the lower σmax is, the lower the upper bound of S will be. Accord-

ingly, the Euclidean norm of Js, that is, its maximum singular value, can be used as a relevant

Robustness Index:

R(v) = σmax (7)

R(v)makes sense if and only if the terms of Js are normalized, that is, if they have the same unit.

Indeed, the singular values of Js cannot be compared if their units are different.

To illustrate the use of such a proposition, let us consider the following unconstrained minimiza-

tion problem with two functions defined in R2 space:

minimize: f1(x1, x2) = c(−2, 2) + c(2, 2) + c(0, −2), (8a)

f2(x1, x2) = c(0, 0) (8b)

with c(a, b) = − exp

(

−
(

x1 − a
2

)2

−
(

x2 − b
2

)2
)

(8c)

These two functions are illustrated in Figure 3.

Figure 3 – Superimposed plot of exponential functions − f1(x1, x2) and − f2(x1, x2).

To find the non-dominated points, the Pareto dominance concept was applied to 5,000 randomly

generated points over the interval (x1, x2) ∈ [−4, 4]. The approximation of the Pareto set and the
Pareto front are illustrated in Figures 4(a) and 4(b), respectively. In addition, Figure 4(a) shows

the plots for the contours of both functions. The Pareto set is comprised of line segments that

connect the minima of f1(x1, x2) to the minima of f2(x1, x2).
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Figure 4 – Nominal approximations of the Pareto set and Pareto front for minimization of the exponential

functions f1(x1, x2) and f2(x1, x2).

To search robust solutions, the authors applied the robust multi-objective optimization procedure

by adding the robustness index, as defined by Eq. (7), as a third objective function. The robust

problem can be written as

minimize: f1(x1, x2) = c(−2, 2) + c(2, 2) + c(0, −2) and (9a)

f2(x1, x2) = c(0, 0); and (9b)

f3(x1, x2) = R(x1, x2) = σmax (9c)

with c(a, b) = − exp

(

−
(

x1 − a
2

)2

−
(

x2 − b
2

)2
)

(9d)

The non-dominated points are shown in Figure 5. Clouds of points lie both near the nominal

Pareto set and far away from it. In the specific problem, both functions are nearly flat in those

regions. Accordingly, the robustness indexes for these points are very low, placing them as non-

dominated although their function values are non-optimal compared to those near the nominal

Pareto set.

Given the flat regions in Figure 3, one can conclude that the robustness index, when included

in the multi-objective optimization problem as an additional objective function to be minimized,

permits the location of the less sensitive non-dominated alternatives. Moreover, it naturally dis-

perses the nominal Pareto front of the original problem, causing the decision-making process to

become even more difficult.

To overcome this difficulty, the authors suggest in the next section a complementary approach to

dealing with robustness in multi-objective optimization problems.
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Figure 5 – Non-dominated alternatives for the multi-objective robust optimization problem of the exponen-

tial functions f1(x1, x2), and f2(x1, x2) and the robustness index R(x1, x2).

3.2 Optimum with acceptable variations in the objective function

To use this approach, the designer should know the bounds of variations in the design variables

and in the design parameters, which are

|δv| = 1v0 (10)

The designer also accepts a tolerance for the variations in the objective functions, which are

|δf|acc = 1f0 (11)

but he/she wants to keep all the constraints with consequent variations inside their initial

bounds. For such conditions, the authors propose a robust multiobjective optimization prob-

lem as follows:

Pesquisa Operacional, Vol. 32(3), 2012
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minimize: f(v) (12a)

over X

subject to: gi (v) + 1gi (v) ≤ 0, i = 1, 2, . . .m. (12b)

|δf(v)| − 1f0 ≤ 0 (12c)

Xinf ≤ X ≤ Xsup (12d)

with |δv| = 1v0 (12e)

By using this approach, one can state the optimization problem with two exponential objective

functions as:

minimize: f1(x1, x2) = c(−2, 2) + c(2, 2) + c(0, −2) and (13a)

f2(x1, x2) = c(0, 0) (13b)

subject to: |δ(x1, x2)| − 1 f10 ≤ 0 (13c)

|δ f2(x1, x2)| − 1 f20 ≤ 0 (13d)

1(x1, x2)0 = 0.1 (13e)

with c(a, b) = − exp

(

−
(

x1 − a
2

)2

−
(

x2 − b
2

)2
)

(13f)

where the acceptable function variations are set to 1 percent without loss of generality, and they

include variations in the design variables that are equal to 10 percent of their nominal value.

