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Hamilton-Jacobi equations on networks

C. Imbert∗ and R. Monneau†
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Abstract

We study Hamilton-Jacobi equations on networks in the case where Hamiltonians
are quasi-convex with respect to the gradient variable and can be discontinuous with
respect to the space variable at vertices. First, we prove that imposing a general
vertex condition is equivalent to imposing a specific one which only depends on
Hamiltonians and an additional free parameter, the flux limiter. Second, a general
method for proving comparison principles is introduced. This method consists in
constructing a vertex test function to be used in the doubling variable approach. With
such a theory and such a method in hand, we present various applications, among
which a very general existence and uniqueness result for quasi-convex Hamilton-
Jacobi equations on networks.
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France
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1 Introduction

This paper is concerned with quasi-convex Hamilton-Jacobi (HJ) equations on networks.
The contribution of this paper is two-fold: one the one hand, general vertex conditions are
proved to be equivalent to flux-limited vertex conditions ; these conditions are constructed
from the Hamiltonians and a free parameter, the flux limiter ; on the other hand, a very
general comparison principle is proved.

Let us first discuss the second contribution. It is known that the core of the theory for
HJ equations lies in the proof of a strong uniqueness result, i.e. of a comparison principle.
Such a uniqueness result has been out of reach for some time. It is related to the identified
difficulty of getting uniqueness results for discontinuous Hamiltonians. The proof of the
comparison principle in the Euclidian setting is based on the so-called doubling variable
technique. It is known that, even in a one-dimension space, such a method generally fails
for piecewise constant (in x) Hamiltonians at discontinuities (see the last paragraph of
Subsection 1.5). Since the network setting contains the previous one, the classical doubling
variable technique is known to fail at vertices [28, 1, 19].

Nevertheless, we show in this paper that the doubling variable approach can still be
used if a suitable vertex test function G at each vertex is introduced. Roughly speaking,
such a test function will allow the edges of the network to exchange the necessary infor-

mation. More precisely, the usual penalization term, (x−y)2

ε
with ε > 0, is replaced with

εG (ε−1x, ε−1y). For a general HJ equation

ut +H(x, ux) = 0,

the vertex test function has to (almost) satisfy,

H(y,−Gy(x, y)) −H(x,Gx(x, y)) ≤ 0

(at least close to the vertex x = 0). This key inequality fills the lack of compatibility
between Hamiltonians1. The construction of a (vertex) test function satisfying such a
condition allows us to circumvent the discontinuity of H(x, p) at the junction point.

1Compatibility conditions are assumed in [28, 1] for instance.
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1.1 The junction framework

We focus in this introduction and in most of the article on the simplest network, referred to
as a junction, and on Hamiltonians which are constant with respect to the space variable on
each edge. Indeed, this simple framework leads us to the main difficulties to be overcome
and allows us to present the main contributions. We will see in Section 7 that the case of
a general network with (t, x)-dependent Hamiltonians is only an extension.

A junction is a network made of one vertex and a finite number of infinite edges. It is
endowed with a flat metric on each edge. It can be viewed as the set of N distinct copies
(N ≥ 1) of the half-line which are glued at the origin. For i = 1, ..., N , each branch Ji is
assumed to be isometric to [0,+∞) and

(1.1) J =
⋃

i=1,...,N

Ji with Ji ∩ Jj = {0} for i 6= j

where the origin 0 is called the junction point. For points x, y ∈ J , d(x, y) denotes the
geodesic distance on J defined as

d(x, y) =

{

|x− y| if x, y belong to the same branch,

|x| + |y| if x, y belong to different branches.

For a smooth real-valued function u defined on J , ∂iu(x) denotes the (spatial) derivative
of u at x ∈ Ji and the “gradient” of u is defined as follows,

(1.2) ux(x) :=

{

∂iu(x) if x ∈ J∗
i := Ji \ {0},

(∂1u(0), ..., ∂Nu(0)) if x = 0.

With such a notation in hand, we consider the following Hamilton-Jacobi equation on the
junction J

(1.3)

{

ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗
i ,

ut + F (ux) = 0 for t ∈ (0,+∞) and x = 0

subject to the initial condition

(1.4) u(0, x) = u0(x) for x ∈ J.

The second equation in (1.3) is referred to as the junction condition. In general, minimal
assumptions are required in order to get a good notion of weak (i.e. viscosity) solutions.
We shed some light on the fact that Equation (1.3) can be thought as a system of Hamilton-
Jacobi equations associated with Hi coupled through a “dynamical” boundary condition
involving F . This point of view can be useful, see Subsection 1.5. As far as junction
functions are concerned, we will construct below some special ones (denoted by FA) from
the Hamiltonians Hi (i = 1, ..., N) and a real parameter A.
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We consider the important case of Hamiltonians Hi satisfying the following structure
condition: there exist numbers p0i ∈ R such that for each i = 1, ..., N ,

(1.5)























(Continuity) Hi ∈ C(R)

(Quasi-convexity)

{

Hi nonincreasing in (−∞, p0i ]
Hi nondecreasing in [p0i ,+∞)

(Coercivity) lim|q|→+∞Hi(q) = +∞.

1.2 First main new idea: relevant junction conditions

We next introduce a one-parameter family of junction conditions: given a flux limiter
A ∈ R∪{−∞}, the A-limited flux through the junction point is defined for p = (p1, . . . , pN)
as

(1.6) FA(p) = max

(

A, max
i=1,...,N

H−
i (pi)

)

for some given A ∈ R ∪ {−∞} where H−
i is the nonincreasing part of Hi defined by

H−
i (q) =

{

Hi(q) if q ≤ p0i ,

Hi(p
0
i ) if q > p0i .

We now consider the following important special case of (1.3),

(1.7)

{

ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗
i ,

ut + FA(ux) = 0 for t ∈ (0,+∞) and x = 0

We point out that the flux functions FA associated with A ∈ [−∞, A0] coincide if one
chooses

(1.8) A0 = max
i=1,...,N

min
R

Hi.

As annonced above, general junction conditions are proved to be equivalent to those
flux-limited junction conditions. Let us be more precise: a junction function F : RN → R

should at least satisfy the following condition,

(1.9) F : RN → R is continuous and non-increasing with respect to all variables.

Indeed, the monotonicity assumption on F is related to the notion of viscosity solutions
that will be introduced. In particular, it is mandatory in order to construct solutions
through the Perron method. It will be proven that for such a junction condition F , solving
(1.3) is equivalent to solving (1.7) for some A = AF only depending on F . Solutions of
(1.7) are referred to as A-flux-limited solutions or simply flux-limited solutions.
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The special case of convex Hamiltonians. In the special case of convex Hamiltonians
Hi with different minimum values, Problem (1.7) can be viewed as the Hamilton-Jacobi-
Bellman equation satisfied by the value function of an optimal control problem; see for
instance [19] when A = −∞. In this case, existence and uniqueness of viscosity solutions for
(1.7)-(1.4) (with A = −∞) have been established either with a very rigid method [19] based
on an explicit Oleinik-Lax formula which does not extend easily to networks, or in cases
reducing to Hi = Hj for all i, j if Hamiltonians do not depend on the space variable [28, 1].
In such an optimal control framework, trajectories can stay for a while at the junction point.
In this case, the running cost at the junction point equals mini Li(0) = −maxi(minHi).
In this special case, the parameter A consists in replacing the previous running cost at
the junction point by min(−A,mini Li(0)). In Section 5, the link between our results and
optimal control theory will be further investigated.

1.3 Second main new idea: the vertex test function

The goal of the present paper is to provide the reader with a general yet handy and flexible
method to prove a comparison principle, allowing in particular to deal with Hamiltonians
that are not convex with respect to the gradient variable and are possibly discontinuous
with respect to the space variable at the vertices. As explained above, this method consists
in combining the doubling variable technique with the construction of a vertex test function
G. We took our inspiration for the construction of this function from papers like [16, 4]
dealing with scalar conservation laws with discontinuous flux functions. In such papers,
authors stick to the case N = 2.

A natural family of explicit solutions of (1.7) is given by

u(t, x) = pix− λt if x ∈ Ji

for (p, λ) in the germ GA defined as follows,
(1.10)

GA =

{

{

(p, λ) ∈ RN × R, Hi(pi) = FA(p) = λ for all i = 1, ..., N
}

if N ≥ 2,

{(p1, λ) ∈ R× R, H1(p1) = λ ≥ A} if N = 1.

In the special case of convex Hamiltonians satisfying H ′′
i > 0 the vertex test function

G is a regularized version2 of the function A + G0, where G0 is defined as follows: for
(x, y) ∈ Ji × Jj,

(1.11) G0(x, y) = sup
(p,λ)∈GA

(pix− pjy − λ) .

In particular, we have A +G0(x, x) = 0.

2Such a function should indeed be regularized since it is not C1 on the diagonal {x = y} of J2.
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1.4 Main results

The main result of this paper is a comparison principle for Hamilton-Jacobi equations on
a junction.

Theorem 1.1 (Comparison principle on a junction). Assume that the Hamiltonians satisfy
(1.5), the junction function satisfies (1.9) and that the initial datum u0 is uniformly con-
tinuous. Then for all (relaxed) sub-solution u and (relaxed) super-solution v of (1.3)-(1.4)
satisfying for some T > 0 and CT > 0,

(1.12) u(t, x) ≤ CT (1+d(0, x)), v(t, x) ≥ −CT (1+d(0, x)), for all (t, x) ∈ [0, T )×J,

we have
u ≤ v in [0, T ) × J.

Definitions of relaxed sub- and super-solutions of (1.3) can be found in Section 2 (see
Definition 2.2). Our second main result sheds light on the fact that the class of junction
conditions we consider are in fact quite general. Indeed, given a junction function F
satisfying (1.9), it is always possible to construct solutions of (1.3) by Perron method [20].
Keeping in mind that it is expected that such solutions satisfy the junction condition in a
relaxed sense (see Definition 2.2 in Section 2), the next theorem states that those relaxed
solutions of (1.3) are in fact solutions of (1.7) for some A = AF .

Theorem 1.2 (General junction conditions reduce to flux-limited ones). Assume that the
Hamiltonians satisfy (1.5) and that the junction function satisfies (1.9) and that the initial
datum u0 is uniformly continuous. Then there exists AF ∈ R such that any relaxed viscosity
solution of (1.3) is in fact a viscosity solution of (1.7) with A = AF .

In particular, we have the following existence and uniqueness result.

Theorem 1.3 (Existence and uniqueness on a junction). Assume that the Hamiltonians
satisfy (1.5), that F satisfies (1.9) and that the initial datum u0 is uniformly continuous.
Then there exists a unique (relaxed) viscosity solution u of (1.3), (1.4) such that for every
T > 0, there exists a constant CT > 0 such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) × J.

The network setting. We will extend our results to the case of networks and non-convex
Hamiltonians depending on time and space and to limiting parameters A (appearing in the
Hamiltonian at the junction point) depending on time and vertex, see Section 7. Noticeably,
a localization procedure allows us to use the vertex test function constructed for a single
junction.

In order to state the results in the network setting, we need to make precise the assump-
tions satisfied by the Hamiltonians associated with each edge and the limiting parameters
associated with each vertex. This results in a rather long list of assumptions. Still, when
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reading the proof of the comparison principle in this setting, the reader may check that
the main structure properties used in the proof are gathered in the technical Lemma 7.2.

As an application of the comparison principle, we consider a model case for homoge-
nization on a network. The network Nε whose vertices are εZd is naturally embedded in
Rd. We consider for all edges a Hamiltonian only depending on the gradient variable but
which is “repeated εZd-periodically with respect to edges”. We prove that when ε → 0,
the solution of the “oscillating” Hamilton-Jacobi equation posed in Nε converges toward
the unique solution of an “effective” Hamilton-Jacobi equation posed in Rd.

A first general comment about the main results. Our proofs do not rely on optimal
control interpretation (there is no representation formula of solutions for instance) but on
PDE methods. We believe that the construction of a vertex test function is flexible and
opens many perspectives. It also sheds light on the fact that the framework of quasi-convex
Hamiltonians, which is slightly more general than the one of convex ones (at least in the
evolution case), deserves special attention.

1.5 Comparison with known results

Hamilton-Jacobi equations on networks. There is a growing interest in the study of
Hamilton-Jacobi equations on networks. The first results were obtained in [28] for eikonal
equations. Several years after this first contribution, the three papers [1, 19, 29] were
published more or less simultaneously. In these three papers, the Hamiltonians are always
convex with respect to the gradient variables and the optimal control interpretation of
the equation is at the core of the proofs of comparison principles. Still, frameworks are
significantly different.

First, the networks in [1] are embedded in R2 while in [28, 29, 19], the networks are un-
derstood as metric spaces and Hamilton-Jacobi equations are studied in such metric spaces.
Recently, a general approach of eikonal equations in metric spaces has been proposed in
[18].

In [1], the authors study an optimal control problem in R2 and impose a state constraint :
the trajectories of the controlled system have to stay in the embedded network. From this
point of view, [1] is related to [13, 14] where trajectories in R

N are constrained to stay in
a closed set K which can have an empty interior. But as pointed out in [1], the framework
from [13, 14] imply some restricting conditions on the geometry of the embedded networks.
Our approach can be compared with the reformulation of “state constraint” solutions by
Ishii and Koike [21] (see Proposition 2.14).

The main contribution of [19] in constrast to [1, 29] comes from the dependence of
the Hamiltonians with respect to the space variable. It is continuous in [1, 29] while [19]
deals with Hamiltonians that are possibly discontinuous at the junction point (but are
independent of the space variable on each edge).

The reader is referred to [10] where the different notions of viscosity solutions used in
[1, 19, 29] are compared; in the few cases where frameworks coincide, they are proved to
be equivalent.
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In [19], the comparison principle was a consequence of a super-optimality principle (in
the spirit of [24] or [30, 31]) and the comparison of sub-solutions with the value function
of the optimal control problem. Still, the idea of using the “fundamental solution” D to
prove a comparison principle originates in the proof of the comparison of sub-solutions and
the value function. Moreover, as explained in Subsection 3.3, the comparison principle
obtained in this paper could also be proved, for A = −∞ and under more restrictive
assumptions on the Hamiltonians, by using this fundamental solution.

The reader is referred to [1, 19, 29] for further references about Hamilton-Jacobi equa-
tions on networks.

Networks, regional optimal control and ramified spaces. We already pointed out
that the Hamilton-Jacobi equation on a network can be regarded as a system of Hamilton-
Jacobi equations coupled through vertices. In this perspective, our work can be compared
with studies of Hamilton-Jacobi equations posed on, say, two domains separated by a
frontier where some transmission conditions should be imposed. This can be even more
general by considering equations in ramified spaces [9]. Contributions to such problems
are [6, 7] on the one hand and [26, 25] on the other hand.

We first point out that their framework is genuinely multi-dimensional while ours is
monodimensional. Moreover, their approach differs from the one in papers like [1, 29, 19]
and the present one since the idea is to write a Hamilton-Jacobi equation on the (lower-
dimensional) frontier. Another difference is that techniques from dynamical systems play
also an important role in these papers.

Still, results can be compared. Precisely, considering a framework were both results
can be applied, that is to say the monodimensional one, we will prove in Section 6 that the
value function U− from [7] coincides with the solution of (1.7) for some constant A that
is determined. And we prove more (in the monodimensional setting; see also extensions
below): we prove that the value function U+ from [7] coincides with the solution of (1.7)
for some (distinct) constant A which is also computed.

Hamilton-Jacobi equations with discontinuous source terms. There are numer-
ous papers about Hamilton-Jacobi equations with discontinuous Hamiltonians. The recent
paper [17] considers a Hamilton-Jacobi equation where specific solutions are expected. In
the one-dimensional space, it can be proved that these solutions are in fact flux-limited
solutions in the sense of the present paper with A = c where c is a constant appearing in
the HJ equation at stake in [17]. The introduction of [17] contains a rather long list of
results for HJ equations with discontinuous Hamiltonians; the reader is referred to it for
further details.

Contributions of the paper. In light of the review we made above, we can emphasize
the main contributions of the paper: in compare with [28, 29], we deal not only with eikonal
equations but with general Hamilton-Jacobi equations. In contrast to [1], we are able to
deal with networks with infinite number of edges, that are not embedded. In constrast to
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[1, 19, 28, 29], we can deal with non-convex discontinuous Hamilton-Jacobi equations and
we provide a flexible PDE method instead of an optimal control approach. The link with
optimal control (in the spirit of [1, 6, 7]) and the link with regional control (in the spirit of
[6, 7]) are thoroughly investigated. In particular, a PDE characterization of the two value
functions introduced in [7] is provided, one of the two characterizations being new.

To conclude, an application of our results to homogenization on networks is also pre-
sented in this paper.

Perspectives. A second homogenization result was obtained even more recently in [15].
An example of applications of this result is the case where a periodic Hamiltonian H(x, p)
is perturbed by a compactly supported function of the space variable f(x), say. Such a
situation is considered in lectures by Lions at Collège de France [23] Rescaling the solution,
the expected effective Hamilton-Jacobi equation is supplemented with a junction condition
which keeps memory of the compact perturbation.

We would also like to mention that the extension of our results to a higher dimensional
setting (in the spirit of [6, 7]) is now reachable for quasi-convex Hamiltonians and will be
achieved in a future work.

1.6 Organization of the article and notation

Organization of the article. The paper is organized as follows. In Section 2, we intro-
duce the notion of viscosity solution for Hamilton-Jacobi equations on junctions, we prove
that they are stable (Proposition 2.4) and we give an existence result (Theorem 2.13). In
Section 3, we prove the comparison principle in the junction case (Theorem 2.13). In Sec-
tion 4, we construct the vertex test function (Theorem 3.2). In Section 5, a general optimal
control problem on a junction is considered and the associated value function is proved
to be a solution of (1.7) for some computable constant A. In Section 6, the two value
functions introduced in [7] are shown to be solutions of (1.7) for two explicit (and distinct)
constants A. In Section 7, we explain how to generalize the previous results (viscosity solu-
tions, HJ equations, existence, comparison principle) to the case of networks. In Section 8,
we present a straightforward application of our results by proving a homogenization result
passing from an “oscillating” Hamilton-Jacobi equation posed in a network embedded in
an Euclidian space to a Hamilton-Jacobi equation in the whole space. Finally, we prove
several technical results in Appendix A and we state results for stationary Hamilton-Jacobi
equations in Appendix B.

Notation for a junction. A junction is denoted by J . It is made of a finite number
of edges and a junction point. The N edges of a junction (N ∈ N \ {0}) are isometric to
[0,+∞). Given a final time T > 0, JT denotes (0, T ) × J .

The Hamiltonians on the branches Ji of the junction are denoted by Hi; they only
depend on the gradient variable. The Hamiltonian at the junction point is denoted by FA
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and is defined from all Hi and a constant A which “limits” the flux of information at the
junction.

Given a function u : J → R, its gradient at x is denoted by ux; it is a real number
if x 6= 0 but it is a vector of RN at x = 0. We let |ux| denote |∂iu| outside the junction
point and maxi=1,...,N |∂iu| at the junction point. If now u(t, x) also depends on the time
t ∈ (0,+∞), ut denotes the time derivative.

Notation for networks. A network is denoted by N . It is made of vertices n ∈ V
and edges e ∈ E . Each edge is either isometric to [0,+∞) or to a compact interval whose
length is bounded from below; hence a network is naturally endowed with a metric. The
associated open (resp. closed) balls are denoted by B(x, r) (resp. B̄(x, r)) for x ∈ N and
r > 0.

In the network case, an Hamiltonian is associated with each edge e and is denoted by
He. It depends on time and space; moreover, the limited flux functions A can depend on
time and vertices: An(t).

Further notation. Given a metric space E, C(E) denotes the space of continuous real-
valued functions defined in E. A modulus of continuity is a function ω : [0,+∞) → [0,+∞)
which is non-increasing and ω(0+) = 0.

2 Viscosity solutions on a junction

This section is devoted to viscosity solutions in the junction case. After defining them,
we will discuss their stability. In order to do so, relaxed viscosity solutions of (1.3) are
considered and are proved to coincide with viscosity solutions in the special case of (1.7).
We will also prove that general junction conditions reduce to an flux-limited junction
condition for some parameter A.

2.1 Relaxed viscosity solutions and flux-limited solutions

In order to define viscosity solutions, we first introduce the class of test functions.
For T > 0, set JT = (0, T ) × J . We define the class of test functions on (0, T ) × J by

C1(JT ) =
{

ϕ ∈ C(JT ), the restriction of ϕ to (0, T ) × Ji is C1 for i = 1, ..., N
}

.

In order to define viscosity solutions, we recall the definition of upper and lower semi-
continuous envelopes u∗ and u∗ of a (locally bounded) function u defined on [0, T ) × J ,

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

We give a first definition of viscosity solutions, where the junction condition is satisfied
“in a classical sense” for test functions touching sub- and super-solutions at the junction
point.
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Definition 2.1 (Viscosity solutions). Assume that the Hamiltonians satisfy (1.5) and that
F satisfies (1.9) and let u : [0, T ) × J → R.

i) We say that u is a sub-solution (resp. super-solution) of (1.3) in (0, T ) × J if for all
test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 ∈ J∗
i

ϕt + F (ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 = 0.(2.1)

ii) We say that u is a sub-solution (resp. super-solution) of (1.3), (1.4) on [0, T ) × J if
additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ J.

iii) We say that u is a (viscosity) solution if u is both a sub-solution and a super-solution.

An important property that we expect for viscosity solutions is their stability; either
by passing to local uniform limit, or the stability of sub-solutions (resp. super-solutions)
through supremum (resp. infimum). Furthermore, a junction condition can be seen as
a boundary condition and it is known that upper (resp. lower) semi-limits or suprema
(resp. infima) of sub-solutions are known to satisfy boundary conditions in a viscosity
sense [22, 8].

This is the reason why for general junction functions F , the junction condition is
relaxed: at the junction point either the junction condition or the equation is satisfied.
This is the reason why the following relaxed definition is needed.

Definition 2.2 (Relaxed viscosity solutions). Assume that the Hamiltonians satisfy (1.5)
and that F satisfies (1.9) and let u : [0, T ) × J → R.

i) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of (1.3) in
(0, T ) × J if for all test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 6= 0, and

either ϕt + F (ϕx) ≤ 0 (resp. ≥ 0)
or ϕt +Hi(∂iϕ) ≤ 0 (resp. ≥ 0) for some i

∣

∣

∣

∣

at (t0, x0)

if x0 = 0.
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ii) We say that u is a relaxed (viscosity) solution if u is both a sub-solution and a super-
solution.

For the special junction functions F = FA, we will prove below that viscosity solutions
and relaxed viscosity solutions coincide. We will refer to these solutions as flux-limited
solutions.

Definition 2.3 (Flux-limited solutions). Given A ∈ R, assume that the Hamiltonians
satisfy (1.5). A function u : [0, T ) × J → R is a A-flux limited sub-solution (resp. super-
solution, solution) of (1.7) if u is a viscosity sub-solution (resp. super-solution, solution)
of (1.7) in the sense of Definition 2.1 with F = FA.

With these definitions in hand, we can now turn to stability results.

2.2 General junction conditions and stability

Proposition 2.4 (Stability by supremum/infimum). Assume that the Hamiltonians Hi

satisfy (1.5) and that F satisfies (1.9). Let A be a nonempty set and let (ua)a∈A be a
familly of relaxed sub-solutions (resp. relaxed super-solutions) of (1.3) on (0, T ) × J . Let
us assume that

u = sup
a∈A

ua (resp. u = inf
a∈A

ua)

is locally bounded on (0, T ) × J . Then u is a relaxed sub-solution (resp. relaxed super-
solution) of (1.3) on (0, T ) × J .

In the following proposition, we assert that, for the special junction functions FA, the
junction condition is in fact always satisfied in the classical (viscosity) sense, that is to say
in the sense of Definition 2.1 (and not Definition 2.2).

Proposition 2.5 (flux-limited junction conditions are always satisfied in the classical
sense). Assume that the Hamiltonians satisfy (1.5) and consider A ∈ R. If F = FA,
then relaxed viscosity super-solutions (resp. relaxed viscosity sub-solutions) coincide with
viscosity super-solutions (resp. viscosity sub-solutions).

Proof of Proposition 2.5. The proof was done in [19] for the case A = −∞, using the
monotonicities of the Hi. We follow the same proof and omit details.

The super-solution case. Let u be a super-solution satisfying the junction con-
dition in the viscosity sense and let us assume by contradiction that there exists a test
function ϕ touching u from below at P0 = (t0, 0) for some t0 ∈ (0, T ), such that

(2.2) ϕt + FA(ϕx) < 0 at P0.

Then we can construct a test function ϕ̃ satisfying ϕ̃ ≤ ϕ in a neighborhood of P0, with
equality at P0 such that

ϕ̃t(P0) = ϕt(P0) and ∂iϕ̃(P0) = min(p0i , ∂iϕ(P0)) for i = 1, ..., N.
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Using the fact that FA(ϕx) = FA(ϕ̃x) ≥ H−
i (∂iϕ̃) = Hi(∂iϕ̃) at P0, we deduce a contra-

diction with (2.2) using the viscosity inequality satisfied by ϕ for some i ∈ {1, . . . , N}.

