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Abstract

The paper deals with Hamilton-Jacobi equations on networks with level-set con-
vex (in the gradient variable) Hamiltonians which can be discontinuous with respect
to the space variable at vertices. First, we prove that imposing a general vertex condi-
tion is equivalent to imposing a specific one which only depends on Hamiltonians and
an additional free paremeter, the flux limiter. Second, a general method for proving
comparison principles for flux-limited vertex conditions is introduced. This method
consists in constructing a vertex test function to be used in the doubling variable
approach. With such a theory and such a method in hand, a very general existence
and uniqueness results is derived for Hamilton-Jacobi equations on networks. It also
opens many perspectives for the study of these equations in such a singular geometri-
cal framework. To illustrate this fact, we derive for instance a homogenization result
for networks.
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1 Introduction

This paper is concerned with Hamilton-Jacobi (HJ) equations on networks. The contribu-
tion of this paper is two-fold: one the one hand, general vertex conditions are proved to
be equivalent to one which only depends on the Hamiltonians and a free parameter (which
will be referred to as the flux limiter); on the other hand, a comparison principle is proved
by using such a reduction.

Let us first discuss the second contribution. It is known that the core of the theory for
HJ equations lies in the proof of a strong uniqueness result, i.e. of a comparison principle.
Such a uniqueness result has been staying out of reach for some time. It is related to
the identified difficulty of getting uniqueness results for discontinuous Hamiltonians. The
proof of the comparison principle in the Euclidian setting is based on the so-called doubling
variable technique. It is known that, even in a one-dimension space, such a method generally
fails for piecewise constant (in x) Hamiltonians at discontinuities (see the last paragraph of
Subsection 1.5). Since the network setting contains the previous one, the classical doubling
variable technique is known to fail at vertices [24, 1, 18].

Eventhough, we show in this paper that the doubling variable approach can still be used
if a suitable vertex test function G at each vertex is introduced. Roughly speaking, such
a test function will allow the edges of the network to exchange enough information. More

precisely, the usual penalization term, (x−y)2

ε
with ε > 0, is replaced with εG (ε−1x, ε−1y).

For a general HJ equation
ut +H(x, ux) = 0

the vertex test function has to (“almost”) satisfy (at least close to the node x = 0),

H(y,−Gy(x, y)) −H(x,Gx(x, y)) ≤ 0.

This key inequality fills the lack of compatibility between Hamiltonians1. The construc-
tion of a (vertex) test function satisfying such a condition allows us to circumvent the
discontinuity of H(x, p) at the junction point.

1Compatibility conditions are assumed in [24, 1] for instance.
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1.1 The junction framework

In order to explain the construction of the vertex test function and our main results, we
focus in this introduction on the simplest network, which will be referred to as a junction,
and on Hamiltonians which are constant with respect to the space variable on each edge.
The case of a general network with (t, x)-dependent Hamiltonians will be presented in
Section 7 below.

A junction is a network made of one node and a finite number of infinite edges. It is
endowed with a flat metric on each edge. It can be viewed as the set of N distinct copies
(N ≥ 1) of the half-line which are glued at the origin. For i = 1, ..., N , each branch Ji is
assumed to be isometric to [0,+∞) and

(1.1) J =
⋃

i=1,...,N

Ji with Ji ∩ Jj = {0} for i 6= j

where the origin 0 is called the junction point. For points x, y ∈ J , d(x, y) denotes the
geodesic distance on J defined as

d(x, y) =

{

|x− y| if x, y belong to the same branch,

|x| + |y| if x, y belong to different branches.

For a smooth real-valued function u defined on J , ∂iu(x) denotes the (spatial) derivative
of u at x ∈ Ji and the “gradient” of u is defined as follows,

(1.2) ux(x) :=

{

∂iu(x) if x ∈ J∗
i := Ji \ {0},

(∂1u(0), ..., ∂Nu(0)) if x = 0.

With such a notation in hand, we consider the following Hamilton-Jacobi equation on the
junction J

(1.3)

{

ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗
i ,

ut + F (ux) = 0 for t ∈ (0,+∞) and x = 0

submitted to the initial condition

(1.4) u(0, x) = u0(x) for x ∈ J.

The second equation in (1.3) is referred to as the junction condition. In general, minimal
assumptions are required in order to get a good notion of weak (i.e. viscosity) solutions.
We shed some light on the fact that Equation (1.3) can be thought as a system of Hamilton-
Jacobi equations associated with Hi coupled through a “dynamical” boundary condition
involving F . This point of view can be useful, see Subsection 1.5. As far as junction
functions are concerned, we will construct below some special ones (denoted by FA) from
the Hamiltonians Hi (i = 1, ..., N) and a real parameter A.
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We consider the important case of Hamiltonians Hi satisfying the following structure
condition: there exist numbers p0i ∈ R such that for each i = 1, ..., N ,

(1.5)























(Continuity) Hi ∈ C(R)

(Level-set convexity)

{

Hi nonincreasing in (−∞, p0i ]
Hi nondecreasing in [p0i ,+∞)

(Coercivity) lim|q|→+∞Hi(q) = +∞.

1.2 First main new idea: “relevant” junction conditions

We next introduce a one-parameter family of junction conditions: given a flux limiter
A ∈ R∪{−∞}, the A-limited flux through the junction point is defined for p = (p1, . . . , pN)
as

(1.6) FA(p) = max

(

A, max
i=1,...,N

H−
i (pi)

)

for some given A ∈ R ∪ {−∞} where H−
i is the nonincreasing part of Hi defined by

H−
i (q) =

{

Hi(q) if q ≤ p0i ,

Hi(p
0
i ) if q > p0i .

We now consider the following important special case of (1.3),

(1.7)

{

ut +Hi(ux) = 0 for t ∈ (0,+∞) and x ∈ J∗
i ,

ut + FA(ux) = 0 for t ∈ (0,+∞) and x = 0

We point out that the flux functions FA associated with A ∈ [−∞, A0] coincide if one
chooses

(1.8) A0 = max
i=1,...,N

min
R

Hi.

As annonced above, general junction conditions are proved to be equivalent to those
flux-limited junction conditions. Let us be more precise: a junction function F : RN → R

should at least satisfy the following condition,

(1.9) F : RN → R is continuous and non-increasing with respect to all variables.

Indeed, the monotonicity assumption on F is related to the notion of viscosity solutions
that will be introduced. In particular, it is mandatory in order to construct solutions
through the Perron process. It will be proven that for such a junction condition F , solving
(1.3) is equivalent to solving (1.7) for some A = AF only depending on F .
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The special case of convex Hamiltonians. In the special case of convex Hamiltonians
Hi with different minimum values, Problem (1.7) can be viewed as the Hamilton-Jacobi-
Bellman equation satisfied by the value function of an optimal control problem; see for
instance [18] when A = −∞. In this case, existence and uniqueness of viscosity solutions for
(1.7)-(1.4) (with A = −∞) have been established either with a very rigid method [18] based
on an explicit Oleinik-Lax formula which does not extend easily to networks, or in cases
reducing to Hi = Hj for all i, j if Hamiltonians do not depend on the space variable [24, 1].
In such an optimal control framework, trajectories can stay for a while at the junction point.
In this case, the running cost at the junction point equals mini Li(0) = −maxi(minHi).
In this special case, the parameter A consists in replacing the previous running cost at
the junction point by min(−A,mini Li(0)). In Section 5, the link between our results and
optimal control theory will be further investigated.

1.3 Second main new idea: the vertex test function

The goal of the present paper is to provide the reader with a general handy and flexible
method to prove a comparison principle, allowing in particular to deal with Hamiltonians
that are not convex with respect to the gradient variable and are possibly discontinuous
with respect to the space variable at the vertices. As explained above, this method consists
in combining the doubling variable technique with the construction of a vertex test function
G. We took our inspiration for the construction of this function in papers like [15, 3] dealing
with scalar conservation laws with discontinuous flux functions. In such papers, authors
stick to the case N = 2. A natural family of explicit solutions of (1.7) is given by

u(t, x) = pix− λt if x ∈ Ji

for (p, λ) in the germ GA defined as follows,
(1.10)

GA =

{

{

(p, λ) ∈ RN × R, Hi(pi) = FA(p) = λ for all i = 1, ..., N
}

if N ≥ 2,

{(p1, λ) ∈ R× R, H1(p1) = λ ≥ A} if N = 1.

In the special case of convex Hamiltonians satisfying H ′′
i > 0 the vertex test function G is

a regularized version2 of the function G0 defined as follows: for (x, y) ∈ Ji × Jj ,

(1.11) G0(x, y) = sup
(p,λ)∈GA

(pix− pjy − λ) .

1.4 Main results

The main result of this paper is the following comparison principle for Hamilton-Jacobi
equations on a junction.

2Such a function should indeed be regularized since it is not C1 on the diagonal {x = y} of J2.
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Theorem 1.1 (Comparison principle on a junction). Let A ∈ R ∪ {−∞}. Assume that
the Hamiltonians satisfy (1.5) and that the initial datum u0 is uniformly continuous. Then
for all sub-solution u and super-solution w of (1.7)-(1.4) satisfying for some T > 0 and
CT > 0,

(1.12) u(t, x) ≤ CT (1+d(0, x)), w(t, x) ≥ −CT (1+d(0, x)), for all (t, x) ∈ [0, T )×J,
we have

u ≤ w in [0, T ) × J.

Our second main result sheds light on the fact that the class of junction conditions we
consider are in fact quite general. Indeed, for junction function F satisfying (1.9), it is
always possible to construct solutions of (1.3) by Perron method [19]. Keeping in mind
that it is expected that such solutions satisfy the junction condition in a relaxed sense (see
Definition 2.2), the next theorem states that those relaxed solutions of (1.3) are in fact
solutions of (1.7) for some A = AF .

Theorem 1.2 (General junction conditions reduce to FA). Assume that the Hamiltonians
satisfy (1.5) and that F satisfies (1.9) and that the initial datum u0 is uniformly continuous.
Then there exists AF ∈ R such that any relaxed viscosity solution of (1.3) is in fact a
viscosity solution of (1.7) with A = AF , in the sense of Definition 2.1.

As a consequence of the two previous results, we can prove the following one.

Theorem 1.3 (Existence and uniqueness on a junction). Assume that the Hamiltonians
satisfy (1.5), that F satisfies (1.9) and that the initial datum u0 is uniformly continuous.
Then there exists a unique relaxed viscosity solution u of (1.7), (1.4) such that for every
T > 0, there exists a constant CT > 0 such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) × J.

The network setting. We will extend easily our results to the case of networks and non-
convex Hamiltonians depending on time and space and to limiting parameters A (appearing
in the Hamiltonian at the junction point) depending on time and vertex, see Section 7.
Noticeably, a localization procedure allows us to use the vertex test function constructed
for a single junction.

In order to state the results in the network setting, we need to make precise the assump-
tions satisfied by the Hamiltonians associated with each edge and the limiting parameters
associated with each vertex. This ends in a rather long list of assumptions. Still, when
reading the proof of the comparison principle in this setting, the reader may check that
the main structure properties used in the proof are gathered in the technical Lemma 7.2.

As an application of the comparison principle, we consider a model case for homoge-
nization on a network. The network Nε whose vertices are εZd is naturally embedded in
Rd. We consider for all edges a Hamiltonian only depending on the gradient variable but
which is “repeated εZd-periodically with respect to edges”. We prove that when ε → 0,
the solution of the “oscillating” Hamilton-Jacobi equation posed in Nε converges toward
the unique solution of an “effective” Hamilton-Jacobi equation posed in Rd.

7



A first general comment about the main results. Our proofs do not rely on optimal
control interpretation (there is no representation formula of solutions for instance) but on
PDE methods. We believe that the method consisting in the construction of a vertex
text function is very flexible and opens many perspectives. To the best of our knowledge,
it is also the first uniqueness results for a Hamilton-Jacobi equation posed on a network
for Hamiltonians that are not convex with respect to the gradient variable, are possibly
discontinuous at the vertices in the space variable, and with a A-limited flux condition at
the junction. Even for N = 1 or N = 2 branches, our results are completely new.

1.5 Comparison with known results

Hamilton-Jacobi equations on networks. There is a growing interest in the study of
Hamilton-Jacobi equations on networks. The first results were obtained in [24] for eikonal
equations. Several years after this first contribution, the three papers [1, 18, 25] were
published more or less simultaneously. In these three papers, the Hamiltonians are always
convex with respect to the gradient variables and the optimal control interpretation of
the equation is at the core of the proofs of comparison principles. Still, frameworks are
significantly different.

First, the networks in [1] are embedded in R2 while in [24, 25, 18], the networks are un-
derstood as metric spaces and Hamilton-Jacobi equations are studied in such metric spaces.
Recently, a general approach of eikonal equations in metric spaces has been proposed in
[17].

In [1], the authors study an optimal control problem in R2 and impose a state constraint :
the trajectories of the controlled system have to stay in the embedded network. From this
point of view, [1] is related to [13, 14] where trajectories in RN are constrained to stay in
a closed set K which can have an empty interior. But as pointed out in [1], the framework
from [13, 14] imply some restricting conditions on the geometry of the embedded networks.

The main contribution of [18] in compare with [1, 25] comes from the dependence of
the Hamiltonians with respect to the space variable. It is continuous in [1, 25] while [18]
deals with Hamiltonians that are possibly discontinuous at the junction point (but are
independent of the space variable on each edge).

The reader is referred to [9] where the different notions of viscosity solutions used in
[1, 18, 25] are compared; in the few cases where frameworks coincide, they are proved to
be equivalent.

In [18], the comparison principle was a consequence of a super-optimality principle (in
the spirit of [21] or [26, 27]) and the comparison of sub-solutions with the value function
of the optimal control problem. Still, the idea of using the “fundamental solution” D to
prove a comparison principle originates in the proof of the comparison of sub-solutions and
the value function. Moreover, as explained in Subsection 3.3, the comparison principle
obtained in this paper could also be proved, for A = −∞ and under more restrictive
assumptions on the Hamiltonians, by using this fundamental solution.

The reader is referred to [1, 18, 25] for further references about Hamilton-Jacobi equa-
tions on networks.
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Networks, regional optimal control and ramified spaces. We already pointed out
that the Hamilton-Jacobi equation on a network can be regarded as a system of Hamilton-
Jacobi equations coupled through vertices. In this perspective, our work can be compared
with studies of Hamilton-Jacobi equations posed on, say, two domains separated by a
frontier where some transmission conditions should be imposed. This can be even more
general by considering equations in ramified spaces [8]. Contributions to such problems
are [6, 7] on the one hand and [23, 22] on the other hand.

We first point out that their framework is genuinely multi-dimensional while ours is
monodimensional. Moreover, their approach differs from the one in papers like [1, 25, 18]
and the present one since the idea is to write a Hamilton-Jacobi equation on the (lower-
dimensional) frontier. Another difference is that techniques from dynamical systems play
also an important role in these papers.

Still, results can be compared. Precisely, considering a framework were both results
can be applied, that is to say the monodimensional one, we will prove in Section 6 that the
value function U− from [7] coincides with the solution of (1.7) for some constant A that
is determined. And we prove more (in the monodimensional setting; see also extensions
below): we prove that the value function U+ from [7] coincides with the solution of (1.7)
for some (distinct) constant A which is also computed.

Hamilton-Jacobi equations with discontinuous source terms. There are numer-
ous papers about Hamilton-Jacobi equations with discontinuous Hamiltonians. The recent
paper [16] considers a Hamilton-Jacobi equation where specific solutions are expected. In
the one-dimensional space, it can be proved that these solutions are in fact FA-solutions
in the sense of the present paper with A = c where c is a constant appearing in the HJ
equation at stake in [16]. The introduction of [16] contains a rather long list of results
for HJ equations with discontinuous Hamiltonians; the reader is referred to it for further
details.

The contribution of the paper. In light of the review we made above, we can empha-
size the main contributions of the paper: in compare with [24, 25], we deal not only with
eikonal equations but with general Hamilton-Jacobi equations. In compare with [1], we
are able to deal with networks with infinite number of edges, that are not embedded. In
compare with [1, 18, 24, 25], we can deal with non-convex discontinuous Hamilton-Jacobi
equations and we provide a flexible PDE method instead of an optimal control approach.
The link with optimal control (in the spirit of [1, 6, 7]) and the link with regional control
(in the spirit of [6, 7]) are thoroughly investigated. In particular, a PDE characterization
of the two value functions introduced in [7] is provided, one of the two characterizations
being new.

We would also like to mention that the extension of our results to a higher dimensional
setting (in the spirit of [6, 7]) is now reachable for level-set convex Hamiltonians.