Figure 6 shows the Pareto optimal solutions plotted in the design space and the Pareto front

approximation obtained by using the random walk over the design space.

Considering the acceptable values used, the robust Pareto front is less performing than the nom-

inal one.

In the classical sensitivity analysis, the problems may have data (p, in the present notation) that

are not specified exactly and are only known to belong to a given uncertainty set.

With the proposed methods, one can approach the engineering design optimization problem

while considering the effects of uncertainty. The idea behind these methods is to consider that

some data relating to engineering problems have variations around their nominal values. More-

over, the problems’ data cannot be implemented exactly even if the data are certain and an optimal

solution X∗ can be computed exactly.

4 APPLICATIONS

This section presents two engineering examples to demonstrate the proposed multiobjective ro-

bust optimization. The first problem deals with the design of a vibrating platform. This prob-

lem includes six design variables with one being combinatorial; it also has five constraints

and two uncontrollable parameters. This example should highlight the influence of the discrete

variable in the robust search. The second problem deals with the conceptual design of a ship.
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Figure 6 – Non-dominated points for the robust multi-objective optimization problem of the exponential

objective functions f1(x1, x2), and f2(x1, x2) with 1(x1, x2)0 = 0.1 and 1 f10 = 1 f20 = 0.01.

It contains six design variables, 21 constraints and three uncontrollable parameters, and it repre-

sents a more realistic problem that naval architects are likely to face.

To solve both problems, one will need a method to find the Pareto front for multiobjective op-

timization problems. The most widespread method in the literature is the genetic algorithm.

Originally proposed by Holland (1975) for applications engaged with control theories, it was

accepted quickly into numerous areas of engineering and science. Coello (2010) maintains an

updated list of publications involving the genetic algorithm.

Many versions of genetic algorithms have served as meta-algorithms in the literature. The one

that appears in this work was adapted from Deb et al. (2000), which is the Non-dominated Sort-

ing Genetic Algorithm, version II (NSGA II). This version is easy to use and depends on only two

parameters: the number of chromosomes in the population and the number of generations that

this population will evolve. With each evolution, the non-dominated solutions in the population

converge toward the Pareto optimal solutions.

4.1 Problem 1: design of a vibrating platform

To illustrate the proposed robust approach, the authors present the engineering problem adapted

from Gunawan and Azarm (2005).

This problem aims to optimize the design of a platform modeled as a pinned-pinned sandwich

beam with a vibrating motor on top, as shown in Figure 7. The platform has three layers (an

inner layer, two middle layers sandwiching the inner layer and two outer layers sandwiching the

inner and middle layers) of material. The layers must be comprised of three different materials

that are named A, B and C , and the choice of materials for the layers must be mutually exclu-

sive so that two layers do not use the same material. However, the thickness of some layers

can be null.
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Figure 7 – Engine support platform.

The properties of the materials are shown in Table T1. In this table, ρ is the mass density, E is

Young’s modulus and c is the material cost per volume. The objectives are to minimize the total

material cost used in such a platform and to maximize its natural frequency by controlling five

sizing variables (continuous) and one combinatorial variable (discrete). The sizing variables are

the width of the platform (b), the length of the beam (L) and the thicknesses of the three layers

(d1, d2 and d3). The thicknesses of the middle and outer layers are represented as the difference

between two sizing variables (e.g., the thickness of the middle layer is equal to (d2 − d1)).
The combinatorial variable is the choice of materials for the layers (M). Since there are three

possible material types, there are six possibilities for M (starting from the inner layer outward):