The sub-solution case. Let now u be a sub-solution satisfying the junction con-
dition in the viscosity sense and let us assume by contradiction that there exists a test
function ϕ touching u from above at P0 = (t0, 0) for some t0 ∈ (0, T ), such that

(2.3) ϕt + FA(ϕx) > 0 at P0.

Let us define
I =

{

i ∈ {1, ..., N} , H−
i (ϕ) < FA(ϕx) at P0

}

and for i ∈ I, let qi ≥ p0i be such that

Hi(qi) = FA(ϕx(P0))

where we have used the fact that Hi(+∞) = +∞. Then we can construct a test function
ϕ̃ satisfying ϕ̃ ≥ ϕ in a neighborhood of P0, with equality at P0, such that

ϕ̃t(P0) = ϕt(P0) and ∂iϕ̃(P0) =

{

max(qi, ∂iϕ(P0)) if i ∈ I,
∂iϕ(P0) if i 6∈ I.

Using the fact that FA(ϕx) = FA(ϕ̃x) ≤ Hi(∂iϕ̃) at P0, we deduce a contradiction with
(2.3) using the viscosity inequality for ϕ for some i ∈ {1, . . . , N}.

2.3 A useful equivalent definition of flux-limited solutions

We show in this subsection, that to check the flux-limited junction condition, it is sufficient
to consider very specific test functions. This important property is useful both from a
theoretical point of view and from the point of view of applications.

We consider functions satisfying a Hamilton-Jacobi equation in J \ {0}, that is to say,
solutions of

(2.4) ut +Hi(ux) = 0 for (t, x) ∈ (0, T ) × J∗
i for i = 1, ..., N.

Theorem 2.6 (Equivalent definitions for sub/super-solutions). Assume that the Hamil-
tonians satisfy (1.5) and consider A ∈ [A0,+∞[ with A0 given in (1.8). Given arbitrary
solutions pAi ∈ R, i = 1, . . . , N , of

(2.5) Hi(p
A
i ) = H+

i (pAi ) = A,

let us fix any time independent test function φ0(x) satisfying

∂iφ0(0) = pAi .

Given a function u : (0, T ) × J → R, the following properties hold true.
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i) If u is an upper semi-continuous sub-solution of (2.4), then u is a A0-flux limited
sub-solution.

ii) Given A > A0 and t0 ∈ (0, T ), if u is an upper semi-continuous sub-solution of (2.4)
and if for any test function ϕ touching u from above at (t0, 0) with

(2.6) ϕ(t, x) = ψ(t) + φ0(x)

for some ψ ∈ C1(0; +∞), we have

ϕt + FA(ϕx) ≤ 0 at (t0, 0),

then u is a A-flux-limited sub-solution at (t0, 0).

iii) Given t0 ∈ (0, T ), if u is lower semi-continuous super-solution of (2.4) and if for any
test function ϕ touching u from below at (t0, 0) satisfying (2.6), we have

ϕt + FA(ϕx) ≥ 0 at (t0, 0),

then u is a A-flux-limited super-solution at (t0, 0).

Remark 2.7. Theorem 2.6 exhibits sufficient conditions for sub- and super-solutions of (2.4)
to be flux-limited solutions. These conditions are also clearly necessary.

In order to prove this result, the two following technical lemmas are needed.

Lemma 2.8 (Super-solution property for the critical slope on each branch). Let u : (0, T )×
J → R be a lower semi-continous super-solution of (2.4). Let φ be a test function touching
u from below at some point (t0, 0) with t0 ∈ (0, T ). For each i = 1, . . . , N , let us consider

p̄i = sup{p̄ ∈ R : ∃r > 0, φ(t, x)+p̄x ≤ u(t, x) for (t, x) ∈ (t0−r, t0+r)×[0, r) with x ∈ Ji}.

Then we have for all i = 1, . . . , N ,

(2.7) φt +Hi(∂iφ+ p̄i) ≥ 0 at (t0, 0) with p̄i ≥ 0.

Lemma 2.9 (Sub-solution property for the critical slope on each branch). Let u : (0, T )×
J → R be a upper semi-continous function, which is a sub-solution of (2.4). Let φ be
a test function touching u from above at some point (t0, 0) with t0 ∈ (0, T ). For each
i = 1, . . . , N , let us consider

p̄i = inf{p̄ ∈ R : ∃r > 0, φ(t, x)+p̄x ≥ u(t, x) for (t, x) ∈ (t0−r, t0+r)×[0, r) with x ∈ Ji}.

Then we have for each i = 1, . . . , N ,

(2.8) φt +Hi(∂iφ+ p̄i) ≤ 0 at (t0, 0) with p̄i ≤ 0.

We only prove Lemma 2.8 since the proof of Lemma 2.9 is similar.
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Proof of Lemma 2.8. From the definition of p̄i, we know that, for all ε > 0 small enough,
there exists δ = δ(ε) ∈ (0, ε) such that

u(s, y) ≥ φ(s, y) + (p̄i − ε)y for all (s, y) ∈ (t− δ, t + δ) × [0, δ) with y ∈ Ji

and there exists (tε, xε) ∈ Bδ/2(t, 0) such that

u(tε, xε) < φ(tε, xε) + (p̄i + ε)xε.

Now consider a smooth function Ψ : R2 → [−1, 0] such that

Ψ ≡
{

0 in B 1
2
(0),

−1 outside B1(0)

and define

Φ(s, y) = φ(s, y) + 2εΨδ(s, y) +

{

(p̄i + ε)y if y ∈ Ji

0 if not

with Ψδ(Y ) = δΨ(Y/δ). We have

Φ(s, y) ≤ φ(s, y) ≤ u(s, y) for (s, y) ∈ Bδ(t, 0) and y /∈ Ji

and
{

Φ(s, y) = φ(s, y) − 2εδ + (p̄i + ε)y ≤ u(s, y) for (s, y) ∈ (∂Bδ(t, 0)) ∩ (R× Ji) ,

Φ(s, 0) ≤ φ(s, 0) ≤ u(s, 0) for s ∈ (t− δ, t + δ)

and
Φ(tε, xε) = φ(tε, xε) + (p̄i + ε)xε > u(tε, xε).

We conclude that there exists a point (t̄ε, x̄ε) ∈ Bδ(t, 0)∩ (R× J∗
i ) such that u−Φ reaches

a minimum in Bδ(t, 0) ∩ (R× Ji0). Consequently,

Φt(t̄ε, x̄ε) +Hi(∂iΦ(t̄ε, x̄ε))) ≥ 0

which implies

φt(t̄ε, x̄ε) + 2ε(Ψδ)t(t̄ε, x̄ε) +Hi(∂iφ(t̄ε, x̄ε) + 2ε∂y(Ψδ)(t̄ε, x̄ε) + p̄i + ε) ≥ 0.

Letting ε go to 0 yields (2.7). This ends the proof of the lemma.

We are now ready to make the proof of Theorem 2.6.

Proof of Theorem 2.6. We first prove the results concerning sub-solutions and then turn
to super-solutions.
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Sub-solutions. Let u be a sub-solution of (2.4). Let φ be a test function touching u
from above at (t0, 0). Let φt(t0, 0) = −λ. We want to show

(2.9) FA(φx) ≤ λ at (t0, 0).

Notice that by Lemma 2.9, for all i = 1, . . . , N , there exists p̄i ≤ 0 such that

(2.10) Hi(∂iφ+ p̄i) ≤ λ at (t0, 0).

In particular, we deduce that

(2.11) A0 ≤ λ.

Inequality (2.10) also implies that at (t0, 0)

FA(φx) = max(A, max
i=1,...,N

H−
i (∂iφ))

≤ max(A, max
i=1,...,N

H−
i (∂iφ+ p̄i))

≤ max(A, max
i=1,...,N

Hi(∂iφ+ p̄i))

≤ max(A, λ).

In particular for A = A0, this implies the desired inequality (2.9). Assume now that (2.9)
does not hold true. Then we have

A0 ≤ λ < A.

Then (2.10) implies that
∂iφ(t0, 0) + p̄i < pAi = ∂iφ0(0).

Let us consider the modified test function

ϕ(t, x) = φ(t, 0) + φ0(x) for x ∈ Ji

which is still a test function touching u from above at (t0, 0) (in a small neighborhood).
This test function ϕ satisfies in particular (2.6). Because A > A0, we then conclude that

ϕt + FA(ϕx) ≤ 0 at (t0, 0)

i.e.
−λ+ A ≤ 0

which gives a contradiction. Therefore (2.9) holds true.
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Super-solutions. Let u be a super-solution of (2.4). Let φ be a test function touching
u from below at (t0, 0). Let φt(t0, 0) = −λ. We want to show

(2.12) FA(φx) ≥ λ at (t0, 0).

Notice that by Lemma 2.8, there exists p̄i ≥ 0 for i = 1, . . . , N such that

(2.13) Hi(∂iφ+ p̄i) ≥ λ at (t0, 0).

Note that (2.12) holds true if λ ≤ A or if there exists one index i such that H−
i (∂iφ+ p̄i) =

Hi(∂iφ + p̄i). Assume by contradiction that (2.12) does not hold true. Then we have in
particular

(2.14) A0 ≤ A < λ ≤ H+
i (∂iφ+ p̄i) at (t0, 0), for i = 1, . . . , N.

From the fact that H−
i (∂iφ+ p̄i) < Hi(∂iφ+ p̄i) for all index i, we deduce in particular that

∂iφ(t0, 0) + p̄i > pAi = ∂iφ0(0).

We then introduce the modified test function

ϕ(t, x) = φ(t0, 0) + φ0(x) for x ∈ Ji

which is a test function touching u from below at (t0, 0) (this is a test function below u in
a small neighborhood of (t0, 0)). This test function ϕ satisfies in particular (2.6). We then
conclude that

ϕt + FA(ϕx) ≥ 0 at (t0, 0)

i.e.
−λ+ A ≥ 0

which gives a contradiction. Therefore (2.12) holds true. This ends the proof of the
theorem.

2.4 An additional characterization of flux-limited sub-solutions

As an application of Theorem 2.6, we give an equivalent characterization of sub-solutions
in terms of the properties of its trace at the junction point x = 0.

Theorem 2.10 (Equivalent characterization of flux-limited sub-solutions). Assume that
the Hamiltonians Hi satisfy (1.5). Let u : (0, T ) × J → R be an upper semi-continuous
sub-solution of (2.4). Then u is a A-flux-limited sub-solution if and only if for any function
ψ ∈ C1(0, T ) such that ψ touches u(·, 0) from above at t0 ∈ (0, T ), we have

(2.15) ψt + A ≤ 0 at t0.

Proof of Theorem 2.10. We successively prove that the condition is necessary and suffi-
cient.

18



Necessary condition. Let ψ ∈ C1(0, T ) touching u(·, 0) from above at (t0, 0) with
t0 ∈ (0, T ). As usual, we can assume without loss of generality that the contact point is
strict. Let ε > 0 small enough in order to satisfy

(2.16)
1

ε
> pAi

where pAi is chosen as in (2.5). Let

φ(t, x) = ψ(t) +
x

ε
for x ∈ Ji for i = 1, . . . , N.

For r > 0, δ > 0, let
Ω := (t0 − r, t0 + r) × Bδ(0)

where Bδ(0) is the ball in J centered at 0 and of radius δ. From the upper semi-continuity
of u, we can choose r, δ small enough, and then ε small enough, so that

sup
Ω

(u− φ) > sup
∂Ω

(u− φ).

Therefore there exists a point Pε = (tε, xε) ∈ Ω such that we have

sup
Ω

(u− φ) = (u− φ)(Pε).

If xε ∈ J∗
i , then we have

φt +Hi(∂iφ) ≤ 0 at Pε

i.e.
ψ′(tε) +Hi(ε

−1) ≤ 0.

This is impossible for ε small enough, because of the coercivity of Hi. Therefore we have
xε = 0, and get

φt + FA(φx) ≤ 0 at Pε.

Because of (2.16), we deduce that FA(φx) = A and then

ψ′(tε) + A ≤ 0 with tε ∈ (t0 − r, t0 + r).

In the limit r → 0, we get the desired inequality (2.15).

Sufficient condition. Let φ(t, x) be a test function touching u from above at (t0, 0) for
some t0 ∈ (0, T ). From Theorem 2.6, we know that we can assume that φ satisfies (2.6).
Then φ(t, 0) is also test function for u(t, 0) at t0. Therefore we have by assumption

φt(·, 0) + A ≤ 0 at t0.

Because of (2.6), we get the desired inequality

φt + FA(φx) ≤ 0 at (t0, 0).

This ends the proof of the theorem.
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2.5 General junction conditions reduce to flux-limited ones

Proposition 2.11 (General junction conditions reduce to flux-limited ones). Let the
Hamiltonians satisfy (1.5) and F satisfy (1.9). There exists AF ∈ R such that any relaxed
super-solution (resp. relaxed sub-solution) of (1.3) is a super-solution (resp. sub-solution)
of (1.7) with A = AF .

The flux limiter AF is given by the following lemma.

Lemma 2.12 (Definitions of AF and p̄). Let p̄0 = (p̄01, . . . , p̄
0
N) with p̄0i ≥ p0i be the minimal

real number such that Hi(p̄
0
i ) = A0 with A0 given in (1.8).

If F (p̄0) ≥ A0, then there exists a unique AF ∈ R such that there exists p̄ = (p̄1, . . . , p̄N)
with p̄i ≥ p̄0i ≥ p0i such that

Hi(p̄i) = AF = F (p̄).

If F (p̄0) < A0, we set AF = A0 and p̄ = p̄0.

In particular, we have

{∀i : pi ≥ p̄i} ⇒ F (p) ≤ AF ,(2.17)

{∀i : pi ≤ p̄i} ⇒ F (p) ≥ AF .(2.18)

Proof of Proposition 2.11. Let A denote AF . We only do the proof for super-solutions
since it is very similar for sub-solutions.

Without loss of generality, we assume that u is lower semi-continuous. Consider a test
function φ touching u from below at (t, x) ∈ (0,+∞) × J ,

φ ≤ u in BR(t, x) and φ(t, x) = u(t, x)

for some R > 0. If x 6= 0, there is nothing to prove. We therefore assume that x = 0. In
particular, we have

(2.19) φt(t, 0) + max(F (φx(t, 0)),max
i
Hi(∂iφ(t, 0))) ≥ 0.

By Theorem 2.6, we can assume that the test function satisfies

(2.20) ∂iφ(t, 0) = p̄i

where p̄i is given in Lemma 2.12. We now want to prove that

φt(t, 0) + A ≥ 0.

This follows immediately from (2.19), (2.20) and the definition of p̄i in Lemma 2.12.
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2.6 Existence of solutions

Theorem 2.13 (Existence). Let T > 0 and J be the junction defined in (1.1). Assume
that Hamiltonians satisfy (1.5), that the junction function F satisfies (1.9) and that the
initial datum u0 is uniformly continuous. Then there exists a generalized viscosity solution
u of (1.3)-(1.4) in [0, T ) × J and a constant CT > 0 such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) × J.

Proof of Theorem 2.13. The proof follows classically along the lines of Perron’s method
(see [20, 11]), and then we omit details.

Step 1: Barriers. Because of the uniform continuity of u0, for any ε ∈ (0, 1], it can be
regularized by convolution to get a modified initial data uε0 satisfying

(2.21) |uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε

with Lε ≥ max
i=1,...,N

|p0i |. Let

Cε = max

(

|A|, max
i=1,...,N

max
|pi|≤Lε

|Hi(pi)|, max
|pi|≤Lε

F (p1, . . . , pN)

)

.

Then the functions

(2.22) u±ε (t, x) = uε0(x) ± Cεt± ε

are global super and sub-solutions with respect to the initial data u0. We then define

u+(t, x) = inf
ε∈(0,1]

u+ε (t, x) and u−(t, x) = sup
ε∈(0,1]

u−ε (t, x).

Then we have u− ≤ u+ with u−(0, x) = u0(x) = u+(0, x). Moreover, by stability of
sub/super-solutions (see Proposition 2.4), we get that u+ is a super-solution and u− is a
sub-solution of (1.3) on (0, T ) × J .

Step 2: Maximal sub-solution and preliminaries. Consider the set

S =
{

w : [0, T ) × J → R, w is a sub-solution of (1.3) on (0, T ) × J, u− ≤ w ≤ u+
}

.

It contains u−. Then the function

u(t, x) = sup
w∈S

w(t, x)

is a sub-solution of (1.3) on (0, T )×J and satisfies the initial condition. It remains to show
that u is a super-solution of (1.3) on (0, T ) × J . This is classical for a Hamilton-Jacobi
equation on an interval, so we only have to prove it at the junction point. We assume
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by contradiction that u is not a super-solution at P0 = (t0, 0) for some t0 ∈ (0, T ). This
implies that there exists a test function ϕ satisfying u∗ ≥ ϕ in a neighborhood of P0 with
equality at P0, and such that

(2.23)

{

ϕt + F (ϕx) < 0,
ϕt +Hi(∂iϕ) < 0, for i = 1, ..., N

∣

∣

∣

∣

at P0.

We also have ϕ ≤ u∗ ≤ u+∗ . As usual, the fact that u+ is a super-solution and condi-
tion (2.23) imply that we cannot have ϕ = (u+)∗ at P0. Therefore we have for some r > 0
small enough

(2.24) ϕ < (u+)∗ on Br(P0)

where we define the ball Br(P0) = {(t, x) ∈ (0, T ) × J, |t− t0|2 + d2(0, x) < r2}. Sub-
stracting |(t, x) − P0|2 to ϕ and reducing r > 0 if necessary, we can assume that

(2.25) ϕ < u∗ on Br(P0) \ {P0} .

Further reducing r > 0, we can also assume that (2.23) still holds in Br(P0).

Step 3: Sub-solution property and contradiction. We claim that ϕ is a sub-solution
of (1.3) in Br(P0). Indeed, if ψ is a test function touching ϕ from above at P1 = (t1, 0) ∈
Br(P0), then

ψt(P1) = ϕt(P1) and ∂iψ(P1) ≥ ∂iϕ(P1) for i = 1, ..., N.

Using the fact that F is non-increasing with respect to all variables, we deduce that

ψt + F (ψx) < 0 at P1

as desired. Defining for δ > 0,

uδ =

{

max(δ + ϕ, u) in Br(P0),

u outside

and using (2.25), we can check that uδ = u > δ + ϕ on ∂Br(P0) for δ > 0 small enough.
This implies that uδ is a sub-solution lying above u−. Finally (2.24) implies that uδ ≤ u+

for δ > 0 small enough. Therefore uδ ∈ S, but is is classical to check that uδ is not below
u for δ > 0, which gives a contradiction with the maximality of u.

2.7 Further properties of flux-limited solutions

In this section, we focus on properties of solutions of the following equation

(2.26) ut +H(ux) = 0

for a single Hamiltonian satisfying (1.5). We start with the following result, which is
strongly related to the reformulation of state constraints from [21], and its use in [2].
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Proposition 2.14 (Reformulation of state constraints). Assume that H satisfies (1.5).
Let Ω = (a, b) and let u : (0, T ) × Ω → R. Then u satisfies

(2.27)

{

ut +H(ux) ≥ 0 for (t, x) ∈ (0, T ) × Ω,
ut +H(ux) ≤ 0 for (t, x) ∈ (0, T ) × Ω

in the viscosity sense, if and only if u solves

(2.28)







ut +H(ux) = 0 for (t, x) ∈ (0, T ) × (a, b),
ut +H−(ux) = 0 for (t, x) ∈ (0, T ) × {a} ,
ut +H+(ux) = 0 for (t, x) ∈ (0, T ) × {b}

in the viscosity sense.

Proof of Proposition 2.14. Remark first that only boundary conditions should be studied.
We first prove that (2.27) implies (2.28). From Theorem 2.6-i), we deduce that the

viscosity sub-solution inequality is satisfied on the boundary for (2.28) with the choice
A = A0 = minH .

Let us now consider a test function ϕ touching u∗ from below at the boundary (t0, x0).
We want to show that u∗ is a viscosity super-solution for (2.28) at (t0, x0). By Theorem 2.6,
it is sufficient to check the inequality assuming that

ϕ(t, x) = ψ(t) + φ(x)

with
{

H(φx) = H+(φx) = A0 at x0 if x0 = a,
H(φx) = H−(φx) = A0 at x0 if x0 = b.

Remark that we have in all cases H(φx) = H+(φx) = H−(φx) at x0. We then deduce
from the fact that u∗ is a viscosity super-solution of (2.27), that u∗ is also a viscosity
super-solution of (2.28) at (t0, x0).

We now prove that (2.28) implies (2.27). Let u∗ be a sub-solution of (2.28). The
fact that u∗ is also a sub-solution on the boundary for (2.27), follows from the fact that
H ≥ H±. This ends the proof of the proposition.

Proposition 2.15 (Classical viscosity solutions are also solutions “at one point”). Assume
that H satisfies (1.5) and consider a classical Hamilton-Jacobi equation posed in the whole
line,

(2.29) ut +H(ux) = 0 for all (t, x) ∈ (0, T ) × R

i) (Sub-Solutions) Let u : (0, T ) × R → R be a sub-solution of (2.29). Then u satisfies

ut(t, 0) + max(H+(ux(t, 0−)), H−(ux(t, 0+))) ≤ 0.

ii) (Super-Solutions) Let u : (0, T )×R → R be a super-solution of (2.29). Then u satisfies

ut(t, 0) + max(H+(ux(t, 0−)), H−(ux(t, 0+))) ≥ 0.

23



Proof of Proposition 2.15. We only prove the result for sub-solutions since the proof for
the super-solutions is very similar. By Theorem 2.6-i), we simply have to check that if ϕ
is a test function touching u from above at (t0, 0) with t0 ∈ (0, T ) and

ϕ(t, x) = ψ(t) + φ(x)

with φ given such that

H(φx(0+)) = H+(φx(0+)) = minH = H−(φx(0−)) = H(φx(0−))

then we have
ψt(t0) + max(H+(φx(0−), φx(0+)) ≤ 0.

We can choose such a function φ ∈ C1(R). In this case, ϕ is a test function for the original
equation (2.29). This ends the proof of the proposition.

Proposition 2.16 (Restriction of sub-solutions are sub-solutions). Assume that H satisfies
(1.5). Let u : (0, T ) × R → R be upper semi-continuous satisfying

(2.30) ut +H(ux) ≤ 0 for all (t, x) ∈ (0, T ) × R

Then the restriction w of u to (0, T ) × [0,+∞) satisfies

{

wt +H(wx) ≤ 0 for all (t, x) ∈ (0, T ) × (0,+∞) ,
wt +H−(wx) ≤ 0 for all (t, x) ∈ (0, T ) × {0} .

Proof of Proposition 2.16. We simply have to study w at the boundary. From Proposi-
tion 2.15, we know that u satisfies in the viscosity sense

ut + max(H+(ux(t, 0−)), H−(ux(t, 0+))) ≤ 0.

By Theorem 2.10 with two branches, we deduce that v(t) = u(t, 0) satisfies

vt + minH ≤ 0.

Again by Theorem 2.10 (now with one branch) and because v(t) = w(t, 0), we deduce that
w satisfies

wt +H−(wx) ≤ 0 for all (t, 0) ∈ (0, T ) × {0}
which ends the proof.

Remark 2.17. Notice that the restriction of a super-solution of (2.26) may not be a super-
solution on the boundary, as shown by the following example: for H(p) = |p| − 1, the
solution u(t, x) = x solves ut + H(ux) = 0 in R but does not solve ut + H−(ux) ≥ 0 at
x = 0.
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3 Comparison principle on a junction

This section is devoted to the proof of the comparison principle in the case of a junction
(see Theorem 1.1). In view of Propositions 2.11 and 2.5, it is enough to consider sub- and
super-solutions (in the sense of Definition 2.1) of (1.7) for some A = AF .

It is convenient to introduce the following shorthand notation

(3.1) H(x, p) =

{

Hi(p) for p = pi if x ∈ J∗
i ,

FA(p) for p = (p1, ..., pN) if x = 0.

In particular, keeping in mind the definition of ux (see (1.2)), Problem (1.7) on the junction
can be rewritten as follows

ut +H(x, ux) = 0 for all (t, x) ∈ (0,+∞) × J.

We next make a trivial but useful observation.

Lemma 3.1. It is enough to prove Theorem 1.1 further assuming that

(3.2) p0i = 0 for i = 1, ..., N and 0 = H1(0) ≥ H2(0) ≥ ... ≥ HN(0).

Proof. We can assume without loss of generality that

H1(p
0
1) ≥ ... ≥ HN(p0N).

Let us define
u(t, x) = ũ(t, x) + p0ix− tH1(p

0
1) for x ∈ Ji.