To finish with, a application of our results to homogenization on networks is also pre-
sented.
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1.6 Organization of the article and notation

Organization of the article. The paper is organized as follows. In Section 2, we intro-
duce the notion of viscosity solution for Hamilton-Jacobi equations on junctions, we prove
that they are stable (Proposition 2.3) and we give an existence result (Theorem 2.9). In
Section 3, we prove the comparison principle in the junction case (Theorem 2.9). In Sec-
tion 4, we construct the vertex test function (Theorem 3.2). In Section 5, a general optimal
control problem on a junction is considered and the associated value function is proved
to be a solution of (1.7) for some computable constant A. In Section 6, the two value
functions introduced in [7] are shown to be solutions of (1.7) for two explicit (and distinct)
constants A. In Section 7, we explain how to generalize the previous results (viscosity solu-
tions, HJ equations, existence, comparison principle) to the case of networks. In Section 8,
we present a straightforward application of our results by proving a homogenization result
passing from an “oscillating” Hamilton-Jacobi equation posed in a network embedded in
an Euclidian space to a Hamilton-Jacobi equation in the whole space. Finally, we prove
several technical results in Appendix A and we state results for stationary Hamilton-Jacobi
equations in Appendix B.

Notation for a junction. A junction is denoted by J . It is made of a finite number
of edges and a junction point. The N edges of a junction (N ∈ N \ {0}) are isometric to
[0,+∞). Given a final time T > 0, JT denotes (0, T ) × J .

The Hamiltonians on the branches Ji of the junction are denoted by Hi; they only
depend on the gradient variable. The Hamiltonian at the junction point is denoted by FA

and is defined from all Hi and a constant A which “limits” the flux of information at the
junction.

Given a function u : J → R, its gradient at x is denoted by ux; it is a real number
if x 6= 0 but it is a vector of RN at x = 0. We let |ux| denote |∂iu| outside the junction
point and maxi=1,...,N |∂iu| at the junction point. If now u(t, x) also depends on the time
t ∈ (0,+∞), ut denotes the time derivative.

Notation for networks. A network is denoted by N . It is made of vertices n ∈ V
and edges e ∈ E . Each edge is either isometric to [0,+∞) or to a compact interval whose
length is bounded from below; hence a network is naturally endowed with a metric. The
associated open (resp. closed) balls are denoted by B(x, r) (resp. B̄(x, r)) for x ∈ N and
r > 0.

In the network case, an Hamiltonian is associated with each edge e and is denoted by
He. It depends on time and space; moreover, the limited flux functions A can depend on
time and vertices: An(t).

Further notation. Given a metric space E, C(E) denotes the space of continuous real-
valued functions defined in E. A modulus of continuity is a function ω : [0,+∞) → [0,+∞)
which is non-increasing and ω(0+) = 0.
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2 Viscosity solutions on a junction

This section is devoted to viscosity solutions in the junction case. After defining them,
we will discuss their stability. In order to do so, relaxed viscosity solutions of (1.3) are
considered and are proved to coincide with viscosity solutions in the special case of (1.7).
We will also prove that general junction conditions reduce to an FA junction condition for
some parameter A.

2.1 Definitions

In order to define viscosity solutions, we first introduce the class of test functions.

Class of test functions. For T > 0, set JT = (0, T ) × J . We define the class of test
functions on (0, T ) × J by

C1(JT ) =
{

ϕ ∈ C(JT ), the restriction of ϕ to (0, T ) × Ji is C1 for i = 1, ..., N
}

.

Viscosity solutions. In order to define viscosity solutions, we recall the definition of
upper and lower semi-continuous envelopes u∗ and u∗ of a (locally bounded) function u
defined on [0, T ) × J ,

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 2.1 (Viscosity solutions). Assume that the Hamiltonians satisfy (1.5) and that
F satisfies (1.9) and let u : [0, T ) × J → R.

i) We say that u is a sub-solution (resp. super-solution) of (1.3) in (0, T ) × J if for all
test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 ∈ J∗
i

ϕt + F (ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0) if x0 = 0.(2.1)

ii) We say that u is a sub-solution (resp. super-solution) of (1.3), (1.4) on [0, T ) × J if
additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ J.

iii) We say that u is a (viscosity) solution if u is both a sub-solution and a super-solution.
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2.2 General junction conditions and stability

An important property that we expect for viscosity solutions is their stability, either by
passing to local uniform limit, or the stability of sub-solutions (resp. super-solutions)
through supremum (resp. infimum). Besides, a junction condition can be seen as a bound-
ary condition. Since it is known that upper (resp. lower) semi-limits or suprema (resp.
infima) of sub-solutions are known to satisfy boundary conditions in a viscosity sense
[20, 5]. This is the reason why, for general junction functions F , the junction condition is
relaxed: at the junction point, either the junction condition or the equation is satisfied.
This is the reason why the following definition is needed.

Definition 2.2 (Relaxed viscosity solutions). Assume that the Hamiltonians satisfy (1.5)
and that F satisfies (1.9) and let u : [0, T ) × J → R.

i) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of (1.3) in
(0, T ) × J if for all test function ϕ ∈ C1(JT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

ϕt +Hi(ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 6= 0, and

either ϕt + F (ϕx) ≤ 0 (resp. ≥ 0)
or ϕt +Hi(∂iϕ) ≤ 0 (resp. ≥ 0) for some i

∣

∣

∣

∣

at (t0, x0)

if x0 = 0.

ii) We say that u is a relaxed (viscosity) solution if u is both a sub-solution and a super-
solution.

With this definition in hand, we can now state a first stability result.

Proposition 2.3 (Stability by supremum/infimum). Assume that the Hamiltonians Hi

satisfy (1.5) and that F satisfies (1.9). Let A be a nonempty set and let (ua)a∈A be a
familly of relaxed sub-solutions (resp. relaxed super-solutions) of (1.3) on (0, T ) × J . Let
us assume that

u = sup
a∈A

ua (resp. u = inf
a∈A

ua)

is locally bounded on (0, T ) × J . Then u is a relaxed sub-solution (resp. relaxed super-
solution) of (1.3) on (0, T ) × J .

In the following proposition, we assert that, for the special junction functions FA, the
junction condition is in fact always satisfied in the classical sense, that is to say in the
sense of Definition 2.1.
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Proposition 2.4 (FA junction conditions are always satisfied in the classical sense). As-
sume that the Hamiltonians satisfy (1.5) and consider A ∈ R. If F = FA, then re-
laxed viscosity super-solutions (resp. relaxed viscosity sub-solutions) coincide with viscosity
super-solutions (resp. viscosity sub-solutions).

Proof of Proposition 2.4. The proof was done in [18] for the case A = −∞, using the
monotonicities of the Hi. We follow the same proof and omit details.

The super-solution case. Let u be a super-solution satisfying the junction con-
dition in the viscosity sense and let us assume by contradiction that there exists a test
function ϕ touching u from below at P0 = (t0, 0) for some t0 ∈ (0, T ), such that

(2.2) ϕt + FA(ϕx) < 0 at P0.

Then we can construct a test function ϕ̃ satisfying ϕ̃ ≤ ϕ in a neighborhood of P0, with
equality at P0 such that

ϕ̃t(P0) = ϕt(P0) and ∂iϕ̃(P0) = min(p0i , ∂iϕ(P0)) for i = 1, ..., N.

Using the fact that FA(ϕx) = FA(ϕ̃x) ≥ H−
i (∂iϕ̃) = Hi(∂iϕ̃) at P0, we deduce a contra-

diction with (2.2) using the viscosity inequality satisfied by ϕ for some i ∈ {1, . . . , N}.

The sub-solution case. Let now u be a sub-solution satisfying the junction con-
dition in the viscosity sense and let us assume by contradiction that there exists a test
function ϕ touching u from above at P0 = (t0, 0) for some t0 ∈ (0, T ), such that

(2.3) ϕt + FA(ϕx) > 0 at P0.

Let us define
I =

{

i ∈ {1, ..., N} , H−
i (ϕ) < FA(ϕx) at P0

}

and for i ∈ I, let qi ≥ p0i be such that

Hi(qi) = FA(ϕx(P0))

where we have used the fact that Hi(+∞) = +∞. Then we can construct a test function
ϕ̃ satisfying ϕ̃ ≥ ϕ in a neighborhood of P0, with equality at P0, such that

ϕ̃t(P0) = ϕt(P0) and ∂iϕ̃(P0) =

{

max(qi, ∂iϕ(P0)) if i ∈ I,
∂iϕ(P0) if i 6∈ I.

Using the fact that FA(ϕx) = FA(ϕ̃x) ≤ Hi(∂iϕ̃) at P0, we deduce a contradiction with
(2.3) using the viscosity inequality for ϕ for some i ∈ {1, . . . , N}.

Proposition 2.5 (General junction conditions reduce to FA). Let the Hamiltonians satisfy
(1.5) and F satisfy (1.9). There exists AF ∈ R such that any relaxed super-solution (resp.
relaxed sub-solution) of (1.3) is a super-solution (resp. sub-solution) of (1.7) with A = AF .

13



The flux limiter AF is given by the following lemma.

Lemma 2.6 (Definitions of AF and p̄). Let p̄0 = (p̄01, . . . , p̄
0
N) with p̄0i ≥ p0i be the minimal

real number such that Hi(p̄
0
i ) = A0 with A0 given in (1.8).

If F (p̄0) ≥ A0, then there exists a unique AF ∈ R such that there exists p̄ = (p̄1, . . . , p̄N)
with p̄i ≥ p̄0i ≥ p0i such that

Hi(p̄i) = A = F (p̄).

If F (p̄0) < A0, we set AF = A0 and p̄ = p̄0.

In particular, we have

{∀i : pi ≥ p̄i} ⇒ F (p) ≤ AF ,(2.4)

{∀i : pi ≤ p̄i} ⇒ F (p) ≥ AF .(2.5)

Proof of Proposition 2.5 for super-solutions. We let A denote AF for clarity. Without loss
of generality, we assume that u is lower semi-continuous. Consider a test function φ
touching u from below at (t, x) ∈ (0,+∞) × J ,

φ ≤ u in BR(t, x) and φ(t, x) = u(t, x)

for some R > 0. If x 6= 0, there is nothing to prove. We therefore assume that x = 0. In
particular, we have

(2.6) φt(t, 0) + max(F (φx(t, 0)),max
i
Hi(∂iφ(t, 0))) ≥ 0.

We want to prove that

(2.7) φt(t, 0) + max(A,max
i
Hi(∂iφ(t, 0))) ≥ 0.

Indeed, (2.7) implies that u is a relaxed super-solution of (1.7) and, consequently, a super-
solution of (1.7).

In order to get such an inequality, we consider

I = {i ∈ {1, . . . , N} : ∂iφ(t, 0) ≤ p̄0i }

and we distinguish two cases.
If I is empty, then we deduce from (2.4) that F (φx(t, 0)) ≤ A and (2.7) follows from

(2.6).
Assume now that I is not empty. In this case, for each i0 ∈ I, we consider

pi0 = sup{p ∈ R : ∃r > 0, φ(s, y) + py ≤ u(s, y)

for all (s, y) ∈ (t− r, t+ r) × [0, r) with y ∈ Ji0}.

Remark first that pi0 ≥ 0.

14



Lemma 2.7 (Property of pi0). For each i0 ∈ I,

(2.8) φt(t, 0) +Hi0(∂i0φ(t, 0) + pi0) ≥ 0.

Proof. From the definition of pi0 , we know that, for all ε ∈ (0, R), there exists δ = δ(ε) ∈
(0, ε) such that

u(s, y) ≥ φ(s, y) + (pi0 − ε)y for all (s, y) ∈ (t− δ, t + δ) × [0, δ) with y ∈ Ji0

and there exists (tε, xε) ∈ Bδ/2(t, 0) such that

u(tε, xε) < φ(tε, xε) + (pi0 + ε)xε.

Now consider a smooth function Ψ : R2 → [−1, 0] such that

Ψ ≡
{

0 in B 1
2
(0),

−1 outside B1(0)

and define

Φ(s, y) = φ(s, y) + 2εΨδ(s, y) +

{

(pi0 + ε)y if y ∈ Ji0
0 if not

with Ψδ(Y ) = δΨ(Y/δ). We have

Φ(s, y) ≤ φ(s, y) ≤ u(s, y) for (s, y) ∈ Bδ(t, 0) and y /∈ Ji0

and
{

Φ(s, y) = φ(s, y) − 2εδ + (pi0 + ε)y ≤ u(s, y) for (s, y) ∈ (∂Bδ(t, 0)) ∩ (R× Ji0) ,

Φ(s, 0) ≤ φ(s, 0) ≤ u(s, 0) for s ∈ (t− δ, t + δ)

and
Φ(tε, xε) = φ(tε, xε) + (pi0 + ε)xε > u(tε, xε).

We conclude that there exists a point (t̄ε, x̄ε) ∈ Bδ(t, 0)∩
(

R× J∗
i0

)

such that u−Φ reaches

a minimum in Bδ(t, 0) ∩ (R× Ji0). Consequently,

Φt(t̄ε, x̄ε) +Hi0(∂i0Φ(t̄ε, x̄ε))) ≥ 0

which implies

φt(t̄ε, x̄ε) + 2ε(Ψδ)t(t̄ε, x̄ε) +Hi0(∂i0φ(t̄ε, x̄ε) + 2ε∂y(Ψδ)(t̄ε, x̄ε) + pi0 + ε) ≥ 0.

Letting ε go to 0 yields (2.8).
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With this lemma in hand, it is now easy to get (2.7) when I is not empty. Indeed, if
∂i0φ(t, 0) + pi0 < p̄i0 for some i0 ∈ I, then

Hi0(∂i0φ(t, 0) + pi0) ≤ max(A,H−
i0

(∂i0φ(t, 0) + pi0))

≤ max(A,H−
i0

(∂i0φ(t, 0))

≤ FA(φx(t, 0)).

Combining this with (2.8) yields again (2.7).
If now for all i0 ∈ I, we have

∂i0φ(t, 0) + pi0 ≥ p̄i0 ,

then the following modified test function

ϕ(s, y) = φ(s, y) +

{

(p̄i0 − ∂i0φ(t, 0))y if y ∈ Ji0 and i0 ∈ I

0 if y ∈ Ji and i /∈ I

touches u from below at (t, 0) and for all i,

Hi(∂iϕ(t, 0)) ≥ A.

Consequently,

φt(t, 0) + max(F (∂xϕ(t, 0)),max
i0∈I

Hi0(p̄i0),max
i/∈I

Hi(∂iφ(t, 0))) ≥ 0

which implies once again (2.7), using (2.4). The proof is now complete.

Proof of Proposition 2.5 for sub-solutions. We argue as in the super-solution case. We let
A denote AF for clarity. Without loss of generality, we assume that u est upper semi-
continuous. Consider a test function φ touching u from above at (t, x) ∈ (0,+∞) × J ,

φ ≥ u in BR(t, x) and φ(t, x) = u(t, x)

for some R > 0. If x 6= 0, there is nothing to prove. We therefore assume that x = 0. In
particular, we have

(2.9) φt(t, 0) + min(F (φx(t, 0)),min
i
Hi(∂iφ(t, 0))) ≤ 0.

We want to prove that

(2.10) φt(t, 0) + min(FA(φx(t, 0))),min
i
Hi(∂iφ(t, 0))) ≤ 0.

Indeed, (2.10) implies that u is a relaxed sub-solution of (1.7) and, consequently, a sub-
solution of (1.7).
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Let λ denote φt(t, 0). We can then assume that

(2.11) ∀i ∈ {1, . . . , N} , λ+Hi(∂iφ(t, 0)) > 0,

and we want to prove

(2.12) λ+ A ≤ 0 and ∀i, λ+H−
i (∂iφ(t, 0)) ≤ 0.

In view of (2.11) and the fact that A ≥ A0, we can easily check that (2.12) is equivalent to

λ+ A ≤ 0

and

(2.13) ∀i, ∂iφ(t, 0) > p0i .

We next define for each i ∈ {1, . . . , N}
pi = inf{p ∈ R : ∃r > 0, φ(s, y)+py ≥ u(s, y) for (s, y) ∈ (t−r, t+r)×[0, r) with y ∈ Ji}.
We have pi ≤ 0. Arguing as in Lemma 2.7, we can prove the following lemma

Lemma 2.8 (Property of pi). For all i ∈ {1, . . . , N},
(2.14) λ+Hi(∂iφ(t, 0) + pi) ≤ 0.

Remark in particular that this implies that Hi(∂iφ(t, 0) + pi) < Hi(∂iφ(t, 0)) which
implies (2.13). For later use, we notice that this also implies

(2.15) λ+ A0 ≤ 0.

We now distinguish two cases.
First, if there exists an index i ∈ {1, . . . , N} such that

Hi(∂iφ(t, 0) + pi) ≥ A,

we conclude from (2.14) that λ+ A ≤ 0, which is the desired inequality.
We thus can assume that

∀i, Hi(∂iφ(t, 0) + pi) < A,

which implies that

(2.16) ∂iφ(t, 0) + pi < p̄i.

