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Abstract

The IRSBot-2 is a two degree-of-freedom translational parallel manipulator dedicated to fast and
accurate pick-and-place operations. This paper deals with the determination of the design parameters
of the manipulator for the IRSBot-2 to be free of parallel singularity. First, the robot architecture is
introduced. The IRSBot-2 is composed of two identical spatial limbs, each one containing a proximal
module and a distal module. Then, its actuation singularities and constraint singularities are analyzed.
The latter are analyzed in its distal parameter space with a method based on the notion of Discriminant
Varieties and Cylindrical Algebraic Decomposition. Moreover, a deep analysis is carried out in order
to determine the set of design parameters of the distal modules that prevents the IRSBot-2 from
reaching any constraint singularity. To the best of our knowledge, such an analysis is performed for
the first time. Finally, a design methodology is proposed to determine the set of design parameters
associated with the proximal modules for the IRSBot-2 to be assembled and free of parallel singularity.

Keywords: Parallel Manipulator; Constraint Singularity; Actuation Singularity; Cylindrical Alge-
braic Decomposition; Design.

1 Introduction

Several robot architectures for high-speed operations have been proposed in the past decades [7, 4, 14,
19, 16]. Many of them have four degrees of freedom (dof): three translations and one rotation about a
fixed axis (Schoenflies motions [6, 15]). Some simple operations need only two translational dof in
order to move a part from a working area to another. Therefore, several robot architectures with two
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translational dof have been proposed. Among them, those that have the capacity to fix the orientation
of the platform via the use of a planar parallelogram (also called a … joint) are necessary in numerous
operations. For example, Brogårdh proposed in [5] an architecture made of a … joint located between
the linear actuators and the platform. Another 2-dof translational robot was presented in [16], where
the authors use two … joints to link the platform with two vertical prismatic actuators. Its equivalent
architecture actuated by revolute joints is presented in [11].

The main common point between these architectures is that they are all planar, i.e. all their elements
are constrained to move in the plane of motion. As a result, all their elements are subject to bending
effects in the direction normal to the plane of motion. In order to guarantee a minimum stiffness in this
direction, the elements have to be bulky, leading to high inertia and to low acceleration capacities. In
order to overcome these problems, a new Delta-like robot, named the Par2, was proposed in [20]. The
Par2 has the following properties: all the elements of the distal parts of the legs are only subject to
tension/compression effects. This leads to a lighter structure with better acceleration capacities. The
authors successfully built a prototype that can reach 53 G. However, even if its acceleration capacities
are impressive, its accuracy is poor. This phenomenon can be explained by the complexity of the
architecture composed of four identical legs among which two of them are linked with a rigid belt. As
a result, this robot is more subject to parasitic effects that are difficult to identify and can decrease its
accuracy. Moreover, its Cartesian workspace is rather small because the robot has four legs.

A two-dof spatial translational robot, named IRSBot-2, was introduced in [10] to overcome its
counterparts in terms of mass in motion, stiffness and workspace size. IRSBot-2 stands for “IRCCyN
Spatial Robot with 2 dof”. The IRSBot-2 has a spatial architecture and the distal parts of its legs are
subject only to tension/compression/torsion. As a result, its stiffness is increased and its total mass
can be reduced. It is composed of two legs only in order to reduce the mechanism complexity and to
increase the size of its Cartesian workspace.

The advantages of the IRSBot2 in terms of stiffness and weight reduction were disclosed in [10]. It
was shown that this robot is lighter than the Par2 and the five-bar mechanism while being stiffer than
the latter.

Nevertheless, the IRSBot-2 may reach some constraint singularities like many lower-mobiliy
parallel manipulators [21, 2]. In this paper, a deep analysis is carried out in order to determine the sets
of design parameters of the IRSBot-2 that prevent it from reaching any constraint singularity. To the
best of our knowledge, such an analysis is performed for the first time and is very helpful for the robot
designer. Indeed, it allows the designer to select the design parameters of the manipulator in such a
way that the manipulator cannot reach any parallel singularity.

This paper is organized as follows. First, the robot architecture is described and its constraint
singularity conditions are derived. Then, its constraint singularities are analyzed in its parameter
space based on a cylindrical algebraic decomposition. Moreover, the set of design parameters for the
robot to be free of constraint singularity are determined. Finally, a design methodology is proposed to
determine the set of design parameters associated with the proximal modules for the IRSBot-2 to be
assembled and free of singularity.
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2 Robot Architecture

The IRSBot-2 has two translational degrees of freedom along the x0 and z0 axes of the robot base
frame as shown in Fig. 1. It is composed of two identical legs connecting the fixed base to the moving
platform.
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Figure 1: CAD Modeling of the IRSBot-2Figure 1: CAD Modeling of the IRSBot-2
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Figure 2: Kinematic chain of the kth leg (k = I, II)

The kth leg of the IRSBot-2 is described in Fig. 2 and contains one proximal module and

one distal module (k = I, II). Therefore, the IRSBot-2 has one proximal loop and one distal

loop shown in Fig. 1. The former is composed of the two proximal modules and the base. The

latter is composed of the two distal modules and the moving-platform.

On the one hand, the proximal module amounts to a Π joint of normal y0 and is made up

of links ℓ0k, ℓ1k, ℓ2k and ℓ3k. The proximal module aims to keep planes P0 and Pk parallel. The

frame (O,x0,y0, z0) is attached to plane P0.

On the other hand, the distal module is attached to link ℓ3k of the parallelogram through

two revolute joints of axis (Ek, y1jk) lying in plane Pk and to link ℓ7k of the moving platform

through two revolute joints of axis (Fk, y1jk) lying in plane P2 (j = 1, 2). Axes y11k and y12k

(z21k and z22k, resp.) are symmetrical with respect to plane (x0Oz0). It should be mentioned

that axes y1jk and z2jk are orthogonal and have to be both orthogonal to link ℓ5jk. Links ℓ51k

and ℓ52k (links ℓ41k and ℓ42k, resp.) are not parallel, otherwise the distal module would become

a spatial parallelogram and the robot architecture would be singular. The distal module may

be decomposed into two identical parts composed of links ℓ4jk, ℓ5jk and ℓ6jk, which are linked

together with revolute joints of axes z2jk. The robot is assembled in such a way that planes Pk

and P2 remain parallel. Therefore, P2 is also parallel to P0.

The design parameters of the IRSBot-2 are depicted in Figs. 3 and 4. The parameters

used to define the kinematic model of the IRSBot-2 robot are depicted in Fig. 3 [10]. qk is

the actuated joint coordinate of the kth leg, b = OAk is the radius of the base, l1 = AkBk is

Figure 2: Kinematic chain of the kth leg (k D I; II )
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The kth leg of the IRSBot-2 is described in Fig. 2 and contains one proximal module and one distal
module (k D I; II ). Therefore, the IRSBot-2 has one proximal loop and one distal loop shown in
Fig. 1. The former is composed of the two proximal modules and the base. The latter is composed of
the two distal modules and the moving-platform.

On the one hand, the proximal module amounts to a … joint of normal y0 and is made up of
links `0k, `1k, `2k and `3k. The proximal module aims to keep planes P0 and Pk parallel. The frame
.O; x0; y0; z0/ is attached to plane P0.Germain C., Caro S., Briot S. and Wenger P., submitted to MMT 5
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Figure 3: Paramaterization of the kth leg (k D I; II )

On the other hand, the distal module is attached to link `3k of the parallelogram through two
revolute joints of axis .Ek; y1jk/ lying in plane Pk and to link `7k of the moving platform through
two revolute joints of axis .Fk; y1jk/ lying in plane P2 (j D 1; 2). Axes y11k and y12k (z21k and z22k ,
resp.) are symmetrical with respect to plane .x0Oz0/. It should be mentioned that axes y1jk and z2jk

are orthogonal and have to be both orthogonal to link `5jk. Links `51k and `52k (links `41k and `42k,
resp.) are not parallel, otherwise the distal module would become a spatial parallelogram and the
robot architecture would be singular. The distal module may be decomposed into two identical parts
composed of links `4jk , `5jk and `6jk , which are linked together with revolute joints of axes z2jk . The
robot is assembled in such a way that planes Pk and P2 remain parallel. Therefore, P2 is also parallel
to P0.

The design parameters of the IRSBot-2 are depicted in Figs. 3 and 4. The parameters used to
define the kinematic model of the IRSBot-2 robot are depicted in Fig. 3 [10]. qk is the actuated joint
coordinate of the kth leg, b D OAk is the radius of the base, l1 D AkBk is the length of the proximal
legs, l2 D EjkFjk is the length of the spatial distal legs, a1 and a2 denote the lengths of segments
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EkEjk and FkFjk. One can notice that the angle between y0 and EkEjk (resp. y0 and FkFjk) is
constant and equal to ǰk. Let ˇ denote ˇ2II , then ˇ1I D � C ˇ, ˇ2I D �ˇ and ˇ1II D � � ˇ.
Angle ˇ is strictly bounded between 0 and �=2, i.e., 0 < ˇ < �=2, as links `41k and `42k can not be
parallel.