Then u is a solution of (1.7) if and only if ũ is a solution of (1.7) with each Hi replaced with
H̃i(p) = Hi(p+ p0i )−H1(p

0
1) and FA replaced with F̃Ã constructed using the Hamiltonians

H̃i and the parameter Ã = A−H1(p
0
1).

3.1 The vertex test function

Then our key result is the following one.

Theorem 3.2 (The vertex test function – general case). Let A ∈ R ∪ {−∞} and γ > 0.
Assume the Hamiltonians satisfy (1.5) and (3.2). Then there exists a function G : J2 → R

enjoying the following properties.

i) (Regularity)

G ∈ C(J2) and

{

G(x, ·) ∈ C1(J) for all x ∈ J,
G(·, y) ∈ C1(J) for all y ∈ J.

ii) (Bound from below) G ≥ 0 = G(0, 0).
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iii) (Compatibility condition on the diagonal) For all x ∈ J ,

(3.3) 0 ≤ G(x, x) −G(0, 0) ≤ γ.

iv) (Compatibility condition on the gradients) For all (x, y) ∈ J2,

(3.4) H(y,−Gy(x, y)) −H(x,Gx(x, y)) ≤ γ

where notation introduced in (1.2) and (3.1) are used.

v) (Superlinearity) There exists g : [0,+∞) → R nondecreasing and s.t. for (x, y) ∈ J2

(3.5) g(d(x, y)) ≤ G(x, y) and lim
a→+∞

g(a)

a
= +∞.

vi) (Gradient bounds) For all K > 0, there exists CK > 0 such that for all (x, y) ∈ J2,

(3.6) d(x, y) ≤ K =⇒ |Gx(x, y)| + |Gy(x, y)| ≤ CK .

Remark 3.3. The vertex test function G is obtained as a regularized version of a function
G0 which is C1 except on the diagonal x = y. It is in fact possible to check directly that G0

does not satisfy the viscosity inequalities on the diagonal in the sense of Proposition 2.15
(when it is not C1 on the diagonal).

3.2 Proof of the comparison principle

We will also need the following result whose classical proof is given in Appendix for the
reader’s convenience.

Lemma 3.4 (A priori control). Let T > 0 and let u be a sub-solution and w be a super-
solution as in Theorem 1.1. Then there exists a constant C = C(T ) > 0 such that for all
(t, x), (s, y) ∈ [0, T ) × J , we have

(3.7) u(t, x) ≤ w(s, y) + C(1 + d(x, y)).

We are now ready to make the proof of comparison principle.

Proof of Theorem 1.1. As explained at the beginning of the current section, in view of
Propositions 2.11 and 2.5, it is enough to consider sub- and super-solutions (in the sense
of Definition 2.1) of (1.7) for some A = AF .

The remaining of the proof proceeds in several steps.
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Step 1: the penalization procedure. We want to prove that

M = sup
(t,x)∈[0,T )×J

(u(t, x) − w(t, x)) ≤ 0.

Assume by contradiction that M > 0. Then for α, η > 0 small enough, we have Mε,α ≥
M/2 > 0 for all ε, ν > 0 with
(3.8)

Mε,α = sup
(t,x),(s,y)∈[0,T )×J

{

u(t, x) − w(s, y) − εG
(x

ε
,
y

ε

)

− (t− s)2

2ν
− η

T − t
− α

d2(0, x)

2

}

where the vertex test function G ≥ 0 is given by Theorem 3.2 for a parameter γ satisfying

0 < γ < min

(

η

2T 2
,
M

4ε

)

.

Thanks to Lemma 3.4 and (3.5), we deduce that

(3.9) 0 <
M

2
≤ C(1 + d(x, y)) − εg

(

d(x, y)

ε

)

− (t− s)2

2ν
− η

T − t
− α

d2(0, x)

2

which implies in particular that

(3.10) εg

(

d(x, y)

ε

)

≤ C(1 + d(x, y)).

Because of the superlinearity of g appearing in (3.5), we know that for any K > 0, there
exists a constant CK > 0 such that for all a ≥ 0

Ka− CK ≤ g(a).

For K ≥ 2C, we deduce from (3.10) that

(3.11) d(x, y) ≤ inf
K≥2C

{

C

K − C
+
CK

C
ε

}

=: ω(ε)

where ω is a concave, nondecreasing function satisfying ω(0) = 0. We deduce from (3.9)
and (3.11) that the supremum in (3.8) is reached at some point (t, x, s, y) = (tν , xν , sν , yν).

Step 2: use of the initial condition. We first treat the case where tν = 0 or sν = 0.
If there exists a sequence ν → 0 such that tν = 0 or sν = 0, then calling (x0, y0) any limit
of subsequences of (xν , yν), we get from (3.8) and the fact that Mε,α ≥M/2 that

0 <
M

2
≤ u0(x0) − u0(y0) ≤ ω0(d(x0, y0)) ≤ ω0 ◦ ω(ε)

where ω0 is the modulus of continuity of the initial data u0 and ω is defined in (3.11). This
is impossible for ε small enough.
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Step 3: use of the equation. We now treat the case where tν > 0 and sν > 0. Then
we can write the viscosity inequalities with (t, x, s, y) = (tν , xν , sν , yν) using the shorthand
notation (3.1) for the Hamiltonian,

η

(T − t)2
+
t− s

ν
+H(x,Gx(ε−1x, ε−1y) + αd(0, x)) ≤ 0,

t− s

ν
+H(y,−Gy(ε

−1x, ε−1y)) ≥ 0.

Substrating these two inequalities, we get

η

T 2
≤ H(y,−Gy(ε

−1x, ε−1y)) −H(x,Gx(ε−1x, ε−1y) + αd(0, x)).

Using (3.4) with γ ∈
(

0, η
2T 2

)

, we deduce for p = Gx(ε−1x, ε−1y)

(3.12)
η

2T 2
≤ H(x, p) −H(x, p+ αd(0, x)).

Because of (3.6) and (3.11), we see that p is bounded for ε fixed by |p| ≤ Cω(ε)
ε

. Finally, for

ε > 0 fixed and α→ 0, we have αd(0, x) → 0, and using the uniform continuity of H(x, p)
for x ∈ J and p bounded, we get a contradiction in (3.12). The proof is now complete.

3.3 The vertex test function versus the fundamental solution

Recalling the definition of the germ GA (see (1.10)), let us associate with any (p, λ) ∈ GA

the following functions for i, j = 1, ..., N ,

up,λ(t, x, s, y) = pix− pjy − λ(t− s) for (x, y) ∈ Ji × Jj, t, s ∈ R.

The reader can check that they solve the following system,

(3.13)

{

ut + H(x, ux) = 0,
−us +H(y,−uy) = 0.

Then, for N ≥ 2, the function G̃0(t, x, s, y) = (t− s)G0
(

x
t−s
, y
t−s

)

can be rewritten as

(3.14) G̃0(t, x, s, y) = sup
(p,λ)∈GA

up,λ(t, x, s, y) for (x, y) ∈ J × J, t− s ≥ 0

which satisfies

(3.15) G̃0(s, x, s, y) =

{

0 if x = y,

+∞ otherwise.

For N ≥ 2 and A > A0, it is possible to check (assuming (4.1)) that G̃0 is a viscosity
solution of (3.13) for t − s > 0, only outside the diagonal {x = y 6= 0}. Therefore, even

28



if (3.14) appears as a kind of (second) Hopf formula (see for instance [5, 3]), this formula
does not provide a true solution on the junction.

On the other hand, under more restrictive assumptions on the Hamiltonians and for
A = A0 and N ≥ 2 (see [19]), there is a natural viscosity solution of (3.13) with the same
initial conditions (3.15), which is D(t, x, s, y) = (t − s)D0

(

x
t−s
, y
t−s

)

where D0 is a cost
function defined in [19] following an optimal control interpretation. The function D0 is
not C1 in general (but it is semi-concave) and it is much more difficult to study it and to
use it in comparison with G0. Nevertheless, under suitable restrictive assumptions on the
Hamiltonians, it would be also possible to replace in our proof of the comparison principle
the term εG(ε−1x, ε−1y) in (3.8) by εD0(ε

−1x, ε−1y).

4 Construction of the vertex test function

This section is devoted to the proof of Theorem 3.2. Our construction of the vertex test
function G is modelled on the particular subcase of normalized convex Hamiltonians Hi.

4.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians Hi satisfy the following assumptions for i = 1, ..., N ,

(4.1)















Hi ∈ C2(R) with H ′′
i > 0 on R,

H ′
i < 0 on (−∞, 0) and H ′

i > 0 on (0,+∞),

lim
|p|→+∞

Hi(p)

|p| = +∞.

It is useful to associate with each Hi satisfying (4.1) its partial inverse functions π±
i :

(4.2) for λ ≥ Hi(0), Hi(π
±
i (λ)) = λ such that ± π±

i (λ) ≥ 0.

Assumption (4.1) implies that π±
i ∈ C2(minHi,+∞) ∩ C([minHi,+∞)) thanks to the

inverse function theorem.
We recall that G0 is defined, for i, j = 1, ..., N , by

G0(x, y) = sup
(p,λ)∈GA

(pix− pjy − λ) if (x, y) ∈ Ji × Jj

where GA is defined in (1.10). Replacing A with max(A,A0) if necessary, we can always
assume that A ≥ A0 with A0 given by (1.8).

Proposition 4.1 (The vertex test function – the smooth convex case). Let A ≥ A0 with
A0 given by (1.8) and assume that the Hamiltonians satisfy (4.1). Then G0 satisfies

i) (Regularity)

G0 ∈ C(J2) and

{

G0 ∈ C1({(x, y) ∈ J × J, x 6= y}),
G0(0, ·) ∈ C1(J) and G0(·, 0) ∈ C1(J);
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ii) (Bound from below) G0 ≥ G0(0, 0) = −A;

iii) (Compatibility conditions) (3.3) holds with γ = 0 for all x ∈ J and (3.4) holds with
γ = 0 for (x, y) such that either x 6= y or x = y = 0;

iv) (Superlinearity) (3.5) holds for some g = g0;

v) (Gradient bounds) (3.6) holds only for (x, y) ∈ J2 such that x 6= y or (x, y) = (0, 0);

vi) (Saturation close to the diagonal) For i ∈ {1, ..., N} and for (x, y) ∈ Ji × Ji, we have
G0(x, y) = ℓi(x− y) with ℓi ∈ C(R) ∩ C1(R \ {0}) and

ℓi(a) =

{

aπ+
i (A) −A if 0 ≤ a ≤ z+i

aπ−
i (A) −A if z−i ≤ a ≤ 0

where (z−i , z
+
i ) := (H ′

i(π
−
i (A)), H ′

i(π
+(A))) and the functions π±

i are defined in (4.2).
Moreover G0 ∈ C1(Ji × Ji) if and only if π+

i (A) = 0 = π−
i (A).

Remark 4.2. The compatibility condition (3.4) for x 6= y, is in fact an equality with γ = 0
when N ≥ 2.

The proof of this proposition is postponed until Subsection 4.4. With such a result in
hand, we can now prove Theorem 3.2 in the case of smooth convex Hamiltonians.

Lemma 4.3 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians
satisfy (4.1). Then the conclusion of Theorem 3.2 holds true.

Proof. We note that the function G0 satisfies all the properties required for G, except on
the diagonal {(x, y) ∈ J × J, x = y 6= 0} where G0 may not be C1. To this end, we first
introduce the set I of indices such that G0 6∈ C1(Ji×Ji). We know from Proposition 4.1 vi)
that

I =
{

i ∈ {1, ..., N} , π+
i (A) > π−

i (A)
}

.

For i ∈ I, we are going to contruct a regularization G̃0,i of G0 in a neighbourhood of the
diagonal {(x, y) ∈ Ji × Ji, x = y 6= 0}.

Step 1: Construction of G̃0,i for i ∈ I. Let us define

Li(a) =

{

aπ+
i (A) if a ≥ 0,

aπ−
i (A) if a ≤ 0.

We first consider a convex C1 function L̃i : R → R coinciding with Li outside (z−i , z
+
i ),

that we choose such that

(4.3) 0 ≤ L̃i − Li ≤ 1.
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Then for ε ∈ (0, 1], we define

ℓεi (a) :=

{

εL̃i

(

a
ε

)

− A if a ∈ [εz−i , εz
+
i ],

ℓi(a) otherwise.

which is a C1(R) (and convex) function. We now consider a cut-off function ζ satisfying
for some constant B > 0

(4.4)























ζ ∈ C∞(R),
ζ ′ ≥ 0,
ζ = 0 in (−∞, 0],
ζ = 1 in [B,+∞),
±z±i ζ ′ < 1 in (0,+∞)

and for ε ∈ (0, 1], we define for (x, y) ∈ Ji × Ji:

G̃0,i(x, y) = ℓ
εζ(x+y)
i (x− y).

Step 2: First properties of G̃0,i. By construction, we have G̃0,i ∈ C1((Ji × Ji) \ {0}).
Moreover we have

G̃0,i = G0 on (Ji × Ji) \ δεi
where

δεi =
{

(x, y) ∈ Ji × Ji, εz−i ζ(x+ y) < x− y < εz+i ζ(x+ y)
}

is a neighborhood of the diagonal

{(x, y) ∈ Ji × Ji, x = y 6= 0} .

Because of (4.3), we also have

(4.5) G0 ≤ G̃0,i ≤ ε.

As a consequence of (4.4), we have in particular

(Ji × Ji) \ δεi ⊃ (Ji × {0}) ∪ ({0} × Ji)

and moreover G̃0,i coincides with G0 on a neighborhood of (J∗
i × {0}) ∪ ({0} × J∗

i ), which
implies that

(4.6) G̃0,i = G0, G̃0,i
x = G0

x and G̃0,i
y = G0

y on (Ji × {0}) ∪ ({0} × Ji).
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Step 3: Computation of the gradients of G̃0,i. For (x, y) ∈ δεi , we have














G̃0,i
x (x, y) = (ℓ

εζ(x+y)
i )′(x− y) + εζ ′(x+ y) ξi

(

x− y

εζ(x+ y)

)

−G̃0,i
y (x, y) = (ℓ

εζ(x+y)
i )′(x− y) − εζ ′(x + y) ξi

(

x− y

εζ(x+ y)

)

with
ξi(b) = L̃i(b) − bL̃′

i(b)

while if (x, y) ∈ (Ji × Ji) \ δεi we have

G̃0,i
x (x, y) = −G̃0,i

y (x, y).

Given γ > 0, and using the local uniform continuity of Hi, we see that we have for ε small
enough

Hi(G̃
0,i
x )) ≤ Hi(−G̃0,i

y ) + γ in J∗
i × J∗

i

and using (4.6), we get

(4.7) H(x, G̃0,i
x (x, y)) −H(y,−G̃0,i

y (x, y)) ≤ γ for all (x, y) ∈ Ji × Ji.

Step 4: Definition of G. We set for (x, y) ∈ Ji × Jj:

G(x, y) =

{

G0(x, y) −G0(0, 0) if i 6= j or i = j 6∈ I,

G̃0,i(x, y) −G0(0, 0) if i = j ∈ I.

From the properties of G0, we recover all the expected properties of G with g(a) = g0(a)−
G0(0, 0). In particular from (4.7) and (4.5), we respectively get the compatibility condition
for the Hamiltonians (3.4) and the compatibility condition on the diagonal (3.3) for ε small
enough.

4.2 The general case

Let us consider a slightly stronger assumption than (1.5), namely

(4.8)











Hi ∈ C2(R) with H ′′
i (p0i ) > 0,

H ′
i < 0 on (−∞, p0i ) and H ′

i > 0 on (p0i ,+∞),
lim

|q|→+∞
Hi(q) = +∞.

We will also use the following technical result which allows us to reduce certain non-
convex Hamiltonians to convex Hamiltonians.

Lemma 4.4 (From non-convex to convex Hamiltonians). Given HamiltoniansHi satisfying
(4.8) and (3.2), there exists a function β : R → R such that the functions β ◦ Hi satisfy
(4.1) for i = 1, ..., N . Moreover, we can choose β such that

(4.9) β is convex, β ∈ C2(R), β(0) = 0 and β ′ ≥ δ > 0.
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Proof. Recalling (4.2), it is easy to check that (β ◦Hi)
′′ > 0 if and only if we have

(4.10) (ln β ′)′(λ) > − H ′′
i

(H ′
i)

2
◦ π±

i (λ) for λ ≥ Hi(0).

Because H ′′
i (0) > 0, we see that the right hand side is negative for λ close enough to Hi(0).

Then it is easy to choose a function β satisfying (4.10) and (4.9). Finally, compositing β
with another convex increasing function which is superlinear at +∞ if necessary, we can
ensure that β ◦Hi is superlinear.

Lemma 4.5 (The case of smooth Hamiltonians). Theorem 3.2 holds true if the Hamilto-
nians satisfy (4.8).

Proof. We assume that the Hamiltonians Hi satisfy (4.8). Thanks to Lemma 3.1, we can
further assume that they satisfy (3.2). Let β be the function given by Lemma 4.4. If u
solves (1.7) on (0, T ) × J , then u is also a viscosity solution of

(4.11)

{

β̄(ut) + Ĥi(ux) = 0 for t ∈ (0, T ) and x ∈ J∗
i ,

β̄(ut) + F̂Â(ux) = 0 for t ∈ (0, T ) and x = 0

with F̂Â constructed as FA where Hi and A are replaced with Ĥi and Â defined as follows

Ĥi = β ◦Hi, Â = β(A)

and β̄(λ) = −β(−λ). We can then apply Theorem 3.2 in the case of smooth convex
Hamiltonians (namely Lemma 4.3) to construct a vertex test function Ĝ associated to
problem (4.11) for every γ̂ > 0. This means that we have with Ĥ(x, p) = β(H(x, p)),

Ĥ(y,−Gy) ≤ Ĥ(x,Gx) + γ̂.

This implies

H(y,−Gy) ≤ β−1(β(H(x,Gx)) + γ̂) ≤ H(x,Gx) + γ̂|(β−1)′|L∞(R).

Because of the lower bound on β ′ given by Lemma 4.4, we get |(β−1)′|L∞(R) ≤ 1/δ which
yields the compatibility condition (3.4) with γ = γ̂/δ arbitrarily small.

We are now in position to prove Theorem 3.2 in the general case.

Proof of Theorem 3.2. Let us now assume that the Hamiltonians only satisfy (1.5). In
this case, we simply approximate the Hamiltonians Hi by other Hamiltonians H̃i satisfying
(4.8) such that

|Hi − H̃i| ≤ γ.

We then apply Theorem 3.2 to the Hamiltonians H̃i and construct an associated vertex
test function G̃ also for the parameter γ. We deduce that

H(y,−G̃y) ≤ H(x, G̃x) + 3γ

with γ > 0 arbitrarily small, which shows again the compatibility condition on the Hamil-
tonians (3.4) for the Hamiltonians Hi’s. The proof is now complete in the general case.
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Remark 4.6 (A variant in the proof of construction of G0). When the Hamiltonians are
not convex, it is also possible to use the function β from Lemma 4.4 in a different way by
defining directly the function G0 as follows

G̃0(x, y) = sup
(p,λ)∈GA

(pix− pjy − β(λ)) .

4.3 A special function

In order to prove Proposition 4.1, we first need to study a special function G. Precisely,
we define the following convex function for z = (z1, ..., zN) ∈ RN ,

G(z) = sup
(p,λ)∈GA

(p · z − λ).

We then consider the following subsets of RN ,

Qσ = {z = (z1, . . . , zN) ∈ R
N : σizi ≥ 0, i = 1, . . . , N}

∆σ = {z = (z1, . . . , zN) ∈ Qσ :

N
∑

i=1

σizi
z̄σi (A)

≤ 1}

where z̄σi (A) = σiH
′
i(π

σi

i (A)) ≥ 0 and the functions π±
i are defined in (4.2). We also make

precise that we use the following convenient convention,

(4.12)
z̄i

z̄σi (A)
=

{

0 if z̄i = 0,
+∞ if z̄i > 0 and z̄σi (A) = 0.

Lemma 4.7 (The function G in Qσ). Under the assumptions of Proposition 4.1, we have,
for any σ ∈ {±}N with σ 6= (+, . . . ,+) if N ≥ 2:

i) G is C1 on Qσ (up to the boundary).

ii) For all z ∈ Qσ, there exists a unique λ = L(z) ≥ A such that

G(z) = p · z − λ

∇G(z) = p = (p1, . . . , pN)

pi = πσi

i (λ)

with (p, λ) ∈ GA.

iii) For all z ∈ Qσ, L(z) = A if and only if z ∈ ∆σ. In particular, G is linear in ∆σ.

Before giving global properties of G, we introduce the set

(4.13) Ω̄ =

{

R if N = 1,

R
N \ (0,+∞)N if N ≥ 2.
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Lemma 4.8 (Global properties of G and L). Under the assumptions of Proposition 4.1,
the function G is convex and finite in RN , reaches its minimum −A at 0 and the function
L is continuous in Ω̄.

Proof of Lemmas 4.7 and 4.8. Let σ ∈ {±}N and z ∈ Qσ. We set

πσ(λ) = (πσ1
1 (λ), ..., πσN

N (λ)).

Using the fact that πσ(A) ∈ GA, we get G(z) ≥ G(0) = −A.

Step 1: Explicit expression of G. For σ 6= (+, . . . ,+) if N ≥ 2, we have

(4.14) (p, λ) ∈ GA ∩ (Qσ × R) ⇐⇒ λ ≥ A and p = πσ(λ).

This implies in particular that

(4.15) G(z) = sup
λ≥A

(z · πσ(λ) − λ).

Step 2: Optimization. Because of the superlinearity of the Hamiltonians Hi (see (4.1)),
we have for z 6= 0,

lim
λ→+∞

fσ(λ) = −∞ for fσ(λ) := z · πσ(λ) − λ.

Therefore the supremum in (4.15) is reached for some λ ∈ [A,+∞), i.e.

G(z) = z · πσ(λ) − λ.

Then we have λ = A or λ > A and (fσ)′(λ) = 0. Note that for λ > A0, we can rewrite
(fσ)′(λ) = 0 as

∑

i=1,...,N

z̄i
z̄σi

= 1 with







z̄i = σizi ≥ 0,

z̄σi = z̄σi (λ) := σiH
′
i(π

σi

i (λ)) > 0.

Moreover, we have

(z̄σi )′(λ) =
H ′′

i (πσi

i (λ))

σiH
′
i(π

σi

i (λ))
> 0

where the strict inequality follows from the strict convexity of Hamiltonians, see (4.1).
Moreover, by definition of z̄σi , we have

lim
λ→+∞

z̄σi (λ) = +∞

because Hi is convex and superlinear.
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Step 3: Foliation and definition of L. Let us consider the sets

(4.16) P σ(λ) =































{

z̄ ∈ [0,+∞)N ,
∑

i=1,...,N

z̄i
z̄σi (λ)

= 1

}

if λ > A,

{

z̄ ∈ [0,+∞)N ,
∑

i=1,...,N

z̄i
z̄σi (A)

≤ 1

}

if λ = A

(keeping in mind convention (4.12)). Because for λ > A, the intersection points of the
piece of hyperplane P (λ) with each axis Rei are z̄0i (λ)ei, we deduce that we can write the
partition

[0,+∞)N =
⋃

λ≥A

P σ(λ)

where P σ(λ) gives a foliation by hyperplanes for λ > A. Then we can define for z ∈ Qσ,

L
σ(z) = {λ such that z̄ ∈ P σ(λ) for z̄i = σizi for i = 1, ..., N} .

From our definition, we get that the function L
σ is continuous on Qσ and satisfies L

σ(0) =
A. For z ∈ Qσ such that zi0 = 0, we see from the definition of P σ given in (4.16) that the
value of Lσ(z) does not depend on the value of σi0 . Therefore we can glue up all the L

σ in
a single continuous function L defined for z ∈ Ω̄ by

L(z) = L
σ(z) if z ∈ Qσ.

which satisfies L(0) = A.

Step 4: Regularity of G and computation of the gradients. For z ∈ Qσ ⊂ Ōmega,
we have

G(z) = sup
λ≥A

(z · πσ(λ) − λ)

where the supremum is reached only for λ = L(z). Moreover G is convex in RN . We just
showed that the subdifferential of G on the interior of Qσ is the singleton {πσ(λ)} with
λ = L(z). This implies that G is derivable on the interior of Qσ and

∇G(z) = πσ(λ) with λ = L(z).

The fact that the maps πσ and L are continuous implies that G|Qσ
is C1.

4.4 Proof of Proposition 4.1

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. By definition of G0, we have

G0(x, y) = G(Z(x, y)) with Z(x, y) := xei − yej ∈ Ω̄ if (x, y) ∈ Ji × Jj

where (e1, ..., eN ) is the canonical basis of RN and Ω̄ is defined in (4.13).
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Step 1: Regularity. Then Lemmas 4.7 and 4.8 imply immediately that G0 ∈ C(J2)
and G0 ∈ C1(R) for each region R given by

(4.17) R =

{

Ji × Jj if i 6= j,

T±
i = {(x, y) ∈ Ji × Ji, ±(x− y) ≥ 0} if i = j.