Consider the following modified test function:

ϕ(s, y) = φ(s, y) + (p̄i − ∂iφ(t, 0))y if y ∈ Ji.

From (2.16), we have p̄i−∂iφ(t, 0) > pi. By definition of pi, we deduce that ϕ ≥ u on some
neighborhood of (t, 0) with equality at (t, 0). Therefore we have

λ+ min(F (ϕx(t, 0)), min
i∈{1,...,N}

Hi(∂iϕ(t, 0))) ≤ 0.

Recall that ∂iϕ(t, 0) = p̄i. If F (p̄0) ≥ A0, we deduce from the definition of p̄ that λ+A ≤ 0.
Now if F (p̄0) < A0, then A = A0 and (2.15) provides the same conclusion. Therefore in all
cases, we have λ+A ≤ 0. Combined with (2.13), this shows (2.12), and then (2.10) holds
true. The proof is now complete.
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2.3 Existence

Theorem 2.9 (Existence). Let T > 0 and J be the junction defined in (1.1). Assume that
Hamiltonians satisfy (1.5), that the junction function F satisfies (1.9) and that the initial
datum u0 is uniformly continuous. Then there exists a generalized viscosity solution u of
(1.3)-(1.4) in [0, T ) × J and a constant CT > 0 such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) × J.

Proof of Theorem 2.9. The proof follows classically along the lines of Perron’s method (see
[19, 10]), and then we omit details. We assume without loss of generality that A > −∞
(and even A > A0 − 1).

Step 1: Barriers. Because of the uniform continuity of u0, for any ε ∈ (0, 1], it can be
regularized by convolution to get a modified initial data uε0 satisfying

(2.17) |uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε

with Lε ≥ max
i=1,...,N

|p0i |. Let

Cε = max

(

|A|, max
i=1,...,N

max
|pi|≤Lε

|Hi(pi)|, max
|pi|≤Lε

F (p1, . . . , pN)

)

.

Then the functions

(2.18) u±ε (t, x) = uε0(x) ± Cεt± ε

are global super and sub-solutions with respect to the initial data u0. We then define

u+(t, x) = inf
ε∈(0,1]

u+ε (t, x) and u−(t, x) = sup
ε∈(0,1]

u−ε (t, x).

Then we have u− ≤ u+ with u−(0, x) = u0(x) = u+(0, x). Moreover, by stability of
sub/super-solutions (see Proposition 2.3), we get that u+ is a super-solution and u− is a
sub-solution of (1.3) on (0, T ) × J .

Step 2: Maximal sub-solution and preliminaries. Consider the set

S =
{

w : [0, T ) × J → R, w is a sub-solution of (1.3) on (0, T ) × J, u− ≤ w ≤ u+
}

.

It contains u−. Then the function

u(t, x) = sup
w∈S

w(t, x)

is a sub-solution of (1.3) on (0, T )×J and satisfies the initial condition. It remains to show
that u is a super-solution of (1.3) on (0, T ) × J . This is classical for a Hamilton-Jacobi
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equation on an interval, so we only have to prove it at the junction point. We assume by
contradiction that u is not a super-solution at P0 = (t0, 0) for some t0 ∈ (0, T ). Thanks
to Proposition 2.4, this implies that there exists a test function ϕ satisfying u∗ ≥ ϕ in a
neighborhood of P0 with equality at P0, and such that

(2.19)

{

ϕt + F (ϕx) < 0,
ϕt +Hi(∂iϕ) < 0, for i = 1, ..., N

∣

∣

∣

∣

at P0.

We also have ϕ ≤ u∗ ≤ u+∗ . As usual, the fact that u+ is a super-solution and condi-
tion (2.19) imply that we cannot have ϕ = (u+)∗ at P0. Therefore we have for some r > 0
small enough

(2.20) ϕ < (u+)∗ on Br(P0)

where we define the ball Br(P0) = {(t, x) ∈ (0, T ) × J, |t− t0|2 + d2(0, x) < r2}. Sub-
stracting |(t, x) − P0|2 to ϕ and reducing r > 0 if necessary, we can assume that

(2.21) ϕ < u∗ on Br(P0) \ {P0} .

Further reducing r > 0, we can also assume that (2.19) still holds in Br(P0).

Step 3: Sub-solution property and contradiction. We claim that ϕ is a sub-solution
of (1.3) in Br(P0). Indeed, if ψ is a test function touching ϕ from above at P1 = (t1, 0) ∈
Br(P0), then

ψt(P1) = ϕt(P1) and ∂iψ(P1) ≥ ∂iϕ(P1) for i = 1, ..., N.

Using the fact that F is non-increasing with respect to all variables, we deduce that

ψt + F (ψx) < 0 at P1

as desired. Defining for δ > 0,

uδ =

{

max(δ + ϕ, u) in Br(P0),

u outside

and using (2.21), we can check that uδ = u > δ + ϕ on ∂Br(P0) for δ > 0 small enough.
This implies that uδ is a sub-solution lying above u−. Finally (2.20) implies that uδ ≤ u+

for δ > 0 small enough. Therefore uδ ∈ S, but is is classical to check that uδ is not below
u for δ > 0, which gives a contradiction with the maximality of u.

3 Comparison principle on a junction

This section is devoted to the proof of the comparison principle in the case of a junction
(see Theorem 1.1).
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It is convenient to introduce the following shorthand notation

(3.1) H(x, p) =

{

Hi(p) for p = pi if x ∈ J∗
i ,

FA(p) for p = (p1, ..., pN) if x = 0.

In particular, keeping in mind the definition of ux (see (1.2)), Problem (1.7) on the junction
can be rewritten as follows

ut +H(x, ux) = 0 for all (t, x) ∈ (0,+∞) × J.

We next make a trivial but useful observation.

Lemma 3.1. It is enough to prove Theorem 1.1 further assuming that

(3.2) p0i = 0 for i = 1, ..., N and 0 = H1(0) ≥ H2(0) ≥ ... ≥ HN(0).

Proof of Lemma 3.1. We can assume without loss of generality that

H1(p
0
1) ≥ ... ≥ HN(p0N).

Let us define
u(t, x) = ũ(t, x) + p0ix− tH1(p

0
1) for x ∈ Ji.

Then u is a solution of (1.7) if and only if ũ is a solution of (1.7) with each Hi replaced with
H̃i(p) = Hi(p+ p0i )−H1(p

0
1) and FA replaced with F̃Ã constructed using the Hamiltonians

H̃i and the parameter Ã = A−H1(p
0
1).

3.1 The vertex test function

Then our key result is the following one.

Theorem 3.2 (The vertex test function – general case). Let A ∈ R ∪ {−∞} and γ > 0.
Assume the Hamiltonians satisfy (1.5) and (3.2). Then there exists a function G : J2 → R

enjoying the following properties.

i) (Regularity)

G ∈ C(J2) and

{

G(x, ·) ∈ C1(J) for all x ∈ J,
G(·, y) ∈ C1(J) for all y ∈ J.

ii) (Bound from below) G ≥ 0 = G(0, 0).

iii) (Compatibility condition on the diagonal) For all x ∈ J ,

(3.3) 0 ≤ G(x, x) −G(0, 0) ≤ γ.
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iv) (Compatibility condition on the gradients) For all (x, y) ∈ J2,

(3.4) H(y,−Gy(x, y)) −H(x,Gx(x, y)) ≤ γ

where notation introduced in (1.2) and (3.1) are used.

v) (Superlinearity) There exists g : [0,+∞) → R nondecreasing and s.t. for (x, y) ∈ J2

(3.5) g(d(x, y)) ≤ G(x, y) and lim
a→+∞

g(a)

a
= +∞.

vi) (Gradient bounds) For all K > 0, there exists CK > 0 such that for all (x, y) ∈ J2,

(3.6) d(x, y) ≤ K =⇒ |Gx(x, y)| + |Gy(x, y)| ≤ CK .

3.2 Proof of the comparison principle

We will also need the following result whose classical proof is given in Appendix for the
reader’s convenience.

Lemma 3.3 (A priori control). Let T > 0 and let u be a sub-solution and w be a super-
solution as in Theorem 1.1. Then there exists a constant C = C(T ) > 0 such that for all
(t, x), (s, y) ∈ [0, T ) × J , we have

(3.7) u(t, x) ≤ w(s, y) + C(1 + d(x, y)).

We are now ready to make the proof of comparison principle.

Proof of Theorem 1.1. The proof proceeds in several steps.

Step 1: the penalization procedure. We want to prove that

M = sup
(t,x)∈[0,T )×J

(u(t, x) − w(t, x)) ≤ 0.

Assume by contradiction that M > 0. Then for α, η > 0 small enough, we have Mε,α ≥
M/2 > 0 for all ε, ν > 0 with
(3.8)

Mε,α = sup
(t,x),(s,y)∈[0,T )×J

{

u(t, x) − w(s, y) − εG
(x

ε
,
y

ε

)

− (t− s)2

2ν
− η

T − t
− α

d2(0, x)

2

}

where the vertex test function G ≥ 0 is given by Theorem 3.2 for a parameter γ satisfying

0 < γ < min

(

η

2T 2
,
M

4ε

)

.
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Thanks to Lemma 3.3 and (3.5), we deduce that

(3.9) 0 <
M

2
≤ C(1 + d(x, y)) − εg

(

d(x, y)

ε

)

− (t− s)2

2ν
− η

T − t
− α

d2(0, x)

2

which implies in particular that

(3.10) εg

(

d(x, y)

ε

)

≤ C(1 + d(x, y)).

Because of the superlinearity of g appearing in (3.5), we know that for any K > 0, there
exists a constant CK > 0 such that for all a ≥ 0

Ka− CK ≤ g(a).

For K ≥ 2C, we deduce from (3.10) that

(3.11) d(x, y) ≤ inf
K≥2C

{

C

K − C
+
CK

C
ε

}

=: ω(ε)

where ω is a concave, nondecreasing function satisfying ω(0) = 0. We deduce from (3.9)
and (3.11) that the supremum in (3.8) is reached at some point (t, x, s, y) = (tν , xν , sν , yν).

Step 2: use of the initial condition. We first treat the case where tν = 0 or sν = 0.
If there exists a sequence ν → 0 such that tν = 0 or sν = 0, then calling (x0, y0) any limit
of subsequences of (xν , yν), we get from (3.8) and the fact that Mε,α ≥M/2 that

0 <
M

2
≤ u0(x0) − u0(y0) ≤ ω0(d(x0, y0)) ≤ ω0 ◦ ω(ε)

where ω0 is the modulus of continuity of the initial data u0 and ω is defined in (3.11). This
is impossible for ε small enough.

Step 3: use of the equation. We now treat the case where tν > 0 and sν > 0. Then
we can write the viscosity inequalities with (t, x, s, y) = (tν , xν , sν , yν) using the shorthand
notation (3.1) for the Hamiltonian,

η

(T − t)2
+
t− s

ν
+H(x,Gx(ε−1x, ε−1y) + αd(0, x)) ≤ 0,

t− s

ν
+H(y,−Gy(ε

−1x, ε−1y)) ≥ 0.

Substrating these two inequalities, we get

η

T 2
≤ H(y,−Gy(ε

−1x, ε−1y)) −H(x,Gx(ε−1x, ε−1y) + αd(0, x)).
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Using (3.4) with γ ∈
(

0, η
2T 2

)

, we deduce for p = Gx(ε−1x, ε−1y)

(3.12)
η

2T 2
≤ H(x, p) −H(x, p+ αd(0, x)).

Because of (3.6) and (3.11), we see that p is bounded for ε fixed by |p| ≤ Cω(ε)
ε

. Finally, for

ε > 0 fixed and α→ 0, we have αd(0, x) → 0, and using the uniform continuity of H(x, p)
for x ∈ J and p bounded, we get a contradiction in (3.12). The proof is now complete.

3.3 The vertex test function versus the fundamental solution

Recalling the definition of the germ GA (see (1.10)), let us associate with any (p, λ) ∈ GA

the following functions for i, j = 1, ..., N ,

up,λ(t, x, s, y) = pix− pjy − λ(t− s) for (x, y) ∈ Ji × Jj, t, s ∈ R.

The reader can check that they solve the following system,

(3.13)

{

ut +H(x, ux) = 0,
−us +H(y,−uy) = 0.

Then, for N ≥ 2, the function G̃0(t, x, s, y) = (t− s)G0
(

x
t−s
, y
t−s

)

can be rewritten as

(3.14) G̃0(t, x, s, y) = sup
(p,λ)∈GA

up,λ(t, x, s, y) for (x, y) ∈ J × J, t− s ≥ 0

which satisfies

(3.15) G̃0(s, x, s, y) =

{

0 if x = y,

+∞ otherwise.

For N ≥ 2 and A > A0, it is possible to check (assuming (4.1)) that G̃0 is a viscosity
solution of (3.13) for t − s > 0, only outside the diagonal {x = y 6= 0}. Therefore, even
if (3.14) appears as a kind of (second) Hopf formula (see for instance [4, 2]), this formula
does not provide a true solution on the junction.

On the other hand, under more restrictive assumptions on the Hamiltonians and for
A = A0 and N ≥ 2 (see [18]), there is a natural viscosity solution of (3.13) with the same
initial conditions (3.15), which is D(t, x, s, y) = (t − s)D0

(

x
t−s
, y
t−s

)

where D0 is a cost
function defined in [18] following an optimal control interpretation. The function D0 is
not C1 in general (but it is semi-concave) and it is much more difficult to study it and to
use it in comparison with G0. Nevertheless, under suitable restrictive assumptions on the
Hamiltonians, it would be also possible to replace in our proof of the comparison principle
the term εG(ε−1x, ε−1y) in (3.8) by εD0(ε

−1x, ε−1y).
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4 Construction of the vertex test function

This section is devoted to the proof of Theorem 3.2. Our construction of the vertex test
function G is modelled on the particular subcase of normalized convex Hamiltonians Hi.

4.1 The case of smooth convex Hamiltonians

Assume that the Hamiltonians Hi satisfy the following assumptions for i = 1, ..., N ,

(4.1)















Hi ∈ C2(R) with H ′′
i > 0 on R,

H ′
i < 0 on (−∞, 0) and H ′

i > 0 on (0,+∞),

lim
|p|→+∞

Hi(p)

|p| = +∞.

It is useful to associate with each Hi satisfying (4.1) its partial inverse functions π±
i :

(4.2) for λ ≥ Hi(0), Hi(π
±
i (λ)) = λ such that ± π±

i (λ) ≥ 0.

Assumption (4.1) implies that π±
i ∈ C2(minHi,+∞) ∩ C([minHi,+∞)) thanks to the

inverse function theorem.
We recall that G0 is defined, for i, j = 1, ..., N , by

G0(x, y) = sup
(p,λ)∈GA

(pix− pjy − λ) if (x, y) ∈ Ji × Jj

where GA is defined in (1.10). Replacing A with max(A,A0) if necessary, we can always
assume that A ≥ A0 with A0 given by (1.8).

Proposition 4.1 (The vertex test function – the smooth convex case). Let A ≥ A0 with
A0 given by (1.8) and assume that the Hamiltonians satisfy (4.1). Then G0 satisfies

i) (Regularity)

G0 ∈ C(J2) and

{

G0 ∈ C1({(x, y) ∈ J × J, x 6= y}),
G0(0, ·) ∈ C1(J) and G0(·, 0) ∈ C1(J);

ii) (Bound from below) G0 ≥ G0(0, 0) = −A;

iii) (Compatibility conditions) (3.3) and (3.4) hold with γ = 0;

iv) (Superlinearity) (3.5) holds for some g = g0;

v) (Gradient bounds) (3.6) holds only for (x, y) ∈ J2 such that x 6= y or (x, y) = (0, 0);
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vi) (Saturation close to the diagonal) For i ∈ {1, ..., N} and for (x, y) ∈ Ji × Ji, we have
G0(x, y) = ℓi(x− y) with ℓi ∈ C(R) ∩ C1(R \ {0}) and

ℓi(a) =

{

+aπ+
i (A) − A if 0 ≤ a ≤ z+i

−aπ−
i (A) −A if z−i ≤ a ≤ 0

where (z−i , z
+
i ) := (H ′

i(π
−
i (A)), H ′

i(π
+(A))) and the functions π±

i are defined in (4.2).
Moreover G0 ∈ C1(Ji × Ji) if and only if π+

i (A) = 0 = π−
i (A).

Remark 4.2. The compatibility condition (3.4) is in fact an equality with γ = 0 when
N ≥ 2.

The proof of this proposition is postponed until Subsection 4.4. With such a result in
hand, we can now prove Theorem 3.2 in the case of smooth convex Hamiltonians.