{A, B,C}, {A,C, B}, {B, A,C}, {B,C, A}, {C, A, B} and {C, B, A}. The platform design is
subjected to five constraints: the maximum weight of the platform and the lower and upper

limits on the thickness of the middle and outer layers. The optimization formulation for this

example is shown in Eq. (14). The notations (ρ1, ρ2, ρ3), (E1, E2, E3) and (c1, c2, c3) refer to

the density, Young’s modulus and the material cost for the inner, middle and outer layers of the

platform, respectively. The lower and upper bounds for the sizing variables are 0.05 ≤ d1 ≤ 0.5,
0.2 ≤ d2 ≤ 0.5, 0.2 ≤ d3 ≤ 0.6, 0.35 ≤ b ≤ 0.5 and 3 ≤ L ≤ 6.

maximize: fn =
π

2L2

√

E I

μ
(14a)

minimize: cost = 2bL
[

c1d1 + c2(d2 − d1) + c3(d3 − d2)
]

(14b)

subject to: g1 = μL − 2800 ≤ 0 (14c)

g2 = d1 − d2 ≤ 0 (14d)

g3 = d2 − d1 − 0.15 ≤ 0 (14e)

g4 = d2 − d3 ≤ 0 (14f)

g5 = d3 − d2 − 0.01 ≤ 0 (14g)

with E I =
2b

3

[

E1d
3
1 + E2

(

d32 − d31
)

+ E3
(

d33 − d32
)]

(14h)

μ = 2b
[

ρ1d1 + ρ2(d2 − d1) + ρ3(d3 − d2)
]

(14i)
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Table T1 – Properties of the beam materials.

Material A Material B Material C

ρ
(

kg/m3
)

100.0 2770 7780

E(GPa) 1.6 70 200

c
(

m3
)

500.0 1500 800

It is assumed that there are uncontrollable variations in the density of material A (ρA) and cost of

material B (cB), and the optimum solutions must be as minimally sensitive as possible to these

variations. Moreover, the designer wants to obtain the robust Pareto solutions to this problem for

the nominal parameter values ρA = 100 kg/m3 and cB = 1500 $/m3.

The variations in the parameters affect the two objective functions and the platform weight, and

this effect is incorporated in the constraint function g1. To take into account the feasibility of the

robust search process, the following constraint functions were added.

g6 = |1cost| − 1cost0 ≤ 0 (15a)

g7 = |1 f n| − 1 f n0 ≤ 0 (15b)

g8 = g1 + |1g1| ≤ 0 (15c)

where, for the sensitivity requirements, the acceptable relative variations in objective functions
1 f n0
fn

and 1cost0
cost

were arbitrarily set in the values shown in Figure 8 with maximum variation

for the parameters of material A defined by 1ρA
ρA

= 1cA
cA

= 0.05. The variation related to the

constraints expressed in Eqs. (15a-15c) were calculated for the extreme points of the interval

composed by the parameter with its variation.

In Figures (8a-8b), the nominal Pareto set of the problem (without the uncontrollable variations)

and the Pareto set obtained using the robust approach are displayed. When the robustness index is

considered as the third objective function, the non-dominated points (square points) are dispersed

over the function space, barely touching the nominal Pareto front. Therefore, the nominal Pareto

front is not robust.

As expected, if the nominal solution is not robust, then different Pareto fronts will be obtained,

because the acceptable variations in objective functions are modified. Table T2 shows the statis-

tics for the results with different levels of these acceptable variations. This table displays some

notable facts. First, in each Pareto set, all alternatives resulted with the same material sequence

order. Second, the material order in the nominal Pareto set is from the cheapest to the most

expensive material as well as from the inner, thicker layer to the external, thinner layer, respec-

tively, which was also expected. Third, the platform cost variation due to maximum variations in

material A is more relevant than the frequency variation, so one can say that the nominal Pareto

front is robust from the point of view of natural frequency. Fourth, the nominal Pareto set has

the platform cost variation at an average value of 4.51 percent with a standard deviation of 0.21

percent, which means that this set will be changed and the nominal Pareto front will be moved

to a less performing region if the acceptable level of cost variations is set to the lower values,
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as shown in Figures (8c-8d). Finally, as long as the order of the material in the platform layers’

cross section is acting as a design variable, the robust Pareto fronts will exhibit the behavior

shown in Figure 8c. The fronts with a relatively small variation in restrictive acceptable cost will

fall in a better region than the fronts with more flexible bounds.