This regularity of G implies in particular the regularity of G0 given in i).

Step 2: Computation of the gradients. We also deduce from Lemma 4.8 that

Λ(x, y) := L(Z(x, y))

defines a continuous map Λ : J2 → [A,+∞) which satisfies

(4.18) Λ(x, x) = A

because of Lemma 4.7-iii) and Z(x, x) = 0. Moreover, for each R given by (4.17) and for
all (x, y) ∈ R ⊂ Ji × Jj we have

G0(x, y) = pix− pjy − λ

and
(G0

|R)x(x, y) = pi and (G0
|R)y(x, y) = −pj

with λ = Λ(x, y) and (p, λ) ∈ GA and

(4.19) (pi, pj) =

{

(π+
i (λ), π−

j (λ)) if R = Ji × Jj with i 6= j,
(π±

i (λ), π±
i (λ)) if R = T±

i with i = j.

Step 3: Checking the compatibility condition on the gradients. Let us consider
(x, y) ∈ J2 with x = y = 0 or x 6= y. We have

(∂iG
0(·, y))(x) ∈

{

π±
i (λ)

}

and − (∂jG
0(x, ·))(y) ∈

{

π±
j (λ)

}

with λ = Λ(x, y) ≥ A.

We claim that

(4.20) H(x,G0
x(x, y)) = λ.

It is clear except in the special case where

(4.21) x = 0 and (∂iG
0(·, y))(0) = π+

i (λ) for all i = 1, ..., N

If 0 6= y ∈ Jj , then (x, y) = (0, y) ∈ T−
j and (∂jG

0(·, y))(0) = π−
j (λ). Therefore (4.21) only

happens if y = 0 and then
H(0, G0

x(0, 0)) = A

which still implies (4.20), because λ = Λ(0, 0) = A.
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In view of (4.20), (3.4) with equality and γ = 0 is equivalent to

(4.22) H(y,−G0
y(x, y)) = λ.

This is clear except possibly in the special case where

(4.23) y = 0 and − (∂jG
0(x, ·))(0) = π+

j (λ) for all j = 1, ..., N.

If x ∈ Ji and N ≥ 2, then we can find j 6= i such that −(∂jG
0(x, ·))(0) = π−

j (λ). Therefore
(4.23) only happens if N = 1 and then

H(0,−G0
y(x, 0)) = A ≤ λ.

Step 4: Superlinearity. In view of the definition of G0, we deduce from (4.19) that

G0(x, y) ≥
{

xπ+
i (λ) − yπ−

j (λ) − λ if i 6= j,
(x− y)π±

i (λ) − λ if i = j and ± (x− y) ≥ 0

Setting
π0(λ) := min

±, i=1,...,N
±π±

i (λ) ≥ 0,

we get
G0(x, y) ≥ d(x, y)π0(λ) − λ.

From the definition (4.2) of π±
i and the assumption (4.1) on the Hamiltonians, we deduce

that
π0(λ) → +∞ as λ→ +∞

which implies that for any K ≥ 0, there exists a constant CK ≥ 0 such that

G0(x, y) ≥ Kd(x, y) − CK .

Therefore we get (3.5) with
g0(a) = sup

K≥0
(Ka− CK).

Step 5: Gradient bounds. Note that

∑

i=1,...,N

|Zi(x, y)| = d(x, y).

Because each component of the gradients of G0 are equal to one of the
{

π±
k (λ)

}

±,k=1,...,N

with λ = L(Z(x, y)), we deduce (3.6) from the continuity of L and of the maps π±
k .

Step 6: Saturation close to the diagonal. Point vi) in Proposition 4.1 follows from
Lemma 4.7-iii), from the definition of G and from the regularity of G0.
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4.5 A second vertex test function

In this subsection, we propose a construction of a second vertex test function G♯ (see
Theorem 4.12 below), that can be seen as a kind of approximation of the original vertex
test function G. This test function is somehow less natural than our previous test function,
but it has the advantage that it is easier to check its properties. Moreover, it can be useful
in applications.

We introduce the following

Definition 4.9 (Piecewise C1 Regularity). We say that a function u belongs to C1,♯(J),
if u ∈ C(J), and if for any branch Ji for i = 1, . . . , N , there exists a sequence of points
(aik)k∈N on the branch Ji satisfying

0 = ai0 < ai1 < · · · < aik < aik+1 → +∞ as k → +∞
such that

u|[ai
k
,ai

k+1]
∈ C1

(

[aik, a
i
k+1]

)

for all k ∈ N, i = 1, . . . , N.

The smooth convex case

Following what we did in order to construct the first vertex test function, we first construct
G♯ in the smooth convex case and we then derive the general case by approximation. In
the smooth convex case, we first consider

(4.24) G0,♯(x, y) = sup
k∈N

(

sup
(p,λk)∈GA

(pix− pjy − λk)

)

if (x, y) ∈ Ji × Jj

for an increasing sequence (λk)k∈N satisfying for some constant γ0 > 0

(4.25)

{

λ0 = A and λk → +∞ as k → +∞
λk+1 − λk ≤ γ0 for all k ≥ 0.

Lemma 4.10 (Piecewise linearity). The function G0,♯ is piecewise linear. More precisely,

• For (x, y) ∈ Ji × Ji,
G0,♯(x, y) = ℓi(x− y)

with ℓi ∈ C(R) and

ℓi(a) =

{

aπ+
i (λk) − λk if zk,+i ≤ a ≤ zk+1,+

i

aπ−
i (λk) − λk if zk+1,−

i ≤ a ≤ zk,−i

∣

∣

∣

∣

for all k ≥ 0

and

(4.26) z0,±i = 0 and zk+1,±
i =

λk+1 − λk
π±
i (λk+1) − π±

i (λk)
for all k ≥ 0

(recall that π±
i is defined in (4.2)). We have in particular for all k ≥ 1

(4.27) zk+1,−
i < zk,−i < z0,−i = 0 = z0,+i < zk,+i < zk+1,+

i .
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• For (x, y) ∈ Ji × Jj with i 6= j,

G0,♯(x, y) = xπ+
i (λk) − yπ−

i (λk) − λk

for (x, y) ∈ ∆k
ij with

(4.28) ∆k
ij =

{

(x, y) ∈ Ji × Jj,
x

zk,+i

− y

zk,−j

≥ 1,
x

zk+1,+
i

− y

zk+1,−
j

≤ 1

}

.

Proof. Remark that λk = Hi(π
±
i (λk)). Therefore the definition of zk,±i and the convexity

of Hi imply inequalities (4.27). It is then easy to check the explicit expressions of G0,♯.

We recall that if u ∈ C1,♯(J) and u is not C1 at a point x ∈ J∗
i , then Proposition 2.15

can be used in order to understand H as follows

(4.29) H(x, ux) = max
(

H+
i (∂iu(x−)), H−

i (∂iu(x+))
)

.

This interpretation will be used to check inequality (3.4) at points where G0,♯(x, y) is not
C1 with (x, y) ∈ Ji × Jj with i 6= j.

Proposition 4.11 (The second vertex test function – the smooth convex case). Let A ≥
A0 with A0 given by (1.8) and assume that the Hamiltonians satisfy (4.1). Let (λk)k∈N
be any increasing sequence satisfying (4.25) for some given γ0 > 0. Then the function
G0,♯ : J2 → R defined in (4.24) satisfies properties ii) and iv) listed in Proposition 4.1,
together with the following properties

i’) (Regularity)

G0,♯ ∈ C(J2) and

{

G0,♯(x, ·) ∈ C1,♯(J) for all x ∈ J,
G0,♯(·, y) ∈ C1,♯(J) for all y ∈ J.

iii’) (Compatibility conditions) On the one hand, (3.3) holds with γ = 0 for all x ∈ J .
On the other hand, (3.4) holds with γ = γ0, for all (x, y) ∈ J2, except possibly for all
points on the diagonals x = y ∈ J∗

i for i ∈ {1, . . . , N}.
Moreover, at points (x, y) ∈ Ji × Jj with i 6= j, where the functions G0,♯(x, ·) or
G0,♯(·, y) are not C1, inequality (3.4) has to be understood using convention (4.29);

v’) (Gradient bounds) Estimate (3.6) holds for all (x, y) ∈ J2 if we understand it
as a bound for both left and right derivatives, at points where the functions G0,♯(x, ·)
and G0,♯(·, y) are not C1.

Proof. The regularity i’) follows immediately for the previous lemma. Moreover points ii)
and iv) listed in Proposition 4.1 follow easily, and similarly for the gradient bounds v’).
Also (3.3) holds clearly for γ = 0.

The only important point is to check inequality (3.4) in iii’) with γ = γ0.
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Step 1: checking on J∗
i × J∗

i Inequality (3.4) is clearly true for (x, y) ∈ J∗
i × J∗

i , if
x− y 6= zk,±i . Let us check it if x− y = zk+1,±

i 6= 0. We distinguish two cases.

Case 1: (x, y) ∈ J∗
i × J∗

i with x − y = zk+1,+
i > 0. The only novelty here is that the

function G0,♯ is not C1 at those points, and we have to use interpretation (4.29) to compute
it. We get

(4.30)
H(x,G0,♯

x (x, y)) = max(H+
i (G0,♯

x (x−, y)), H−
i (G0,♯

x (x+, y)))
= max(H+

i (π+
i (λk)), H

−
i (π+

i (λk+1)))
= λk

and

(4.31)
H(y,−G0,♯

y (x, y)) = max(H+
i (−G0,♯

y (x, y−)), H−
i (−G0,♯

y (x, y+)))
= max(H+

i (π+
i (λk+1)), H

−
i (π+

i (λk)))
= λk+1.

This implies inequality (3.4) for γ = γ0 ≥ λk+1 − λk.

Case 2: (x, y) ∈ J∗
i × J∗

i with x− y = zk+1,−
i < 0. We compute

(4.32)
H(x,G0,♯

x (x, y)) = max(H+
i (G0,♯

x (x−, y)), H−
i (G0,♯

x (x+, y)))
= max(H+

i (π−
i (λk+1)), H

−
i (π−

i (λk)))
= λk

and

(4.33)
H(y,−G0,♯

y (x, y)) = max(H+
i (−G0,♯

y (x, y−)), H−
i (−G0,♯

y (x, y+)))
= max(H+

i (π−
i (λk)), H

−
i (π−

i (λk+1)))
= λk+1

which gives the result.

Step 2: checking on ∆k
ij for i 6= j. This inequality is also obviously true if (x, y) ∈

Int ∆k
ij for i 6= j. We then distinguish six cases.

Case 1: x = y = 0. This case is similar to the study of G0 and we get immediately

H(0,−G0,♯
y (0, 0)) = −A = H(0, G0,♯

x (0, 0)).

Case 2: (x, y) ∈ ∆k
ij with y = 0 and zk,+i < x < zk+1,+

i .

H(0,−G0,♯
y (x, 0)) = λk = H(x,G0,♯

x (x, 0)).

Case 3: (x, y) ∈ ∆k
ij with x = 0 and −zk,−j < y < −zk+1,−

j .

H(y,−G0,♯
y (0, y)) = λk = H(0, G0,♯

x (0, y)).
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Case 4: (x, y) ∈ (∂∆k
ij)\ ((Ji × {0}) ∪ ({0} × Jj)). Let us consider the subcase where

x

zk+1,+
i

− y

zk+1,−
j

= 1 (the other case with k + 1 replaced by k being of course similar). We

compute again:

H(x,G0,♯
x (x, y)) = max(H+

i (G0,♯
x (x−, y)), H−

i (G0,♯
x (x+, y)))

= max(H+
i (π+

i (λk)), H
−
i (π+

i (λk+1)))
= λk

and
H(y,−G0,♯

y (x, y)) = max(H+
j (−G0,♯

y (x, y−)), H−
j (−G0,♯

y (x, y+)))
= max(H+

j (π−
j (λk)), H

−
j (π−

j (λk+1)))
= λk+1.

This implies again inequality (3.4) for γ = γ0 ≥ λk+1 − λk.

Case 5: (x, y) ∈ ∆k
ij with y = 0 and x = zk+1,+

i . Again, we check easily that
H(0,−G0,♯

y (x, 0)) = λk+1, and H(x,G0,♯
x (x, 0)) = λk, as in Case 4.

Case 6: (x, y) ∈ ∆k
ij with x = 0 and y = −zk+1,−

j . We have H(y,−G0,♯
y (0, y)) = λk+1

as in Case 4, and H(0, G0,♯
x (0, y)) = λk.

The general case

Then we have the following

Theorem 4.12 (The second vertex test function). Let A ∈ R∪{−∞} and γ > 0. Assume
that the Hamiltonians satisfy (1.5) and (3.2). Then there exists a function G♯ : J2 → R

enjoying properties ii) to vi) listed in Theorem 3.2, and property i’) given in Proposition
4.11.
In particular, at points (different from the origin) where functions G♯(x, ·) and G♯(·, y) are
not C1, we get bounds (3.6) on both left and right derivatives. Moreover, at those points,
inequality (3.4) has to be interpreted in the sense of Proposition 2.15. Moreover, there
exists some ε > 0 such that we have

(4.34) G♯ = G0,♯ on J2\δε with δε =

{

(x, y) ∈
⋃

i=1,...,N

J∗
i × J∗

i , |x− y| ≤ ε

}

where G0,♯ is given in Proposition 4.11, with γ = γ0.

Proof of Theorem 4.12. In the smooth convex case, we define G♯ as in (4.34). On J∗
i × J∗

i ,
we simply define G♯ as a regularization of G0,♯ along each line x = y ∈ J∗

i , following the
procedure described in the proof of Lemma 4.3 for ε ≤ γ = γ0. The general case follows
by approximation.

Remark 4.13. With the help of Proposition 2.15, it is straighforward to check that the
proof of the comparison principle works as well with this second vertex test function G♯

given by Theorem 4.12.

42



5 First application: link with optimal control theory

This section is devoted to the study of the value function of an optimal control problem
associated with trajectories running over the junction.

5.1 Assumptions on dynamics and running costs

As before, we consider a junction J =
⋃

i=1,...,N Ji. We consider compact metric spaces
Ai for i = 0, . . . , N and functions bi, ℓi : [0, T ] × Ji × Ai → R for i = 1, . . . , N and
b0, ℓ0 : [0, T ] × A0 → R. The sets Ai are the sets of controls on each branch J∗

i for
i = 1, . . . , N , while the set A0 is the set of controls at the junction point x = 0. The
functions bi represent the dynamics and the ℓi’s are the running cost functions.

For i = 1, . . . , N , we follow [7] by assuming the following

(5.1)



































bi and ℓi are continuous and bounded

bi is Lipschitz continuous w.r.t. (t, x) uniformly w.r.t. αi

ℓi is uniformly continuous w.r.t. (t, x) uniformly w.r.t. αi

Bi(t, x) := {(bi(t, x, αi), ℓi(t, x, αi)) : αi ∈ Ai} is closed and convex

Bi(t, x) = {bi(t, x, αi) : αi ∈ Ai} contains [−δ, δ]

for some δ independent of (t, x).
It is easy to check the following lemmas.

Lemma 5.1 (Hamiltonians). Assume (5.1). Then given i ∈ {1, . . . , N}, the Hamiltonian
Hi defined by

Hi(t, x, pi) = sup
αi∈Ai

(bi(t, x, αi)pi − ℓi(t, x, αi))

satisfies Assumption (1.5).

Lemma 5.2 (Non-increasing Hamiltonians). Assume (5.1). Given i ∈ {1, . . . , N}, then
the non-increasing part of Hi(t, 0, pi) with respect to pi, is given by

H−
i (t, pi) = sup

αi∈A
−

i

(bi(t, 0, αi)pi − ℓi(t, 0, αi))

= sup
αi∈A

<
i

(bi(t, 0, αi)pi − ℓi(t, 0, αi))

where A
−
i = {αi ∈ Ai : bi(t, 0, αi) ≤ 0} and A

<
i = {αi ∈ Ai : bi(t, 0, αi) < 0}.

As far as the dynamics and running costs at the junction point are concerned, we also
assume that

(5.2) b0 and l0 are continuous bounded, A0 ⊂ R
d0
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for some d0 ≥ 1, and define

B0(t) = {b0(t, α0) : α0 ∈ A0}.

We also define

(5.3) A0(t) = max
i=1,...,N

min
p∈R

Hi(t, 0, p).

We set

(5.4) H0(t) =







sup
α0∈A0(t)

(−ℓ0(t, α0)) if A0(t) 6= ∅,

−∞ if A0(t) = ∅

with

(5.5) A0(t) = {α0 ∈ A0, b0(t, α0) = 0} ,

and we assume that

(5.6) H̄0 : t 7→ max(H0(t), A0(t)) is continuous in [0, T ].

5.2 The value function

We then define the general set of controls,

A = A0 × · · · × AN

and define for α = (α0, . . . , αN) ∈ A and (t, x) ∈ [0, T ] × J ,

b(t, x, α) =

{

bi(t, x, αi) if x ∈ J∗
i ,

b0(t, α0) if x = 0.

Similarly, we define

ℓ(t, x, α) =

{

ℓi(t, x, αi) if x ∈ J∗
i ,

ℓ0(t, α0) if x = 0.

For 0 ≤ s < t ≤ T and y, x ∈ J , we define the set of admissible dynamics

(5.7) T t,x
s,y =











(X(·), α(·)) ∈ Lip([s, t]; J) × L∞([s, t];A),
{

X(s) = y, X(t) = x,

Ẋ(τ) = b(τ,X(τ), α(τ)) for a.e. τ ∈ (s, t)











.

Then we consider the value function of the optimal control problem,

(5.8) u(t, x) = inf
z∈J

inf
(X(·),α(·))∈T t,x

0,z

Et
0(X,α)
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with

Et
0(X,α) = u0(X(0)) +

∫ t

0

ℓ(τ,X(τ), α(τ)) dτ

where the initial datum u0 is assumed to be globally Lipschitz continuous.
Note that if T t,x

0,z = ∅, then we have inf
T t,x
0,z

(. . . ) = +∞. More generally and for later use,

we set

(5.9) Et
s(X,α) = u(s,X(s)) +

∫ t

s

ℓ(τ,X(τ), α(τ)) dτ.

5.3 Dynamic programming principle

The following result is expected and quite standard.

Proposition 5.3 (Dynamic programming principle). For all x ∈ J , t ∈ (0, T ] and s ∈
[0, t), the value function u defined in (5.8) satisfies

u(t, x) = inf
y∈J

inf
(X(·),α(·))∈T t,x

s,y

Et
s(X,α)

where Et
s and T t,x

s,y are defined respectively in (5.9) and (5.7).

Proof. Let V (t, x) denote the right hand side of the desired equality. Consider (X(·), α(·)) ∈
T s,y
0,z and (X̃(·), α̃(·)) ∈ Ts,yt, x. Then

(X̄(τ), ᾱ(τ)) =

{

(X(τ), α(τ)) if τ ∈ [0, s]

(X̃(τ), α̃(τ)) if τ ∈ (s, t]

lies in T t,x
0,z . In particular,

u(t, x) ≤ u0(z) +

∫ t

0

ℓ(τ, X̄(τ), ᾱ(τ)) dτ

≤ u0(z) +

∫ s

0

ℓ(τ,X(τ), α(τ)) dτ +

∫ t

s

ℓ(τ, X̃(τ), α̃(τ)) dτ.

Taking the infimum, first with respect to (X(·), α(·)) and z, and then with respect to
(X̃(·), α̃(·)) yields u(t, x) ≤ V (t, x).

To get the reversed inequality, consider, for all ε > 0, an admissible dynamics (Xε(·), αε(·)) ∈
T t,x
0,z such that

u(t, x) ≥ u0(X
ε(0)) +

∫ t

0

ℓ(τ,Xε(τ), αε(τ)) dτ − ε

≥ u0(X
ε(0)) +

∫ s

0

ℓ(τ,Xε(τ), αε(τ)) dτ +

∫ t

s

ℓ(τ,Xε(τ), αε(τ)) dτ − ε

≥ u(s,Xε(s)) +

∫ t

s

ℓ(τ,Xε(τ), αε(τ)) dτ − ε

≥ V (t, x) − ε.
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Since ε is arbitrary, we conclude.

5.4 Derivation of the Hamilton-Jacobi-Bellman equation

We will show that the value function u solves the following problem

(5.10)

{

ut +Hi(t, x, ux) = 0 for all (t, x) ∈ (0, T ) × J∗
i ,

ut + FH̄0(t)(t, ux) = 0 for all (t, x) ∈ (0, T ) × {0}
with

FH̄0(t)(t, ux(t, 0+)) := max

(

H̄0(t), max
i=1,...,N

H−
i (t, ∂iu(t, 0+))

)

and with initial condition

(5.11) u(0, x) = u0(x) for all x ∈ J.

Theorem 5.4 (The value function is a flux-limited solution). Assume (5.1), (5.2) and
(5.6). Let us also consider Hi, H

−
i and H̄0 respectively defined in Lemmas 5.1 and 5.2 and

in (5.6). Assume also that the initial datum u0 is globally Lipschitz on J . Then the value
function u defined by (5.8) is the unique solution of (5.10), (5.11).

In order to prove this theorem, two technical results are needed. Their proofs is post-
poned until the end of the proof of Theorem 5.4.

Lemma 5.5 (A measurable selection result). Assume that b0 and ℓ0 satisfy (5.2). For
some [a, b] ⊂ (0, T ), let us also assume that

∅ 6= A0(τ) := {α0 ∈ A0, b0(τ, α0) = 0} for all τ ∈ [a, b]

and that
τ 7→ H0(τ) := sup

α0∈A0(τ)

(−ℓ0(τ, α0)) is continuous on [a, b].

Then there exists a mesurable selection ᾱ0 ∈ L∞([a, b];A0) such that

ᾱ0(τ) ∈ A0(τ) and H0(τ) = −ℓ0(τ, ᾱ0(τ)) for a.e. τ ∈ [a, b].

Proposition 5.6 (Checking assumptions for the comparison principle). Assume (5.1),
(5.2) and (5.6). Let us also consider Hi, H

−
i and H̄0 respectively defined in Lemmas 5.1

and 5.2 and in (5.6). Using notation from Section 7 on networks, let us consider the
network N = J , with edges E = {J1, . . . , JN} = E−

n where the unique vertex n is identified
to the junction point 0. We set He(t, x, p) := Hi(t, x, p) and H−

e (t, p) = H−
i (t, p) for e = Ji

for each i = 1, , N . We also set An(t) := H̄0(t). Then assumptions (H0)-(H6) and
(A0)-(A2) are satisfied.

Proof of Theorem 5.4. We will show that u∗ is a super-solution and u∗ is a sub-solution on
(0, T ) × J . Deriving the Hamilton-Jacobi-Bellman equation outside the junction point is
known and standard. This is the reason why we will focus on the junction condition. As
in the standard case, it relies on the dynamic programming principle.
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Step 1: the super-solution property. Consider any test function ϕ such that

ϕ ≤ u∗ in (0,+∞) × J and ϕ = u∗ at (t̄, 0) with t̄ ∈ (0, T ).

Our goal is to show that

(5.12) ϕt(t̄, 0) + FH̄0(t̄)(t̄, ϕx(t̄, 0+)) ≥ 0

The proof of this inequality proceeds in several substeps.

Step 1.1: the basic optimal control inequality. Let (tn, xn) ∈ (0, T )×J be such
that

(tn, xn) → (t̄, 0) and u(tn, xn) → u∗(t̄, 0) as n→ +∞.

Let s ∈ (0, t̄). Then the dynamic programming principle yields

u(tn, xn) = inf
y∈J

inf
(X(·),α(·))∈T tn,xn

s,y

{

u(s,X(s)) +

∫ tn

s

ℓ(τ,X(τ), α(τ)) dτ

}

This implies that

ϕ(tn, xn) + on(1) ≥ inf
y∈J

inf
(X(·),α(·))∈T tn,xn

s,y

{

ϕ(s,X(s)) +

∫ tn

s

ℓ(τ,X(τ), α(τ)) dτ

}

where on(1) → 0 as n→ +∞. Therefore, we have

(5.13) Sn := sup
y∈J

sup
(X(·),α(·))∈T tn,xn

s,y

Ktn
s (X,α) ≥ −on(1)

where

(5.14) Ktn
s (X,α) := ϕ(tn, X(tn)) − ϕ(s,X(s)) −

∫ tn

s

ℓ(τ,X(τ), α(τ)) dτ

with

ϕ(tn, X(tn)) − ϕ(s,X(s)) =

∫ tn

s

dτ {ϕt(τ,X(τ)) + ϕx(τ,X(τ))b(τ,X(τ), α(τ))} .