Lemma 4.3 (The case of smooth convex Hamiltonians). Assume that the Hamiltonians
satisfy (4.1). Then the conclusion of Theorem 3.2 holds true.

Proof. We note that the function G0 satisfies all the properties required for G, except on
the diagonal {(x, y) ∈ J × J, x = y 6= 0} where G0 may not be C1. To this end, we first
introduce the set I of indices such that G0 6∈ C1(Ji×Ji). We know from Proposition 4.1 vi)
that

I =
{

i ∈ {1, ..., N} , π+
i (A) > π−

i (A)
}

.

For i ∈ I, we are going to contruct a regularization G̃0,i of G0 in a neighbourhood of the
diagonal {(x, y) ∈ Ji × Ji, x = y 6= 0}.

Step 1: Construction of G̃0,i for i ∈ I. Let us define

Li(a) =

{

aπ+
i (A) if a ≥ 0,

−aπ−
i (A) if a ≤ 0.

We first consider a convex C1 function L̃i : R → R coinciding with Li outside (z−i , z
+
i ),

that we choose such that

(4.3) 0 ≤ L̃i − Li ≤ 1.

Then for ε ∈ (0, 1], we define

ℓεi (a) :=

{

εL̃i

(

a
ε

)

− A if a ∈ [εz−i , εz
+
i ],

ℓi(a) otherwise.

which is a C1(R) (and convex) function. We now consider a cut-off function ζ satisfying
for some constant B > 0

(4.4)























ζ ∈ C∞(R),
ζ ′ ≥ 0,
ζ = 0 in (−∞, 0],
ζ = 1 in [B,+∞),
±z±i ζ ′ < 1 in (0,+∞)
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and for ε ∈ (0, 1], we define for (x, y) ∈ Ji × Ji:

G̃0,i(x, y) = ℓ
εζ(x+y)
i (x− y).

Step 2: First properties of G̃0,i. By construction, we have G̃0,i ∈ C1((Ji × Ji) \ {0}).
Moreover we have

G̃0,i = G0 on (Ji × Ji) \ δεi
where

δεi =
{

(x, y) ∈ Ji × Ji, εz−i ζ(x+ y) < x− y < εz+i ζ(x+ y)
}

is a neighborhood of the diagonal

{(x, y) ∈ Ji × Ji, x = y 6= 0} .

Because of (4.3), we also have

(4.5) G0 ≤ G̃0,i ≤ ε.

As a consequence of (4.4), we have in particular

(Ji × Ji) \ δεi ⊃ (Ji × {0}) ∪ ({0} × Ji)

and moreover G̃0,i coincides with G0 on a neighborhood of (J∗
i × {0}) ∪ ({0} × J∗

i ), which
implies that

(4.6) G̃0,i = G0, G̃0,i
x = G0

x and G̃0,i
y = G0

y on (Ji × {0}) ∪ ({0} × Ji).

Step 3: Computation of the gradients of G̃0,i. For (x, y) ∈ δεi , we have














G̃0,i
x (x, y) = (ℓ

εζ(x+y)
i )′(x− y) + εζ ′(x+ y) ξi

(

x− y

εζ(x+ y)

)

−G̃0,i
y (x, y) = (ℓ

εζ(x+y)
i )′(x− y) − εζ ′(x + y) ξi

(

x− y

εζ(x+ y)

)

with
ξi(b) = L̃i(b) − bL̃′

i(b)

while if (x, y) ∈ (Ji × Ji) \ δεi we have

G̃0,i
x (x, y) = −G̃0,i

y (x, y).

Given γ > 0, and using the local uniform continuity of Hi, we see that we have for ε small
enough

Hi(G̃
0,i
x )) ≤ Hi(−G̃0,i

y ) + γ in J∗
i × J∗

i

and using (4.6), we get

(4.7) H(x, G̃0,i
x (x, y)) −H(y,−G̃0,i

y (x, y)) ≤ γ for all (x, y) ∈ Ji × Ji.
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Step 4: Definition of G. We set for (x, y) ∈ Ji × Jj:

G(x, y) =

{

G0(x, y) −G0(0, 0) if i 6= j or i = j 6∈ I,

G̃0,i(x, y) −G0(0, 0) if i = j ∈ I.

From the properties of G0, we recover all the expected properties of G with g(a) = g0(a)−
G0(0, 0). In particular from (4.7) and (4.5), we respectively get the compatibility condition
for the Hamiltonians (3.4) and the compatibility condition on the diagonal (3.3) for ε small
enough.

4.2 The general case

Let us consider a slightly stronger assumption than (1.5), namely

(4.8)











Hi ∈ C2(R) with H ′′
i (p0i ) > 0,

H ′
i < 0 on (−∞, p0i ) and H ′

i > 0 on (p0i ,+∞),
lim

|q|→+∞
Hi(q) = +∞.

We will also use the following technical result which allows us to reduce certain non-
convex Hamiltonians to convex Hamiltonians.

Lemma 4.4 (From non-convex to convex Hamiltonians). Given HamiltoniansHi satisfying
(4.8) and (3.2), there exists a function β : R → R such that the functions β ◦ Hi satisfy
(4.1) for i = 1, ..., N . Moreover, we can choose β such that

(4.9) β is convex, β ∈ C2(R), β(0) = 0 and β ′ ≥ δ > 0.

Proof. Recalling (4.2), it is easy to check that (β ◦Hi)
′′ > 0 if and only if we have

(4.10) (ln β ′)′(λ) > − H ′′
i

(H ′
i)

2
◦ π±

i (λ) for λ ≥ Hi(0).

Because H ′′
i (0) > 0, we see that the right hand side is negative for λ close enough to Hi(0).

Then it is easy to choose a function β satisfying (4.10) and (4.9). Finally, compositing β
with another convex increasing function which is superlinear at +∞ if necessary, we can
ensure that β ◦Hi superlinear.

Lemma 4.5 (The case of smooth Hamiltonians). Theorem 3.2 holds true if the Hamilto-
nians satisfy (4.8).

Proof. We assume that the Hamiltonians Hi satisfy (4.8). Thanks to Lemma 3.1, we can
further assume that they satisfy (3.2). Let β be the function given by Lemma 4.4. If u
solves (1.7) on (0, T ) × J , then u is also a viscosity solution of

(4.11)

{

β̄(ut) + Ĥi(ux) = 0 for t ∈ (0, T ) and x ∈ J∗
i ,

β̄(ut) + F̂Â(ux) = 0 for t ∈ (0, T ) and x = 0
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with F̂Â constructed as FA where Hi and A are replaced with Ĥi and Â defined as follows

Ĥi = β ◦Hi, Â = β(A)

and β̄(λ) = −β(−λ). We can then apply Theorem 3.2 in the case of smooth convex
Hamiltonians to construct a vertex test function Ĝ associated to problem (4.11) for every
γ̂ > 0. This means that we have with Ĥ(x, p) = β(H(x, p)),

Ĥ(y,−Gy) ≤ Ĥ(x,Gx) + γ̂.

This implies

H(y,−Gy) ≤ β−1(β(H(x,Gx)) + γ̂) ≤ H(x,Gx) + γ̂|(β−1)′|L∞(R).

Because of the lower bound on β ′ given by Lemma 4.4, we get |(β−1)′|L∞(R) ≤ 1/δ which
yields the compatibility condition (3.4) with γ = γ̂/δ arbitrarily small.

We are now in position to prove Theorem 3.2 in the general case.

Proof of Theorem 3.2. Let us now assume that the Hamiltonians only satisfy (1.5). In
this case, we simply approximate the Hamiltonians Hi by other Hamiltonians H̃i satisfying
(4.8) such that

|Hi − H̃i| ≤ γ.

We then apply Theorem 3.2 to the Hamiltonians H̃i and construct an associated vertex
test function G̃ also for the parameter γ. We deduce that

H(y,−G̃y) ≤ H(x, G̃x) + 3γ

with γ > 0 arbitrarily small, which shows again the compatibility condition on the Hamil-
tonians (3.4) for the Hamiltonians Hi’s. The proof is now complete in the general case.

Remark 4.6 (A variant in the proof of construction of G0). When the Hamiltonians are
not convex, it is also possible to use the function β from Lemma 4.4 in a different way by
defining directly the function G0 as follows

G̃0(x, y) = sup
(p,λ)∈GA

(pix− pjy − β(λ)) .

4.3 A special function

In order to prove Proposition 4.1, we first need to study a special function G. Precisely,
we define the following convex function for z = (z1, ..., zN) ∈ RN ,

G(z) = sup
(p,λ)∈GA

(p · z − λ).
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We then consider the following subsets of RN ,

Qσ = {z = (z1, . . . , zN) ∈ R
N : σizi ≥ 0, i = 1, . . . , N}

∆σ = {z = (z1, . . . , zN) ∈ Qσ :
N
∑

i=1

σizi
z̄σi (A)

≤ 1}

where z̄σi (A) = σiH
′
i(π

σi

i (A)) ≥ 0 and the functions π±
i are defined in (4.2). We also make

precise that we use the following convenient convention,

(4.12)
z̄i

z̄σi (A)
=

{

0 if z̄i = 0,
+∞ if z̄i > 0 and z̄σi (A) = 0.

Lemma 4.7 (The function G in Qσ). Under the assumptions of Proposition 4.1, we have,
for any σ ∈ {±}N with σ 6= (+, . . . ,+) if N ≥ 2:

i) G is C1 on Qσ (up to the boundary).

ii) For all z ∈ Qσ, there exists a unique λ = L(z) ≥ A such that

G(z) = p · z − λ

∇G(z) = p = (p1, . . . , pN)

pi = πσi

i (λ)

with (p, λ) ∈ GA.

iii) For all z ∈ Qσ, L(z) = A if and only if z ∈ ∆σ. In particular, G is linear in ∆σ.

Before giving global properties of G, we introduce the set

(4.13) Ω̄ =

{

R if N = 1,

RN \ (0,+∞)N if N ≥ 2.

Lemma 4.8 (Global properties of G and L). Under the assumptions of Proposition 4.1,
the function G is convex and finite in R

N , reaches its minimum −A at 0 and the function
L is continuous in Ω̄.

Proof of Lemmas 4.7 and 4.8. Let σ ∈ {±}N and z ∈ Qσ. We set

πσ(λ) = (πσ1
1 (λ), ..., πσN

N (λ)).

Using the fact that πσ(A) ∈ GA, we get G(z) ≥ G(0) = −A.

Step 1: Explicit expression of G. For σ 6= (+, . . . ,+) if N ≥ 2, we have

(4.14) (p, λ) ∈ GA ∩ (Qσ × R) ⇐⇒ λ ≥ A and p = πσ(λ).

This implies in particular that

(4.15) G(z) = sup
λ≥A

(z · πσ(λ) − λ).
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Step 2: Optimization. Because of the superlinearity of the Hamiltonians Hi (see (4.1)),
we have for z 6= 0,

lim
λ→+∞

fσ(λ) = −∞ for fσ(λ) := z · πσ(λ) − λ.

Therefore the supremum in (4.15) is reached for some λ ∈ [A,+∞), i.e.

G(z) = z · πσ(λ) − λ.

Then we have λ = A or λ > A and (fσ)′(λ) = 0. Note that for λ > A0, we can rewrite
(fσ)′(λ) = 0 as

∑

i=1,...,N

z̄i
z̄σi

= 1 with







z̄i = σizi ≥ 0,

z̄σi = z̄σi (λ) := σiH
′
i(π

σi

i (λ)) > 0.

Moreover, we have

(z̄σi )′(λ) =
H ′′

i (πσi

i (λ))

σiH ′
i(π

σi

i (λ))
> 0

where the strict inequality follows from the strict convexity of Hamiltonians, see (4.1).
Moreover, by definition of z̄σi , we have

lim
λ→+∞

z̄σi (λ) = +∞

because Hi is convex and superlinear.

Step 3: Foliation and definition of L. Let us consider the sets

(4.16) P σ(λ) =































{

z̄ ∈ [0,+∞)N ,
∑

i=1,...,N

z̄i
z̄σi (λ)

= 1

}

if λ > A,

{

z̄ ∈ [0,+∞)N ,
∑

i=1,...,N

z̄i
z̄σi (A)

≤ 1

}

if λ = A

(keeping in mind convention (4.12)). Because for λ > A, the intersection points of the
piece of hyperplane P (λ) with each axis Rei are z̄0i (λ)ei, we deduce that we can write the
partition

[0,+∞)N =
⋃

λ≥A

P σ(λ)

where P σ(λ) gives a foliation by hyperplanes for λ > A. Then we can define for z ∈ Qσ,

L
σ(z) = {λ such that z̄ ∈ P σ(λ) for z̄i = σizi for i = 1, ..., N} .
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From our definition, we get that the function L
σ is continuous on Qσ and satisfies L

σ(0) =
A. For z ∈ Qσ such that zi0 = 0, we see from the definition of P σ given in (4.16) that the
value of Lσ(z) does not depend on the value of σi0 . Therefore we can glue up all the L

σ in
a single continuous function L defined for z ∈ Ω̄ by

L(z) = L
σ(z) if z ∈ Qσ.

which satisfies L(0) = A.

Step 4: Regularity of G and computation of the gradients. For z ∈ Qσ ⊂ Ōmega,
we have

G(z) = sup
λ≥A

(z · πσ(λ) − λ)

where the supremum is reached only for λ = L(z). Moreover G is convex in R
N . We just

showed that the subdifferential of G on the interior of Qσ is the singleton {πσ(λ)} with
λ = L(z). This implies that G is derivable on the interior of Qσ and

∇G(z) = πσ(λ) with λ = L(z).

The fact that the maps πσ and L are continuous implies that G|Qσ
is C1.

4.4 Proof of Proposition 4.1

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. By definition of G0, we have

G0(x, y) = G(Z(x, y)) with Z(x, y) := xei − yej ∈ Ω̄ if (x, y) ∈ Ji × Jj

where (e1, ..., eN ) is the canonical basis of RN and Ω̄ is defined in (4.13).

Step 1: Regularity. Then Lemmas 4.7 and 4.8 imply immediately that G0 ∈ C(J2)
and G0 ∈ C1(R) for each region R given by

(4.17) R =

{

Ji × Jj if i 6= j,

T±
i = {(x, y) ∈ Ji × Ji, ±(x− y) ≥ 0} if i = j.

This regularity of G implies in particular the regularity of G0 given in i).
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Step 2: Computation of the gradients. We also deduce from Lemma 4.8 that

Λ(x, y) := L(Z(x, y))

defines a continuous map Λ : J2 → [A,+∞) which satisfies

(4.18) Λ(x, x) = A

because of Lemma 4.7-iii) and Z(x, x) = 0. Moreover, for each R given by (4.17) and for
all (x, y) ∈ R ⊂ Ji × Jj we have

G0(x, y) = pix− pjy − λ

and
(G0

|R)x(x, y) = pi and (G0
|R)y(x, y) = −pj

with λ = Λ(x, y) and (p, λ) ∈ GA and

(4.19) (pi, pj) =

{

(π+
i (λ), π−

j (λ)) if R = Ji × Jj with i 6= j,
(π±

i (λ), π±
i (λ)) if R = T±

i with i = j.

Step 3: Checking the compatibility condition on the gradients. Let us consider
(x, y) ∈ J2 with x = y = 0 or x 6= y. We have

(∂iG
0(·, y))(x) ∈

{

π±
i (λ)

}

and − (∂jG
0(x, ·))(y) ∈

{

π±
j (λ)

}

with λ = Λ(x, y) ≥ A.

We claim that

(4.20) H(x,G0
x(x, y)) = λ.

It is clear except in the special case where

(4.21) x = 0 and (∂iG
0(·, y))(0) = π+

i (λ) for all i = 1, ..., N

If 0 6= y ∈ Jj , then (x, y) = (0, y) ∈ T−
j and (∂jG

0(·, y))(0) = π−
j (λ). Therefore (4.21) only

happens if y = 0 and then
H(0, G0

x(0, 0)) = A

which still implies (4.20), because λ = Λ(0, 0) = A.
In view of (4.20), (3.4) with equality and γ = 0 is equivalent to

(4.22) H(y,−G0
y(x, y)) = λ.

This is clear except possibly in the special case where

(4.23) y = 0 and − (∂jG
0(x, ·))(0) = π+

j (λ) for all j = 1, ..., N.

If x ∈ Ji and N ≥ 2, then we can find j 6= i such that −(∂jG
0(x, ·))(0) = π−

j (λ). Therefore
(4.23) only happens if N = 1 and then

H(0,−G0
y(x, 0)) = A ≤ λ.
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Step 4: Superlinearity. In view of the definition of G0, we deduce from (4.19) that

G0(x, y) ≥
{

xπ+
i (λ) − yπ−

j (λ) − λ if i 6= j,
(x− y)π±

i (λ) − λ if i = j and ± (x− y) ≥ 0

Setting
π0(λ) := min

±, i=1,...,N
±π±

i (λ) ≥ 0,

we get
G0(x, y) ≥ d(x, y)π0(λ) − λ.