Points Hk and Gk are the midpoints of segments E1kE2k and F1kF2k, respectively. By construc-
tion, Hk lies in plane P1 and Gk lies in plane P2. From the Pythagorean theorem, the length between
points Hk and Gk is constant and equal to:

l2eq D

q
l22 � .a1 � a2/2 cos2 ˇ (1)

�k is the distance between points Ek and Fk. Let  k be the angle between x0 and
����!
HkGk and �k be

the angle between x0 and
���!
EkFk. Finally, p D PGk is the radius of the moving platform and e is an

offset along z0 between the proximal and distal modules.

3 Constraint Analysis of the IRSBot-2

In this section, a constraint analysis of the IRSBot-2 is carried out by using the reciprocal screw
theory [9, 12, 13] in order to determine its constraint wrench system Wc

IRS and actuation wrench
system Wa

IRS and to analyze its parallel singularities, namely, its constraint and actuation singularities.
On the one hand, the IRSBot-2 may reach some constraint singularities as it is a lower-mobility parallel
manipulator. As a result, the system of output freedoms instantaneously increases its dimension. The
extra degree of freedom of the platform may not be controllable by the actuators in such configu-
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rations [21]. The IRSBot-2 reaches a constraint singularity when Wc
IRS degenerates. On the other

hand, the IRSBot-2 meets an actuation singularity when the system spanned by Wc
IRS and Wa

IRS

degenerates, whereas Wc
IRS does not [3, 1].

3.1 Constraint wrench system of the IRSBot-2
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Figure 5 represents the distal module of the kth leg of the IRSBot-2 (k D I; II ). This distal
module is composed of two symmetrical serial kinematic chains Ljk: Ek�Ejk�Fjk�Fk (j D 1; 2),
each one containing four revolute joints of axes A1jk, A2jk , A3jk and A4jk, respectively. Let eijk be
the unit vector of axis Aijk , .i D 1; : : : ; 4/. The following geometric conditions appear: (i ) axes Ai1k

and Ai2k are symmetrical with respect to plane .x0Oz0/; (i i) axes A1jk and A2jk intersect at point
Ejk; (i i i ) axes A3jk and A4jk intersect at point Fjk; (iv) axes A2jk and A3jk are parallel:

e2jk D e3jk (2)

Besides, axes A1jk and A4jk turn to be parallel when the IRSBot-2 is assembled, namely,

e1jk D e4jk (3)
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The serial kinematic chain Ek � Ejk � Fjk � Fk contains four revolute joints. Therefore, its
twist-system is spanned by four zero-pitch twists1, namely,

Tjk D span
�
OE01jk; OE02jk; OE03jk; OE04jk

�
(4)

where

OE01jk D
�
e1jk; rEjk � e1jk

�
(5)

OE02jk D
�
e2jk; rEjk � e2jk

�
(6)

OE03jk D
�
e3jk; rFjk � e3jk

�
(7)

OE04jk D
�
e4jk; rFjk � e4jk

�
(8)

rEjk and rFjk denote the position vectors of points Ejk and Fjk, respectively.
The constraint wrench system Wjk of Ljk contains wrenches that are reciprocal to twists OE01jk,

OE02jk, OE03jk and OE04jk, namely a 2-sytem given by:

Wjk D span
�
OFjk; OMjk

�
(9)

where

OFjk D
�
fjk; rFjk � fjk

�
(10)

OMjk D
�
03�1; njk

�
(11)

fjk is the unit vector of
�����!
EjkFjk and njk D e1jk � e2jk D e3jk � e4jk.

Therefore, the constraint wrench system Wk of the distal module of the kth leg takes the form:

Wk D span
�
OF1k; OF2k; OM1k; OM2k

�
(12)

The twist system Tk of the distal module of the kth leg can be derived from Eq. (12). As a matter
of fact, it is a 2-system and contains twists that are reciprocal to wrenches OF1k , OF2k , OM1k and OM2k:

Tk D span
�
OE0k; OE1k

�
(13)

where

OE0k D .n1k � n2k; rP k � .n1k � n2k// (14)

OE1k D .03�1; f1k � f2k/ (15)

rP k denotes the position vector of point Pk, which is the intersection point of lines (E1kF1k) and
(E2kF2k) as shown in Fig. 5.

1A zero-pitch twist OE0 D .u; rA � u/ corresponds to a pure rotation about an axis of unit vector u and passing through
point A. An infinite-pitch twist OE1 D .03�1; v/ corresponds to a pure translation along a direction of unit vector v.
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Let OE1pk be the twist associated with the proximal module of the kth leg of the IRSBot-2:

OE1pk D .03�1; y0 � gk/ (16)

where gk is the unit vector of line (AkBk) as depicted in Fig. 6.
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M̂1k and M̂2k:

Tk = span
(
Ê0k, Ê∞k

)
(13)

where

Ê0k = (n1k × n2k, rPk × (n1k × n2k)) (14)

Ê∞k = (03×1, f1k × f2k) (15)

rPk denotes the position vector of point Pk, which is the intersection point of lines (E1kF1k)

and (E2kF2k) as shown in Fig. 5.

Let Ê∞pk be the twist associated with the proximal module of the kth leg of the IRSBot-2:

Ê∞pk = (03×1, y0 × gk) (16)

where gk is the unit vector of line (AkBk) as depicted in Fig. 6.
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Figure 6: Kinematic chain of the kth proximal module of the IRSBot-2 (k = I, II)

Accordingly, the twist system TLegk of the kth leg of the IRSBot-2 is spanned by one zero-

pitch twist and two-infinite pitch twists:

TLegk = span
(
Ê0k, Ê∞k, Ê∞pk

)
(17)

It means that the kth leg of the IRSBot-2 amounts to a serial kinematic chain composed of

one revolute joint and two prismatic joints. The axis Ak of the corresponding revolute joint

passes through point Pk shown in Fig. 5 and is along the unit vector n1k ×n2k. The directions

of the two prismatic joints are along the unit vectors f1k × f2k and y0 × gk, respectively. Note

Figure 6: Kinematic chain of the kth proximal module of the IRSBot-2 (k D I; II )

Accordingly, the twist system TLegk of the kth leg of the IRSBot-2 is spanned by one zero-pitch
twist and two-infinite pitch twists:

TLegk D span
�
OE0k; OE1k; OE1pk

�
(17)

It means that the kth leg of the IRSBot-2 amounts to a serial kinematic chain composed of one revolute
joint and two prismatic joints. The axis Ak of the corresponding revolute joint passes through point
Pk shown in Fig. 5 and is along the unit vector n1k � n2k. The directions of the two prismatic joints
are along the unit vectors f1k � f2k and y0 � gk, respectively. Note that the three vectors n1k � n2k,
f1k � f2k and y0 � gk are normal to vector y0 while points PI and PII lie in the plane .x0Oz0/. As
a consequence, Fig. 7 illustrates an instantaneous planar equivalent closed kinematic chain of the
IRSBot-2.

The constraint wrench system WLegk of the kth leg of the IRSBot-2 is reciprocal to twists OE0k,
OE1k and OE1pk:

WLegk D T ?Legk (18)

Thus, it is a three-system spanned by the two moments OM1k , OM2k expressed in Eq. (11) and the pure
force OFk defined as follows:

OFk D .y0; rMk � y0/ (19)

rMk denotes the position vector of any point Mk on the axis Ak of unit vector n1k � n2k and passing
through point Pk shown in Fig. 7.
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Figure 7: Equivalent instantaneous mechanism of the IRSBot-2

The constraint wrench system WLegk of the kth leg of the IRSBot-2 is reciprocal to twists

Ê0k, Ê∞k and Ê∞pk:

WLegk = T ⊥
Legk (18)

Thus, it is a three-system spanned by the two moments M̂1k, M̂2k expressed in Eq. (11) and

the pure force F̂k defined as follows:

F̂k = (y0, rMk × y0) (19)

rMk denotes the position vector of any point Mk on the axis Ak of unit vector n1k × n2k and

passing through point Pk shown in Fig. 7.