Here, we take the convention that the product ϕxb equals 0 if X(τ) = 0. This makes sense
for almost every τ , because by Stampacchia’s truncation theorem, we have

(5.15) 0 = Ẋ(τ) = b(τ,X(τ), α(τ)) = b0(τ, α0(τ)) a.e. on {τ ∈ (s, tn), X(τ) = 0}

which implies in particular

(5.16) α0(τ) ∈ A0(τ) a.e. on {τ ∈ (s, tn), X(τ) = 0}
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where A0 is defined in (5.5). This shows that we can write

Ktn
s (X,α) =

∫ tn

s

dτ κ(τ,X(τ), α(τ))

with for (τ, x) ∈ (0, T ) × J and β = (β0, . . . , βN) ∈ A:

κ(τ, x, β) = ϕt(τ, x) + ϕx(τ, x)b(τ, x, β) − ℓ(τ, x, β)

with the convention that
{

ϕx(τ, x)b(τ, x, β) = 0
β0 ∈ A0(τ)

∣

∣

∣

∣

if x = 0.

Step 1.2: freezing the coefficients. We now freeze the coefficients at the point
(t̄, 0) ∈ (0, T ) × J , defining for any (τ, x) ∈ (0, T ) × J and β ∈ A:

(5.17) κ̄(τ, x, β) :=

{

ϕt(t̄, 0) + ∂iϕ(t̄, 0)bi(t̄, 0, βi) − ℓi(t̄, 0, βi) if x ∈ J∗
i ,

ϕt(t̄, 0) − ℓ0(τ, β0) if x = 0,

with the convention that β0 ∈ A0(τ) if x = 0. From structural assumptions (5.1) and (5.2),
there exists a (monotone continuous) modulus of continuity ω (depending only on ϕ and
the quantities bi, ℓi for i = 0, . . . , N) such that

|κ̄(τ, x, β) − κ(τ, x, β)| ≤ ω(|t̄− τ | + d(x, 0)) for all (τ, x, β) ∈ (0, T ) × J × A.

Since trajectories are uniformly Lipschitz, there exists a constant C0 > 0 such that for all
τ ∈ (s, tn),

d(X(τ), 0) ≤ d(xn, 0) + C0|tn − τ | = on(1) + C0|t̄− τ |.
Defining

(5.18) K̄tn
s (X,α) =

∫ tn

s

dτ κ̄(τ,X(τ), α(τ))

we get that

(5.19) |K̄tn
s (X,α) −Ktn

s (X,α)| ≤ |tn − s|ω(on(1) + C1|t̄− s|) with C1 = 1 + C0.

Step 1.3: application to a quasi-optimizer. Let us consider a quasi-optimizer
(Xn, αn) ∈ T tn,xn

s,yn for some yn ∈ J such that

Ktn
s (Xn, αn) ≥ Sn − on(1).

By (5.13) and estimate (5.18), this implies

(5.20) K̄tn
s (Xn, αn) ≥ −on(1) − |tn − s|ω(on(1) + C1|t̄− s|).
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In order to evaluate K̄tn
s (Xn, αn), we naturally define the following sets. Let

T
n
0 = {τ ∈ (s, tn), Xn(τ) = 0}

which is a (relative) closed set of (s, tn), and let us set for i = 1, . . . , N :

T
n
i = {τ ∈ (s, tn), Xn(τ) ∈ J∗

i }

which are open sets. We have

K̄tn
s (Xn, αn) =

∑

i=0,...,N

K̄n
i with K̄n

i :=

∫

Tn
i

dτ κ̄(τ,Xn(τ), αn(τ)).

We next study each term K̄n
i of the previous sum.

Step 1.3.1: convergence for i = 1, . . . , N . We now use an argument that we found
in [7]. For i = 1, . . . , N , by convexity of the set Bi(t̄, 0) defined in (5.1), we deduce that
there exists some ᾱn

i ∈ Ai such that

(5.21)
1

|Tn
i |

∫

Tn
i

dτ (bi(t̄, 0, α
n(τ)), ℓi(t̄, 0, α

n(τ))) = (bi(t̄, 0, ᾱ
n
i ), ℓi(t̄, 0, ᾱ

n
i ))

and then
K̄n

i = |Tn
i | {ϕt(t̄, 0) + ∂iϕ(t̄, 0)bi(t̄, 0, ᾱ

n
i ) − ℓi(t̄, 0, ᾱ

n
i )} .

Moreover, decomposing the set Tn
i in a (at most countable) union of intervals (ak, bk)

(with possibly ak = s or bk = tn for some particular value of k), we see that we have with
xn = X(tn)

(5.22)

∫

Tn
i

dτ bi(t̄, 0, α
n(τ)) =

∫

Tn
i

dτ Ẋn(τ)

=







0 −Xn(s) if Xn(tn) 6∈ J∗
i , Xn(s) ∈ J∗

i ,
X(tn) −Xn(s) if Xn(tn) ∈ J∗

i , Xn(s) ∈ J∗
i ,

X(tn) − 0 if Xn(tn) ∈ J∗
i , Xn(s) 6∈ J∗

i .

Up to a subsequence, we have ᾱn
i → ᾱi, |Tn

i | → Ti for some Ti ≥ 0. It is convenient to
write Ti as |Ti|. Remark in particular that we have

N
∑

i=0

|Ti| = t̄− s.

Next, we get that the sequence of trajectories Xn(·) converges uniformly to some X(·) such
that

|Ti|bi(t̄, 0, ᾱi) =

{

0 −X(s) if X(s) ∈ J∗
i ,

0 if X(s) 6∈ J∗
i
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and therefore
bi(t̄, 0, ᾱi) ≤ 0 if |Ti| 6= 0.

This implies
K̄n

i → K̄i

with

(5.23)
K̄i := |Ti| {ϕt(t̄, 0) + ∂iϕ(t̄, 0)bi(t̄, 0, ᾱi) − ℓi(t̄, 0, ᾱi)}

≤ |Ti|
{

ϕt(t̄, 0) +H−
i (t̄, ∂iϕ(t̄, 0))

}

≤ |Ti|
{

ϕt(t̄, 0) + FH̄0(t)(t, ϕx(t, 0+))
}

.

Step 1.3.2: convergence for i = 0. We have

K̄n
0 =

∫

Tn
0

dτ κ̄(τ,Xn(τ), αn(τ)) =

∫

Tn
0

dτ {ϕt(t̄, 0) − ℓ0(τ, α
n
0 (τ))} .

Because of (5.16), we know that αn
0 (τ) ∈ A0(τ) for almost every τ ∈ T

n
0 which implies

K̄n
0 ≤

∫

Tn
0

dτ {ϕt(t̄, 0) +H0(τ)} ≤
∫

Tn
0

dτ
{

ϕt(t̄, 0) + H̄0(τ))
}

where H0 and H̄0 are defined in (5.4) and (5.6) respectively. Since the function H̄0 is
assumed to be continuous, see (5.6), there exists some (monotone continuous) modulus of
continuity, that we still denote by ω, such that

K̄n
0 ≤ |Tn

0 |
{

ϕt(t̄, 0) + H̄0(tn) + ω(|tn − s|)
}

Up to a subsequence, we have |Tn
0 | → |T0| and then

(5.24)
lim supn→+∞ K̄n

0 ≤ |T0|
{

ϕt(t̄, 0) + H̄0(t̄) + ω(|t̄− s|)
}

≤ |T0|
{

ϕt(t̄, 0) + FH̄0(t)(t, ϕx(t, 0+)) + ω(|t̄− s|)
}

.

Step 1.4: conclusion. From (5.20) on the one hand, and from (5.23), (5.24) on the
other hand, we deduce that

− |t̄− s|ω(C1|t̄− s|) ≤ lim sup
n→+∞

∑

i=0,...,N

K̄n
i

≤
(

∑

i=0,...,N

|Ti|
)

{

ϕt(t̄, 0) + FH̄0(t)(t, ϕx(t, 0+)
}

+ |T0|ω(|t̄− s|).

Using the fact that
∑

i=0,...,N |Ti| = |t̄− s| and C1 ≥ 1, and dividing by |t̄− s|, we deduce
that

−2ω(C1|t̄− s|) ≤ ϕt(t̄, 0) + FH̄0(t)(t, ϕx(t, 0+).

Passing to the limit s→ t̄, we deduce (5.12).
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Step 2: the sub-solution property. Consider any test function ϕ such that

ϕ ≥ u∗ in (0,+∞) × J and ϕ = u∗ at (t̄, 0) ∈ (0, T ) × J, with t̄ ∈ (0, T ).

Our goal is to show that

(5.25) ϕt(t̄, 0) + FH̄0(t̄)(t̄, ϕx(t̄, 0+)) ≤ 0.

Step 2.1: the basic optimal control inequality. Let (tn, xn) ∈ (0, T ) × J such
that

(tn, xn) → (t̄, 0) and u(tn, xn) → u∗(t̄, 0) as n→ +∞.

From the dynamic programming principle, we get that for all (s, y) ∈ (0, tn) × J and all
(X(·), α(·)) ∈ T tn,xn

s,y ,

u(tn, xn) ≤ Etn
s (X,α) = u(s,X(s)) +

∫ tn

s

ℓ(τ,X(τ), α(τ)) dτ.

This implies

ϕ(tn, xn) − on(1) ≤ ϕ(s,X(s)) +

∫ tn

s

ℓ(τ,X(τ), α(τ)) dτ

i.e.
Ktn

s (X,α) ≤ on(1)

with Ktn
s (X,α) defined in (5.14).

Step 2.2: freezing the coefficients. Using (5.19), this implies

(5.26)

∫ tn

s

dτ κ̄(τ,X(τ), α(τ)) = K̄tn
s (X,α) ≤ on(1) + |tn − s|ω(on(1) + C1|t̄− s|)

with κ̄ defined in (5.17).
Step 2.3: inequalities for i0 = 1, . . . , N . For each i = 1, . . . , N , let us choose some
ᾱi, αi ∈ Ai such that

(5.27) bi(t̄, 0, ᾱi) < 0 and bi(t̄, 0, αi) > 0.

We now fix some index i0 ∈ {1, . . . , N}.
Assume first that xn ∈ J∗

j with j 6= i0. Then we look for a solution with terminal
condition Xn(tn) = xn, which solves backward the following ODE

Ẋn(τ) = bj(τ,X
n(τ), αj) for τ < tn

up to the first time τ jn where Xn reaches the junction point, where τ jn is precisely defined
by

(5.28) τ jn ∈ (0, tn) such that Xn(τ jn) = 0 and Xn(τ) ∈ J∗
j for all τ ∈ (τ jn, tn].
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By assumption (5.27) and the continuity of bj , we know that we will have τ jn → t̄ as
n→ +∞. Then we consider some αn(·) ∈ L∞([s, tn];A) such that

{

αn
i0

(τ) = ᾱi0 if τ ∈ [s, τ jn],
αn
j (τ) = αj if τ ∈ (τ jn, tn].

Assume now that xn ∈ Ji0. In this case, we require

αn
i0

(τ) = ᾱi0 for all τ ∈ [s, tn].

In both cases, we call Xn(·) the trajectory such that (Xn, αn) ∈ T tn,xn

s,Xn(s).
Up to a subsequence, we get that Xn converges uniformly towards some X , and αn

converges to α = ᾱi0 , such that (using (5.26)),

|t̄− s| {ϕt(t̄, 0) + ∂i0ϕ(t̄, 0)bi0(t̄, 0, ᾱi0) − ℓi0(t̄, 0, ᾱi0)} = K̄ t̄
s(X,α) ≤ |t̄− s|ω(C1|t̄− s|).

Dividing by |t̄− s| and passing to the limit s→ t̄, and taking the supremum on ᾱi0 ∈ Ai0

such that bi0(t̄, 0, ᾱi0) < 0, we get

(5.29) ϕt(t̄, 0) +H−
i0

(t̄, ∂i0ϕ(t̄, 0)) ≤ 0.

Step 2.4: inequality for i0 = 0. We now assume that (5.25) does not hold true. Then
(5.29) implies that

(5.30) ϕt(t̄, 0) +H0(t̄) > 0

and
H0(t̄) = H̄0(t̄) > max

i=1,...,N
H−

i (t̄, ∂iϕ(t̄, 0+)) ≥ A0(t̄).

By continuity of H̄0 = max(H0, A0) with A0 continuous defined in (5.3), we deduce that
there exists some s0 < t̄ such that H0 is continuous on [s0, t̄]. In particular, we have
A0(τ) 6= ∅ for all τ ∈ [s0, t̄]. By Lemma 5.5, there exists a measurable selection ᾱ0 ∈
L∞([s0, t̄];A0) such that

ᾱ0(τ) ∈ A0(τ) and H0(τ) = −ℓ0(τ, ᾱ0(τ)) for a.e. τ ∈ [s0, t̄].

If xn ∈ J∗
j , we now use the defintion of τ jn given in (5.28) and consider some αn(·) ∈

L∞([s0, tn];A) such that

{

αn
j (τ) = αj if τ ∈ (τ jn, tn],
αn
0 (τ) = ᾱ0(τ) if τ ∈ [s0, τ

j
n].

If xn = 0, then we simply choose some αn(·) ∈ L∞([s0, tn];A) such that

αn
0 (τ) = ᾱ0(τ) if τ ∈ [s0, tn].
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Let s ∈ [s0, t̄). In any cases, we call againXn(·) the trajectory such that (Xn, αn) ∈ T tn,xn

s,Xn(s).
Similarly to Step 2.3, up to a subsequence, we get that Xn converges uniformly towards
X = 0, and αn converges to α = ᾱi0 , such that (using (5.26)):

|t̄− s|ω(C1|t̄− s|) ≥ K̄ t̄
s(X,α)

=

∫ t̄

s

dτ {ϕt(t̄, 0) − ℓ0(τ, ᾱ0(τ))}

=

∫ t̄

s

dτ {ϕt(t̄, 0) +H0(τ))}
≥ |t̄− s| {ϕt(t̄, 0) +H0(t̄) − ω(|t̄− s|))}

where ω still denotes some modulus of continuity of H0 on [s0, t̄]. Dividing by |t̄− s| and
passing to the limit s→ t̄, we get

ϕt(t̄, 0) +H0(t̄) ≤ 0

which contradicts (5.30). This finally shows that (5.25) holds true.

Step 3: checking the initial condition and a priori bounds. From the fact that u0
is continuous and the fact that bi, ℓi are bounded for i = 0, . . . , N , we deduce easily from
the representation formula (5.8) that the value function u satisfies

u∗(0, x) = u0(x) = u∗(0, x) for all x ∈ J.

Again from the representation formula (5.8), the fact that bi, ℓi are bounded for i =
0, . . . , N , and the fact that u0 is globally Lipschitz continuous, we also easily see that
there exists a constant C > 0 such that |u(t, x) − u0(x)| ≤ Ct. In particular

(5.31) |u(t, x)| ≤ CT (1 + d(x, 0)) for all (t, x) ∈ [0, T ] × J.

Step 4: conclusion. The previous steps show that u solves (5.10) with initial condition
(5.11). We also have the sublinear property (5.31). Then, we apply Proposition 5.6 (which
is postponed) which claims that our PDE satisfies the assumptions of Corollary 7.9. This
implies the indentification of the function u to the unique solution of (5.10), (5.11). This
ends the proof of the theorem.

We now turn to proofs of Lemma 5.5 and Proposition 5.6.

Proof of Lemma 5.5. We consider the map f : [a, b] × A0 → R2 defined by

f(τ, α0) = (b0(τ, α0), H0(τ) − ℓ0(τ, α0))

Recall that by (5.2), we have A0 ⊂ Rd0 , with A0 compact. Then we define the multifunction
Γ : [a, b] ⇉ R

d0 defined by

Γ(τ) = {α0 ∈ A0, f(τ, α0) = 0}
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Because f is continuous, Γ(τ) is closed. Moreover our assumptions guarantee that Γ(τ)
is nonempty. We recall (see [27], page 314, beginning of section 2) that Γ is said to be
L-measurable (Lebesgue measurable) if and only if its graph

G(Γ) =
{

(τ, α0) ∈ [a, b] × R
d0 , α0 ∈ Γ(τ)

}

is L ⊗ B-mesurable, i.e. belongs to the σ-algebra generated by the product of Lebesgue
sets in [a, b] and Borel sets in Rd0 . Here G(Γ) = f−1((0, 0)) is a closed set of [a, b] × Rd0 ,
so this set is obviously L ⊗ B-measurable. We now apply the mesurable selection result
cited as the corollary on page 315 in [27]. This result states that for any L-measurable
multifunction Γ : [a, b] ⇉ Rd0 , which is closed-valued with Γ(τ) nonempty for almost every
τ ∈ [a, b], there exists a L-measurable function ᾱ0 : [a, b] → Rd0 such that

ᾱ0(τ) ∈ Γ(τ) for almost every τ ∈ [a, b]

This implies the result stated in the lemma and ends its proof.

Proof of Proposition 5.6. We check successively all assumptions.
Step 1: Checking (H0) and (H3). We set

P = (t, x, p) and Φi(αi, P ) = pbi(t, x, αi) − ℓi(t, x, αi).

We recall that
Hi(P ) = sup

αi∈Ai

Φi(αi, P ) = Φi(ᾱi(P ), P ).

Let P ′ = (t′, x′, p′). We assume that

|p|, |q| ≤ L.

Using the fact that bi, ℓi are uniformly continuous with respect to (t, x), uniformly with
respect to αi ∈ Ai, we deduce that there exists a modulus of continuity ωT,L such that

Hi(P
′) ≥ Φi(ᾱi(P ), P ′) ≥ Φi(ᾱi(P ), P ) − ωT,L(|P − P ′|) = Hi(P ) − ωT,L(|P − P ′|).

Exchanging P and P ′, we get the reverse inequality, which yields

(5.32) |Hi(P
′) −Hi(P )| ≤ ωT,L(|P − P ′|)

In particular, this gives the continuity of Hi.
Step 2: Checking (H1). By assumption (5.1), there exists some δ > 0 and controls
α±
i = α±

i (t, x) such that
±bi(t, x, α±

i ) ≥ δ > 0.

Using the fact that ℓi is bounded, this implies that

(5.33) Hi(t, x, p) ≥ δ|p| − C
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for some constant C > 0.
Step 3: Checking (H2). Again, using the boundedness of bi and ℓi, we get the uniform
coercivity estimate

(5.34) |Hi(t, x, p)| ≤ C(|p| + 1).

Step 4: Checking (H4). The quasi-convexity of Hi(t, x, ·) follows from its convexity.
Step 5: Checking (H5). We write with p′ = p, x′ = x, ᾱi := ᾱi(P

′)

Hi(P
′) −Hi(P ) = Φ(ᾱi(P

′), P ′) −Hi(P )
≤ Φ(ᾱi, P

′) − Φ(ᾱi, P )
= p(bi(t

′, x, ᾱi) − bi(t, x, ᾱi)) − (ℓi(t
′, x, ᾱi) − ℓi(t, x, ᾱi))

≤ L|p||t′ − t| + ω̄(|t′ − t|)
≤ Lδ−1(C + max(0, Hi(t, x, p)))|t′ − t| + ω̄(|t′ − t|)

where in the fourth line, we have used the fact that bi is L-Lipschitz continuous with respect
to t, uniformly with respect to αi. We have also used the fact that there exists a modulus
of continuity ω̄ for ℓi with respect to (t, x), uniformly in αi. In the fifth line, we have used
the uniform coercivity estimate (5.33). The previous inequality implies easily (H5).
Step 6: Checking (H6). Recall that Hi is uniformly coercive by (H1), and continuous
by (H0). This implies that the map t 7→ minHi(t, 0, ·) is also continuous. This implies the
continuity of

A0
0(t) = max

i=1,...,N
minHi(t, 0, ·).

Step 7: Checking (A0). The continuity of A0(t) = H̄0(t) follows from (5.6).
Step 8: Checking (A1) and (A2). The bound on A0(t) and the uniform continuity of
A0(t) are trivial since there is only one vertex.

This ends the proof of the proposition.

6 Second application: study of Ishii solutions

This section is strongly inspired by the work [7] where one of the main contribution of the
authors was to identify the maximal and minimal Ishii solutions (in any dimensions), in
the framework of convex Hamiltonians, and using tools of optimal control theory. With
our PDE theory in hands, we revisit this problem in dimension one, but for quasi-convex
Hamiltonians (in the sense of (1.5)) that can be non-convex. As a by-product of our
approach, we give a PDE characterization of both the maximal and the minimal Ishii
solutions.

Remark 6.1. Combining results from Subsection 2.3 with the ones from this Section, we
can easily see that for one-dimensional problems, the solutions in [6], [7], [26] and [25] fall
naturally in our theoretical framework; they coincide with some A-flux-limited solutions
for A well chosen.
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6.1 The framework

Let us consider two Hamiltonians Hi for i = 1, 2 which are level-set convex in the sense of
(1.5). In particular Hi is assumed to be minimal at p0i .

Ishii solutions on the real line. In [7], Ishii solutions are considered. A function u is
said to be a Ishii sub-solution if its upper semi-continuous envelope u∗ solves







ut +H1(ux) ≤ 0 for x < 0,
ut +H2(ux) ≤ 0 for x > 0,
ut + min(H1(ux), H2(ux)) ≤ 0 for x = 0

A function u is said to be a Ishii super-solution if its lower semi-continuous envelope u∗
solves







ut +H1(ux) ≥ 0 for x < 0,
ut +H2(ux) ≥ 0 for x > 0,
ut + max(H1(ux), H2(ux)) ≥ 0 for x = 0.

An Ishii solution is a function u which is both an Ishii sub-solution and an Ishii super-
solution.

Translation of flux-limited solutions in the real line setting. The notion of solu-
tions ũ(t, x) from Section 2 on two branches J1 ∪ J2 with two Hamiltonians

H̃1(q) = H1(−q) and H̃2(q) = H2(q)

is translated in the framework of the real line into functions u defined for (t, x) ∈ [0,+∞)×
R by

u(t, x) =

{

ũ(t, x) for 0 ≤ x ∈ J2,
ũ(t,−x) for 0 ≤ −x ∈ J1.

Then ũ solves (1.7) with Hamiltonians H̃i if and only if u solves

(6.1)







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0),
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞),
ut + F̌A(ux(t, 0−), ux(t, 0+)) = 0 for (t, x) ∈ (0,+∞) × {0}

with
F̌A(q1, q2) = max(A,H+

1 (q1), H
−
2 (q2))

where

H−
i (q) =

{

Hi(q) if q < p0i ,
Hi(p

0
i ) if q ≤ p0i

and H+
i (q) =

{

Hi(p
0
i ) if q ≤ p0i ,

Hi(q) if q > p0i .

Viscosity inequalities are now naturally written by touching u with test functions φ :
[0,+∞) × R → R that are continuous, and C1 in [0,+∞) × (−∞, 0] and in [0,+∞) ×
[0,+∞).
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Ishii flux-limiters. We recall the quantity

A0 = max
i=1,2

(

min
q∈R

Hi(q)

)

= max
i=1,2

Hi(p
0
i ).

and define
A∗ = max

q∈ch[p01,p02]
(min(H1(q), H2(q))).

with the chord
ch
[

p01, p
0
2

]

= [min(p01, p
0
2),max(p01, p

0
2)].

Then we set

(6.2) A+
I = max(A∗, A0)

and

(6.3) A−
I =

{

A+
I if p02 < p01,

A0 if p02 ≥ p01,

Remark 6.2. Notice that even if the points of minimum p0i of Hi may be not unique, it is
easy to see that the quantities A±

I are uniquely defined.

These two quantities A±
I will play a crucial role here; they have been identified first in

[7], in a different way (see below).

6.2 Identification of maximal and minimal Ishii solutions

The main result of this section is the following.

Theorem 6.3 (Identification of maximal and minimal Ishii solutions). We assume that
the Hamiltonians Hi satisfy (1.5) for i = 1, 2. We have A−

I ≤ A+
I and the following holds.

i) (Ishii sub-solution) Every Ishii sub-solution is a F̌A−

I
-sub-solution.

ii) (Ishii super-solution) Every Ishii super-solution is a F̌A+
I
-super-solution.

iii) (Particular Ishii solutions) Every F̌A-solution is a Ishii solution if A ∈
[

A−
I , A

+
I

]

.

iv) (Maximal and minimal Ishii solutions) For a given bounded and uniformly continuous
initial data, the F̌A+

I
-solution is the minimal Ishii solution, and the F̌A−

I
-solution is the

maximal Ishii solution. Moreover the Ishii solution is unique if and only if A+
I = A−

I .

We prove successively i)-iv) from Theorem 6.3.
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Proof of Theorem 6.3-i). Let u be a Ishii sub-solution. We want to check that u is a F̌A−

I
-

sub-solution. The only difficulty is on the junction point x = 0. If A−
I = A0, then the

result follows from Theorem 2.6 i).
Assume now that

A−
I > A0.

Then A−
I = A∗, and p02 < p01. In particular, we can choose p∗ ∈ [p02, p

0
1] such that

(6.4) H1(p
∗) = H+

1 (p∗) = A∗ = A−
I = H2(p

∗) = H−
2 (p∗).

Now from Theorem 2.6 i), we see that, in order to show that u is a F̌A−

I
-sub-solution, it is

sufficient to consider a test function ϕ touching u from above at (t0, 0) for t0 > 0, with

ϕ(t, x) = ψ(t) + p∗x

with ψ ∈ C1, and to show that

(6.5) ϕt + A−
I ≤ 0 at (t0, 0).