From the definition (4.2) of π±
i and the assumption (4.1) on the Hamiltonians, we deduce

that
π0(λ) → +∞ as λ→ +∞

which implies that for any K ≥ 0, there exists a constant CK ≥ 0 such that

G0(x, y) ≥ Kd(x, y) − CK .

Therefore we get (3.5) with
g0(a) = sup

K≥0
(Ka− CK).

Step 5: Gradient bounds. Note that

∑

i=1,...,N

|Zi(x, y)| = d(x, y).

Because each component of the gradients of G0 are equal to one of the
{

π±
k (λ)

}

±,k=1,...,N

with λ = L(Z(x, y)), we deduce (3.6) from the continuity of L and of the maps π±
k .

Step 6: Saturation close to the diagonal. Point vi) in Proposition 4.1 follows from
Lemma 4.7-iii), from the definition of G and from the regularity of G0.

5 First application: link with optimal control theory

This section is devoted to the study of the value function of an optimal control problem
associated with trajectories running over the junction.

5.1 An optimal control problem

As before, we consider a junction J =
⋃

i=1,...,N Ji. We consider compact metric spaces Ai

and functions bi, ℓi : Ai → R for i = 0, . . . , N . The sets Ai are the sets of controls on each
branch J∗

i for i = 1, . . . , N , while the set A0 is the set of controls at the junction point
x = 0. The functions bi represent the dynamics and the ℓi are the running cost functions.
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To keep the presentation simple, we do not consider more general cases where the dynamics
and the running cost functions could depend on (t, x). We then define the general set of
controls:

A = A0 × · · · × AN

and define for α = (α0, . . . , αN) ∈ A and x ∈ J ,

b(x, α) =

{

bi(αi) if x ∈ J∗
i ,

b0(α0) if x = 0.

Similarly, we define

ℓ(x, α) =

{

ℓi(αi) if x ∈ J∗
i ,

ℓ0(α0) if x = 0.

We then define the set of admissible dynamics

(5.1) Tt,x =











(X(·), α(·)) ∈ Lip(0, t; J) × L∞(0, t;A),
{

X(t) = x,

Ẋ(s) = b(X(s), α(s)) for a.e. s ∈ (0, t)











.

For i = 0, . . . , N , we assume the following

(5.2)















bi and ℓi are continuous and bounded

for i 6= 0, {(bi(αi), ℓi(αi)) : αi ∈ Ai} is closed and convex

for i 6= 0, Bi = {bi(αi) : αi ∈ Ai} contains [−δ, δ].

Then we consider the value function of the optimal control problem,

(5.3) u(t, x) = inf
(X(·),α(·))∈Tt,x

E(X,α)

with

E(X,α) = u0(X(0)) +

∫ t

0

ℓ(X(s), α(s)) ds

where the initial data u0 is assumed to be globally Lispschitz continuous on J . We define
for i = 1, . . . , N and pi ∈ R,

Hi(pi) = sup
αi∈Ai

(bi(αi)pi − ℓi(αi)) .

It is easy to check that the Hamiltonians Hi satisfy Assumption (1.5). For i = 0, we define

H0 =







sup
α0∈A00

(−ℓ0(α0)) if A00 6= ∅,

−∞ if A00 = ∅

with
A00 = {α0 ∈ A0, b0(α0) = 0} .
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5.2 A reduced representation formula

Proposition 5.1 (A reduced representation formula). Let Li denote the Legendre-Fenchel
transform of Hi. Then

(5.4) u(t, x) = inf
X(·)∈St,x(0,t)

{

u0(X(0)) +

∫ t

0

L(X(s), Ẋ(s)) ds

}

with
St,x(0, t) = {X(·) ∈ Lip(t0, t; J), with X(t) = x}

and

L(x, p) =











Li(p) if x ∈ J∗
i ,

min

(

−H0, min
i=1,...,N

(Li(p))

)

if x = 0.

Moreover,

• the infimum in (5.4) is a minimum and there exist optimal trajectories that are
straight lines in each open branch J∗

i ;

• the function u is continuous.

Proof. The proof proceeds in several steps.

Step 1: reduced controls. Consider i 6= 0. By assumption, the set {(bi(αi), ℓi(αi)) :
αi ∈ Ai} is convex. In particular, for each αi ∈ Ai, the set

I(bi(αi)) = {(ℓi(βi)) : βi ∈ Ai, bi(βi) = bi(αi)}

is a compact interval. Hence, for all αi ∈ Ai, there exists ᾱi ∈ Ai such that

bi(ᾱi) = bi(αi) and ℓi(ᾱi) = min
l∈I(αi)

l.

In other words,
∀βi ∈ Ai, bi(βi) = bi(αi) ⇒ ℓi(βi) ≥ ℓi(ᾱi).

In particular,

(5.5) ℓi(ᾱi) ≤ ℓi(αi).

This implies that

Hi(pi) = sup
αi∈Ai

(bi(αi)pi − ℓi(αi))

= sup
ci∈Bi

(cipi − ℓi(ᾱi)) .
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This means that

(5.6) Li(ci) =

{

ℓi(ᾱi) if ci ∈ Bi

+∞ if not.

Similarly, for i = 0, if A00 6= ∅, then there exists ᾱ0 ∈ A00 such that

0 = b0(ᾱ0) and ℓ0(ᾱ0) = −H0 ≤ ℓ0(α0) for all α0 ∈ A00.

If now A00 = ∅, we simply choose ᾱ0 = α0.

Step 2: equivalent dynamics. Now let us consider a trajectory (X(·), α(·)) ∈ Tt,x, and
let us define

T0 = {s ∈ (0, t), X(s) = 0} .
In particular by Stampacchia theorem, we have

0 = b0(α0(s)) for a.e. s ∈ T0,

i.e.

(5.7) α0(s) ∈ A00 for a.e. s ∈ T0.

Case A00 6= ∅. Then we define the new control ᾱ(s) = (ᾱ0(s), . . . , ᾱN(s)) ∈ A as above
for which we have

Ẋ(s) = b(X(s), ᾱ(s)) for a.e. s ∈ (0, t).

This shows that (X(·), ᾱ(·)) ∈ Tt,x. Moreover, (5.5) and (5.6) imply that

l(X(s), α(s)) ≥ l(X(s), ᾱ(s)) = L̃(X(s), Ẋ(s))

with

L̃(x, p) =

{

Li(p) if x ∈ J∗
i ,

−H0 if x = 0.

This implies that

(5.8) u(t, x) = inf
X(·)∈St,x(0,t)

{

u0(X(0)) +

∫ t

0

L̃(X(s), Ẋ(s)) ds

}

.

We remark that L̃ may not be lower semi-continuous at x = 0. But L is lower semi-
continuous and lies below L̃, so we get

(5.9) u(t, x) ≥ V (t, x)

with

V (t, x) = inf
X(·)∈St,x(0,t)

{

u0(X(0)) +

∫ t

0

L(X(s), Ẋ(s)) ds

}

.

Case A00 = ∅. Then from (5.7), we see that the Lebesgue measure of T0 is zero.
Hence, (5.8) and (5.9) still hold true.
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Step 3: Minimizing sequences. Given (t, x) ∈ (0,+∞) × J , let us consider a mini-
mizing sequence (Xε(·), αε(·)) ∈ Tt,x. By replacing αε with ᾱε, we can assume that

u(t, x) + ε ≥ E(Xε, αε) = u0(X
ε(0)) +

∫ t

0

L̃(Xε(s), Ẋε(s)) ds ≥ u(t, x).

If there exists an interval (ta, tb) such that

Xε(s) ∈ J∗
i for all s ∈ (ta, tb),

then using the convexity of Li, we deduce that

∫ tb

ta

Li(Ẋ
ε(s)) ds ≥

∫ tb

ta

Li(
˙̃Xε(s)) ds

with

X̃ε(s) =

(

tb − s

tb − ta

)

Xε(ta) +

(

s− ta
tb − ta

)

Xε(tb)

and
˙̃Xε(s) ∈ Bi

because Bi is a compact interval. Considering maximal intervals of type (ta, tb), we see
that we can replace Xε by a new curve X̃ε which is particularly simple, because it is a
straight line in each open branch J∗

i and such that

E(Xε, αε) ≥ u0(X̃
ε(0)) +

∫ t

0

L(X̃ε(s), ˙̃Xε(s)) ds.

By assumption, Xε is uniformly Lipschitz continuous, and then X̃ε is also uniformly
Lipschitz continuous, and by Ascoli-Arzelà theorem, there exists a subsequence such that
X̃ε converges uniformly on [0, t] to X0. The limit curve X0 is also simple, i.e. it is a
straight line on each open branch J∗

i with Ẋ0 ∈ Bi when X0 ∈ J∗
i . Passing to the limit,

we easily deduce (from the lower semi-continuity of L) that

u(t, x) ≥ u0(X
0(0)) +

∫ t

0

L(X0(s), Ẋ0(s)) ds.

Step 3: Reverse inequality. We now want to prove that we have the reverse inequality

(5.10) u(t, x) ≤ u0(X
0(0)) +

∫ t

0

L(X0(s), Ẋ0(s)) ds

We distinguish two cases.

Case L(0, 0) = −H0 < mini=1,...,N Li(0). In this case, we simply use the fact that
L(X0(s), Ẋ0(s)) = L̃(X0(s), Ẋ0(s)) = l(X0(s), α0(s)) and (X0(·), α0(·)) ∈ Tt,x. This im-
plies (5.10).
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Case L(0, 0) = Li0(0) < −H0 for some i0 ∈ {1, . . . , N}. The only interesting case
is when there is a nonempty maximal interval (ta, tb) such that X0(s) = 0 for s ∈ (ta, tb)
(otherwise we can apply the reasoning of the previous case). By continuity, we have
X0(ta) = 0 = X0(tb).Then for every ε > 0 small enough, we can find three controls
αa
i0
, αb

i0
, αc

i0
∈ Ai0 such that

bi0(α
a
i0) > 0, bi0(α

b
i0) < 0

and

Xε(s) =



























X0(ta) + (s− ta)bi0(αa
i0

) for s ∈ (ta, t
ε
a] , with tεa = ta + ε

X0(tb) + (s− tb)bi0(α
b
i0

) for s ∈ [tεb, tb) , with tεb = tb − ε

(

tε
b
−s

tε
b
−tεa

)

Xε(tεa) +
(

s−tεa
tε
b
−tεa

)

Xε(tεb), with bi0(α
c
i0

) = Ẋε(s) → 0

This implies that there exists a modified controlled tractory (Xε(·), αε(·)) ∈ Tt,x such that

u(t, x) ≤ E(Xε, αε) → u0(X
0(0)) +

∫ t

0

L(X0(s), Ẋ0(s)) ds

which implies (5.10).

Step 4: Conclusion. It remains to justify that u is continuous. This is a consequence
of the Lipschitz continuity of u0 and the fact that L is bounded (where it is finite). The
proof is now complete.

5.3 Derivation of the Hamilton-Jacobi-Bellman equation

Theorem 5.2 (The value function is an FA-solution). The value function u defined by
(5.3) is the unique solution of (1.7) with A = H0 supplemented with the initial condition
(1.4).

Proof. Deriving the Hamilton-Jacobi-Bellman equation outside the junction point is quite
standard. This is the reason why we will focus on the junction condition. As in the
standard case, it relies on the dynamic programming principle.

Step 1: Dynamic programming principle. For t0 < t, we set,

St,x(t0, t) = {X(·) ∈ Lip(t0, t; J), with X(t) = x} .

For t > 0 and h ∈ (0, t), we can easily show, splitting the interval (0, t) into (0, t− h) and
(t− h, t) that we have the following dynamic programming principle,

(5.11) u(t, x) = inf
X(·)∈St,x(t−h,t)

{

u(t− h,X(t− h)) +

∫ t

t−h

L(X(s), Ẋ(s)) ds

}

.
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In particular, if X ∈ St,x(t− h, t) is optimal,

u(t, x) = u(t− h,X(t− h)) +

∫ t

t−h

L(X(s), Ẋ(s)) ds,

then, for s ∈ (t− h, t), splitting the interval (t− h, t) into (t− h, s) and (s, t), we get

(5.12) u(t, x) = u(s,X(s)) +

∫ t

s

L(X(s), Ẋ(s)) ds for all s ∈ (t− h, t).

Step 2: u is a super-solution at the junction point. Consider any test function ϕ
such that

ϕ ≤ u in (0,+∞) × J and ϕ = u at (t, 0).

Let us consider an optimal trajectory X which is a straight line in each open branch J∗
i .

Then there exists a small interval (t− ε, t) such that for all s ∈ (t− ε, t),

(5.13)

{

either Ẋ(s) = q, X(s) ∈ J∗
i for some (q, i) ∈ (−∞, 0) × {1, . . . , N},

or X(s) = 0.

In the first case, we have for s ∈ (t− ε, t),

L(X(s), Ẋ(s)) = Li(q).

Applying the super-optimality equality (5.12), we deduce that

ϕ(t, X(t)) = u(t, 0) = u(s,X(s)) +

∫ t

s

L(X(τ), Ẋ(τ)) dτ ≥ ϕ(s,X(s)) +

∫ t

s

Li(q) dτ.

This implies that
ϕ(t, X(t)) − ϕ(s,X(s))

t− s
− Li(q) ≥ 0.

Passing to the limit s→ t−, we deduce that at (t, 0),

ϕt + q∂iϕ− Li(q) ≥ 0 and q ≤ 0.

This implies that
ϕt(t, 0) + FA(ϕx(t, 0)) ≥ 0

with A = H0.
In the second case, we have

L(X(s), Ẋ(s)) = −H0.

Arguing as above, we deduce
ϕt +H0 ≥ 0

which implies again
ϕt(t, 0) + FA(ϕx(t, 0)) ≥ 0

with A = H0.
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Step 3: u is a sub-solution at the junction point. Consider any test function ϕ
such that

ϕ ≥ u in (0,+∞) × J and ϕ = u at (t, 0).

We us fix i = 1, . . . , N and consider the special trajectory for s ∈ (t− ε, t),

Xq(s) = X(t) + (s− t)q ∈ Ji

for some arbitrary q < 0. We get in particular from the dynamic programming principle
that

ϕ(t, X(t)) = u(t, 0) ≤ u(s,Xq(s)) +

∫ t

s

L(Xq(τ), q) dτ

≤ ϕ(s,Xq(s)) +

∫ t

s

Li(q) dτ.

This implies
ϕ(t, X(t)) − ϕ(s,X(s))

t− s
− Li(q) ≤ 0.

Passing to the limit s→ t−, we deduce that at (t, 0),

ϕt + q∂iϕ− Li(q) ≤ 0.

Now choose q = 0 i.e. X(s) = X(t) for s ∈ (t− ε, t). Arguing as above we get at (t, 0),

ϕt +H0 ≤ 0.

Since i ∈ {1, . . . , N} and q < 0 are arbitrary, we get at (t, 0),

ϕt + FA(ϕx) ≤ 0

with A = H0. This is the viscosity sub-solution inequality at the junction point.The proof
is now complete.

6 Second application: link with regional control

In this section, we shed light on the consequence of our results on the interpretation of the
results from [7] when both frameworks coincide. Roughly speaking, the one-dimensional
framework from [7] reduces to our framework with two branches. In this case, the value
function U− defined by (2.7) in [7] (see also (6.4) in the present paper) and characterized
in Theorem 4.4 in [7] corresponds to the unique solution of (1.7) for some A = HT which
is exhibited below. Similarly, the function U+ defined by (2.8) in [7] (see also (6.5) in
the present paper) corresponds to the unique solution of (1.7) for some A = Hreg

T . This
is shown in the first subsection. In the other subsections, we compute HT and Hreg

T and
provide a general relation between (reformulated) FA-solutions and Ishii solutions.
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6.1 The framework

The one dimensional framework of [7] corresponds to

Ω1 = (−∞, 0), H = {0}, Ω2 = (0,+∞).

In this case, (HΩ) in [7] is satisfied. We refer to this framework as the common framework.

Hamiltonians. As far as the Hamiltonian is concerned, the (t, x)-dependence is not
relevant for what we discuss now; for this reason we consider the simplified case of convex
Hamiltonians given for i = 1, 2 by

Hi(p) = sup
αi∈Ai

(−bi(αi)p− ℓi(αi))

for some compact metric space Ai and bi, ℓi : Ai → R. In this simplified framework, (HC)
reduces to the following assumptions for i = 1, 2:

(6.1)















bi and ℓi are continuous and bounded

{(bi(αi), ℓi(αi)) : αi ∈ Ai} is closed and convex

Bi = {bi(αi) : αi ∈ Ai} contains [−δ, δ].