As a result, the constraint wrench system Wc
IRS of the IRSBot2 is expressed as follows:

Wc
IRS = WLegI +WLegII (20)

= span
(
M̂1I , M̂2I , F̂I , M̂1II , M̂2II , F̂II

)
(21)

As the axes of the pure forces F̂I and F̂II are parallel, span
(
F̂I , F̂II

)
= span

(
F̂I , M̂III

)
with

M̂III =
(
03×1, y0 ×

−−−−→
MIMII

)
(22)

Figure 7: Equivalent instantaneous mechanism of the IRSBot-2

As a result, the constraint wrench system Wc
IRS of the IRSBot2 is expressed as follows:

Wc
IRS D WLegI CWLegII (20)

D span
�
OM1I ; OM2I ; OFI ; OM1II ; OM2II ; OFII

�
(21)

As the axes of the pure forces OFI and OFII are parallel, span
�
OFI ; OFII

�
D span

�
OFI ; OMIII

�
with

OMIII D

�
03�1; y0 �

�����!
MIMII

�
(22)

Wc
IRS can also take the form:

Wc
IRS D span

�
OM1I ; OM2I ; OM1II ; OM2II ; OFI ; OMIII

�
(23)

It is noteworthy that Wc
IRS is spanned by one pure force OFI and five pure moments OM1I , OM2I , OM1II ,

OM2II and OMIII .

3.2 Twist system of the IRSBot-2

The twist system TIRS of the IRSBot-2 is reciprocal to its global constraint wrench system Wc
IRS

expressed in Eq. (23), namely, it is spanned by two infinite pitch twists of directions normal to vector y0:

TIRS D span
�
OE1x0

; OE1z0

�
(24)
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with

OE1x0
D .03�1; x0/ (25)

OE1z0
D .03�1; z0/ (26)

Practically, in the assembly mode of the manipulator under study, the moving platform of the IRSBot-2
can perform two-dof translational motions in the plane .x0Oz0/.

3.3 Actuation wrench system of the IRSBot-2

Let us consider that the actuated joint of a leg of the IRSBot-2 is locked and let ULegk denote the
wrench system reciprocal to the unactuated joints of the leg. Generally,

dim
�
ULegk

�
D dim

�
WLegk

�
C 1 (27)

Then, ULegk includes WLegk plus a set of some additional wrenches. However, the actuation wrench
can be selected as a wrench in ULegk but not in WLegk.

By locking the actuated parallelogram joint of the kth leg of the IRSBot-2, the actuation wrench of
the leg is a screw reciprocal to twists OE0k and OE1k, which does not belong to WLegk. Accordingly, it
is a pure force passing through point Pk and along the vector hk normal to f1k � f2k (see Fig. 5). As a
result, the actuation wrench system of the robot can be written as:

Wa
IRS D span

�
OFa
I ;
OFa
II

�
(28)

with OFa
k
D .hk; rP k � hk/, (k D I; II ). In a non-actuation singular configuration, the legs of the

IRSBot-2 apply two linearly independent actuation forces to its end-effector.

3.4 Constraint singularity conditions of the IRSBot-2

The IRSBot-2 reaches a constraint singularity when its constraint wrench system Wc
IRS defined by

Eq. (23) degenerates, namely, when the dimension of Wc
IRS is lower than four. Wc

IRS is spanned by
one pure force and five moments, so its dimension is exactly the number of independent moments plus
one. Therefore, it is apparent that Wc

IRS degenerates if and only if:

Condition 1: the four moments OM1I , OM2I , OM1II and OM2II span a system of dimension one;

and/or

Condition 2: the five moments OM1I , OM2I , OM1II , OM2II and OMIII span a system of dimension
lower than three.
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From Eq. (11), Condition 1 occurs when vectors n1I , n1II , n2I and n2II that take the following
expressions are parallel:

n1I D .cos2 ˇ cos �I ; cosˇ sinˇ cos �I ;� sin �I / (29a)

n2I D .cos2 ˇ cos �I ;� cosˇ sinˇ cos �I ;� sin �I / (29b)

n1II D .cos2 ˇ cos �II ;� cosˇ sinˇ cos �II ;� sin �II / (29c)

n2II D .cos2 ˇ cos �II ; cosˇ sinˇ cos �II ;� sin �II / (29d)

where angles ˇ, �I and �II are shown in Figs. 3 and 4.
Practically, Condition 1 holds when the four UU planes are parallel2. From Eqs. (29a)–(d), it is

apparent that n1I , n1II , n2I and n2II are parallel if and only if:

cos �I D cos �II D 0 (30)

As a matter of fact, Condition 1 holds if and only if the four UU planes are normal to vector z0

due to the symmetry of the manipulator with respect to plane x0Oz0 and the bounds on angle ˇ, i.e.,
0 < ˇ < �=2.
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(b) θI = −π/2 and θII = π/2

Figure 8: Constraint singular configurations of the distal loop satisfying Condition 1 (Projection
of the distal loop onto the plane (x0Oz0))
Figure 8: Constraint singular configurations of the distal loop satisfying Condition 1 (Projection of the
distal loop onto the plane .x0Oz0/)

2UU planes denote the planes including the universal joint axes for each sub-chain jk
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Figures 8(a)–(b) illustrate the two constraint singular configurations of the distal loop associated
with Condition 1.

For the configuration depicted in Fig. 8(a), the directions of the five moments M1I , M1II , M2I ,
M2II and MIII are parallel to z0. As a consequence, the gained motions in this configuration are
two infinitesimal rotations about axes lying in the horizontal plane passing through points P1 and P2.
However, this configuration cannot be reached without any collision of the elbows of the IRSBot-2
when the radius p of the platform is smaller than .a1 � a2/ sinˇ (see Fig. 3 for the parameterization).

For the configuration shown in Fig. 8(b), �I D ��=2 and �II D �=2. Therefore, the directions of
the five moments M1I , M1II , M2I , M2II and MIII are not parallel, but lie in the plane (x0Oz0).
As a result, the gained motion of the moving-platform is an infinitesimal rotation about the axis passing
through point PI and of unit vector y0. Note that Sec. 6 introduces a methodology to determine the
design parameters of the proximal modules that prevent the IRSBot-2 from reaching such singular
configurations.
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points P1 and P2. However, this configuration cannot be reached without any collision of the

elbows of the IRSBot-2 when the radius p of the platform is smaller than (a1 − a2) sinβ (see

Fig. 3 for the parameterization).
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tions of the five moments M1I , M1II , M2I , M2II and MIII are not parallel, but lie in the
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tion about the axis passing through point PI and of unit vector y0. Note that Sec. 6 introduces

a methodology to determine the design parameters of the proximal modules that prevent the

IRSBot-2 from reaching such singular configurations.
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Figure 9: Constraint singular configurations of the distal loop satisfying Condition 2

From Eqs. (11) and (22), Condition 2 occurs if and only if Condition 1 is satisfied and/or

vectors n1I , n1II , n2I , n2II and y0 ×
−−−−→
MIMII have a common normal. The latter condition

happens when vectors n1I × n2I , n1II × n2II and
−−−→
PIPII that take the following expressions are

parallel.

n1I × n2I = (sin θI , 0, cos
2 β cos θI) (31a)

n1II × n2II = (sin θII , 0, cos
2 β cos θII) (31b)

−−−→
PIPII = (xPII

− xPI
, 0, zPII

− zPI
) (31c)

As a consequence, M̂1I , M̂2I , M̂1II , M̂2II and M̂III span a system of dimension equal to two.

From Eqs. (31a)–(c), it is apparent that vectors n1I × n2I , n1II × n2II and
−−−→
PIPII are parallel

Figure 9: Constraint singular configurations of the distal loop satisfying Condition 2

From Eqs. (11) and (22), Condition 2 occurs if and only if Condition 1 is satisfied and/or vectors
n1I , n1II , n2I , n2II and y0 �

�����!
MIMII have a common normal. The latter condition happens when

vectors n1I � n2I , n1II � n2II and
����!
PIPII that take the following expressions are parallel.

n1I � n2I D .sin �I ; 0; cos2 ˇ cos �I / (31a)

n1II � n2II D .sin �II ; 0; cos2 ˇ cos �II / (31b)
����!
PIPII D .xPII

� xPI
; 0; zPII

� zPI
/ (31c)

As a consequence, OM1I , OM2I , OM1II , OM2II and OMIII span a system of dimension equal to two.
From Eqs. (31a)–(c), it is apparent that vectors n1I � n2I , n1II � n2II and

����!
PIPII are parallel when
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the axes AI and AII , shown in Fig. 7, coincide, namely,

�I D �II C p�; p D 0; 1 (32a)

and
.xPII

� xPI
/ cos2 ˇ cos �II � .zPII

� zPI
/ sin �II D 0 (32b)

where xPk
and zPk

are the x- and z- Cartesian coordinates of point Pk expressed in the robot base
frame (k D I; II ).

Geometrically, Condition 2 occurs when the four UU planes intersect the same straight line, namely,
the line passing through points PI and PII .

Figure 9 represents a configuration of the distal loop of the IRSBot-2 satisfying Condition 2. The
relation between Eq. (32a), Eq. (32b) and the design parameters of the distal modules is difficult to
grasp. Therefore, Sec. 4 deals with a detailed analysis of the constraint singularities of the distal loop
corresponding to Condition 2 with regard to its design parameters.