Indeed, such ϕ is now an admissible test function for Ishii sub-solutions. So we deduce
that

ϕt + min(H+
1 (ϕx(t0, 0

−)), H−
2 (ϕx(t0, 0

+))) ≤ 0 at (t0, 0)

which implies (6.5). We conclude that u is a F̌A−

I
-sub-solution and this ends the proof.

Proof of Theorem 6.3-ii). Let u be a Ishii super-solution. We want to show that u is a
F̌A+

I
-super-solution.

Step 1: preliminaries. We distinguish two cases.
Case 1: A∗ ≥ A0. Then we have A+

I = A∗. In particular, there exists p∗ ∈ ch [p01, p
0
2] such

that (6.4) holds true. We set

(6.6) ϕ(t, x) := ψ(t) + p∗x =: ϕ̃(t, x)

with ψ ∈ C1.
Case 2: A∗ < A0. This implies that there is a unique α ∈ {1, 2} such that

A+
I = A0 = Hα(p0α)

and for ᾱ ∈ {1, 2} \ {α} we have

(6.7) Hα(p0α) > Hᾱ(p) for all p ∈ ch
[

p01, p
0
2

]

We set
σ2 = +, σ1 = −

and set
pα = p0α

58



and choose pᾱ such that
Hᾱ(pᾱ) = A0 = Hσᾱ

ᾱ (pᾱ).

Then we have
H2(p2) = H+

2 (p2) = A0 = A+
I = H1(p1) = H−

1 (p1)

and
p2 > p1.

We set

(6.8) ϕ(t, x) := ψ(t) + p1x1{x<0} + p2x1{x>0} ≥ ϕ̃(t, x) := ψ(t) + pαx

with ψ ∈ C1.

Step 2: conclusion. Now from Theorem 2.6 ii), we see that, in order to show that u is
a F̌A+

I
-super-solution, it is sufficient to consider a test function ϕ (given either in (6.6) in

case 1 or (6.8) in case 2) touching u from below at (t0, 0) for t0 > 0, and to show that

(6.9) ϕt + A+
I ≥ 0 at (t0, 0)

Because we have ϕ ≥ ϕ̃ with equality at (t0, 0), we deduce that ϕ̃ is an admissible test
function for the Ishii super-solution u. Therefore, we have

ϕ̃t + max(H1(ϕ̃x), H2(ϕ̃x)) ≥ 0 at (t0, 0)

Using either (6.4) in case 1, or (6.7) in case 2, we deduce that

ψt + A+
I ≥ 0 at (t0, 0)

which implies (6.9). This implies that u is a F̌A+
I

-super-solution and ends the proof.

We now state and prove a proposition which is more precise than Theorem 6.3-iii).

Proposition 6.4 (Relation between F̌A and Ishii sub/super-solutions). Under the assump-
tions of Theorem 6.3, every F̌A-subsolution (resp. F̌A-super-solution) is a Ishii sub-solution
(resp. Ishii super-solution) if A ≥ A−

I (resp. A ≤ A+
I ).

Moreover for every A ∈
[

A0, A
−
I

)

, there exists a F̌A-sub-solution which is not a Ishii

sub-solution. For every A > A+
I , there exists a F̌A-super-solution which is not a Ishii

super-solution.

Proof. We treat successively sub-solutions and super-solutions.
Sub-Solutions. Let u be a F̌A-sub-solution with A ≥ A−

I . Consider a C1 function
φ : R → R touching u from above at (t, 0) for some t > 0. Then

λ + F̌A(q, q) ≤ 0
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where λ = ∂tφ(t, 0) and q = ∂xφ(t, 0). In particular, λ+ A ≤ 0. We want to prove that

λ+ min(H1(q), H2(q)) ≤ 0.

If q ≤ p02, then
min(H1(q), H2(q)) ≤ H−

2 (q) ≤ F̌A(q, q) ≤ −λ.
Similarly, if q ≥ p01, then

min(H1(q), H2(q)) ≤ H+
1 (q) ≤ F̌A(q, q) ≤ −λ.

If p02 < p01, and q ∈ [p02, p
0
1], then by definition of A∗, we have

min(H1(q), H2(q)) ≤ A∗ ≤ A+
I = A−

I ≤ A ≤ −λ.

This shows that u is a Ishii sub-solution.
If A∗ ≤ A0 or p02 ≥ p01, there is nothing additional to prove. Assume now that p02 < p01

with A−
I = A∗ > A0, and we claim that for any A ∈

[

A0, A
−
I

)

= [A0, A
∗), there exists a

F̌A-sub-solution which is not an Ishii sub-solution. Indeed, let us consider p∗ ∈ [p02, p
0
1] such

that
A∗ = H1(p

∗) = H2(p
∗).

Then there exists p02 ≤ p2 < p∗ < p1 ≤ p01 such that

(6.10) A = H1(p1) = H2(p2) = F̌A(p1, p2)

Let us now consider
u(t, x) = −At + p1x1{x<0} + p2x1{x≥0}

In particular u is F̌A-sub-solution because of (6.10). Now the test function φ(t, x) =
−At + p∗x touches u at (t, 0) from above and does not satisfy the inequality

∂tφ(t, 0) + min(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≤ 0.

This shows that u is not a Ishii sub-solution.

Super-Solutions. Let u be a F̌A-super-solution with A ≤ A+
I . Consider a C1 function

φ : R → R touching u from below at (t, 0) for some t > 0. Then

λ + FA(q, q) ≥ 0

where λ = ∂tφ(t, 0) and q = ∂xφ(t, 0). Without loss of generality, we can assume that
A ≥ A0. We want to prove that

λ+ max(H1(q), H2(q)) ≥ 0.

If FA(q, q) = A, then we deduce from Lemma 6.5 below that

0 ≤ λ+ A ≤ λ+ A+
I ≤ λ+ max(H1(q), H2(q)).
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If now FA(q, q) = H+
1 (q), then

0 ≤ λ+ FA(q, q) ≤ λ+H1(q) ≤ λ+ max(H1(q), H2(q)).

If finally FA(q, q) = H−
2 (q), then

0 ≤ λ+ FA(q, q) ≤ λ+H2(q) ≤ λ+ max(H1(q), H2(q)).

This shows that u is a Ishii super-solution.
Assume next that A > A+

I . If A∗ ≥ A0, let p∗ ∈ ch [p01, p
0
2] such that

A∗ = H1(p
∗) = H2(p

∗).

Let us choose an index α ∈ {1, 2} such that

max
i=1,2

Hi(p
0
i ) = Ha(p

0
a).

Then we set

p̄ =







p∗ if A∗ ≥ A0,
p1 if A∗ < A0 and α = 1,
p2 if A∗ < A0 and α = 2.

In particular we have

(6.11) max(H1(p̄), H2(p̄)) = A+
I .

Then for A > A+
I , there exist p2 ≥ max(p01, p

0
2) ≥ p̄ ≥ min(p01, p

0
2) ≥ p1 such that

H2(p2) = A = H1(p1).

Let us now define
u(t, x) = −At + p1x1{x<0} + p2x1{x≥0}.

Then u is a F̌A-super-solution because F̌A(p1, p2) = A. Now the test function φ(t, x) =
−At + p̄x touches u at (t, 0) from below and does not satisfy the inequality

∂tφ(t, 0) + max(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≥ 0

because of (6.11). This shows that u is not a Ishii super-solution. This achieves the
proof.

In the previous proof, we used the following elementary lemma.

Lemma 6.5 (Bound from above for A+
I ). For all q ∈ R, A+

I ≤ max(H1(q), H2(q)).
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Proof. We recall that A+
I = max(A∗, A0). Assume first that max(A∗, A0) = A0, then

A0 = minHα for some α ∈ {1, 2}. In particular, for all q ∈ R, we have A+
I = A0 ≤

Hα(q) ≤ max(H1(q), H2(q)).
If now max(A∗, A0) = A∗ > A0, then there exists p∗ ∈ [p0i , p

0
j ] for some i, j ∈ {1, 2} (i 6= j),

such that
A∗ = Hi(p

∗) = Hj(p
∗).

Moreover, Hj is non-increasing in (−∞, p∗] hence

Hj(q) ≥ A∗ for q ≤ p∗;

similarly, Hi is non-decreasing in [p∗,+∞) hence

Hi(q) ≥ A∗ for q ≥ p∗.

This implies the expected inequality.

We finally state a proposition which implies Theorem 6.3-iv).

Corollary 6.6 (Conditions for uniqueness of Ishii solution). We work under the assump-
tions of Theorem 6.3. Recall that A+

I ≥ A−
I , and let g be a Lipschitz continuous initial

data.

• If A+
I = A−

I , then there is uniqueness of the Ishii solution with initial data g.

• If A+
I > A−

I , then there exists a Lipschitz continuous initial data g such that there
are two different Ishii solutions with the same initial data g.

Proof. If A+
I = A−

I , then Theorem 6.3 i) and ii) imply that every Ishii solution u is a
F̌A-solution for A = A+

I . Given some Lipschitz continuous initial data, such a solution is
then unique.

On the contrary, if A+
I > A−

I , then

U−(t, x) = −At + p1x1{x<0} + p2x1{x≥0}

is a F̌A-solution with A = A+
I with initial data g(x) = U−(0, x) if

A+
I = A = H1(p1) = H2(p2), p2 ≥ p02, p1 ≤ p01.

On the other hand, U− is not a F̌A−

I
-solution because F̌A−

I
(p1, p2) = A−

I < A+
I .

6.3 Link with regional control

In this subsection, we shed light on the consequence of our results in the interpretation of
the results from [7] when both frameworks coincide. Roughly speaking, the one-dimensional
framework from [7] reduces to our framework with two branches. In this case, the value
function U− defined in [7, Eq. (2.7)] (see also (6.14) in the present paper) and characterized
in [7, Theorem 4.4] corresponds to the unique solution of (1.7) for A = A+

I . Similarly, the
function U+ defined in [7, Eq. (2.8)] (see also (6.15) in the present paper) corresponds to
the unique solution of (1.7) for A = A−

I . This is shown in this subsection. We also provide
the link between our definition of A+

I and A−
I and the tangential Hamiltonians introduced

in [7], coming from optimal control theory.
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6.3.1 The optimal control framework

The one dimensional framework of [7] corresponds to

Ω1 = (−∞, 0), H = {0}, Ω2 = (0,+∞).

In this case, (HΩ) in [7] is satisfied. We refer to this framework as the common framework.

Hamiltonians. As far as the Hamiltonian is concerned, the (t, x)-dependence is not
relevant for what we discuss now; for this reason we consider the simplified case of convex
Hamiltonians given for i = 1, 2 by

Hi(p) = sup
αi∈Ai

(−bi(αi)p− ℓi(αi))

for some compact metric space Ai and bi, ℓi : Ai → R. In this simplified framework, (HC)
reduces to the following assumptions for i = 1, 2:

(6.12)















bi and ℓi are continuous and bounded

{(bi(αi), ℓi(αi)) : αi ∈ Ai} is closed and convex

Bi = {bi(αi) : αi ∈ Ai} contains [−δ, δ].

In particular, we see that Bi is a compact interval. Introducing the Legendre-Fenchel
transform Li of Hi, it is possible to see that this problem can be reformulated by assuming
that for i = 1, 2

Hi(p) = sup
q∈Bi

(qp− Li(q))

where Li : Bi → R is convex where we recall that Bi is a compact interval containing
[−δ, δ]. Indeed the graph of Li on Bi is the lower boundary of the closed convex set
{(bi(αi), ℓi(αi)) : αi ∈ Ai} in the plane R2. In particular, we see that Hi is convex,
Lipschitz continuous and Hi(p) → +∞ as |p| → +∞. This last fact comes from the fact
that ±δ ∈ Bi. Moreover Hi reaches its minimum at any convex subgradient p0i of Li at 0
and satisfies

{

Hi is non-increasing on (−∞, p0i ],
Hi is non-decreasing on [p0i ,+∞).

Hence, Hi satisfies (1.5).

Tangential Hamiltonians. Using notation similar to the one of [7], we define

Â = A1 × A2 × [0, 1]

Now, for a = (α1, α2, µ) ∈ Â, we define

{

bH(a) = µb1(α1) + (1 − µ)b2(α2),
ℓH(a) = µℓ1(α1) + (1 − µ)ℓ2(α2)
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and set

Â0 = {a = (α1, α2, µ) ∈ Â : 0 = bH(a)},
Âreg

0 = {a = (α1, α2, µ) ∈ Â : b1(α1) ≤ 0, b2(α2) ≥ 0 and 0 = bH(a)}.

In the common framework, the tangential Hamiltonians given in [7] reduce to constants,
and we can see that we can write them as follows

(6.13)











HT = sup
a=(α1,α2,µ)∈Â0

(−ℓH(a)),

Hreg
T = sup

a=(α1,α2,µ)∈Â
reg
0

(−ℓH(a)).

The value functions U− and U+. We consider the following initial condition

u(0, x) = g(x) for x ∈ R

with g globally Lipschitz continuous.
For a = (α1, α2, µ) ∈ Â, and for x ∈ R, we set

b(x, a) =







b1(α1) if x ∈ (−∞, 0) = Ω1,
b2(α2) if x ∈ (0,+∞) = Ω2,
bH(a) if x ∈ H = {0}

and

ℓ(x, a) =







ℓ1(α1) if x ∈ (−∞, 0) = Ω1,
ℓ2(α2) if x ∈ (0,+∞) = Ω2,
ℓH(a) if x ∈ H = {0} .

We consider admissible controlled dynamics starting from the point (0, x) and ending at
time t > 0 defined by

Tt,x =











(X(·), a(·)) ∈ Lip(0, t;R) × L∞(0, t; Â) such that
{

X(0) = x,

Ẋ(s) = b(X(s), a(s)) for a.e. s ∈ (0, t)











and define the set of regular controlled dynamics as

T reg
t,x =

{

(X(·), a(·)) ∈ Tx,t such that

a(s) ∈ Âreg
0 for a.e. s ∈ (0, t) such that X(s) = 0

}

.

Notice that the definition of Tt,x differs from the one given in (5.7), where now X takes the
value x at time 0 instead at time t. Then we define

(6.14) U−(x, t) = inf
(X(·),a(·))∈Tt,x

{

g(X(t)) +

∫ t

0

ℓ(X(s), a(s)) ds

}
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and

(6.15) U+(x, t) = inf
(X(·),a(·))∈T reg

t,x

{

g(X(t)) +

∫ t

0

ℓ(X(s), a(s)) ds

}

.

Then we have the following characterization of U− and U+:

Theorem 6.7 (Characterization of U− and U+). Under the previous assumptions, U−

is the unique F̌A-solution with initial data g for A = HT . Similarly, U+ is the unique
F̌A-solution with initial data g for A = Hreg

T .

Proof. Theorem 6.7 is a straightforward application of Theorem 5.4.

6.3.2 Tangential Hamiltonians and Ishii flux-limiters

In this paragraph, we show that the tangential Hamiltonians from [7] coincide with the
Ishii flux-limiters.

We start to define

A = B1 ×B2 × [0, 1],

A0 = {(v1, v2, µ) ∈ A : v1v2 ≤ 0 and 0 = µv1 + (1 − µ)v2},
Areg

0 = {(v1, v2, µ) ∈ A : v1 ≤ 0, v2 ≥ 0 and 0 = µv1 + (1 − µ)v2}.
Then we can see (with vi = bi(αi)) that the tangential Hamiltonians given in (6.13) can be
written as follows

HT = sup
(v1,v2,µ)∈A0

(−µL1(v1) − (1 − µ)L2(v2)),

Hreg
T = sup

(v1,v2,µ)∈A
reg
0

(−µL1(v1) − (1 − µ)L2(v2)).

Proposition 6.8 (Characterization of HT ).

HT = A+
I .

Proof. Reduction. Remark that there exists pc ∈ R such that A+
I = Hic(pc) for some

ic ∈ {1, 2}. We then consider

H̃i(p) = Hi(pc + p) − A+
I .

In this case, using obvious notation, Ã+
I = 0 and p̃c = 0. Remark that

L̃i(p) = sup
q

(pq − H̃i(q))

= sup
q

(pq −Hi(pc + q)) + A+
I

= sup
q

(pq −Hi(q)) − pcp+ A+
I

= Li(p) − pcp+ A+
I .
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Then

H̃T = sup
(v1,v2,µ)∈A0

(−µL̃1(v1) − (1 − µ)L̃2(v2))

= sup
(v1,v2,µ)∈A0

(−µL1(v1) − (1 − µ)L2(v2)) − A+
I

= HT −A+
I .

Hence, it is enough to prove
H̃T = 0.

From now on, we assume that A+
I = 0 and pc = 0. We distinguish two cases.

First case. Assume first that 0 = A+
I = A∗ ≥ A0. Then 0 = A∗ = H1(p

∗) =
H2(p

∗) = Hic(pc) with p∗ ∈ ch [p01, p
0
2]. Choosing initially pc = p∗, we can assume that

A∗ = H1(0) = H2(0) = 0. In particular, L1 ≥ 0 and L2 ≥ 0. Hence HT ≤ 0. To get the
reverse inequality, we observe that there exists v∗i ∈ ∂Hi(0), i = 1, 2, with

v∗1v
∗
2 ≤ 0.

Indeed, if this is not true, this implies that for all vi ∈ ∂Hi(0),

v1v2 > 0

which is impossible because H1 and H2 cross at p∗.
Pick now µ ∈ [0, 1] such that µv∗1 + (1 − µ)v∗2 = 0. Then (v∗1 , v

∗
2, µ) ∈ A0 and conse-

quently,
HT ≥ −µL1(v

∗
1) − (1 − µ)L2(v

∗
2) = µH1(0) + (1 − µ)H2(0) = 0.

Hence HT = 0 in the first case, as desired.
Second case. We now assume that 0 = A+

I = A0 > A∗. In this case, there exists
a ∈ {1, 2} such that

minHa = Ha(0) = 0,

with the initial choice pc = p0a. This implies in particular

La ≥ La(0) = 0.

Moreover, for b 6= a,
minLb = −Hb(0) ≥ 0,

where we have used the fact that A∗ < A0. Hence, La ≥ 0 and Lb ≥ 0 and consequently,
HT ≤ 0. Moreover with v∗i ∈ ∂Hi(0), we have, (0, v∗2, 1) ∈ A0 when a = 1 and (v∗1, 0, 0) ∈ A0

when a = 2. Hence, in both cases,

HT ≥ −La(0) = 0.

Hence HT = 0 in the second case too. The proof is now complete.
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Proposition 6.9 (Characterization of Hreg
T ).

Hreg
T = A−

I .

Proof. The proof is similar to the proof of Proposition 6.8. We make precise how to adapt
it.

Reduction. The reduction to the case A−
I = 0 and pc = 0 is completely analogous.

We now have to prove that Hreg
T = 0.

First case. Assume first that 0 = A−
I = A∗ ≥ A0. Note that this case only makes

sense either when p02 < p01 or when p02 ≥ p01 and 0 = A−
I = A∗ = A0. Similarly, we get

Hreg
T ≤ 0. To get the reverse inequality, we observe that there exists v∗i ∈ ∂Hi(0), i = 1, 2,

with
v∗1v

∗
2 ≤ 0.

We deduce that we can choose v∗2 ≥ 0 and v∗1 ≤ 0, both in the case p02 < p01 and the case
p02 ≥ p01 and 0 = A−

I = A∗ = A0. This implies that we can find (v∗1, v
∗
2, µ) ∈ Areg

0 and
similarly, we conclude that Hreg

T ≥ 0. Hence HT = 0 in the first case, as desired.
Second case. We now assume that 0 = A−

I = A0. We set again for some a ∈ {1, 2}:

minHa = Ha(0) = 0.

From our definition of a, we have again

La ≥ La(0) = 0 and p0a = 0.

We first prove that Hreg
T ≤ 0. In order to do so, we now distinguish three subcases.

Assume first p02 < p01. Then we can assume that A0 > A∗ (otherwise we have A0 = A∗

and we can apply the first case). Then we deduce, as in the proof of Proposition 6.8, that
Hreg

T ≤ 0.
Assume now that p02 ≥ p01 and a = 1. We deduce that 0 = p01 ≤ p02. But because H2 is

minimal at p02, we have 0 ∈ ∂H2(p
0
2), and we deduce that 0 ≤ p02 ∈ ∂L2(0). This implies

that L2 ≥ L2(0) = −H2(p
0
2) ≥ 0 on R

+. By definition of Hreg
T , this implies that Hreg

T ≤ 0.
Assume finally that p02 ≥ p01 and a = 2. This subcase is symmetric with respect to the

previous one. We deduce that 0 = p02 ≥ p01. But because H1 is minimal at p01, we deduce
that 0 ≥ p01 ∈ ∂L1(0). This implies that L1 ≥ L1(0) = −H1(p

0
1) ≥ 0 on R−. Again, by

definition of A−
I , this implies that A−

I ≤ 0.
We now prove that Hreg

T ≥ 0. To do so pick some (0, v2, 1) ∈ Areg
0 when a = 1 and

some (v1, 0, 0) ∈ Areg
0 when a = 2. Hence, in both cases, we get

Hreg
T ≥ −La(0) = 0.

Hence HT = 0 in the second case too. The proof is now complete.
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7 Third application: extension to networks

7.1 Definition of a network

A general abstract network N is characterized by the set (E of its edges and the set V) of
its vertices (or nodes). It is endowed with a distance.

Edges. E is a finite or countable set of edges. Each edge e ∈ E is assumed to be either
isometric to the half line [0,+∞) with ∂e = {e0} (where the endpoint e0 can be identified
to {0}), or to a compact interval [0, le] with

(7.1) inf
e∈E

le > 0

and ∂e = {e0, e1}. Condition (7.1) implies in particular that the network is complete. The
endpoints {e0}, {e1} can respectively be identified to {0} and {le}. The interior e∗ of an
edge e refers to e \ (∂e).

Vertices. It is convenient to see vertices of the network as a partition of the sets of all
edge endpoints,

⋃

e∈E

∂e =
⋃

n∈V

n;

we assume that each set n only contains a finite number of endpoints.
Here each n ∈ V can be identified as a vertex (or node) of the network as follows. For

every x, y ∈ ⋃e∈E e, we define the equivalence relation:

x ∼ y ⇐⇒ (x = y or x, y ∈ n ∈ V)

and we define the network as the quotient

(7.2) N =

(

⋃

e∈E

e

)

/ ∼ =

(

⋃

e∈E

e∗

)

∪ V.

We also define for n ∈ V
En = {e ∈ E , n ∈ ∂e}

and its partition En = E−
n ∪ E+

n with

E−
n =

{

e ∈ En, n = e0
}

, E+
n =

{

e ∈ En, n = e1
}

.

Distance. We also define the distance function d(x, y) = d(y, x) as the minimal length of
a continuous path connecting x and y on the network, using the metric of each edge (either
isometric to [0,+∞) of to a compact interval). Note that, because of our assumptions, if
d(x, y) < +∞, then there is only a finite number of minimal paths.

Remark 7.1. For any ε > 0, there is a bound (depending on ε) on the number of minimal
paths connecting x to y for all y ∈ B(ȳ, ε) = {y ∈ N , d(ȳ, y) < ε}.
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7.2 Hamilton-Jacobi equations on a network

Given a Hamiltonian He on each edge e ∈ E , we consider the following HJ equation on the
network N ,

(7.3)

{

ut +He(t, x, ux) = 0 for t ∈ (0,+∞) and x ∈ e∗,
ut + FA(t, x, ux) = 0 for t ∈ (0,+∞) and x = n ∈ V

submitted to an initial condition

(7.4) u(0, x) = u0(x) for x ∈ N .

The limited flux functions FA associated with the Hamiltonians He are defined below. We
first make precise the meaning of ux in (7.3).

Gradients of real functions. For a real function u defined on the network N , we denote
by ∂eu(x) the (spatial) derivative of u at x ∈ e and define the “gradient” of u by

ux(x) :=

{

∂eu(x) if x ∈ e∗ = e \ (∂e),

((∂eu(x))e∈E−
n
, (∂eu(x))e∈E+

n
) if x = n ∈ V .

The norm |ux| simply denotes |∂eu| for x ∈ e∗ or max{|∂eu| : e ∈ En} at the vertex x = n.

Limited flux functions. We also define for (t, x) ∈ R× ∂e,

H−
e (t, x, q) =

{

He(t, x, q) if q ≤ p0e(t, x),
He(t, x, p

0
e(t, x)) if q > p0e(t, x)

and

H+
e (t, x, q) =

{

He(t, x, p
0
e(t, x)) if q ≤ p0e(t, x),

He(t, x, q) if q > p0e(t, x).

Given limiting functions (An)n∈V , we define for p = (pe)e∈En ,

FA(t, n, p) = max

(

An(t), max
e∈E−

n

H−
e (t, n, pe), max

e∈E+
n

H+
e (t, n,−pe)

)

.