In particular, we see that Bi is a compact interval. Introducing the Legendre-Fenchel
transform Li of Hi, it is possible to see that this problem can be reformulated by assuming
that for i = 1, 2

Hi(p) = sup
q∈Bi

(qp− Li(q))

where Li : Bi → R is convex where we recall that Bi is a compact interval containing
[−δ, δ]. Indeed the graph of Li on Bi is the lower boundary of the closed convex set
{(bi(αi), ℓi(αi)) : αi ∈ Ai} in the plane R2. In particular, we see that Hi is convex,
Lipschitz continuous and Hi(p) → +∞ as |p| → +∞. This last fact comes from the fact
that ±δ ∈ Bi. Moreover Hi reaches its minimum at any convex subgradient p0i of Li at 0
and satisfies

{

Hi is non-increasing on (−∞, p0i ],
Hi is non-decreasing on [p0i ,+∞).

Hence, Hi satisfies (1.5).

Translation of FA-solutions in the real line setting. The notion of solutions ũ(t, x)
from Section 2 on two branches J1 ∪ J2 with two Hamiltonians

H̃1(q) = H1(−q) and H̃2(q) = H2(q)

is translated in the common framework to functions u defined for (t, x) ∈ [0,+∞) × R by

u(t, x) =

{

ũ(t, x) for 0 ≤ x ∈ J2,
ũ(t,−x) for 0 ≤ −x ∈ J1.
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Then ũ solves (1.7) with Hamiltonians H̃i, if and only if u solves

(6.2)







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0),
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞),
ut + F̌A(ux(t, 0−), ux(t, 0+)) = 0 for (t, x) ∈ (0,+∞) × {0}

with
F̌A(q1, q2) = max(A,H+

1 (q1), H
−
2 (q2))

where

H−
i (q) =

{

Hi(q) if q < p0i ,
Hi(p

0
i ) if q ≤ p0i

and H+
i (q) =

{

Hi(p
0
i ) if q ≤ p0i ,

Hi(q) if q > p0i .

Viscosity inequalities are now naturally written by considering, for u, test functions φ :
[0,+∞) × R → R that are continuous, and C1 in [0,+∞) × (−∞, 0] and in [0,+∞) ×
[0,+∞).

Ishii solutions on the real line. In [7], Ishii solutions are considered. A function u is
said to be a Ishii solution if it solves

(6.3)















ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0),
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞),
ut + min(H1(ux), H2(ux)) ≤ 0 for (t, x) ∈ (0,+∞) × {0} ,
ut + max(H1(ux), H2(ux)) ≥ 0 for (t, x) ∈ (0,+∞) × {0} .

For such solutions, test functions are C1 in space and time, and not piecewise C1; moreover,
if the test function φ touches u∗ from above at (t, 0) (resp. u∗ from below at (t, 0) ) then

∂tφ(t, 0) + min(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≤ 0

(resp. ∂tφ(t, 0) + max(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≥ 0).

Tangential Hamiltonians. Using notation similar to the one of [7], we define

A = B1 × B2 × [0, 1],

A0 = {(α1, α2, µ) ∈ A : α1α2 ≤ 0 and 0 = µα1 + (1 − µ)α2},
Areg

0 = {(α1, α2, µ) ∈ A : α1 ≤ 0, α2 ≥ 0 and 0 = µα1 + (1 − µ)α2}.

In the common framework, the tangential Hamiltonians HT and Hreg
T given in [7] reduce

to constants, and we can see that we can write them as follows

HT = sup
(α1,α2,µ)∈A0

(−µL1(α1) − (1 − µ)L2(α2)),

Hreg
T = sup

(α1,α2,µ)∈A
reg
0

(−µL1(α1) − (1 − µ)L2(α2)).
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The value functions U− and U+. We consider the following initial condition

u(0, x) = g(x) for x ∈ R

with g bounded and globally Lipschitz continuous.
For a = (α1, α2, µ) ∈ A, we define

{

bH(a) = µb1(α1) + (1 − µ)b2(α2),
ℓH(a) = µb1(α1) + (1 − µ)b2(α2)

and for x ∈ R, we set

b(x, a) =







b1(α1) if x ∈ (−∞, 0) = Ω1,
b2(α2) if x ∈ (0,+∞) = Ω2,
bH(a) if x ∈ H = {0}

and

ℓ(x, a) =







ℓ1(α1) if x ∈ (−∞, 0) = Ω1,
ℓ2(α2) if x ∈ (0,+∞) = Ω2,
ℓH(a) if x ∈ H = {0} .

We consider admissible controlled trajectories starting from the point from (0, x) and
ending at time t > 0 defined by

Tt,x =











(X(·), a(·)) ∈ Lip(0, t;R) × L∞(0, t;A) such that
{

X(0) = x,

Ẋ(s) = b(X(s), a(s)) for a.e. s ∈ (0, t)











and define the set of regular controlled trajectories as

T reg
t,x =

{

(X(·), a(·)) ∈ Tx,t such that

a(s) ∈ Areg
0 for a.e. s ∈ (0, t) such that X(s) = 0

}

.

Notice that the definition of Tt,x differs from the one given in (5.1), where now X takes the
value x at time 0 instead at time t. Then we define

(6.4) U−(x, t) = inf
(X(·),a(·))∈Tt,x

{

g(X(t)) +

∫ t

0

ℓ(X(s), a(s)) ds

}

and

(6.5) U+(x, t) = inf
(X(·),a(·))∈T reg

t,x

{

g(X(t)) +

∫ t

0

ℓ(X(s), a(s)) ds

}

.

Then we have the following characterization of U− and U+:
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Theorem 6.1 (Characterization of U− and U+)). Under the previous assumptions, U−

is the unique F̌A-solution with initial data g for A = HT . Similarly, U+ is the unique
F̌A-solution with initial data g for A = Hreg

T .

Proof. Theorem 6.1 is a straightforward application of Theorem 5.2.

Corollary 6.2 (Conditions for uniqueness of Ishii solution). Recall that HT ≥ Hreg
T . Under

the previous assumptions, if HT = Hreg
T , then there is uniqueness of the Ishii solution with

initial data g. If HT > Hreg
T , then there exists an initial data g such that there are two

different Ishii solutions with the same initial data g.

Proof. Given an initial data g which is assumed to be bounded and Lipshitz continuous,
and under the previous assumptions, it is known in [7] that the minimal Ishii solution is U−

and that the maximal Ishii solution is U+. When HT = Hreg
T , then Theorem 6.1 implies

that both U− and U+ are F̌A-solutions with the same initial data g and with the same
A = HT = Hreg

T . The uniqueness of the F̌A-solutions implies that U− = U+ and then this
is the unique Ishii solution.

On the contrary, if HT > Hreg
T , then

U−(t, x) = −At + p1x1{x<0} + p2x1{x≥0}

is a F̌A-solution with A = HT with initial data g(x) = U−(0, x) (which is may be not
bounded here) if

HT = A = H1(p1) = H2(p2), p2 ≥ p02, p1 ≤ p01.

On the other hand, U− is not a F̌Hreg
T

-solution because F̌Hreg
T

(p1, p2) = Hreg
T < HT . Using

Theorem 5.2, we can check that U− and U+ are given respectively by the representation
formula (6.4) and (6.5). This shows the result if we allow unbounded initial data g.

To adapt it to bounded initial data, we can simply truncate the initial data between
two constants −R and R and consider

gR(x) = min(R,max(−R, g(x))).

Let us call respectively U−
R and U+

R the solutions associated to the initial data gR. In
particular for R large enough, there exists r > 0 such that

gR(x) = g(x) for |x| ≤ r.

Then we see from the representation formula (6.4) and the fact that the trajectories prop-
agate with finite velocity (because of the bound |bi| ≤ c) that

U−
R (t, x) = U−(t, x) for |x| ≤ r − ct.

We then conclude as above that U−
R is not a F̌Hreg

T
-solution for x = 0 and t ∈ (0, r/c) if

Hreg
T < HT , and therefore U+

R 6= U−
R .
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6.2 Computation of tangential Hamiltonians

We consider
A∗ = max

q∈ch[p01,p02]
(min(H1(q), H2(q))).

with the chord
ch
[

p01, p
0
2

]

= [min(p01, p
0
2),max(p01, p

0
2)].

We also recall that A0 = max
i=1,2

(

min
q∈R

Hi(q)

)

= max
i=1,2

Hi(p
0
i ).

Proposition 6.3. (Characterization of HT )

HT = max(A∗, A0).

Proof. Reduction. Let Ac denote max(A∗, A0). Remark that there exists pc ∈ R such
that Ac = Hic(pc) for some ic ∈ {1, 2}. We then consider

H̃i(p) = Hi(pc + p) −Ac.

In this case, using obvious notation, Ãc = 0 and p̃c = 0. We are going to prove that

H̃T = 0.

Remark that

L̃i(p) = sup
q

(pq − H̃i(q))

= sup
q

(pq −Hi(pc + q)) + Ac

= sup
q

(pq −Hi(q)) − pcp+ Ac

= Li(p) − pcp + Ac.

Then

H̃T = sup
(α1,α2,µ)∈A0

(−µL̃1(α1) − (1 − µ)L̃2(α2))

= sup
(α1,α2,µ)∈A0

(−µL1(α1) − (1 − µ)L2(α2)) − Ac

= HT − Ac.

Hence, it is enough to prove
H̃T = 0.

From now on, we assume that Ac = 0 and pc = 0. We distinguish two cases.

First case. Assume first that 0 = Ac = A∗ ≥ A0. Then 0 = A∗ = H1(p
∗) =

H2(p
∗) = Hic(pc) with p∗ ∈ ch [p01, p

0
2]. Choosing initially pc = p∗, we can assume that
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A∗ = H1(0) = H2(0) = 0. In particular, L1 ≥ 0 and L2 ≥ 0. Hence HT ≤ 0. To get the
reverse inequality, we observe that there exists α∗

i ∈ ∂Hi(0), i = 1, 2, with

α∗
1α

∗
2 ≤ 0.

Indeed, if this is not true, this implies that for all αi ∈ ∂Hi(0),

α1α2 > 0

which is impossible because H1 and H2 cross at p∗.
Pick now µ ∈ [0, 1] such that µα∗

1 + (1 − µ)α∗
2 = 0. Then (α∗

1, α
∗
2, µ) ∈ A0 and

consequently,

HT ≥ −µL1(α
∗
1) − (1 − µ)L2(α

∗
2) = µH1(0) + (1 − µ)H2(0) = 0.

Hence HT = 0 in the first case, as desired.
Second case. We now assume that 0 = Ac = A0 > A∗. In this case, there exists

a ∈ {1, 2} such that
minHa = Ha(0) = 0,

with the initial choice pc = p0a. This implies in particular

La ≥ La(0) = 0.

Moreover, for b 6= a,
minLb = −Hb(0) ≥ 0,

we we have used the fact that A∗ < A0. Hence, La ≥ 0 and Lb ≥ 0 and consequently,
HT ≤ 0. Moreover with α∗

i ∈ ∂Hi(0), we have, (0, α∗
2, 1) ∈ A0 when a = 1 and (α∗

1, 0, 0) ∈
A0 when a = 2. Hence, in both cases,

HT ≥ −La(0) = 0.

Hence HT = 0 in the second case too. The proof is now complete.

Proposition 6.4 (Characterization of Hreg
T ).

(6.6) Hreg
T =

{

HT if p02 < p01,
A0 if p02 ≥ p01,

where we recall that p0i ∈ argminHi for i = 1, 2.

Proof. The proof is similar to the proof of Proposition 6.3. We make precise how to adapt
it.

Reduction. Let Ac denote the right hand side of (6.6). Then the reduction to the
case Ac = 0 and pc = 0 is completely analogous. We now have to prove that Hreg

T = 0.

First case. Assume first that 0 = Ac = A∗ ≥ A0. Note that this case only makes
sense either when p02 < p01 or when p02 ≥ p01 and 0 = Ac = A∗ = A0. Similarly, we get
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Hreg
T ≤ 0. To get the reverse inequality, we observe that there exists α∗

i ∈ ∂Hi(0), i = 1, 2,
with

α∗
1α

∗
2 ≤ 0.

We deduce that we can choose α∗
2 ≥ 0 and α∗

1 ≤ 0, both in the case p02 < p01 and the case
p02 ≥ p01 and 0 = Ac = A∗ = A0. This implies that we can find (α∗

1, α
∗
2, µ) ∈ Areg

0 and
similarly, we conclude that Hreg

T ≥ 0. Hence HT = 0 in the first case, as desired.
Second case. We now assume that 0 = Ac = A0. We set again for some a ∈ {1, 2}:

minHa = Ha(0) = 0.

From our definition of a, we have again

La ≥ La(0) = 0 and p0a = 0.

We first prove that Hreg
T ≤ 0. In order to do so, we now distinguish three subcases.

Assume first p02 < p01. Then we can assume that A0 > A∗ (otherwise we have A0 = A∗

and we can apply the first case). Then we deduce, as in the proof of Proposition 6.3, that
Hreg

T ≤ 0.
Assume now that p02 ≥ p01 and a = 1. We deduce that 0 = p01 ≤ p02. But because H2 is

minimal at p02, we have 0 ∈ ∂H2(p
0
2), and we deduce that 0 ≤ p02 ∈ ∂L2(0). This implies

that L2 ≥ L2(0) = −H2(p
0
2) ≥ 0 on R+. By definition of Hreg

T , this implies that Hreg
T ≤ 0.

Assume finally that p02 ≥ p01 and a = 2. This subcase is symmetric with respect to the
previous one. We deduce that 0 = p02 ≥ p01. But because H1 is minimal at p01, we deduce
that 0 ≥ p01 ∈ ∂L1(0). This implies that L1 ≥ L1(0) = −H1(p

0
1) ≥ 0 on R−. Again, by

definition of Hreg
T , this implies that Hreg

T ≤ 0.
We now prove that Hreg

T ≥ 0. To do so pick some (0, α2, 1) ∈ Areg
0 when a = 1 and

some (α1, 0, 0) ∈ Areg
0 when a = 2. Hence, in both cases, we get

Hreg
T ≥ −La(0) = 0.

Hence HT = 0 in the second case too. The proof is now complete.

6.3 Junction-type solutions and Ishii solutions

We say that u is a F̌A-sub-solution (resp. F̌A-super-solution) if it is a sub-solution (resp.
super-solution) of (6.2). We also say that u is a Ishii sub-solution (resp. super-solution) if
it is a sub-solution (resp. super-solution) of







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0)
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞)
ut + min(H1(ux), H2(ux)) = 0 for (t, x) ∈ (0,+∞) × {0}

(

resp.







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0)
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞)
ut + max(H1(ux), H2(ux)) = 0 for (t, x) ∈ (0,+∞) × {0}

)

.

Then we have the following result.
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Proposition 6.5 (Relation between F̌A and Ishii sub/super-solutions). Every F̌A-sub-
solution (resp. F̌A-super-solution) is a Ishii sub-solution (resp. Ishii super-solution) if
A ≥ Hreg

T (resp. A ≤ HT ).
Moreover for every A ∈ [A0, H

reg
T ), there exists a F̌A-sub-solution which is not a Ishii

sub-solution. For every A > HT , there exists a F̌A-super-solution which is not a Ishii
super-solution.

Remark 6.6. If we use the expressions of Propositions 6.3 and 6.4 as definitions of HT and
Hreg

T , then the result of Proposition 6.5 still holds true for general Hamiltonians satisfying
(1.5), and not only for particular convex Hamiltonians coming from optimal control theory.
In particular, we deduce that every F̌A-solution is a Ishii solution for each A ∈ [Hreg

T , HT ].

Proof. We treat successively sub-solutions and super-solutions.
Sub-Solutions. Let u be a F̌A-sub-solution with A ≥ Hreg

T . Consider a C1 function
φ : R → R touching u from above at (t, 0) for some t > 0. Then

λ + F̌A(q, q) ≤ 0

where λ = ∂tφ(t, 0) and q = ∂xφ(t, 0). In particular, λ+ A ≤ 0. We want to prove that

λ+ min(H1(q), H2(q)) ≤ 0.

If q ≤ p02, then
min(H1(q), H2(q)) ≤ H−

2 (q) ≤ F̌A(q, q) ≤ −λ.
Similarly, if q ≥ p01, then

min(H1(q), H2(q)) ≤ H+
1 (q) ≤ F̌A(q, q) ≤ −λ.

If p02 < p01, and q ∈ [p02, p
0
1], then by definition of A∗, we have

min(H1(q), H2(q)) ≤ A∗ ≤ HT = Hreg
T ≤ A ≤ −λ.