4 Constraint Singularity Analysis of the IRSBot-2 in its Distal
Parameter Space

This section aims to find the sets of distal design parameters Pd D fa1; a2; ˇ; p; l2eqg that allow the
IRSBot-2 to reach some constraint singularities. Note that the foregoing five design parameters are
shown in Fig. 3. a1, a2, l2eq and �k are the lengths of segments EkE1k, FkF1k, HkGk and EkFk,
respectively. p is the radius of the moving-platform. The definition domains of a1, a2, ˇ, p, l2eq and
�k are �0; C1Œ, �0; C1Œ, �0; �=2Œ, �0; C1Œ, �0; C1Œ and �0; C1Œ, respectively, with a1 > a2.

Let Dd denote the definition domain of Pd and let Dr be the definition domain of fa1; a2; ˇ; pg.
The Cartesian coordinates of vector

����!
PIPII shown in Fig. 9 are expressed by the following equation

that highlights the relation between the coordinates of points PI , PII and angles  I ,  II .

����!
PIPII D

"
xPII
� xPI

zPII
� zPI

#
D

"
2p C ` .cos II � cos I /

�` .sin II � sin I /

#
(33)

with
` D

a2 l2eq

a1 � a2

(34)

Angles  I and  II are depicted in Figs. 3 and 4. From the closed-loop Ek–Hk–Gk–Fk (k D I; II ),
the link between �k , �k and  k is expressed as follows:"

l2eq cos k

�l2eq sin k

#
D

"
�k cos �k � .a1 � a2/ sinˇ

��k sin �k

#
(35)
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The length �k, shown in Fig. 4, is obtained from Eq. (35):

�2
k D l2

2
eq C .a1 � a2/

2 sin2 ˇ C 2.�1/kC1l2eq.a1 � a2/ sinˇ cos k (36)

l22eq D �2
k C .a1 � a2/

2 sin2 ˇ � 2.�1/kC1�k.a1 � a2/ sinˇ cos �k (37)

Equation (36) gives �k as a function of k . �k is also the root of polynomial (37) whose coefficients
depend on variable �k . The foregoing two formulations are used to simplify the constraint singularity
condition defined by Eq. (32b).

The following three cases are analyzed separately in order to end up with a univariate polynomial
form of Eq. (32b):

Case I: �I D �II C � and �I D �II ¤ 0

Equation (32b) can be expressed in the following polynomial form with variableX corresponding
to cos II and  I D  II C � because Eq. (35) , �I D �II C � and �I D �II ¤ 0:

QI W Œ�1; 1� ! R
X 7! QI .X/ D A1X

2 C B1X C C1

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �0; C1Œ

(38)

8̂̂̂<̂
ˆ̂:
A1 D � l2

2
eq sin2 ˇ a2=.a1 � a2/

B1 D l2eq .1 � sin2 ˇ/ .p � a2 sinˇ/

C1 D � p .a1 � a2/ .1 � sin2 ˇ/ sinˇ C l2
2
eq a2=.a1 � a2/

Case II: �I D �II C � and �I ¤ �II

Equation (32b) can be expressed in the following polynomial form with variableX corresponding
to cos �II :

QII W Œ�1; 0Œ ! R
X 7! QII .X/ D A2X

2 C C2

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �.a1 � a2/ sinˇj sin � j; .a1 � a2/ sinˇŒ

(39)8<:A2 D a2 sin3 ˇ

C2 D p.1 � sin2 ˇ/ � a2 sin3 ˇ

For �k to be positive in Eq.(37), l2eq should be bounded between .a1 � a2/ sinˇj sin � j and
.a1 � a2/ sinˇ.

Case III: �I D �II

Equation (32b) can be expressed in the following polynomial form with variableX corresponding
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to cos �II :

QIII W Œ�1; 1� ! R
X 7! QIII .X/ D A3X

2 C C3

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �.a1 � a2/ sinˇ; C1Œ

(40)

8<:A3 D a2 sin3 ˇ

C3 D p.1 � sin2 ˇ/ � a2 sin3 ˇ

The lower bound on l2eq, i.e., .a1 � a2/ sinˇ, is obtained from Eq. (37).

As a matter of fact, the IRSBot-2 reaches a constraint singularity as long as one of the univariate
polynomials (38), (39) and (40) admits one root at least. As the previous algebraic equations are
relatively simple, their solutions can be expressed in a closed form. The set of design parameters
fa1; a2; ˇ; p; l2eqg for which the constraint singularities associated with Cases I, II and III can be
reached are obtained with a method based on the notion of Discriminant Varieties and Cylindrical
Algebraic Decomposition. This method provides a formal decomposition of the five dimensional
parameter space through an exactly known algebraic variety. It resorts to Gröbner bases for the
solutions of systems of equations and is described in [18]. The tools used to perform the computations
are implemented in a Maple library called Siropa3. In the following computation, the used algebraic
variables are a1, a2, sinˇ, p and l2eq.

Table 1: Cells of R5 where the distal loop of the IRSBot-2 can reach some constraint singularities
Case I

.�a11; a12Œ; �a21; a22Œ; �ˇ1; ˇ4Œ/

�p1; p2Œ .�l2eq1
; l2eq2

Œ/

Two singular configs.

�p2; p3Œ .�l2eq1
; l2eq2

Œ/

�p3; p4Œ .�l2eq1
; l2eq2

Œ/

�p4; p5Œ .�l2eq2
; l2eq1

Œ/

�p5; p6Œ .�l2eq2
; l2eq1

Œ/

�p6; p7Œ .�l2eq2
; l2eq1

Œ/

�p3; p4Œ .�l2eq3
; l2eq1

Œ/
Four singular configs.

�p4; p5Œ .�l2eq3
; l2eq2

Œ/

Case II
.�a11; a12Œ; �a21; a22Œ; �ˇ1; ˇ4Œ/ �p1; p8Œ .�l2eq4

; l2eq2
Œ/ Two singular configs.

Case III
.�a11; a12Œ; �a21; a22Œ; �ˇ1; ˇ4Œ/ �p1; p8Œ .�l2eq2

; l2eq5
Œ/ Four singular configs.

Table 1 provides the cells of R5 where the distal loop of the IRSBot-2 can reach some constraint
singularities, namely, where QI , QII or QIII admits at least one root. The expressions of the lower
and upper bounds of those cells are given in Tab. 2. It is noteworthy that parameters a1 and ˇ can be
chosen independently. However, the lower and upper bounds of intervals associated with parameters
a2, p and l2eq are determined successively and depend on the upstream parameters.

For a better understanding of Tables 1 and 2, a set of design parameters fa1; a2; ˇ; p; l2eqg for

3http://www.irccyn.ec-nantes.fr/˜chablat/SIROPA/files/siropa-mpl.html
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Table 2: Formulae describing the boundaries of the cells shown in Tables 1 and 3
a11 D 0 p1 D 0

a12 D C1 p2.a2; sinˇ/ D
1 � sinˇ
1C sinˇ

a2 sinˇ

a21 D 0 p3.a2; sinˇ/ D
1 � sin2 ˇ

1C sin2 ˇ
a2 sinˇ

a22 D a1 p4.a2; sinˇ/ D a2 sinˇ

ˇ1 D 0 p5.a2; sinˇ/ D
1C sin2 ˇ

1 � sin2 ˇ
a2 sinˇ

ˇ2 D arcsin.1=
p
3/ p6.a2; sinˇ/ D

1C sinˇ
1 � sinˇ

a2 sinˇ

ˇ3 D �=4 p7 D C1

ˇ4 D �=2 p8.a2; sinˇ/ D a2 sinˇ tan2 ˇ

l2eq1
.a1; a2; sinˇ; p/ D

a1 � a2

a2

p

l2eq2
.a1; a2; sinˇ; p/ D .a1 � a2/ sinˇ

l2eq3
.a1; a2; sinˇ; p/ D

a1 � a2

2a2 sinˇ

q
.sin2 ˇ � 1/

�
.sin2 ˇ � 1/.p � a2 sinˇ/2 C 4p a2 sin3 ˇ

�
l2eq4

.a1; a2; sinˇ; p; �II / D .a1 � a2/ sinˇj sin �II j

l2eq5
.a1; a2; sinˇ; p/ D C1

which the distal loop of the IRSBot-2 can reach a constraint singularity corresponding to Case I is
determined hereafter.