In particular, for each n ∈ V, the functions FA(t, n, ·) are the same for all An(t) ∈
[−∞, A0

n(t)] with

(7.5) A0
n(t) := max

(

max
e∈E−

n

H−
e (t, n, p0e(t, n)), max

e∈E+
n

H+
e (t, n, p0e(t, n))

)

.

A shorthand notation. As in the junction case, we introduce
(7.6)

HN (t, x, p) =

{

He(t, x, p) for p ∈ R, t ∈ R, if x ∈ e∗,

FA(t, x, p) for p = (pe)e∈En ∈ R
Card En , t ∈ R, if x = n ∈ V

in order to rewrite (7.3) as

(7.7) ut +HN (t, x, ux) = 0 for all (t, x) ∈ (0,+∞) ×N .
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7.3 Assumptions on the Hamiltonians

For each e ∈ E , we consider a Hamiltonian He : [0,+∞) × e× R → R satisfying

• (H0) (Continuity) He ∈ C([0,+∞) × e× R).

• (H1) (Uniform coercivity) For all T > 0,

lim
|q|→+∞

He(t, x, q) = +∞

uniformly with respect to t ∈ [0, T ] and x ∈ e ⊂ E .

• (H2) (Uniform bound on the Hamiltonians for bounded gradients) For all T, L > 0,
there exists CT,L > 0 such that

sup
t∈[0,T ], p∈[−L,L],x∈N\V

|HN (t, x, p)| ≤ CT,L.

• (H3) (Uniform modulus of continuity for bounded gradients) For all T, L > 0, there
exists a modulus of continuity ωT,L such that for all |p|, |q| ≤ L, t ∈ [0, T ] and
x ∈ e ∈ E ,

|He(t, x, p) −He(t, x, q)| ≤ ωT,L(|p− q|).

• (H4) (Quasi-convexity) For all n ∈ V, there exists a (possibly discontinuous) function
t 7→ p0e(t, n) such that

{

He(t, n, ·) is nonincreasing on (−∞, p0e(t, n)],

He(t, n, ·) is nondecreasing on [p0e(t, n),+∞).

• (H5) (Uniform modulus of continuity in time) For all T > 0, there exists a modulus
of continuity ω̄T such that for all t, s ∈ [0, T ], p ∈ R, x ∈ e ∈ E ,

He(t, x, p) −He(s, x, p) ≤ ω̄T (|t− s|(1 + max(He(s, x, p), 0))) .

• (H6) (Uniform continuity of A0) For all T > 0, there exists a modulus of continuity
ω̄T such that for all t, s ∈ [0, T ] and n ∈ V,

|A0
n(t) − A0

n(s)| ≤ ω̄T (|t− s|).

As far as flux limiters are concerned, the following assumptions will be used.

• (A0) (Continuity of A) For all T > 0 and n ∈ V, An ∈ C([0, T ]).

• (A1) (Uniform bound on A) For all T > 0, there exists a constant CT > 0 such that
for all t ∈ [0, T ] and n ∈ V

|An(t)| ≤ CT .
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• (A2) (Uniform continuity of A) For all T > 0, there exists a modulus of continuity
ω̄T such that for all t, s ∈ [0, T ] and n ∈ V,

|An(t) − An(s)| ≤ ω̄T (|t− s|).

The proof of the following technical lemma is postponed until appendix.

Lemma 7.2 (Estimate on the difference of Hamiltonians). Assume that the Hamiltonians
satisfy (H0)-(H4) and (A0)-(A1). Then for all T > 0, there exists a constant CT > 0 such
that

|p0e(t, x)| ≤ CT for all t ∈ [0, T ], x ∈ ∂e, e ∈ E ,(7.8)

|A0
n(t)| ≤ CT for all t ∈ [0, T ], n ∈ V.(7.9)

If we assume moreover (H5)-(H6) and (A2), then there exists a modulus of continuity ω̃T

such that for all t, s ∈ [0, T ], and x, p

(7.10) HN (t, x, p) −HN (s, x, p) ≤ ω̃T (|t− s|(1 + max(0, HN (s, x, p))).

Remark 7.3. From the proof, the reader can check that Assumptions (H5)-(H6) and (A2)
in the statement of Theorem 7.8 can in fact be replaced with (7.10).

Remark 7.4 (Example of Hamiltonians with uniform modulus of time continuity). Condi-
tion on the uniform modulus of continuity in time in (H5)-(H6) is for instance satisfied by
Hamiltonians of the type for q > 0 and δ > 0 such that for all x ∈ e ∈ E we have

He(t, x, p) = ce(t, x)|p|q with 0 < δ ≤ ce(t, x) ≤ 1/δ

with ce uniformly continuous in time and continuous in space.

7.4 Viscosity solutions on a network

Class of test functions. For T > 0, set NT = (0, T ) ×N . We define the class of test
functions on (0, T ) ×N by

C1(NT ) =
{

ϕ ∈ C(NT ), the restriction of ϕ to (0, T ) × e is C1, for all e ∈ E
}

.

Definition 7.5 (Viscosity solutions). Assume the Hamiltonians satisfy (H0)-(H4) and
(A0)-(A1) and let u : [0, T ) ×N → R.

i) We say that u is a sub-solution (resp. super-solution) of (1.7) in (0, T ) ×N if for all
test function ϕ ∈ C1(NT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ NT

with equality at (t0, x0), we have

ϕt +HN (t, x, ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0).
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ii) We say that u is a sub-solution (resp. super-solution) of (1.7), (1.4) in [0, T ) × N if
additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ N .

iii) We say that u is a (viscosity) solution if u is both a sub-solution and a super-solution.

Remark 7.6 (Touching sub-solutions with semi-concave functions). When proving the com-
parison principle in the network setting, sub-solutions (resp. super-solutions) will be
touched from above (resp. from below) by functions that will not be C1, but only semi-
concave (resp. semi-convex). We recall that a function is semi-concave if it is the sum of a
concave function and a smooth (C2 say) function. But it is a classical observation that, at
a point where a semi-concave function is not C1, we can replace the semi-concave function
by a C1 test function touching it from above.

As in the case of a junction (see Proposition 2.4), viscosity solutions are stable through
supremum/infimum. We also have the following existence result.

Theorem 7.7 (Existence on a network). Assume (H0)-(H4) and (A0)-(A1) on the Hamil-
tonians and assume that the initial data u0 is uniformly continuous on N . Let T > 0.
Then there exists a viscosity solution u of (7.7),(7.4) on [0, T )×N and a constant CT > 0
such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) ×N .

Proof. The proof follows along the lines of the ones of Theorem 1.1. The main difference
lies in the construction of barriers. We proceed similarly and get a regularized initial data
uε0 satisfying

|uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε.

Then the functions

(7.11) u±ε (t, x) = uε0(x) ± Cεt± ε

are global super and sub-solutions with respect to the initial data u0 if Cε is chosen as
follows,

(7.12) Cε = max

(

sup
t∈[0,T ]

sup
n∈V

|max(An(t), A0
n(t))|, sup

t∈[0,T ]

sup
e∈E

sup
x∈e, |pe|≤Lε

|He(t, x, pe)|
)

;

indeed, we use (7.9) in Lemma 7.2 to bound the first terms in (7.12).

7.5 Comparison principle on a network

Theorem 7.8 (Comparison principle on a network). Assume the Hamiltonians satisfy
(H0)-(H6) and (A0)-(A2) and assume that the initial data u0 is uniformly continuous
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on N . Let T > 0. Then for all sub-solution u and super-solution w of (7.7), (7.4) in
[0, T ) ×N , satisfying for some CT > 0 and some x0 ∈ N
(7.13)
u(t, x) ≤ CT (1 + d(x0, x)), w(t, x) ≥ −CT (1 + d(x0, x)), for all (t, x) ∈ [0, T ) ×N ,

we have
u ≤ w on [0, T ) ×N .

As a straighforward corollary of Theorems 7.8 and 7.7, we get

Corollary 7.9 (Existence and uniqueness). Under the assumptions of Theorem 7.8, there
exits a unique viscosity solution u of (7.7), (7.4) in [0, T ) × N such that there exists a
constant C > 0 with

|u(t, x) − u0(x)| ≤ C for all (t, x) ∈ [0, T ) ×N .

In order to prove Theorem 7.8, we first need two technical lemmas that are proved in
appendix.

Lemma 7.10 (A priori control – the network case). Let T > 0 and let u be a sub-solution
and w be a super-solution as in Theorem 7.8. Then there exists a constant C = C(T ) > 0
such that for all (t, x), (s, y) ∈ [0, T ) ×N , we have

(7.14) u(t, x) ≤ w(s, y) + C(1 + d(x, y)).

Lemma 7.11 (Uniform control by the initial data). Under the assumptions of Theorem 7.8,
for any T > 0 and CT > 0, there exists a modulus of continuity f : [0, T ) → [0,+∞]
satisfying f(0+) = 0 such that for all sub-solution u (resp. super-solution w) of (7.7),
(7.4) on [0, T )×N , satisfying (7.13) for some x0 ∈ N , we have for all (t, x) ∈ [0, T )×N ,

(7.15) u(t, x) ≤ u0(x) + f(t) (resp. w(t, x) ≥ u0(x) − f(t)) .

We can now turn to the proof of Theorem 7.8. The proof is similar the comparison
principle on a junction (Theorem 1.1). Still, a space localization procedure has to be
performed in order to “reduce” to the junction case. From a technical point of view, a
noticeable difference is that we will fix the time penalization (for some parameter ν small
enough), and then will first take the limit ε → 0 (ε being the parameter for the space
penalization), and then take the limit α → 0 (α being the penalizaton parameter to keep
the optimization points at a finite distance).

Proof of Theorem 7.8. Let η > 0 and θ > 0 and consider

M(θ) = sup

{

u(t, x) − w(s, x) − η

T − t
, x ∈ N , t, s ∈ [0, T ), |t− s| ≤ θ

}

.

We want to prove that
M = lim

θ→0
M(θ) ≤ 0.

Assume by contradiction that M > 0. From Lemma 7.10 we know that M is finite.
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Step 1: The localization procedure. Let ψ denote d2(x0,·)
2

.

Lemma 7.12 (Localization). The supremum

Mα = sup
t,s∈[0,T ],t<T

x∈N

{

u(t, x) − w(s, x) − αψ(x) − η

T − t
− (t− s)2

2ν

}

is reached for some point (tα, sα, xα). Moreover, for α and ν small enough, we have the
following localization estimates

Mα ≥ 3M/4 > 0(7.16)

d(x0, xα) ≤ C√
α

(7.17)

0 < τν ≤ tα, sα ≤ T − η

2C
(7.18)

lim
ν→0

(

lim sup
α→0

(tα − sα)2

2ν

)

= 0(7.19)

where C is a constant which does not depend on α, ε, ν and η.

Proof of Lemma 7.12. Choosing α small enough, we have (7.16) for all ν > 0. Because
the network is complete for its metric, the supremum in the definition of Mα is reached at
some point (tα, sα, xα). From Lemma 7.10, we deduce that

0 <
3M

4
≤Mα ≤ C − αψ(xα) − η

T − tα
− (tα − sα)2

2ν

and then

(7.20) αψ(xα) +
η

T − tα
+

(tα − sα)2

2ν
≤ C.

This implies (7.17) changing C if necessary.
On the one hand, we get from (7.20) the second inequality in (7.18) by choosing ν such

that
√

2νC ≤ η/2C. On the other hand, we get from Lemma 7.11

0 < Mα ≤ f(tα) + f(sα) − η

T
.

In particular,
η

T
≤ 2f(τ +

√
2νC)

where τ = min(tα, sα). If both τ and ν are too small, we get a contradiction. Hence the
first inequality in (7.18) holds for some constant τν depending on ν but not on α, ε and η.

We now turn to the proof of (7.19). We know that for any δ > 0, there exists θ(δ) > 0
(with θ(δ) → 0 as δ → 0) and (tδ, sδ, xδ) ∈ [0, T ) × [0, T ) ×N such that

u(tδ, xδ) − w(sδ, xδ) − η

T − tδ
≥M − δ and |tδ − sδ| ≤ θ(δ).
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Then from (7.20) we deduce that

M(
√

2νC) − (tα − sα)2

2ν
≥Mα ≥M − δ − αψ(xδ) − |θ(δ)|2

2ν

and then

lim sup
α→0

(tα − sα)2

2ν
≤M(

√
2νC) −M + δ +

|θ(δ)|2
2ν

.

Taking the limit δ → 0, we get

lim sup
α→0

(tα − sα)2

2ν
≤M(

√
2νC) −M

which yields the desired result.

Step 2: Reduction when xα is a vertex. We adapt here Lemma 3.1.

Lemma 7.13 (Reduction). Assume that xα = n ∈ V. Without loss of generality, we can
assume that E+

n = ∅ and p0e(tα, xα) = 0 for each e ∈ En with n = xα.

Proof of Lemma 7.13. The orientation of the edges e ∈ En can be changed in order to
reduce to the case E+

n = ∅. In particular, for p = (pe)e∈En ,

FA(t, n, p) = max

(

An(t), max
e∈E−

n

H−
e (t, n, pe)

)

.

We can then argue as in Lemma 3.1. This means that we redefine the Hamiltonians (and
the flux limiter An) only locally for e ∈ En. Using (7.8), we can check that the new
Hamiltonians (locally for e ∈ En) and An still satisfy (H0)-(H6) and (A0)-(A2) (with the
same modulus of continuity, and with some different controlled constants CT,L). We also
have (7.13) with some controlled different constants.

Step 3: The penalization procedure. We now consider for ε > 0 and γ ∈ (0, 1)

Mα,ε = sup
(t,x),(s,y)∈[0,T ]×B(xα,r)

t<T

{

u(t, x) − w(s, y) − αψ(x) − η

T − t

−(t− s)2

2ν
−Gα,γ

ε (x, y) − ϕα(t, s, x)

}

where the function ϕα

ϕα(t, s, x) =
1

2

(

|t− tα|2 + |s− sα|2 + d2(x, xα)
)

will help us to localize the problem around (tα, sα, xα), and B(xα, r) is the open ball of
radius r = r(α) > 0 centered at xα; besides, we choose r ∈ (0, 1) small enough such that
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B(xα, r) ⊂ e if xα ∈ e \ V. Lemma A.2 ensures that ψ and ϕα are semi-concave and
therefore can be used as test functions, see Remark 7.6.

We choose
Gα,γ

ε (x, y) = εGα,γ(ε−1x, ε−1y)

with

Gα,γ(x, y) =







(x− y)2

2
if xα ∈ N \ V,

Gxα,γ(x, y) if xα ∈ V,
where Gxα,γ ≥ 0 is the vertex test function of parameter γ > 0 given by Theorem 3.2, built
on the junction problem associated to the vertex xα at time tα, i.e. associated to junction
problem for the Hamiltonian H tα,xα

V given by

(7.21) H tα,n
V (x, p) :=

{

He(tα, n, p) if x ∈ e \ {n} with e ∈ En,
FA(tα, n, p) if x = n.

The supremum in the definition of Mα,ε is reached at some point (t, x), (s, y) ∈ [0, T ] ×
B(xα, r) with t < T . These maximizers satisfy the following penalization estimates.

Lemma 7.14 (Penalization). For ε ∈ (0, 1) and γ ∈ (0,M/4), we have

Mα,ε ≥Mα − εγ ≥ M/2 > 0(7.22)

d(x, y) ≤ ω(ε)(7.23)

0 < τν ≤ s, t ≤ T − ση

for some modulus of continuity ω (depending on α and γ) and τν and ση not depending on
(ε, γ). Moreover,

(t, s, x, y) → (tα, sα, xα, xα) as (ε, γ) → (0, 0).

In particular, we have x, y ∈ B(xα, r) for ε, γ > 0 small enough.

Proof of Lemma 7.14. For all ε, ν > 0, the compatibility on the diagonal (3.3) of the vertex
test function Gxα,γ yields the first inequality in (7.22). Then for ε ∈ (0, 1], with a choice
of γ such that 0 < γ < M/4, we have the second one.

Bound on d(x, y). Remark that

εg

(

d(x, y)

ε

)

≤ Gxα,γ
ε (x, y)

where

g(a) =







a2

2
if xα ∈ N \ V,

gxα,γ(a) if xα ∈ V,
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and where gxα,γ is the superlinear function associated to Gxα,γ and given by Theorem 3.2.
Thanks to Lemma 7.10, we deduce that

(7.24)
0 < M/2 ≤ C(1 + d(x, y)) −Gα,γ

ε (x, y) − (t− s)2

2ν
− η

T − t
− αψ(x)

≤ C(1 + d(x, y)) − εg

(

d(x, y)

ε

)

− (t− s)2

2ν
− η

T − t
− αψ(x)

which implies in particular that

εg

(

d(x, y)

ε

)

≤ C(1 + d(x, y)).

This gives (7.23) as in Step 1 of the proof of Theorem 1.1.

First time estimate. From (7.24) with Gα,γ
ε ≥ 0 and (7.23), we deduce in particular

that for ε ∈ (0, 1]

0 < M/2 ≤ C ′ − (t− s)2

2ν
− η

T − t
.

This implies in particular that

(7.25) T − t ≥ η

C ′
, T − s ≥ η

C ′
−

√
2νC ′ ≥ η

2C ′
=: ση > 0

for ν > 0 small enough, and up to redefine ση for the new constant C ′ ≥ C.

Second time estimate. From Lemma 7.11, we have with

0 < M/2 ≤ f(t) + f(s) + u0(x) − u0(y) − η
T
− (t−s)2

2ν

≤ f(t) + f(s) + ω0 ◦ ω(ε) − η

T
− (t− s)2

2ν

where ω0 is the modulus of continuity of u0. Let us choose ε > 0 small enough such that

(7.26) ω0 ◦ ω(ε) ≤ M

2
.

As in the proof of Lemma 7.12, for τ = min(t, s), we get

η

T
≤ 2f(τ +

√
2νC ′).

For ν small enough (with η fixed), we then get a contradiction if τ converges to 0 as ν
does.
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Convergence of maximizers. Because of (7.22) and using the fact that Gα,γ
ε ≥ 0, we

get for ε ∈ (0, 1]

Mα − γ ≤Mα,ε ≤ u(t, x) − w(s, y) − αψ(x) − η

T − t
− (t− s)2

2ν
− ϕα(t, s, x).

Extracting a subsequence if needed, we can assume

(t, x, s, y) → (t̄, x̄, s̄, x̄) as (ε, γ) → (0, 0)

for some t̄, s̄ ∈ [τν , T − ση], x̄ ∈ B(xα, r). We get

Mα ≤ u(t̄, x̄) − w(s̄, x̄) − αψ(x̄) − η

T − t̄
− (t̄− s̄)2

2ν
− ϕα(t̄, s̄, x̄) ≤Mα − ϕα(t̄, s̄, x̄)

which implies that (t̄, s̄, x̄) = (tα, sα, xα).

Step 4: Viscosity inequalities. Then we can write the viscosity inequalities at (t, x)
and (s, y) using the shorthand notation (7.6),

η

(T − t)2
+
t− s

ν
+ (t− tα) +HN (t, x, pα,γ,εx + αψx(x) + ϕα

x(t, s, x)) ≤ 0(7.27)

t− s

ν
− (s− sα) +HN (s, y, pα,γ,εy ) ≥ 0

where
{

pα,γ,εx = Gα,γ
x (ε−1x, ε−1y),

pα,γ,εy = −Gα,γ
y (ε−1x, ε−1y).

We choose ε, γ small enough such that (Lemma 7.14) we have

|t− tα|, |s− sα| ≤ η

4T 2
.

Substracting the two viscosity inequalities, we get

(7.28)
η

2T 2
≤ HN (s, y, pα,γ,εy ) −HN (t, x, pα,γ,εx + αψx(x) + ϕα

x(t, s, x)).

Step 5: Gradient estimates. We deduce from (7.27) that

p̃α,γ,εx = pα,γ,εx + αψx(x) + ϕα
x(t, s, x)

satisfies

(7.29) HN (t, x, p̃α,γ,εx ) ≤ s− t

ν
+ tα − t ≤ T

ν
+ T.
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Hence (H1) implies that there exists a constant C ′
ν (independent of α, ε, γ, but depending

on η, ν) such that
{

|p̃α,γ,εx | ≤ C ′
ν if x 6= xα or xα /∈ V,

p̃α,γ,εx ≥ −C ′
ν if x = xα and xα ∈ V.

From (7.17), we deduce that

(7.30) |αψx(x) + ϕα
x(t, s, x)| ≤ C

√
α + d(x, xα) ≤ C

for α ≤ 1 (using (7.17)). Therefore, we have for some constant Cν (independent of α, ε,
γ):

{

|pα,γ,εx | ≤ Cν if x 6= xα or xα /∈ V,
pα,γ,εx ≥ −Cν if x = xα and xα ∈ V.

From the compatibility condition of the Hamiltonians satisfied by Gα,γ if xα ∈ V, or the
definition of Gα,γ if xα /∈ V, we have in both cases,

(7.31) H tα,xα(y, pα,γ,εy ) ≤ H tα,xα(x, pα,γ,εx ) + γ

where

H tα,xα(x, p) =

{

H tα,n
V (x, p) if xα = n ∈ V,

He(tα, xα, p) if xα /∈ V, xα ∈ e∗.

We deduce that pα,γ,εy satisfies (modifying Cν if necessary)
{

|pα,γ,εy | ≤ Cν if y 6= xα or xα /∈ V,
pα,γ,εy ≥ −Cν if y = xα and xα ∈ V.

Defining for z = x, y,

p̄α,γ,εz =

{

(min (K, (pα,γ,εz )z̃))z̃∈xα
if z = xα and xα ∈ V

pα,γ,εz if not.

with, in the case where xα ∈ V, the constant K given by

K = max
e∈Exα

(p0e(s, xα), p0e(tα, xα), p0e(t, xα) + C)) ≤ CT + C

(C comes from (7.30) and CT from (7.8)), we have

|p̄α,γ,εz | ≤ Cν + CT + C =: Cν,T

and
η

2T 2
≤ HN (s, y, p̄α,γ,εy ) −HN (t, x, p̄α,γ,εx + αψx(x) + ϕα

x(t, s, x)),(7.32)

HN (t, x, p̄α,γ,εx + αψx(x) + ϕα
x(t, s, x)) ≤ s− t

ν
+ tα − t ≤ T

ν
+ T,(7.33)

H tα,xα(y, p̄α,γ,εy ) ≤ H tα,xα(x, p̄α,γ,εx ) + γ.(7.34)
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Step 6: The limit (ε, γ) → (0, 0) and conclusion as α→ 0. Up to a subsequence, we
get in the limit (ε, γ) → (0, 0) for z = x, y:

p̄α,γ,εz → p̄αz with |p̄αz | ≤ Cν,T .

Moreover, passing to the limit in (7.32) and (7.33), we get respectively

η

2T 2
≤ HN (sα, xα, p̄

α
y ) −HN (tα, xα, p̄

α
x + αψx(xα))

and

HN (tα, xα, p̄
α
x + αψx(xα)) ≤ sα − tα

ν
≤ T

ν
.

On the other hand, passing to the limit in (7.34) gives

H tα,xα(xα, p̄
α
y ) ≤ H tα,xα(xα, p̄

α
x).

Because
HN (tα, xα, p) = H tα,xα(xα, p)

we get for any p,
η

2T 2
≤ I1 + I2

with

I1 = HN (sα, xα, p̄
α
x) −HN (sα, xα, p̄

α
x + αψx(xα)),

I2 = HN (sα, xα, p̄
α
x + αψx(xα)) −HN (tα, xα, p̄

α
x + αψx(xα)).

Thanks to (H3) and (7.17), we have |αψx(xα)| ≤ Cν,T and we thus get

(7.35) I1 ≤ ωT,2Cν,T
(αψx(xα)) ≤ ωT,2Cν

(C
√
α).

Now thanks to Lemma 7.2, we also have

I2 ≤ ω̃T (|tα − sα|(1 + max(HN (tα, xα, p̄
α
x + αψx(xα)), 0)))

≤ ω̃T (|tα − sα|(1 + max(
sα − tα
ν

, 0))).

Then taking first the limit α → 0 and then taking the limit ν → 0, we use (7.19) to get
the desired contradiction. This achieves the proof of Theorem 7.8.

8 Fourth application: a homogenization result for a

network

In this section, we present an application of the comparison principle of viscosity sub- and
super-solutions on networks.

80



8.1 A homogenization problem

We consider the simplest periodic network generated by εZd. Hence, the network is nat-
urally embedded in Rd. Let us be more precise now. At scale ε = 1, the edges are the
following subsets of Rd: for k, l ∈ Zd, |k − l| = 1,

ek,l = {θk + (1 − θ)l : θ ∈ [0, 1]}.