This shows that u is a Ishii sub-solution.
If A∗ ≤ A0 or p02 ≥ p01, there is nothing additional to prove. Assume now that p02 < p01

with Hreg
T = A∗ > A0, and we claim that for any A ∈ [A0, H

reg
T ) = [A0, A

∗), there exists
a F̌A-sub-solution which is not an Ishii sub-solution. Indeed, let us consider p∗ ∈ [p02, p

0
1]

such that
A∗ = H1(p

∗) = H2(p
∗).

Then there exists p02 ≤ p2 < p∗ < p1 ≤ p01 such that

(6.7) A = H1(p1) = H2(p2) = F̌A(p1, p2)

Let us now consider
u(t, x) = −At + p1x1{x<0} + p2x1{x≥0}
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In particular u is F̌A-sub-solution because of (6.7). Now the test function φ(t, x) = −At+
p∗x touches u at (t, 0) from above and does not satisfy the inequality

∂tφ(t, 0) + min(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≤ 0.

This shows that u is not a Ishii sub-solution.

Super-Solutions. Let u be a F̌A-super-solution with A ≤ HT . Consider a C1

function φ : R → R touching u from below at (t, 0) for some t > 0. Then

λ + FA(q, q) ≥ 0

where λ = ∂tφ(t, 0) and q = ∂xφ(t, 0). Without loss of generality, we can assume that
A ≥ A0. We want to prove that

λ+ max(H1(q), H2(q)) ≥ 0.

If FA(q, q) = A, then we deduce from Lemma 6.7 below that

0 ≤ λ+ A ≤ λ+HT ≤ λ+ max(H1(q), H2(q)).

If now FA(q, q) = H+
1 (q), then

0 ≤ λ+ FA(q, q) ≤ λ+H1(q) ≤ λ+ max(H1(q), H2(q)).

If finally FA(q, q) = H−
2 (q), then

0 ≤ λ+ FA(q, q) ≤ λ+H2(q) ≤ λ+ max(H1(q), H2(q)).

This shows that u is a Ishii super-solution.
Assume next that A > HT . If A∗ ≥ A0, let p∗ ∈ ch [p01, p

0
2] such that

A∗ = H1(p
∗) = H2(p

∗).

Let us choose an index a ∈ {1, 2} such that

max
i=1,2

Hi(p
0
i ) = Ha(p

0
a).

Then we set

p̄ =







p∗ if A∗ ≥ A0,
p1 if A∗ < A0 and a = 1,
p2 if A∗ < A0 and a = 2.

In particular we have

(6.8) max(H1(p̄), H2(p̄)) = HT .

Then for A > HT , there exist p2 ≥ max(p01, p
0
2) ≥ p̄ ≥ min(p01, p

0
2) ≥ p1 such that

H2(p2) = A = H1(p1).
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Let us now define
u(t, x) = −At + p1x1{x<0} + p2x1{x≥0}.

Then u is a F̌A-super-solution because F̌A(p1, p2) = A. Now the test function φ(t, x) =
−At + p̄x touches u at (t, 0) from below and does not satisfy the inequality

∂tφ(t, 0) + max(H1(∂xφ(t, 0)), H2(∂xφ(t, 0))) ≥ 0

because of (6.8). This shows that u is not a Ishii super-solution. This achieves the proof.

In the previous proof, we used the following elementary lemma.

Lemma 6.7 (Bound from above for HT ). For all q ∈ R, HT ≤ max(H1(q), H2(q)).

Proof. We recall that HT = max(A∗, A0). Assume first that max(A∗, A0) = A0, then
A0 = minHa for some a ∈ {1, 2}. In particular, for all q ∈ R, we have HT = A0 ≤ Ha(q) ≤
max(H1(q), H2(q)).
If now max(A∗, A0) = A∗ > A0, then there exists p∗ ∈ [p0i , p

0
j ] for some i, j ∈ {1, 2} (i 6= j),

such that
A∗ = Hi(p

∗) = Hj(p
∗).

Moreover, Hj is non-increasing in (−∞, p∗] hence

Hj(q) ≥ A∗ for q ≤ p∗;

similarly, Hi is non-decreasing in [p∗,+∞) hence

Hi(q) ≥ A∗ for q ≥ p∗.

This implies the expected inequality.

This proposition allows to recover the following result:

Corollary 6.8 (Characterization of U−). The function U− is the unique F̌A-solution u
with initial data g and A = HT .

Proof. Proposition 6.5 implies in particular that if u is the (unique) F̌A-solution with initial
data g and A = HT , then u is also a Ishii solution. But F̌A ≥ A implies that u satisfies

∂tu+HT ≤ 0 in (0,+∞) × R

in the viscosity sense (with C1 space-time test functions). In order to apply the results
from [7], we need more, namely,

(6.9) ∂tv +HT ≤ 0 in (0,+∞)
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where v(t) = u(t, 0). Remark that v is continuous since so is u. To get such an inequality,
consider a test function φ ∈ C1

t touching strictly from above the function v at some time
t0 > 0. We can consider the space-time test function

φε(t, x) = φ(t) +
|x|
ε

and deduce from the coercivity of the Hamiltonians Hi that, locally close to (t0, 0), a point
(tε, xε) of maximum of u − φε is reached for xε = 0 for ε > 0 small enough. We then get
the expected result as ε tends to 0.

Now we can use the results from [7] to get that U− is the unique Ishii solution such
that (6.9) holds true. Then U− = u.

7 First extension: networks

7.1 Definition of a network

A general abstract network N is characterized by the set (E of its edges and the set V) of
its “nodes”. It is endowed with a distance.

Edges. E is a finite or countable set of edges. Each edge e ∈ E is assumed to be either
isometric to the half line [0,+∞) with ∂e = {e0} (where the endpoint e0 can be identified
to {0}), or to a compact interval [0, le] with

(7.1) inf
e∈E

le > 0

and ∂e = {e0, e1}. Condition (7.1) implies in particular that the network is complete. The
endpoints {e0}, {e1} can respectively be identified to {0} and {le}. The interior e∗ of an
edge e refers to e \ (∂e).

Vertices (or nodes). It is convenient to see vertices of the network as a partition of the
sets of all edge endpoints,

⋃

e∈E

∂e =
⋃

n∈V

n;

we assume that each set n only contains a finite number of endpoints.
Here each n ∈ V can be identified as a vertex (or node) of the network as follows. For

every x, y ∈ ⋃e∈E e, we define the equivalence relation:

x ∼ y ⇐⇒ (x = y or x, y ∈ n ∈ V)

and we define the network as the quotient

(7.2) N =

(

⋃

e∈E

e

)

/ ∼ =

(

⋃

e∈E

e∗

)

∪ V.
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We also define for n ∈ V
En = {e ∈ E , n ∈ ∂e}

and its partition En = E−
n ∪ E+

n with

E−
n =

{

e ∈ En, n = e0
}

, E+
n =

{

e ∈ En, n = e1
}

.

Distance. We also define the distance function d(x, y) = d(y, x) as the minimal length of
a continuous path connecting x and y on the network, using the metric of each edge (either
isometric to [0,+∞) of to a compact interval). Note that, because of our assumptions, if
d(x, y) < +∞, then there is only a finite number of minimal paths.

Remark 7.1. For any ε > 0, there is a bound (depending on ε) on the number of minimal
paths connecting x to y for all y ∈ B(ȳ, ε) = {y ∈ N , d(ȳ, y) < ε}.

7.2 Hamilton-Jacobi equations on a network

Given a Hamiltonian He on each edge e ∈ E , we consider the following HJ equation on the
network N ,

(7.3)

{

ut +He(t, x, ux) = 0 for t ∈ (0,+∞) and x ∈ e∗,
ut + FA(t, x, ux) = 0 for t ∈ (0,+∞) and x = n ∈ V

submitted to an initial condition

(7.4) u(0, x) = u0(x) for x ∈ N .

The limited flux functions FA associated with the Hamiltonians He are defined below. We
first make precise the meaning of ux in (7.3).

Gradients of real functions. For a real function u defined on the network N , we denote
by ∂eu(x) the (spatial) derivative of u at x ∈ e and define the “gradient” of u by

ux(x) :=

{

∂eu(x) if x ∈ e∗ = e \ (∂e),

((∂eu(x))e∈E−
n
, (∂eu(x))e∈E+

n
) if x = n ∈ V .

The norm |ux| simply denotes |∂eu| for x ∈ e∗ or max{|∂eu| : e ∈ En at the vertex x = n.

Limited flux functions. We also define for (t, x) ∈ R× ∂e,

H−
e (t, x, q) =

{

He(t, x, q) if q ≤ p0e(t, x),
He(t, x, p

0
e(t, x)) if q > p0e(t, x)

and

H+
e (t, x, q) =

{

He(t, x, p
0
e(t, x)) if q ≤ p0e(t, x),

He(t, x, q) if q > p0e(t, x).
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Given limiting functions (An)n∈V , we define for p = (pe)e∈En ,

FA(t, n, p) = max

(

An(t), max
e∈E−

n

H−
e (t, n, pe), max

e∈E+
n

H+
e (t, n,−pe)

)

.

In particular, for each n ∈ V, the functions FA(t, n, ·) are the same for all An(t) ∈
[−∞, A0

n(t)] with

(7.5) A0
n(t) := max

(

max
e∈E−

n

H−
e (t, n, p0e(t, n)), max

e∈E+
n

H+
e (t, n, p0e(t, n))

)

.

A shorthand notation. As in the junction case, we introduce
(7.6)

HN (t, x, p) =

{

He(t, x, p) for p ∈ R, t ∈ R, if x ∈ e∗,

FA(t, x, p) for p = (pe)e∈En ∈ RCard En , t ∈ R, if x = n ∈ V
in order to rewrite (7.3) as

(7.7) ut +HN (t, x, ux) = 0 for all (t, x) ∈ (0,+∞) ×N .

7.3 Assumptions on the Hamiltonians

For each e ∈ E , we consider a Hamiltonian He : [0,+∞) × e× R → R satisfying

• (H0) (Continuity) He ∈ C([0,+∞) × e× R).

• (H1) (Uniform coercivity) For all T > 0,

lim
|q|→+∞

He(t, x, q) = +∞

uniformly with respect to t ∈ [0, T ] and x ∈ e ⊂ N and e ⊂ N .

• (H2) (Uniform bound on the Hamiltonians for bounded gradients) For all T, L > 0,
there exists CT,L > 0 such that

sup
t∈[0,T ], p∈[−L,L],x∈N\V

|HN (t, x, p)| ≤ CT,L.

• (H3) (Uniform modulus of continuity for bounded gradients) For all T, L > 0, there
exists a modulus of continuity ωT,L such that for all |p|, |q| ≤ L, t ∈ [0, T ] and
x ∈ e ∈ E ,

|He(t, x, p) −He(t, x, q)| ≤ ωT,L(|p− q|).

• (H4) (Level-set convexity) For all n ∈ V, there exists a continuous function t 7→
p0e(t, n) such that

{

He(t, n, ·) is nonincreasing on (−∞, p0e(t, n)],

He(t, n, ·) is nondecreasing on [p0e(t, n),+∞).
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• (H5) (Uniform modulus of continuity in time) For all T > 0, there exists a modulus
of continuity ω̄T such that for all t, s ∈ [0, T ], p ∈ R, x ∈ e ∈ E ,

He(t, x, p) −He(s, x, p) ≤ ω̄T (|t− s|(1 + max(He(s, x, p), 0))) .

• (H6) (Uniform continuity of A0) For all T > 0, there exists a modulus of continuity
ω̄T such that for all t, s ∈ [0, T ] and n ∈ V,

|A0
n(t) − A0

n(s)| ≤ ω̄T (|t− s|).

As far as flux limiters are concerned, the following assumptions will be used.

• (A0) (Continuity of A) For all T > 0 and n ∈ V, An ∈ C([0, T ]).

• (A1) (Uniform bound on A) For all T > 0, there exists a constant CT > 0 such that
for all t ∈ [0, T ] and n ∈ V

|An(t)| ≤ CT .

• (A2) (Uniform continuity of A) For all T > 0, there exists a modulus of continuity
ω̄T such that for all t, s ∈ [0, T ] and n ∈ V,

|An(t) − An(s)| ≤ ω̄T (|t− s|).

The proof of the following technical lemma is postponed until appendix.

Lemma 7.2 (Estimate on the difference of Hamiltonians). Assume that the Hamiltonians
satisfy (H0)-(H4) and (A0)-(A1). Then for all T > 0, there exists a constant CT > 0 such
that

|p0e(t, x)| ≤ CT for all t ∈ [0, T ], x ∈ ∂e, e ∈ E ,(7.8)

|A0
n(t)| ≤ CT for all t ∈ [0, T ], n ∈ V.(7.9)

If we assume moreover (H5)-(H6) and (A2), then there exists a modulus of continuity ω̃T

such that for all t, s ∈ [0, T ], and x, p

(7.10) HN (t, x, p) −HN (s, x, p) ≤ ω̃T (|t− s|(1 + max(0, HN (s, x, p))).

Remark 7.3. The reader can check that Assumptions (H5)-(H6) and (A2) in the statement
of Theorem 7.8 can in fact be replaced with (7.10).

Remark 7.4 (Example of Hamiltonians with uniform modulus of time continuity). Condi-
tion on the uniform modulus of continuity in time in (H5)-(H6) is for instance satisfied by
Hamiltonians of the type for q > 0 and δ > 0 such that for all x ∈ e ∈ E we have

He(t, x, p) = ce(t, x)|p|q with 0 < δ ≤ ce(t, x) ≤ 1/δ

with ce uniformly continuous in time and continuous in space.
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7.4 Viscosity solutions on a network

Class of test functions. For T > 0, set NT = (0, T ) ×N . We define the class of test
functions on (0, T ) ×N by

C1(NT ) =
{

ϕ ∈ C(NT ), the restriction of ϕ to (0, T ) × e is C1, for all e ∈ E
}

.

Definition 7.5 (Viscosity solutions). Assume the Hamiltonians satisfy (H0)-(H4) and
(A0)-(A1) and let u : [0, T ) ×N → R.

i) We say that u is a sub-solution (resp. super-solution) of (1.7) in (0, T ) ×N if for all
test function ϕ ∈ C1(NT ) such that

u∗ ≤ ϕ (resp. u∗ ≥ ϕ) in a neighborhood of (t0, x0) ∈ NT

with equality at (t0, x0), we have

ϕt +HN (t, x, ϕx) ≤ 0 (resp. ≥ 0) at (t0, x0).

ii) We say that u is a sub-solution (resp. super-solution) of (1.7), (1.4) in [0, T ) × N if
additionally

u∗(0, x) ≤ u0(x) (resp. u∗(0, x) ≥ u0(x)) for all x ∈ N .

iii) We say that u is a (viscosity) solution if u is both a sub-solution and a super-solution.

Remark 7.6 (Touching sub-solutions with semi-concave functions). When proving the com-
parison principle in the network setting, sub-solutions (resp. super-solutions) will be
touched from above (resp. from below) by functions that will not be C1, but only semi-
concave (resp. semi-convex). We recall that a function is semi-concave if it is the sum of a
concave function and a smooth (C2 say) function. But it is a classical observation that, at
a point where a semi-concave function is not C1, we can replace the semi-concave function
by a C1 test function touching it from above.

As in the case of a junction (see Proposition 2.3), viscosity solutions are stable through
supremum/infimum. We also have the following existence result.

Theorem 7.7 (Existence on a network). Assume (H0)-(H4) and (A0)-(A1) on the Hamil-
tonians and assume that the initial data u0 is uniformly continuous on N . Let T > 0.
Then there exists a viscosity solution u of (7.7),(7.4) on [0, T )×N and a constant CT > 0
such that

|u(t, x) − u0(x)| ≤ CT for all (t, x) ∈ [0, T ) ×N .

Proof. The proof follows along the lines of the ones of Theorem 1.1. The main difference
lies in the construction of barriers. We proceed similarly and get a regularized initial data
uε0 satisfying

|uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε.
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Then the functions

(7.11) u±ε (t, x) = uε0(x) ± Cεt± ε

are global super and sub-solutions with respect to the initial data u0 if Cε is chosen as
follows,

(7.12) Cε = max

(

sup
t∈[0,T ]

sup
n∈V

|max(An(t), A0
n(t))|, sup

t∈[0,T ]

sup
e∈E

sup
x∈e, |pe|≤Lε

|He(t, x, pe)|
)

;

indeed, we use (7.9) in Lemma 7.2 to bound the first terms in (7.12).

7.5 Comparison principle on a network

Theorem 7.8 (Comparison principle on a network). Assume the Hamiltonians satisfy
(H0)-(H6) and (A0)-(A2) and assume that the initial data u0 is uniformly continuous
on N . Let T > 0. Then for all sub-solution u and super-solution w of (7.7), (7.4) in
[0, T ) ×N , satisfying for some CT > 0 and some x0 ∈ N
(7.13)
u(t, x) ≤ CT (1 + d(x0, x)), w(t, x) ≥ −CT (1 + d(x0, x)), for all (t, x) ∈ [0, T ) ×N ,

we have
u ≤ w on [0, T ) ×N .