From Tables 1 and 2, a1 and ˇ should belong to intervals �0;C1Œ and �0; �=2Œ, respectively, and
can be chosen independently of the other three design parameters. Therefore, let a1 and ˇ be equal
to 0.2 m and �=4, respectively. a2 is set to 0.03 m as it should be positive but smaller than a1 (see
Tab. 1). Then, the lower and upper bounds of intervals associated with parameter p can be evaluated
up to a precision of 10�4 m:

p p1 p2 p3 p4 p5 p6 p7

0 0:0036 0:0071 0:0212 0:0637 0:1236 C1

Let p take a value between p4 and p5 and be equal to 0.05 m. From Table 1, the distal loop of
the IRSBot-2 may reach two or four constraint singularities depending on the choice of l2eq as p is
between p4 and p5. As a matter of fact, it can reach two symmetrical singular configurations when
l2eq is between l2eq2 and l2eq1, i.e., QI has one root, and it can reach four symmetrical singular
configurations when l2eq is between l2eq3 and l2eq2, i.e., QI has two different roots,. Similarly, the
lower and upper bounds of intervals associated with parameter l2eq can be evaluated up to a precision
of 10�4 m:

l2eq l2eq1 l2eq2 l2eq3

2:833 0:1202 0:1171

Let l2eq take a value between l2eq2 and l2eq1 and be equal to 0.2 m.
As a result, the polynomial QI admits one root X D �0:7388 lying in the definition domain

for the set of design parameters Pd D f0:2; 0:03; �=4; 0:05; 0:2g. The corresponding constraint
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β be equal to 0.2 m and π/4, respectively. a2 is set to 0.03 m as it should be positive but

smaller than a1 (see Tab. 1). Then, the lower and upper bounds of intervals associated with

parameter p can be evaluated up to a precision of 10−4 m:

p p1 p2 p3 p4 p5 p6 p7

0 0.0036 0.0071 0.0212 0.0637 0.1236 +∞

Let p take a value between p4 and p5 and be equal to 0.05 m. From Table 1, the distal loop
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l2eq l2eq1 l2eq2 l2eq3
2.833 0.1202 0.1171

Let l2eq take a value between l2eq2 and l2eq1 and be equal to 0.2 m.
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Figure 10: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case I (ψII = ψI + π)

As a result, the polynomial QI admits one root X = −0.7388 lying in the definition domain

for the set of design parameters Pd = {0.2, 0.03, π/4, 0.05, 0.2}. The corresponding constraint

singular configuration of the distal loop of the IRSBot-2 is illustrated in Fig 10. Note that

Figure 10: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case I ( II D  I C �)

singular configuration of the distal loop of the IRSBot-2 is illustrated in Fig 10. Note that  II D

arccos.�0:7388/ D ˙2:402 rad for this configuration.
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ψII = arccos(−0.7388) = ±2.402 rad for this configuration.
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Figure 11: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case II (θII = θI + π)

Figures 11 and 12 depict two constraint singular configurations of the distal loop of the

IRSBot-2 associated with Cases II and III, respectively. The gained motion of the moving-

platform is a rotation about the axis PIPII shown in Figs. 10, 11 and 12 for the previous three

singular configurations.

5 Design Parameters for the Distal Loop to be Free of

Constraint Singularity

This section aims to find the sets of design parameters Pd = {a1, a2, β, p, l2eq} that prevent

the distal loop of the IRSBot-2 from reaching any constraint singularity. It amounts to find

the intersection of cells where QI , QII and QIII do not have any real root over their mutual

domain.

As it is more difficult to obtain the intersection of cells than their union, the cells where

the product of QI , QII and QIII does not have any real root are searched. From Eqs. (39)

and (40), it is apparent that the expressions of QII and QIII are the same, but their domains

are disjointed and complementary because of the bounds of l2eq. Therefore, the sets of design

parameters Pd = {a1, a2, β, p, l2eq} that prevent the IRSBot-2 from reaching any constraint

singularity correspond to the union of cells that do not provide any real root for the following

three univariate polynomials:

Figure 11: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case II (�II D �I C �)

Figures 11 and 12 depict two constraint singular configurations of the distal loop of the IRSBot-2
associated with Cases II and III, respectively. The gained motion of the moving-platform is a rotation
about the axis PIPII shown in Figs. 10, 11 and 12 for the previous three singular configurations.
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Figure 12: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case III (θII = θI)
Figure 12: Front view of the distal loop of the IRSBot-2 in a constraint singular configuration
corresponding to Case III (�II D �I )

5 Design Parameters for the Distal Loop to be Free of Constraint
Singularity

This section aims to find the sets of design parameters Pd D fa1; a2; ˇ; p; l2eqg that prevent the
distal loop of the IRSBot-2 from reaching any constraint singularity. It amounts to find the intersection
of cells where QI , QII and QIII do not have any real root over their mutual domain.

As it is more difficult to obtain the intersection of cells than their union, the cells where the product
of QI , QII and QIII does not have any real root are searched. From Eqs. (39) and (40), it is apparent
that the expressions ofQII andQIII are the same, but their domains are disjointed and complementary
because of the bounds of l2eq . Therefore, the sets of design parameters Pd D fa1; a2; ˇ; p; l2eqg that
prevent the IRSBot-2 from reaching any constraint singularity correspond to the union of cells that do
not provide any real root for the following three univariate polynomials:

QIV W Œ�1; 1� ! R
X 7! QIV .X/ D QI QII .X/ D .A1X

2 C B1X C C1/.A2..X � 1/=2/
2 C C2/

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �.a1 � a2/ sinˇj sin � j; .a1 � a2/ sinˇŒ

(41)
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QV W Œ�1; 1� ! R
X 7! QV .X/ D QI QIII .X/ D .A1X

2 C B1X C C1/.A3X
2 C C3/

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �.a1 � a2/ sinˇ; C1Œ

(42)

QVI W Œ�1; 1� ! R
X 7! QVI .X/ D QI D .A1X

2 C B1X C C1/

with Œa1; a2; ˇ; p� 2 Dr ; l2eq 2 �0; .a1 � a2/ sinˇj sin �II jŒ

(43)

A1, B1, C1, A2, C2, A3, C3 and Dr being defined in Eqs. (38) to (40).
QIV is the product of QI and QII with a change of variable for QII and the most restrictive

domain for l2eq defined in Eq. (39). QV is the product of QI and QIII with the most restrictive
domain for l2eq defined in Eq. (40). QVI amounts to QI with l2eq being positive but smaller than
.a1 � a2/ sinˇj sin �II j.

Table 3: Cells of R5 where the distal loop of the IRSBot-2 cannot reach any constraint singularity with
a1 2�a11; a12Œ and a2 2�a21; a22Œ

Œˇ1; ˇ2Œ .�p8; p3Œ; �l2eq2
; l2eq5

Œ/; .�p3; p4Œ; �l2eq2
; l2eq5

Œ/; .�p4; p5Œ; �l2eq1
; l2eq5

Œ/; .�p5; p7Œ; �l2eq1
; l2eq5

Œ/

Œˇ2; ˇ3Œ .�p8; p4Œ; �l2eq2
; l2eq5

Œ/; .�p4; p5Œ; �l2eq1
; l2eq5

Œ/; .�p5; p7Œ; �l2eq1
; l2eq5

Œ/

Œˇ3; ˇ4� .�p8; p5Œ; �l2eq1
; l2eq5

Œ/; .�p5; p7Œ; �l2eq1
; l2eq5

Œ/

For Eqs. (41) and (43) the interval of l2eq depends on variable �II . It means that the bounds of the
cells for whichQIV andQVI do not have any real root depend on the robot posture. As a consequence,
we consider that l2eq > .a1 � a2/ sinˇ in order to avoid this issue and search for the cells where QV

does not have any real root.
Note that the distal loops free of constraint singularity with l2eq � .a1 � a2/ sinˇ are not

interesting in practice as they lead to bulky robots for which the elbows are quite longer than their legs.
QIV and QVI are not defined anymore when l2eq > .a1 � a2/ sinˇ. Therefore, the sets of design

parameters Pd D fa1; a2; ˇ; p; l2eqg for which the distal loop of the IRSBot-2 cannot reach any
constraint singularity are expressed in Table 3.

As an illustrative example, let a1 D 1, ˇ D ˇ2 D arcsin.1=
p
3/ and l2eq > .a1 � a2/ sinˇ.

Therefore, the design space parameters that prevent the distal loop of the IRSBot-2 from reaching
any constraint singularity is obtained from the second line of Table 3. Its boundaries are depicted in
Fig. 13.

6 Proximal Parameters for the IRSBot-2 to be Assembled and
Free of Constraint Singularity

In this section, we search for the design parameters of the proximal module for the IRSBot-2 to be
assembled without having any constraint singularity. The design parameters of the proximal module are
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reach any constraint singularity are expressed in Table 3.

l2eq1 = 0

l2eq2 = 0

a21 = a1

p8 = 0

p8 = 0p4 = 0

(a) (b)

Figure 13: Front view (a) and back view (b) of cells where the distal loop of the IRSBot-2
cannot reach any constraint singularity for a1 = 1, β = arcsin(1/

√
3) and l2eq > (a1 − a2) sin β

As an illustrative example, let a1 = 1, β = β2 = arcsin(1/
√
3) and l2eq > (a1 − a2) sin β.