If (e1, . . . , ed) denotes the canonical basis of Rd, then for l = k + ei, ek,l is oriented in the
direction of ei. The network Nε at scale ε > 0 is the one corresponding to

{

Eε = {εek,l, k, l ∈ Zd, |k − l| = 1}
Vε = εZd

endowed with the metric induced by the Euclidian norm. We next consider the following
“oscillating” Hamilton-Jacobi equation on this network

(8.1)

{

uεt +H e
ε
(uεx) = 0, t > 0, x ∈ e∗, e ∈ Eε,

uεt + FA(x
ε
, uεx) = 0, t > 0, x ∈ Vε

(for some A ∈ R) submitted to the initial condition

(8.2) uε(0, x) = u0(x), x ∈ Nε.

For m ∈ Zd, it is convenient to define

εek,l + εm = εek+m,l+m.

Assumptions on H for the homogenization problem For each e ∈ N1, we associate
a Hamiltonian He and we assume

• (H’0) (Continuity) For all e ∈ E1, He ∈ C(R).

• (H’1) (Coercivity) e ∈ E1,
lim inf
|q|→+∞

He(q) = +∞.

• (H’2) (Quasi-convexity) For all e ∈ E1, there exists a p0e ∈ R such that

{

He is nonincreasing on (−∞, p0e],

He is nondecreasing on [p0e,+∞).

• (H’3) (Periodicity) For all m ∈ Zd, He+m(p) = He(p).
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A homogenization result The goal of this section is to prove the following convergence
result for the oscillating Hamilton-Jacobi equation.

Theorem 8.1 (Homegenization of a network). Assume (H’0)-(H’3). Let u0 be Lipschitz
continuous and uε be the solution of (8.1)-(8.2). There exists a continuous function H̄ :
Rd → R such that uε converges locally uniformly towards the unique solution u0 of

u0t + H̄(∇xu
0) = 0, t > 0, x ∈ R

d(8.3)

ū0(0, x) = u0(x), x ∈ R
d.(8.4)

Remark 8.2. The meaning of the convergence uε towards u0 is

lim
(s,y)→(t,x)

y∈Nε

uε(s, y) = u0(t, x).

8.2 The cell problem

Keeping in mind the definitions of networks and derivatives of functions defined on net-
works, solving the cell problem consists in finding specific global solutions of (8.1) for ε = 1,
i.e.

(8.5)

{

wt +He(wy) = 0, t ∈ R, y ∈ e∗, e ∈ E1,
wt + FA(y, wy) = 0, t ∈ R, y ∈ V1.

Precisely, for some P ∈ Rd, we look for solutions w(t, y) = λt + P · y + v(y) with a
Z
d-periodic function v; in other words, we look for (λ, v) such that

(8.6)

{

λ+He((P · y + v)y) = 0, y ∈ e∗, e ∈ E1,
λ+ FA(y, (P · y + v)y) = 0, y ∈ V1.

Theorem 8.3. For all P ∈ Rd there exists λ ∈ R and a Zd-periodic solution v of (8.6).
Moreover, the function H̄ which maps P to −λ is continuous.

Proof. We consider the following Zd-periodic stationary problem

(8.7)

{

αvα +He((P · y + vα)y) = 0, y ∈ e∗, e ∈ E1,
αvα + FA(y, (P · y + vα)y) = 0, y ∈ V1.

We consider
C = max

e∈E1
|He((P · y)y)|.

Then the existence result and the comparison principle for the stationary equation (see
Appendix B) imply that there exists a (unique) Zd-periodic solution vα of (8.7) such that

|αvα| ≤ C.
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Since He is coercive, this implies that there exists a constant C̃ such that for all α > 0, vα
is Lipschitz-continuous and

|vαy | ≤ C̃;

in other words, the family (vα)α>0 is equi-Lipschitz continuous. We then consider

ṽα = vα − vα(0).

By Arzelà-Ascoli theorem, there exists αn → 0 such that ṽn := ṽαn
converges uniformly

towards v. Moreover, we can also assume that

αnvαn
(0) → λ.

Passing to the limit into the equation yields that (λ, v) solves the cell problem (8.6).
The continuity of λ is completely classical too. Consider Pn → P∞ as n → ∞ and

consider (λn, vn) solving (8.6). We proved above that

|λn| ≤ C.

Hence, arguing as above, we can extract a subsequence from (λn, vn) converging towards
(λ∞, v∞). Passing to the limit into the equation implies that (λ∞, v∞) solves the cell
problem (8.6). The uniqueness of λ yields the continuity of H̄ . The proof is now complete.

8.3 Proof of convergence

Before proving the convergence, we state without proof the following elementary lemma.

Lemma 8.4 (Barriers). There exists C > 0 such that for all ε > 0,

|uε(t, x) − u0(x)| ≤ Ct.

We can now turn to the proof of convergence.

Proof of Theorem 8.1. We classically consider the relaxed semi-limits







u(t, x) = lim supε→0,(s,y)→(t,x)

y∈Nε

uε(s, y),

u(t, x) = lim infε→0,(s,y)→(t,x)

y∈Nε

uε(s, y).

In order to prove convergence of uε towards u0, it is enough to prove that u is a sub-solution
of (8.3) and u is a super-solution of (8.3). We only prove that u is a sub-solution since the
proof for u is very similar.

We consider a test function ϕ touching (strictly) u from above at (t0, x0): there exists
r0 > 0 such that for all (t, x) ∈ Br0(t0, x0), (t, x) 6= (t0, x0),

ϕ(t, x) > u(t, x)
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and ϕ(t0, x0) = u(t0, x0). We argue by contradiction by assuming that there exists θ > 0
such that

(8.8) ∂tϕ(t0, x0) − λ = ∂tϕ(t0, x0) + H̄(∇xϕ(t0, x0)) = θ > 0.

We then consider the following “perturbed test” function ϕε : R+ ×Nε → R [12],

ϕε(t, x) = ϕ(t, x) + εv(ε−1x)

where (λ, v) solves the cell problem (8.6) for P = ∇xϕ(t0, x0).

Lemma 8.5. For r ≤ r0 small enough, the function ϕε is a super-solution of (8.1) in
B((t0, x0), r) ⊂ Nε and ϕε ≥ uε + ηr in ∂B(t0, x0), r) for some ηr > 0.

Proof. Consider a test function ψ touching ϕε from below at (t, x) ∈]0,+∞[×Nε. Then
the function

ψε(s, y) = ε−1(ψ(s, εy) − ϕ(s, εy))

touches v from below at y = x
ε
∈ e. In particular,

∂tψ(t, x) = ∂tϕ(t, x),(8.9)

λ+ HN1(y, ϕx(t0, x0) + ψx(t, x) − ϕx(t, x)) ≥ 0.(8.10)

Combine now (8.8), (8.9) and (8.10) and get

∂tψ(t, x) +HN1(y, ψx(t, x)) ≥ θ + E

where

E = (ϕt(t, x) − ϕt(t0, x0)) + (HN1(y, ψx(t, x)) −HN1(y, ψx(t, x) + ϕx(t0, x0) − ϕx(t, x))).

The fact that ϕ is C1 implies that we can choose r > 0 small enough so that for all
(t, x) ∈ B((t0, x0), r),

E ≥ −θ.
Moreover, since ϕ is strictly above u, we conclude that ϕε ≥ uε + ηr on ∂B((t0, x0), r) for
some ηr > 0. This achieves the proof of the lemma.

From the lemma, we deduce thanks to the (localized) comparison principle that

ϕε(t, x) ≥ uε(t, x) + ηr.

In particular, this implies

u(t0, x0) = ϕ(t0, x0) ≥ u(t0, x0) + ηr > u(t0, x0)

which is the desired contradiction.
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8.4 Characterization of the effective Hamiltonian

We remark that, in view of (H’3), there are exactly d different Hamiltonians H1, . . . , Hd

corresponding to e0,bi where (bi)i denotes the canonical basis of Rd. With such a remark
in hand, we can know give the explicit form of the effective Hamiltonian H̄.

Proposition 8.6 (Characterization of the effective Hamiltonian). Under assumptions of
Theorem 8.1, for all P = (p1, . . . , pd) ∈ Rd,

H̄(P ) = max(A, max
i=1,...,d

Hi(pi)).

Proof of Proposition 8.6. Let µ̄ denote max(A, maxi=1,...,dHi(pi)) and µ denote H̄(P ). We
prove successively that µ ≤ µ̄ and µ̄ ≤ µ.

Step 1: bound from above. Consider the following sub-solution of (8.5)

w̄(t, y) = −µ̄t + P · y.

By comparison with
w(t, y) = −µt+ P · y + v(y)

where the bounded corrector v is a solution of (8.6) with λ = −µ, we deduce that

H̄(P ) = µ ≤ µ̄

by letting t→ +∞

Step 2: bound from below. To deduce the reverse inequality, we first notice that
the periodic corrector v is Lipschitz continuous (by coercivity of the Hamiltonians), which
implies

−µ+He(pe + vy) = 0 for a.e. y ∈ e ∈ E1.
If He is convex, we deduce that

∫ 1

0

µ dy ≥ He(

∫ 1

0

(pe + vy(y)) dy)

which implies

(8.11) µ ≥ He(pe).

When He is only quasi-convex, we still get the same inequality, because for any ε > 0, we
can find a Hamiltonian H̃ε

e such that |H̃ε
e−He| ≤ ε with H̃e satisfying (4.8). By Lemma 4.4,

we know that there exists a convex increasing function βε such that βε ◦ H̃ε
e is convex for

all e ∈ E1, which implies again

βε(µ+ ε) ≥ βε ◦ H̃ε
e(pe).
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Composing by β−1
ε and letting ε go to zero, we recover (8.11).

Let us now consider what happens at the junction point y = 0. Since w(t, 0) =
v(t, 0) − µt, Theorem 2.10 implies

−µ + A ≤ 0.

Together with (8.11), this implies

H̄(P ) = µ ≥ µ̄.

A Appendix: proofs of some technical results

A.1 Technical results on a junction

In order to prove Lemma 3.4, we need the following one.

Lemma A.1 (A priori control at the same time). Let T > 0 and let u be a sub-solution
and w be a super-solution as in Theorem 1.1. Then there exists a constant CT > 0 such
that for all t ∈ [0, T ), x, y ∈ J , we have

(A.1) u(t, x) ≤ w(t, y) + CT (1 + d(x, y)).

We first derive Lemma 3.4 from Lemma A.1.

Proof of Lemma 3.4. Let us fix some ε > 0 and let us consider the sub-solution u−ε and
super-solutions u+ε defined in (2.22). Using (2.21), we see that we have for all (t, x), (s, y) ∈
[0, T ) × J

(A.2) u+ε (t, x) − u−ε (s, y) ≤ 2CεT + 2ε+ Lεd(x, y)

We first apply Lemma A.1 to control u(t, x) − u+ε (t, x), and then apply Lemma A.1 to
control u−ε (s, y) − w(s, y). Finally we get the control on u(t, x) − w(s, y), using (A.2).

We now turn to the proof of Lemma A.1.

Proof of Lemma A.1. Let us define

ϕ(x, y) =
√

1 + d2(x, y).

Then ϕ ∈ C1(J2) and satisfies

(A.3) |ϕx(x, y)|, |ϕy(x, y)| ≤ 1.

For constants C1, C2 > 0 to be chosen, let us consider

M = sup
t∈[0,T ), x,y∈J

(u(t, x) − w(t, y) − C2t− C1ϕ(x, y)) .
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The result follows if we show that M is non-positive for C1 and C2 large enough. Assume
by contradiction that M > 0 for any C1 and C2. Then for η, α > 0 small enough, we have
Mα,η ≥M/2 > 0 with

(A.4) Mη,α = sup
t∈[0,T ), x,y∈J

(

u(t, x) − w(t, y) − C2t− C1ϕ(x, y) − η

T − t
− α

d2(x0, x)

2

)

.

From (1.12), we have

0 <
M

2
≤ CT (2 + d(0, x) + d(0, y)) − C2t− C1ϕ(x, y) − η

T − t
− α

d2(x0, x)

2

which shows that the supremum in (A.4) is reached at a point (t, x, y), assuming C1 > CT .
Moreover, we have (for 0 < α ≤ 1)

(A.5) αd(0, x) ≤ C = C(CT ).

From the uniform continuity of the initial data u0, there exists a constant C0 > 0 such that

u0(x) − u0(y) ≤ C0ϕ(x, y)

and therefore t > 0, assuming C1 > C0. Then the classical time penalization (or doubling
variable technique) implies the existence of a, b ∈ R (that play the role of ut and vt) such
that we have the following viscosity inequalities

{

a+H (x, C1ϕx(x, y) + αd(x0, x)) ≤ 0,
b+H(y,−C1ϕy(x, y)) ≥ 0

(using the shorthand notation (3.1) and writing αd(x0, x) for α (d2(x0, x)/2)x for the pur-
poses of notation) with a− b = C2 + η(T − t)−2. Substracting these inequalities yields

(A.6) C2 +
η

(T − t)2
≤ H(y,−C1ϕy(x, y)) −H (x, C1ϕx(x, y) + αd(0, x)) .

Using bounds (A.3) and (A.5), this yields a contradiction in (A.6) for C2 large enough.

A.2 Technical results on a network

Proof of Lemma 7.2

Proof of Lemma 7.2. (H1) and (H2) imply the uniform boundedness of the p0e(t, x), i.e.
(7.8). We also notice that because of (7.8), there exists a constant C0 > 0 such that for all
t ∈ [0, T ], e ∈ E and n ∈ ∂e,

(A.7) |He(t, n, p
0
e(t, n))| ≤ C0

from which (7.9) is easily derived.
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We now turn to the proof of (7.10). In view of the definition of FA and (A2), (H5), we
see that it is enough to prove that for all for n ∈ V, t, s ∈ [0, T ], p = (pe)e∈En ∈ RCard En ,
x ∈ V,

(A.8) A0
n(t, p) − A0

n(s, p) ≤ ω̃T

(

|t− s|(1 + max(0, A0
n(s, p)))

)

.

where
A0

n(t, p) := max
e∈E−

n

H−
e (t, n, pe) ≥ A0

n(t)

or
A0

n(t, p) := max
e∈E+

n

H+
e (t, n, pe) ≥ A0

n(t).

We only treat the first case, since the second case reduces to the first one by a simple
change of orientation of the network.

We have
A0

n(a, p) = H−
ea(a, x, pea) for a = t, s.

Let us assume that we have (otherwise there is nothing to prove)

0 ≤ I(t, s) := A0
n(t, p) −A0

n(s, p).

We also have
H−

es(t, n, pes) ≤ A0
n(t, p) = H−

et(t, n, pet)

and
H−

et(s, n, pet) ≤ A0
n(s, p) = H−

es(s, n, pes).

We now distinguish three cases.

Case 1: H−
et(s, n, pet) < Het(s, n, pet). We first note that

(A.9) 0 ≤ I(t, s) ≤ A0
n(t, p) − A0

n(s).

Let us define

τ =

{

inf
{

σ ∈ [t, s], H−
et(σ, n, pet) < Het(σ, n, pet)

}

if t < s,
sup

{

σ ∈ [s, t], H−
et(σ, n, pet) < Het(σ, n, pet)

}

if t ≥ s.

Let us consider a optimizing sequence σk → τ such that

H−
et(σk, n, pet) < Het(σk, n, pet).

Then we have

H−
et(σk, n, pet) = Het(σk, n, p

0
et(σk, n)) ≤ A0

n(σk) ≤ A0
n(σk, p).
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Then passing to the limit k → +∞, we get (by convergence of the minimum values of the
Hamiltonians, even if the map t̄ 7→ p0e(t̄, n) is discontinuous)

(A.10) H−
et(τ, n, pet) = Het(τ, n, p

0
et(τ, n)) ≤ A0

n(τ) ≤ A0
n(τ, p).

If τ = t, then (A.10) implies that A0
n(t, p) = A0

n(t) (keeping in mind the definition of pet).

Subcase 1.1: τ 6= t. This shows that

Het(τ, n, pet) ≤ A0
n(τ) and Het(t, n, pet) ≥ A0

n(t).

We now choose some τ̄ in between t and τ such that

Het(τ̄ , n, pet) = A0
n(τ̄)

and estimate, using (A.9) and (A.7) and (H5)-(H6),

0 ≤ I(t, s) ≤ {A0
n(t, p) −Het(τ̄ , n, pet)} + {A0

n(τ̄ ) − A0
n(s)}

≤ {Het(t, n, pet) −Het(τ̄ , n, pet)} + {A0
n(τ̄) − A0

n(s)}
≤ ω̄T (|t− τ̄ |(1 + max(A0

n(τ̄), 0))) + ω̄T (|τ̄ − s|)
≤ ω̄T (|t− s|(1 + C0)) + ω̄T (|t− s|).

Subcase 1.2: τ = t. Then A0
n(t, p) = A0

n(t). Using (A.9), this gives directly

0 ≤ I(t, s) ≤ A0
n(t) − A0

n(s) ≤ ω̄T (|t− s|).

Case 2: H−
et(s, n, pet) = Het(s, n, pet) and H−

et(t, n, pet) = Het(t, n, pet). We have

0 ≤ I(t, s) = H−
et(t, n, pet) − A0

n(s, p)
≤ H−

et(t, n, pet) −H−
et(s, n, pet)

= Het(t, n, pet) −Het(s, n, pet)
≤ ω̄T (|t− s|(1 + max(Het(s, n, pet), 0)))
≤ ω̄T (|t− s|(1 + max(H−

et(s, n, pet), 0)))
≤ ω̄T (|t− s|(1 + max(An

0 (s, p), 0))).

Case 3: H−
et(s, n, pet) = Het(s, n, pet) and H−

et(t, n, pet) < Het(t, n, pet). Then

p0et(t, n) < pet ≤ p0et(s, n).

Because of (A.7) and the uniform bound on the Hamiltonians for bounded gradients, (H2),
we deduce that

Het(s, n, pet) ≤ C1

for some constant C1 > 0 only depending on our assumptions. Therefore, we have

0 ≤ I(t, s) = H−
et(t, n, pet) − A0

n(s, p)
≤ H−

et(t, n, pet) −H−
et(s, n, pet)

< Het(t, n, pet) −Het(s, n, pet)
≤ ω̄T (|t− s|(1 + C1)).

The proof is now complete.
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Semi-concavity of the distance

In order to prove Lemmas 7.10 and 7.11, we need the following one.

Lemma A.2 (Semi-concavity of ϕ and d2). Let N be a network defined in (7.2) with edges
E and vertices V. Let

ϕ(x, y) =
√

1 + d2(x, y)

where d is the distance function on the network N . Then ϕ(x, ·) and ϕ(·, y) are 1-Lipschitz
for all x, y ∈ N . Moreover ϕ and d2 are semi-concave on ea × eb for all ea, eb ∈ E .

Proof of Lemma A.2. The Lipschitz properties of ϕ are trivial. Since r 7→ r2 and r 7→√
1 + r2 are smooth increasing functions in R+, the result follows from the fact that the

distance function d itself is semi-concave; it is even the minimum of a finite number of
smooth functions.

If ea = eb, then d2(x, y) = (x− y)2 which implies that ϕ ∈ C1(ea × ea). Then we only
consider the cases where ea 6= eb.

Case 1: ea and eb isometric to [0,+∞). Then for (x, y) ∈ ea × eb, we have

d(x, y) = x + y + d(e0a, e
0
b)

which implies that ϕ ∈ C1(ea × eb).

Case 2: ea isometric to [0,+∞) and eb isometric to [0, lb]. Reversing the orientation
of eb if necessary, we can assume that

d0 := d(e0a, e
0
b) ≤ d(e0a, e

1
b) =: d1

and then for (x, y) ∈ ea × eb, we have

d(x, y) = x + min(d0 + y, d1 + (lb − y)) = min(d0 + x+ y, d1 + x + (lb − y)).

Then ϕ is the minimum of two C1 functions, it is semi-concave.

Case 3: ea and eb isometric to [0, la] and [0, lb]. Changing the orientations of both ea
and eb if necessary, we can assume that

d(e0a, e
0
b) = min

i,j=0,1
dij with dij = d(eia, e

j
b).

Therefore

d(x, y) = min(d00 + x+ y, d01 + x+ (lb − y), d10 + (la − x) + y, d11 + (la − x) + (lb − y))

and again ϕ is the minimum of four C1 functions, it is therefore semi-concave.
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Proof of Lemma 7.10

Proof of Lemma 7.10. We first prove (7.14) for t = s by adapting in a straightforward
way the proof of Lemma A.1. The only difference is that for any ea, eb ∈ E , the function

ϕ(x, y) =
√

1 + d2(x, y)

may not be C1(ea × eb). But Lemma A.2 and Remark 7.6 ensure that this is harmless.
The remaining of the proof of Lemma A.1 is unchanged. In particular the uniform bound
on the Hamiltonians for bounded gradients is used, see (H2).

Now (7.14) is obtained for t 6= s by following the proof of Lemma 3.4 and using the
barriers given in the proof of Theorem 7.7.

Proof of Lemma 7.11

Proof of Lemma 7.11. We do the proof for sub-solutions (the proof for super-solutions
being similar). We consider the following barrier (similar to the ones in the proof of
Theorem 7.7)

u+ε (t, x) = uε0(x) +Kεt+ ε

with
|uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε

and Kε ≥ Cε with Cε given in (7.12). It is enough to prove that for all (t, x) ∈ [0, T )×N ,

u(t, x) ≤ u+ε (t, x)

for a suitable choice of Kε ≥ Cε in order to conclude. Indeed, this implies

u(t, x) ≤ u0(x) + f(t)

with
f(t) = min

ε>0
(Kεt+ ε)

which is non-negative, non-decreasing, concave and f(0) = 0.
We consider for 0 < τ ≤ T ,

M = sup
(t,x)∈[0,τ)×N

(u− u+ε )(t, x)

and assume by contradiction that M > 0. We know by Lemma 7.10 that M is finite. Then
for any α, η > 0 small enough, we have Mα ≥M/2 > 0 with

Mα = sup
(t,x)∈[0,τ)×N

{

u(t, x) − u+ε (t, x) − η

τ − t
− αψ(x)

}

.

(we recall that ψ = d2(x0, ·)/2). By the sublinearity of u and u+ε , we know that this
supremum is reached at some point (t, x). Moreover t > 0 since u(0, x) ≤ u0(x) ≤ u+ε (0, x).
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This implies in particular that

0 < M/2 ≤Mα = u(t, x) − u+ε (t, x) − η

τ − t
− α

d2(x0, x)

2

≤ CT (1 + d(x0, x)) − uε0(x0) + Lεd(x, x0) − α
d2(x0, x)

2

≤ CT (1 + d(x0, x)) + |u0(x0)| + ε+ Lεd(x, x0) − α
d2(x0, x)

2

≤ Rε(1 + d(x0, x)) − α
d2(x0, x)

2

with
Rε = CT + max(Lε, |u0(x0)| + ε).

Then z = αd(x0, x) satisfies

z2

2
≤ Rεα +Rεz ≤ Rεα +R2

ε +
z2

4

which implies that for α ≤ 1,

(A.11) αd(x0, x) ≤ 2
√

Rε + R2
ε.

Writing the sub-solution viscosity inequality, we get

Kε +HN (t, x, (uε0)x(x) + αψx(x)) ≤ 0

We get a contradiction for the choice

Kε = 1+

max



 sup
t∈[0,T ]

sup
n∈V

|max(An(t), A0
n(t))|, sup

t∈[0,T ]

sup
e∈E

sup
x∈e

sup
|pe|≤Lε+2

√
Rε+R2

ε

|He(t, x, pe)|



 .

B Appendix: stationary results for networks

This short section is devoted to the statement of an existence and uniqueness result for
the following stationary HJ equation posed on a network N satisfying (7.1),

(B.1) u+HN (x, ux) = 0 for all x ∈ N .

For each e ∈ E , we consider a Hamiltonian He : e× R → R satisfying
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• (H0-s) (Continuity) He ∈ C(e× R).

• (H1-s) (Uniform coercivity)

lim inf
|q|→+∞

He(x, q) = +∞

uniformly with respect to x ∈ e, e ∈ E .

• (H2-s) (Uniform bound on the Hamiltonians for bounded gradients) For all L > 0,
there exists CL > 0 such that

sup
p∈[−L,L],x∈N\V

|HN (x, p)| ≤ CL.

• (H3-s) (Uniform modulus of continuity for bounded gradients) For all L > 0, there
exists a modulus of continuity ωL such that for all |p|, |q| ≤ L and x ∈ e ∈ E ,

|He(x, p) −He(x, q)| ≤ ωL(|p− q|).

• (H4-s) (Quasi-convexity) For all n ∈ V, there exists a p0e(n) such that

{

He(n, ·) is nonincreasing on (−∞, p0e(n)],

He(n, ·) is nondecreasing on [p0e(n),+∞).

As far as flux limiters are concerned, the following assumptions will be used.

• (A1-s) (Uniform bound on A) There exists a constant C > 0 such that for all n ∈ V,

|An| ≤ C.

The following result is a straightforward adaptation of Corollary 7.9. Proofs are even
simpler since the time dependance was an issue when proving the comparison principle in
the general case.

Theorem B.1 (Existence and uniqueness – stationary case). Assume (H0-s)-(H4-s) and
(A1-s). Then there exists a unique sublinear viscosity solution u of (B.1) in N .
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