Figure 8 – Nominal and robust Pareto fronts of the platform design problem.

Table T2 – Statistics for design cases varying 1 fio/ fi and material code as free design variable.

dv → b(m) L(m) d1(m) d2(m) d3(m) Material 1 fn/ fn(%) 1cost/cost(%)

1 fio ↓ b σb L σL d1 σd1 d2 σd2 d3 σd3
code∗ 1 fn σ1 f n 1cost σ1cost

nominal 0.35 2% 3.00 0% 0.33 29% 0.35 30% 0.35 31% 2 0.55 0.48 4.51 0.21

1% 0.35 0% 3.00 0% 0.17 44% 0.28 17% 0.28 17% 4 0.00 0.00 0.00 0.00

2% 0.35 0% 3.00 0% 0.23 56% 0.30 23% 0.31 23% 3 0.05 0.06 0.80 0.82

3% 0.35 0% 3.00 0% 0.18 59% 0.26 17% 0.27 17% 3 0.08 0.08 1.09 0.99

4% 0.35 0% 3.00 0% 0.25 17% 0.28 16% 0.28 17% 2 0.20 0.02 3.99 0.01

∗code: 1 = {A, B,C}, 2 = {A,C, B}, 3 = {B, A,C}, 4 = {B,C, A}, 5 = {C, A, B} and 6 = {C, B, A}.
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Furthermore, the proposed sensitivity approach is useful for characterizing robust Pareto fronts.

With this approach, one can easily achieve the robust Pareto front. This approach does not require

stochastic treatment for obtaining the variations, and it does not need a probability distribution

for the variations in the design variables and design parameters.

4.2 Problem 2: preliminary design of a bulk carrier

The second application of the developed methodology is the preliminary design of a bulk carrier.

The design of a vessel is not a trivial task. For decades, this problem has been handled in two

ways. Some designers have adjusted a known design so that it meets new requirements, and

others have relied on simplified mathematical models controlled by an optimization algorithm,

which allow them to obtain the optimal solution based on previously established technical or

economic criteria.

This work considers the second alternative with the aid of the mathematical model for designing

bulk carriers, which was developed by Pratyush and Yang (1998) and presented in detail in Au-

gusto et al. (2012) study. The model comprises a set of functions that define the vessel attributes.

These functions constrain the design variables of the objective functions to be optimized as well

as the space of these design variables. These functions characterize the technical and economic

performance of the ship and allow designers to evaluate each design alternative. The economic

performance of the ship refers to its annual unitary transportation cost and its annual transported

cargo, and the technical performance of the ship refers to the functions of the vessel’s design vari-

ables, including length, beam, depth, draft, block coefficient and speed, which are respectively

(L , B, D, T , Cb and VK ). Pratyush and Yang chose to minimize the annual transportation cost,

maximize the amount of annual cargo and minimize the vessel’s weight. The present work chose

the optimization of the first two with no loss of generality. These two functions are conflicting,

as shown in Figures 9 and 10.

The authors applied the proposed multiobjective robust optimization to the ship’s design in order

to consider the isolated variation in each design variable and in each design parameter for the two

approaches. First, the Robustness Index was added as a third objective function to the original bi-

objective optimization problem. Then, the variations relative to the nominal value of the design

variable and to the design parameter were arbitrarily preset at 1xio = 1 percent and 5 percent,

respectively, and the consequent variations of the objective functions were limited to 1 fio and

arbitrarily set at values ranging from 1 percent to 4 percent relative to their resultant or nominal

values, depending on the case.