Therefore, the design space parameters that prevent the distal loop of the IRSBot-2 from

reaching any constraint singularity is obtained from the second line of Table 3. Its boundaries

are depicted in Fig. 13.

6 Proximal Parameters for the IRSBot-2 to be Assem-

bled and Free of Constraint Singularity

In this section, we search for the design parameters of the proximal module for the IRSBot-2 to

be assembled without having any constraint singularity. The design parameters of the proximal

module are its base radius b and link length l1 shown in Fig. 3. The definition domains of l1

and b are ]0, +∞[ and ]0, +∞[, respectively. Let Dp be the definition domain of the set of

design parameters Pp = {l1, b}.
First, the assembly conditions of the IRSBot-2 are analyzed assuming that its distal loop

is free of constraint singularity. Then, the conditions on design parameters l1 and b for which

the IRSBot-2 cannot be assembled in the singular configurations associated with Cases I, II

and III are obtained. Finally, a design methodology is proposed to determine the set of design

parameters l1 and b for the IRSBot-2 to be assembled and free of singularity.

Figure 13: Front view (a) and back view (b) of cells where the distal loop of the IRSBot-2 cannot reach
any constraint singularity for a1 D 1; ˇ D arcsin.1=

p
3/ and l2eq > .a1 � a2/ sinˇ

its base radius b and link length l1 shown in Fig. 3. The definition domains of l1 and b are �0; C1Œ and
�0; C1Œ, respectively. Let Dp be the definition domain of the set of design parameters Pp D fl1; bg.

First, the assembly conditions of the IRSBot-2 are analyzed assuming that its distal loop is free
of constraint singularity. Then, the conditions on design parameters l1 and b for which the IRSBot-2
cannot be assembled in the singular configurations associated with Cases I, II and III are obtained.
Finally, a design methodology is proposed to determine the set of design parameters l1 and b for the
IRSBot-2 to be assembled and free of singularity.

6.1 First assembly condition of the IRSBot-2

For a given set of design parameters Pd D fa1; a2; ˇ; p; l2eqg, the first assembly condition of the
IRSBot-2 with regard to parameters l1 and b are obtained by using the assembly condition of the
five-bar mechanism [8], namely,

b < l1 C l2eq C a1 sinˇ C p (44)

Moreover, similarly to the condition given in [17] for the five-bar mechanism not to meet any actuation
singularity, the IRSBot-2 will not meet any actuation singularity if:

b < �l1 C l2eq C a1 sinˇ C p (45)
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6.1 First assembly condition of the IRSBot-2

For a given set of design parameters Pd = {a1, a2, β, p, l2eq}, the first assembly condition of

the IRSBot-2 with regard to parameters l1 and b are obtained by using the assembly condition

of the five-bar mechanism [8], namely,

b < l1 + l2eq + a1 sin β + p (44)

Moreover, similarly to the condition given in [17] for the five-bar mechanism not to meet any

actuation singularity, the IRSBot-2 will not meet any actuation singularity if:

b < −l1 + l2eq + a1 sin β + p (45)

6.2 Assembly conditions of the IRSBot-2 when its distal loop is free

of constraint singularity

l1

b

M1

0

Za

Figure 14: Zone Za of the proximal design space {l1, b} where the IRSBot-2 can be assembled
with its distal loop free of constraint singularity

For a given set Pd belonging to Tab. 3 for which the distal loop is free of constraint singular-

Figure 14: Zone Za of the proximal design space fl1; bg where the IRSBot-2 can be assembled with
its distal loop free of constraint singularity

6.2 Assembly conditions of the IRSBot-2 when its distal loop is free of con-
straint singularity

For a given set Pd belonging to Tab. 3 for which the distal loop is free of constraint singularity,
inequation (44) can be used to determine the zone Za of the proximal design space fl1; bg where the
IRSBot-2 can be assembled. This zone is shown in Fig. 14 and is delimited by the straightline passing
through the point M1 of coordinates .0; l2eq C a1 sinˇ C p/ and of slope equal to one. Likewise, the
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ity, inequation (44) can be used to determine the zone Za of the proximal design space {l1, b}
where the IRSBot-2 can be assembled. This zone is shown in Fig. 14 and is delimited by the

straightline passing through the point M1 of coordinates (0, l2eq + a1 sin β + p) and of slope

equal to one. Likewise, the zone Zwac of the proximal design space, where the IRSBot-2 can be

l1

b

0

Zwac

M1

Figure 15: Zone Zwac of the proximal design space {l1, b} where the IRSBot-2 can be assembled
without any actuation singularity and with its distal loop free of constraint singularity

assembled and does not meet any actuation singularity, is obtained thanks to inequation (45).

This zone is shown in Fig. 15 and is delimited by the straightline passing through the point M1

and of slope equal to minus one.

As a conclusion, the IRSBot-2 can be assembled and neither meets a constraint singularity

nor reaches an actuation singularity if the inequations (44) and (45) are satisfied and the design

parameters of the distal modules belong to the cells expressed in Table 3.

However, those conditions are restrictive. Indeed, the sets of design parameters Pp and Pd

for the IRSBot-2 to be free of constraint singularity can be enlarged by considering the cases

for which the manipulator is free of constraint singularity when its proximal and distal loops

are assembled, whereas its distal loop itself may reach some constraint singularities.

Figure 15: Zone Zwac of the proximal design space fl1; bg where the IRSBot-2 can be assembled
without any actuation singularity and with its distal loop free of constraint singularity
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zone Zwac of the proximal design space, where the IRSBot-2 can be assembled and does not meet
any actuation singularity, is obtained thanks to inequation (45). This zone is shown in Fig. 15 and is
delimited by the straightline passing through the point M1 and of slope equal to minus one.

As a conclusion, the IRSBot-2 can be assembled and neither meets a constraint singularity nor
reaches an actuation singularity if the inequations (44) and (45) are satisfied and the design parameters
of the distal modules belong to the cells expressed in Table 3.

However, those conditions are restrictive. Indeed, the sets of design parameters Pp and Pd for the
IRSBot-2 to be free of constraint singularity can be enlarged by considering the cases for which the
manipulator is free of constraint singularity when its proximal and distal loops are assembled, whereas
its distal loop itself may reach some constraint singularities.

6.3 Conditions on design parameters l1 and b for which the IRSBot-2 cannot
be assembled in the constraint singular configurations

The section aims at finding the conditions on the design parameters l1 and b that prevent the IRSBot-
2 from reaching any constraint singularity even if its distal loop itself may reach some constraint
singularities.

From Sec. 4,QI (QII ,QIII , resp.) admits one root at least when the design parameters associated
with the distal module belong to the cells corresponding to Case. I (Case II, Case III, resp.). It means
that the singular posture(s) of the distal loop associated with the root(s) is(are) known.

The conditions on design parameters l1 and b for which the IRSBot-2 cannot be assembled in the
singular configurations associated with Cases I, II and III are obtained hereafter.

Case I: �I D �II C � and �I D �II ¤ 0

For Case I, the assembly conditions of the proximal and distal loops are characterized by the
loop-closure Ak � Bk �Ek �Hk �Gk � P (k D I; II ) that is expressed as follows:"

x

z

#
D

"
l1 cos qk

�l1 sin qk

#
C

"
l2eq cos k

�l2eq sin k

#
C

"
.�1/k.b � a1 sinˇ � p/

0

#
; k D I; II (46)

As a reminder the conditions �I D �II C � and �I D �II ¤ 0 amount to  I D  II C � . By
eliminating qk in Eq. (46) with  I D  II C � , we obtain:�

x C .l2eq cos C b � a1 sinˇ � p/
�2
C
�
z � l2eq sin 

�2
� l21 D 0 (47a)�

x � .l2eq cos C b � a1 sinˇ � p/
�2
C
�
z C l2eq sin 

�2
� l21 D 0 (47b)

with  denoting  II for a better clarity of the equations.
From Eqs. (47a)-(b), the following relation between x and z is obtained:

x D
z l2eq sin 

b � �1 C l2eq cos 
(48)
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with �1 D a1 sinˇ C p. The following fourth-degree polynomial is obtained by introducing the
previous expression of x into Eq. (47b):

X2
C .l22eq sin2 � l21 C z

2/X C .zl2eq sin /2 D 0 (49)

with
X � .b � �1 C l2eq cos /2 (50)

The discriminant � of Eq. (49) can be expressed as:

� D .l2eq sin � z � l1/.l2eq sin � z C l1/.l2eq sin C z � l1/.l2eq sin C z C l1/ (51)

From Eq. (51), � is positive if and only if:

�l1 C l2eqj sin j < z < l1 � l2eqj sin j (52)

with l1 > l2eqj sin j. Accordingly, there exist four assembly modes between the proximal loop and
the distal loop and four relations appear between the design parameter b and the z-Cartesian coordinate
of the moving-platform for the IRSBot-2 to be assembled, namely,

bI
1 .z/ D �1 � l2eq cos �

1

2

�q
l21 � .l2eq sin � z/2 �

q
l21 � .l2eq sin C z/2

�
(53a)

bI
2 .z/ D �1 � l2eq cos �

1

2

�q
l21 � .l2eq sin � z/2 C

q
l21 � .l2eq sin C z/2

�
(53b)

bI
3 .z/ D �1 � l2eq cos C

1

2

�q
l21 � .l2eq sin � z/2 �

q
l21 � .l2eq sin C z/2

�
(53c)

bI
4 .z/ D �1 � l2eq cos C

1

2

�q
l21 � .l2eq sin � z/2 C

q
l21 � .l2eq sin C z/2

�
(53d)

The extrema of functions bI
i .z/, i D 1; : : : ; 4, appear when z D 0 for a given design parameter l1,

i.e,

bI
1 .z D 0/ D bI

3 .z D 0/ D �1 � l2eq cos 

bI
2 .z D 0/ D �1 � l2eq cos �

q
l21 � l

2
2eq sin2 (54)

bI
4 .z D 0/ D �1 � l2eq cos C

q
l21 � l

2
2eq sin2 

Note that bI
2 .z D 0/ < b

I
1 .z D 0/; b

I
3 .z D 0/ < b

I
4 .z D 0/. As a result, the distal loop in a singular

configuration associated with Case I and the proximal loop of the IRSBot-2 can be assembled if and
only if:

bI
2 .z D 0/ < b < b

I
4 .z D 0/ (55)

It means that the IRSBot-2 will not reach the corresponding constraint singularity if and only if
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inequation (44) holds and

b < a1 sinˇ C p � l2eq cos �
q
l21 � l

2
2eq sin2 (56)

or
b > a1 sinˇ C p � l2eq cos C

q
l21 � l

2
2eq sin2 (57)

with l1 > l2eq jsin j.

Case II: �I D �II C � and �I ¤ �II

For Case II, the assembly conditions of the proximal and distal loops are characterized by the
loop-closure Ak � Bk �Ek � Fk � P (k D I; II ) that is expressed as follows:"

x

z

#
D

"
l1 cos qk

�l1 sin qk

#
C

"
�k cos �k

��k sin �k

#
C

"
.�1/k.b � a2 sinˇ � p/

0

#
(58)

Let � denote �II for a better clarity of the equations. By eliminating qk in Eq. (58) with �I D �II C� ,

.x C �I cos � C .b � a2 sinˇ � p//2 C .z � �I sin �/2 � l21 D 0 (59a)

.x � �II cos � � .b � a2 sinˇ � p//2 C .z C �II sin �/2 � l21 D 0 (59b)

Similarly to Case I, a fourth-degree polynomial is obtained from Eqs. (59a) and (59b). Its four roots
correspond to four assembly modes between the proximal and distal loops of the IRSBot-2. Those
four assembly modes are characterized by the following four relations between the design parameter b
and the z-coordinate of the moving platform:

bII
1 .z/ D �2 �

1

2
.�I C �II / cos � �

1

2

�q
l21 � .z C �II sin �/2 �

q
l21 � .z � �I sin �/2

�
(60a)

bII
2 .z/ D �2 �

1

2
.�I C �II / cos � �

1

2

�q
l21 � .z C �II sin �/2 C

q
l21 � .z � �I sin �/2

�
(60b)

bII
3 .z/ D �2 �

1

2
.�I C �II / cos � C

1

2

�q
l21 � .z C �II sin �/2 �

q
l21 � .z � �I sin �/2

�
(60c)

bII
4 .z/ D �2 �

1

2
.�I C �II / cos � C

1

2

�q
l21 � .z C �II sin �/2 C

q
l21 � .z � �I sin �/2

�
(60d)

The extrema of functions bII
i .z/, i D 1; : : : ; 4, appear when z D zII D

1
2
.�I � �II / sin � for a given

design parameter l1, namely,

bII
1 .z D zII / D bII

3 .z D zII / D �2 �
1

2
.�I C �II / cos �

bII
2 .z D zII / D �2 �

1

2
.�I C �II / cos � C

r
l21 � .

1

2
.�I C �II / sin �/2 (61)

bII
4 .z D zII / D �2 �

1

2
.�I C �II / cos � �

r
l21 � .

1

2
.�I C �II / sin �/2
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with �2 D a2 sinˇ C p.
Note that bII

2 .z D zII / < bII
1 .z D zII /; b

II
3 .z D zII / < bII

4 .z D zII /. As a result, the distal
loop in a singular configuration associated with Case II and the proximal loop of the IRSBot-2 can be
assembled if and only if:

bII
2 .z D zII / < b < b

II
4 .z D zII / (62)

It means that the IRSBot-2 will not reach the corresponding constraint singularity if and only if
inequation (44) holds and

b < a2 sinˇ C p �
1

2
.�I C �II / cos � �

r
l21 � .

1

2
.�I C �II / sin �/2 (63)

or

b > a2 sinˇ C p �
1

2
.�I C �II / cos � C

r
l21 � .

1

2
.�I C �II / sin �/2 (64)

with l1 >
1

2
.�I C �II / jsin � j.

Case III: �I D �II

For Case III, the assembly conditions of the proximal and distal loops are characterized by the
loop-closure Ak�Bk�Ek�Fk�P (k D I; II ) expressed in Eq. (58). By eliminating qk in Eq. (58)
with �I D �II D � ,

.x � �I cos � C .b � a2 sinˇ � p//2 C .z C �I sin �/2 � l21 D 0 (65a)

.x � �II cos � � .b � a2 sinˇ � p//2 C .z C �II sin �/2 � l21 D 0 (65b)

Similarly to Cases I and II, a fourth-degree polynomial is obtained from Eqs. (65a) and (65b). Its
four roots correspond to four assembly modes between the proximal and distal loops of the IRSBot-2.
Those four assembly modes are characterized by the following four relations between the design
parameter b and the z-coordinate of the moving platform:

bIII
1 .z/ D �2 C

1

2
.�I � �II / cos � �

1

2

�q
l21 � .z C �II sin �/2 �

q
l21 � .z C �I sin �/2

�
(66a)

bIII
2 .z/ D �2 C

1

2
.�I � �II / cos � �

1

2

�q
l21 � .z C �II sin �/2 C

q
l21 � .z C �I sin �/2

�
(66b)

bIII
3 .z/ D �2 C

1

2
.�I � �II / cos � C

1

2

�q
l21 � .z C �II sin �/2 �

q
l21 � .z C �I sin �/2

�
(66c)

bIII
4 .z/ D �2 C

1

2
.�I � �II / cos � C

1

2

�q
l21 � .z C �II sin �/2 C

q
l21 � .z C �I sin �/2

�
(66d)

The extrema of functions bIII
i .z/, i D 1; : : : ; 4, appear when z D zIII D �

1
2
.�I C �II / sin � for
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a given design parameter l1:

bIII
1 .z D zIII / D bIII

3 .z D zIII / D �2 C
1

2
.�I � �II / cos �

bIII
2 .z D zIII / D �2 C

1

2
.�I � �II / cos � C

r
l21 � .

1

2
.�I � �II / sin �/2 (67)

bIII
4 .z D zIII / D �2 C

1

2
.�I � �II / cos � �

r
l21 � .

1

2
.�I � �II / sin �/2

Note that bIII
2 .z D zIII / < bIII

1 .z D zIII /; b
III
3 .z D zIII / < bIII

4 .z D zIII /. As a result, the
distal loop in a singular configuration associated with Case III and the proximal loop of the IRSBot-2
can be assembled if and only if:

bIII
2 .z D zIII / < b < b

III
4 .z D zIII / (68)

It means that the IRSBot-2 will not reach the corresponding constraint singularity if and only if
Ineq. (44) holds and

b < a2 sinˇ C p C
1

2
.�I � �II / cos � �

r
l21 � .

1

2
.�I � �II / sin �/2 (69)

or

b > a2 sinˇ C p C
1

2
.�I � �II / cos � C

r
l21 � .

1

2
.�I � �II / sin �/2 (70)

with l1 >
ˇ̌̌̌
1

2
.�I � �II / sin �

ˇ̌̌̌
.

6.4 Methodology for the determination of the set of design parameters l1 and b
for the IRSBot-2 to be assembled and free of parallel singularity

This section aims at introducing a methodology to determine the design parameters l1 and b of the
proximal modules of the IRSBot-2 for the latter to be assembled and free of parallel singularity.