Figure 9 displays the results for the robust optimization related to the uncontrollable variations

in each design variable. Each figure displays the nominal (non-robust) Pareto front, the robust

Pareto front considering the Robustness Index as the third objective function to be minimized and

the Pareto front considering different levels of acceptable variations in the objective functions as

an effect of a design variable’s uncontrollable variation around its nominal value.
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Figure 9 – Nominal and robust Pareto fronts for the minimization of transportation cost (CT ) and maxi-

mization of annual transported cargo (AC ), allowing isolated variations in the design variables of (L , B, D,

T , Cb and VK ).
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Figure 10 shows the results for robust optimization related to variations in the arbitrarily chosen

design parameters, namely round trip, fuel oil price and handling rate, since they can affect

negatively the performance functions, depending on the uncertainties of their nominal values.

Figure 10 – Nominal and robust Pareto fronts for the minimization of transportation cost (CT ) and maxi-

mization of annual transported cargo (AC), allowing isolated variations in the design parameters of round

trip, fuel oil price and handling rate.

Each figure shows the nominal (non-robust) Pareto front, the robust Pareto front considering the

Robustness Index as the third objective function to be minimized and the Pareto front considering

different levels of acceptable objective function variations due to an arbitrary parameter variation

interval of 1pio = 5 percent around the parameter’s nominal value.

From both figures, it can be seen that variations in problem variables and problem parameters

impact the extension and the performance of objective functions. More important is that the

variation with the most impact in the nominal Pareto front is associated with the handling rate

(HR) parameter, according to the results shown in Figure (10d). Due to this parameter, whose
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nominal value is set to 8,000 t/day, the nominal Pareto front is very sensitive. For acceptable

levels of variations in objective functions over the interval1 fio ∈ [1%, 3%], the respective Pareto
fronts practically collapse to a single solution in each respective front. This single solution will

be partially robust if the acceptable levels of variations are higher, namely 1 fio = 4 percent,

when compared to those observed in the results obtained with uncontrollable variations in the

design variables and other design parameters.

Therefore, this parameter plays an important role in the design process, because its impact on the

objective functions can degrade drastically the performance of the designed ship.

5 CONCLUSIONS

Most engineering design problems are multiobjective and contain antagonistic objective func-

tions. To solve such problems, many researchers developed methods that helped them to search

for a general solution. They have frequently elected to use evolutionary methods to locate a set of

solutions of multiobjective optimization problems. These algorithms provide a discrete picture

of the Pareto front in the function space.

This paper introduced a new concept of a sensitivity index to perform multiobjective robust

design optimizations, mainly when performance functions are highly sensitive to the variations

in the design variables and in the design parameters.

To introduce the concept, the authors presented formulations of a multiobjective optimization

problem, a robust design problem and a multiobjective robust optimization problem. A robust-

ness index was introduced in order to classify the nominal Pareto front as either non-sensitive

robust or not. This robustness index is based on the singular values of the sensitivity Jacobian

matrix involving the objective functions, and it is considered an additional function to be mini-

mized in the optimization problem. If the nominal Pareto front is not robust, then the new front,

in view of the robustness index, will be scattered in the function space.

In addition, this paper proposed a supplementary method for searching for the robust Pareto

front in instances where the design variables and design parameters have known uncontrollable

variations bounded in single intervals and the designer will accept a range of these variations in

the objective functions. During this search for optimal solutions, the designer constrains varia-

tions in objective functions to the acceptable intervals. The feasibility of the nominal problem is

maintained once the effects of the variations in the constraint functions are considered.

Finally, two examples illustrated the contributions of the paper. First, the proposed method was

applied to the design of an engine support platform, a problem with two objective functions,

six design variables, five constraints and uncontrollable variations in the design parameters of

material cost and material density. Then, a preliminary ship design, a problem with six design

variables, two objective functions and twenty-one constraints, was conducted in a robust condi-

tion considering uncontrollable variations in the design variables and in the design parameters.

The authors concluded that the nominal optimal set is not robust, because one of the ship’s de-

sign parameters (the port handling rate) had a significant impact on the performance of the good
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under design. Given the results of both illustrations, the proposed methodology appears to be a

simple and useful tool for conducting robust engineering designs.
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