For a given set of design parameters Pd D fa1; a2; ˇ; p; l2eqg, Tab. 1 allows us to know whether
the distal loop can reach a constraint singularity or not.

If the distal loop cannot reach any constraint singularity, the reader will be referred to Sec. 6.2
to know the sets of design parameters fl1; bg associated with the proximal modules for which the
IRSBot-2 can be assembled.

If the distal loop can reach a constraint singularity, the corresponding constraint singularity case
(Case I, II and/or III) and constraint singular configuration will be obtained from Tab. 1. The assembly
condition (44) and inequations (56), (57), (63), (64), (69) and (70) determine the set of design parame-
ters fl1; bg for the IRSBot-2 not to be assembled in that Constraint Singular Configuration (CSC), but
to be assembled in non-singular configurations.

Accordingly, Fig. 16 illustrates a flowchart for the determination of the set of design parameters l1
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Pd = {a1, a2, β, p, l2eq}

YesYesYes

NoNoNoCan the distal loop

reach a Case I CSC?
(see Table 1)

Can the distal loop

reach a Case II CSC?
(see Table 1)

Can the distal loop

reach a Case III CSC?
(see Table 1)

Solve Eq. (38) to find
the CSC(s)

Solve Eq. (39) to find
the CSC(s)

Solve Eq. (40) to find
the CSC(s)

CSC(s) is(are) knownCSC(s) is(are) knownCSC(s) is(are) known

Use Ineqs. (56) and (57) to find

{l1, b} for the IRSBot-2 not

to be assembled in the CSC(s)

Use Ineqs. (63) and (64) to find

{l1, b} for the IRSBot-2 not

to be assembled in the CSC(s)

Use Ineqs. (69) and (70) to find

{l1, b} for the IRSBot-2 not

to be assembled in the CSC(s)

ZI is known ZII is known ZIII is known

Use Ineq. (44) to find
{l1, b} for the IRSBot-2

to be assembled

Za is known

Assembly and singularity

conditions of the IRSBot-2
w.r.t l1 and b

Figure 16: Flowchart for the determination of the set of design parameters l1 and b for the
IRSBot-2 to be assembled and free of Constraint Singular Configuration (CSC)
Figure 16: Flowchart for the determination of the set of design parameters l1 and b for the IRSBot-2 to
be assembled and free of Constraint Singular Configuration (CSC)
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and b for the IRSBot-2 to be assembled and free of parallel singularity.
For a better understanding of the flowchart, let us analyze the IRSBot-2 for which the design

parameters of the distal modules take the following values:

a1 D 0:3 m (71a)

a2 D 0:05 m (71b)

ˇ D
�

4
rad (71c)

p D 0:04 m (71d)

l2eq D 0:15 m (71e)

From Tab. 1, the distal loop can reach two Case I Constraint Singular Configurations (CSCs),
named CSCI1 and CSCI2, and cannot reach any Case II and Case III CSC.

From Eq. (38), the distal loop of the IRSBot-2 reaches the constraint singular configuration CSCI1

when
cos II D �0:581 (72a)

and the constraint singular configuration CSCI2 when

cos II D 0:737 (72b)

From Ineqs. (56) and (57), the IRSBot-2 will not reach CSCI1 if the set fl1; bg belongs to the zone
ZI1 shown in Fig. 17(a) and defined by the following inequations:

b < 0:339 �

q
l21 � 0:015 (73a)

b > 0:339C

q
l21 � 0:015 (73b)

From Ineqs. (56) and (57), the IRSBot-2 will not reach CSCI2 if the set fl1; bg belongs to the
zone ZI2 shown in Fig. 17(b) and defined by the following inequations:

b < 0:142 �

q
l21 � 0:010 (74a)

b > 0:142C

q
l21 � 0:010 (74b)

As a consequence, the IRSBot-2 will not reach any constraint singularity if the set fl1; bg belongs
to the zone Z1, which is the intersection of ZI1 and ZI2 and shown in Fig. 17(c) .

From Ineq. (44), the IRSBot-2 can be assembled if and only if (iff) the set fl1; bg belongs the
zone Za illustrated in Fig. 17(d) and characterized by the following inequation:

b < l1 C 0:402 (75)

Therefore, the IRSBot-2 can be assembled and does not reach any constraint singularity iff the set
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fl1; bg belongs to the intersection of Za and Z1, named Z and depicted in Fig. 18(a).
Nevertheless, the IRSBot-2 can still reach some actuation singularities if the set fl1; bg belongs to

Z . From Ineq. (45), the IRSBot-2 will not meet any actuation singularity if the set fl1; bg belongs to
Zwac represented in Fig. 15 and defined by the following inequation:

b < �l1 C 0:402 (76)

Finally, the IRSBot-2 can be assembled and cannot reach any parallel singularity, i.e., neither
constraint singularity nor actuation singularity, if and only if the set fl1; bg belongs to the zone Zwps

highlighted in Fig.18(b).
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Figure 17: Assembly and singularity conditions of the IRSBot-2 with regard to design param-
eters l1 and b: (a) ZI1: zone of the design space {l1, b} where the IRSBot-2 can not reach the
constraint singular configuration CSCI1; (b) ZI2: zone of the design space {l1, b} where the
IRSBot-2 can not reach the constraint singular configuration CSCI2; (c) Z1: zone of the design
space {l1, b} where the IRSBot-2 can not reach any constraint singular configuration; (d) Za:
zone of the design space {l1, b} where the IRSBot-2 can be assembled

Figure 17: Assembly and singularity conditions of the IRSBot-2 with regard to design parameters
l1 and b: (a) ZI1: zone of the design space fl1; bg where the IRSBot-2 can not reach the constraint
singular configuration CSCI1; (b) ZI2: zone of the design space fl1; bg where the IRSBot-2 can not
reach the constraint singular configuration CSCI2; (c) Z1: zone of the design space fl1; bg where the
IRSBot-2 can not reach any constraint singular configuration; (d) Za: zone of the design space fl1; bg
where the IRSBot-2 can be assembled
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Figure 18: Assembly and singularity conditions of the IRSBot-2 with regard to design param-
eters l1 and b: (a) Z: zone of the design space {l1, b} where the IRSBot-2 can be assembled,
does not reach any constraint singularity but can reach some actuation singularities; (b) Zwps:
zone of the design space {l1, b} where the IRSBot-2 can be assembled and is free of parallel
singularity

Figure 18: Assembly and singularity conditions of the IRSBot-2 with regard to design parameters l1
and b: (a) Z: zone of the design space fl1; bg where the IRSBot-2 can be assembled, does not reach
any constraint singularity but can reach some actuation singularities; (b) Zwps: zone of the design
space fl1; bg where the IRSBot-2 can be assembled and is free of parallel singularity
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7 Conclusions

In this paper, a deep analysis was carried out to determine the sets of design parameters of the IRSBot-2
that prevent it from reaching any parallel singularity. From [10], this two-dof manipulator is lighter than
the Par2 and the five-bar mechanism while being stiffer than the latter. To the best of our knowledge,
such an analysis had never been performed before and is very helpful for the robot designer. Indeed,
it allows the robot designer to select the design parameters of the manipulator in such a way that the
manipulator cannot reach any parallel singularity.

First, the constraint wrench system Wc
IRS and the actuation wrench system Wa

IRS of the IRSBot-2
were expressed by using the screw theory. The parallel singularity conditions of the IRSBot-2 were
obtained by analyzing the degeneracy conditions of Wc

IRS and Wa
IRS .

On the one hand, the IRSBot-2 reaches an actuation singular configuration when the actuation
forces applied by its two legs on the moving-platform are linearly dependent. On the other hand, two
constraint singularity conditions were highlighted and expressed in a vector form and analytically for
the IRSBot-2 based on the degeneracy conditions of Wc

IRS . Three singularity cases were derived from
the second constraint singularity condition.

The sets of design parameters associated with the distal modules for the IRSBot-2 to be able to
reach some constraint singularities were obtained with a method based on the notion of Discriminant
Varieties and Cylindrical Algebraic Decomposition. This method provided the cells of R5 where the
distal loop of the IRSBot-2 can reach some constraint singularities. The lower and upper bounds of
those cells were expressed analytically. Three constraint singular configurations of the distal loop of
the IRSBot-2 were represented as illustrative examples.

Likewise, a deep analysis was carried out in order to determine the set of design parameters of the
distal modules that prevent the distal loop of the IRSBot-2 from reaching any constraint singularity.

Finally, a design methodology was proposed to determine the set of design parameters associated
with the proximal modules for the IRSBot-2 to be assembled and free of actuation singularity and
constraint singularity, namely, free of parallel singularity.

The contributions of this paper will be used for the design optimization of the IRSBot-2 later on.
The type-synthesis of novel two degrees of freedom translational parallel manipulators with spatial
limbs is also part of the future work.
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