As a straighforward corollary of Theorems 7.8 and 7.7, we get

Corollary 7.9 (Existence and uniqueness). Under the assumptions of Theorem 7.8, there
exits a unique viscosity solution u of (7.7), (7.4) in [0, T ) × N such that there exists a
constant C > 0 with

|u(t, x) − u0(x)| ≤ C for all (t, x) ∈ [0, T ) ×N .

In order to prove Theorem 7.8, we first need two technical lemmas that are proved in
appendix.

Lemma 7.10 (A priori control – the network case). Let T > 0 and let u be a sub-solution
and w be a super-solution as in Theorem 7.8. Then there exists a constant C = C(T ) > 0
such that for all (t, x), (s, y) ∈ [0, T ) ×N , we have

(7.14) u(t, x) ≤ w(s, y) + C(1 + d(x, y)).

Lemma 7.11 (Uniform control by the initial data). Under the assumptions of Theorem 7.8,
for any T > 0 and CT > 0, there exists a modulus of continuity f : [0, T ) → [0,+∞]
satisfying f(0+) = 0 such that for all sub-solution u (resp. super-solution w) of (7.7),
(7.4) on [0, T )×N , satisfying (7.13) for some x0 ∈ N , we have for all (t, x) ∈ [0, T )×N ,

(7.15) u(t, x) ≤ u0(x) + f(t) (resp. w(t, x) ≥ u0(x) − f(t)) .
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We can now turn to the proof of Theorem 7.8. The proof is similar the comparison
principle on a junction (Theorem 1.1). Still, a space localization procedure has to be
performed in order to “reduce” to the junction case. From a technical point of view, a
noticeable difference is that we will fix the time penalization (for some parameter ν small
enough), and then will first take the limit ε → 0 (ε being the parameter for the space
penalization), and then take the limit α → 0 (α being the penalizaton parameter to keep
the optimization points at a finite distance).

Proof of Theorem 7.8. Let η > 0 and θ > 0 and consider

M(θ) = sup

{

u(t, x) − w(s, x) − η

T − t
, x ∈ N , t, s ∈ [0, T ), |t− s| ≤ θ

}

.

We want to prove that
M = lim

θ→0
M(θ) ≤ 0.

Assume by contradiction that M > 0. From Lemma 7.10 we know that M is finite.

Step 1: The localization procedure. Let ψ denote d2(x0,·)
2

.

Lemma 7.12 (Localization). The supremum

Mα = sup
t,s∈[0,T ],t<T

x∈N

{

u(t, x) − w(s, x) − αψ(x) − η

T − t
− (t− s)2

2ν

}

is reached for some point (tα, sα, xα). Moreover, for α and ν small enough, we have the
following localization estimates

Mα ≥ 3M/4 > 0(7.16)

d(x0, xα) ≤ C√
α

(7.17)

0 < τν ≤ tα, sα ≤ T − η

2C
(7.18)

lim
ν→0

(

lim sup
α→0

(tα − sα)2

2ν

)

= 0(7.19)

where C is a constant which does not depend on α, ε, ν and η.

Proof of Lemma 7.12. Choosing α small enough, we have (7.16) for all ν > 0. Because
the network is complete for its metric, the supremum in the definition of Mα is reached at
some point (tα, sα, xα). From Lemma 7.10, we deduce that

0 <
3M

4
≤Mα ≤ C − αψ(xα) − η

T − tα
− (tα − sα)2

2ν
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and then

(7.20) αψ(xα) +
η

T − tα
+

(tα − sα)2

2ν
≤ C.

This implies (7.17) changing C if necessary.
On the one hand, we get from (7.20) the second inequality in (7.18) by choosing ν such

that
√

2νC ≤ η/2C. On the other hand, we get from Lemma 7.11

0 < Mα ≤ f(tα) + f(sα) − η

T
.

In particular,
η

T
≤ 2f(τ +

√
2νC)

where τ = min(tα, sα). If both τ and ν are too small, we get a contradiction. Hence the
first inequality in (7.18) holds for some constant τν depending on ν but not on α, ε and η.

We now turn to the proof of (7.19). We know that for any δ > 0, there exists θ(δ) > 0
(with θ(δ) → 0 as δ → 0) and (tδ, sδ, xδ) ∈ [0, T ) × [0, T ) ×N such that

u(tδ, xδ) − w(sδ, xδ) − η

T − tδ
≥M − δ and |tδ − sδ| ≤ θ(δ).

Then from (7.20) we deduce that

M(
√

2νC) − (tα − sα)2

2ν
≥Mα ≥M − δ − αψ(xδ) − |θ(δ)|2

2ν

and then

lim sup
α→0

(tα − sα)2

2ν
≤M(

√
2νC) −M + δ +

|θ(δ)|2
2ν

.

Taking the limit δ → 0, we get

lim sup
α→0

(tα − sα)2

2ν
≤M(

√
2νC) −M

which yields the desired result.

Step 2: Reduction when xα is a vertex. We adapt here Lemma 3.1.

Lemma 7.13 (Reduction). Assume that xα = n ∈ V. Without loss of generality, we can
assume that E+

n = ∅ and p0e(tα, xα) = 0 for each e ∈ En with n = xα.

Proof of Lemma 7.13. The orientation of the edges e ∈ En can be changed in order to
reduce to the case E+

n = ∅ In particular, for p = (pe)e∈En,

FA(t, n, p) = max

(

An(t), max
e∈E−

n

H−
e (t, n, pe)

)

.
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We can then argue as in Lemma 3.1. This means that we redefine the Hamiltonians (and
the flux limiter An) only locally for e ∈ En. Therefore we can assume that Using (7.8), we
can check that the new Hamiltonians (locally for e ∈ En) and An still satisfy (H0)-(H6)
and (A0)-(A2) (with the same modulus of continuity, and with some different controlled
constants CT,L). We also have (7.13) with some controlled different constants.

Step 3: The penalization procedure. We now consider for ε > 0 and γ ∈ (0, 1)

Mα,ε = sup
(t,x),(s,y)∈[0,T ]×B(xα,r)

t<T

{

u(t, x) − w(s, y) − αψ(x) − η

T − t

−(t− s)2

2ν
−Gα,γ

ε (x, y) − ϕα(t, s, x)

}

where the function ϕα

ϕα(t, s, x) =
1

2

(

|t− tα|2 + |s− sα|2 + d2(x, xα)
)

will help us to localize the problem around (tα, sα, xα), and B(xα, r) is the open ball of
radius r = r(α) > 0 centered at xα; besides, we choose r ∈ (0, 1) small enough such that
B(xα, r) ⊂ e if xα ∈ e \ V. Lemma A.2 ensures that ψ and ϕα are semi-concave and
therefore can be used as test functions, see Remark 7.6.

We choose
Gα,γ

ε (x, y) = εGα,γ(ε−1x, ε−1y)

with

Gα,γ(x, y) =







(x− y)2

2
if xα ∈ N \ V,

Gxα,γ(x, y) if xα ∈ V,
where Gxα,γ ≥ 0 is the vertex test function of parameter γ > 0 given by Theorem 3.2, built
on the junction problem associated to the vertex xα at time tα, i.e. associated to junction
problem for the Hamiltonian H tα,xα

V given by

(7.21) H tα,n
V (x, p) :=

{

He(tα, n, p) if x ∈ e \ {n} with e ∈ En,
FA(tα, n, p) if x = n.

The supremum in the definition of Mα,ε is reached at some point (t, x), (s, y) ∈ [0, T ] ×
B(xα, r) with t < T . These maximizers satisfy the following penalization estimates.

Lemma 7.14 (Penalization). For ε ∈ (0, 1) and γ ∈ (0,M/4), we have

Mα,ε ≥Mα − εγ ≥ M/2 > 0(7.22)

d(x, y) ≤ ω(ε)(7.23)

0 < τν ≤ s, t ≤ T − ση
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for some modulus of continuity ω (depending on α and γ) and τν and ση not depending on
(ε, γ). Moreover,

(t, s, x, y) → (tα, sα, xα, xα) as (ε, γ) → (0, 0).

In particular, we have x, y ∈ B(xα, r) for ε, γ > 0 small enough.

Proof of Lemma 7.14. For all ε, ν > 0, the compatibility on the diagonal (3.3) of the vertex
test function Gxα,γ yields the first inequality in (7.22). Then for ε ∈ (0, 1], with a choice
of γ such that 0 < γ < M/4, we have the second one.

Bound on d(x, y). Remark that

εg

(

d(x, y)

ε

)

≤ Gxα,γ
ε (x, y)

where

g(a) =







a2

2
if xα ∈ N \ V,

gxα,γ(a) if xα ∈ V,
and where gxα,γ is the superlinear function associated to Gxα,γ and given by Theorem 3.2.
Thanks to Lemma 7.10, we deduce that

(7.24)
0 < M/2 ≤ C(1 + d(x, y)) −Gα,γ

ε (x, y) − (t− s)2

2ν
− η

T − t
− αψ(x)

≤ C(1 + d(x, y)) − εg

(

d(x, y)

ε

)

− (t− s)2

2ν
− η

T − t
− αψ(x)

which implies in particular that

εg

(

d(x, y)

ε

)

≤ C(1 + d(x, y)).

This gives (7.23) as in Step 1 of the proof of Theorem 1.1.

First time estimate. From (7.24) with Gα,γ
ε ≥ 0 and (7.23), we deduce in particular

that for ε ∈ (0, 1]

0 < M/2 ≤ C ′ − (t− s)2

2ν
− η

T − t
.

This implies in particular that

(7.25) T − t ≥ η

C ′
, T − s ≥ η

C ′
−

√
2νC ′ ≥ η

2C ′
=: ση > 0

for ν > 0 small enough, and up to redefine ση for the new constant C ′ ≥ C.
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Second time estimate. From Lemma 7.11, we have with

0 < M/2 ≤ f(t) + f(s) + u0(x) − u0(y) − η
T
− (t−s)2

2ν

≤ f(t) + f(s) + ω0 ◦ ω(ε) − η

T
− (t− s)2

2ν
where ω0 is the modulus of continuity of u0. Let us choose ε > 0 small enough such that

(7.26) ω0 ◦ ω(ε) ≤ M

2
.

As in the proof of Lemma 7.12, for τ = min(t, s), we get
η

T
≤ 2f(τ +

√
2νC ′).

For ν small enough (with η fixed), we then get a contradiction if τ does not converge to 0
as ν does.

Convergence of maximizers. Because of (7.22) and using the fact that Gα,γ
ε ≥ 0, we

get for ε ∈ (0, 1]

Mα − γ ≤Mα,ε ≤ u(t, x) − w(s, y) − αψ(x) − η

T − t
− (t− s)2

2ν
− ϕα(t, s, x).

Extracting a subsequence if needed, we can assume

(t, x, s, y) → (t̄, x̄, s̄, x̄) as (ε, γ) → (0, 0)

for some t̄, s̄ ∈ [τν , T − ση], x̄ ∈ B(xα, r). We get

Mα ≤ u(t̄, x̄) − w(s̄, x̄) − αψ(x̄) − η

T − t̄
− (t̄− s̄)2

2ν
− ϕα(t̄, s̄, x̄) ≤Mα − ϕα(t̄, s̄, x̄)

which implies that (t̄, s̄, x̄) = (tα, sα, xα).

Step 4: Viscosity inequalities. Then we can write the viscosity inequalities at (t, x)
and (s, y) using the shorthand notation (7.6),

η

(T − t)2
+
t− s

ν
+ (t− tα) +HN (t, x, pα,γ,εx + αψx(x) + ϕα

x(t, s, x)) ≤ 0(7.27)

t− s

ν
− (s− sα) +HN (s, y, pα,γ,εy ) ≥ 0

where
{

pα,γ,εx = Gα,γ
x (ε−1x, ε−1y),

pα,γ,εy = −Gα,γ
y (ε−1x, ε−1y).

We choose ε, γ small enough such that (Lemma 7.14) we have

|t− tα|, |s− sα| ≤ η

4T 2
.

Substracting the two viscosity inequalities, we get

(7.28)
η

2T 2
≤ HN (s, y, pα,γ,εy ) −HN (t, x, pα,γ,εx + αψx(x) + ϕα

x(t, s, x)).
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Step 5: Gradient estimates. We deduce from (7.27) that

p̃α,γ,εx = pα,γ,εx + αψx(x) + ϕα
x(t, s, x)

satisfies

(7.29) HN (t, x, p̃α,γ,εx ) ≤ s− t

ν
+ tα − t ≤ T

ν
+ T.

Hence (H1) implies that there exists a constant C ′
ν (independent of α, ε, γ, but depending

on η, ν) such that

{

|p̃α,γ,εx | ≤ C ′
ν if x 6= xα or xα /∈ V,

p̃α,γ,εx ≥ −C ′
ν if x = xα and xα ∈ V.

From (7.17), we deduce that

(7.30) |αψx(x) + ϕα
x(t, s, x)| ≤ C

√
α + d(x, xα) ≤ C

for α ≤ 1 (using (7.17)). Therefore, we have for some constant Cν (independent of α, ε,
γ):

{

|pα,γ,εx | ≤ Cν if x 6= xα or xα /∈ V,
pα,γ,εx ≥ −Cν if x = xα and xα ∈ V.

From the compatibility condition of the Hamiltonians satisfied by Gα,γ if xα ∈ V, or the
definition of Gα,γ if xα /∈ V, we have in both cases,

(7.31) H tα,xα(y, pα,γ,εy ) ≤ H tα,xα(x, pα,γ,εx ) + γ

where

H tα,xα(x, p) =

{

H tα,n
V (x, p) if xα = n ∈ V,

He(tα, xα, p) if xα /∈ V, xα ∈ e∗.

We deduce that pα,γ,εy satisfies (modifying Cν if necessary)

{

|pα,γ,εy | ≤ Cν if y 6= xα or xα /∈ V,
pα,γ,εy ≥ −Cν if y = xα and xα ∈ V.

Defining for z = x, y,

p̄α,γ,εz =

{

(min (K, (pα,γ,εz )z̃))z̃∈xα
if z = xα and xα ∈ V

pα,γ,εz if not.

with, in the case where xα ∈ V, the constant K given by

K = max
e∈Exα

(p0e(s, xα), p0e(tα, xα), p0e(t, xα) + C)) ≤ CT + C
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(C comes from (7.30) and CT from (7.8)), we have

|p̄α,γ,εz | ≤ Cν + CT + C =: Cν,T

and
η

2T 2
≤ HN (s, y, p̄α,γ,εy ) −HN (t, x, p̄α,γ,εx + αψx(x) + ϕα

x(t, s, x)),(7.32)

HN (t, x, p̄α,γ,εx + αψx(x) + ϕα
x(t, s, x)) ≤ s− t

ν
+ tα − t ≤ T

ν
+ T,(7.33)

H tα,xα(y, p̄α,γ,εy ) ≤ H tα,xα(x, p̄α,γ,εx ) + γ.(7.34)

Step 6: The limit (ε, γ) → (0, 0) and conclusion as α→ 0. Up to a subsequence, we
get in the limit (ε, γ) → (0, 0) for z = x, y:

p̄α,γ,εz → p̄αz with |p̄αz | ≤ Cν,T .

Moreover, passing to the limit in (7.32) and (7.33), we get respectively

η

2T 2
≤ HN (sα, xα, p̄

α
y ) −HN (tα, xα, p̄

α
x + αψx(xα))

and

HN (tα, xα, p̄
α
x + αψx(xα)) ≤ sα − tα

ν
≤ T

ν
.

On the other hand, passing to the limit in (7.34) gives

H tα,xα(xα, p̄
α
y ) ≤ H tα,xα(xα, p̄

α
x).

Because
HN (tα, xα, p) = H tα,xα(xα, p)

we get for any p,
η

2T 2
≤ I1 + I2

with

I1 = HN (sα, xα, p̄
α
x) −HN (sα, xα, p̄

α
x + αψx(xα)),

I2 = HN (sα, xα, p̄
α
x + αψx(xα)) −HN (tα, xα, p̄

α
x + αψx(xα)).

Thanks to (H3) and (7.17), we have |αψx(xα)| ≤ Cν,T and we thus get

(7.35) I1 ≤ ωT,2Cν,T
(αψx(xα)) ≤ ωT,2Cν

(C
√
α).

Now thanks to Lemma 7.2, we also have

I2 ≤ ω̃T (|tα − sα|(1 + max(HN (tα, xα, p̄
α
x + αψx(xα)), 0)))

≤ ω̃T (|tα − sα|(1 + max(
sα − tα
ν

, 0))).

Then taking first the limit α → 0 and then taking the limit ν → 0, we use (7.19) to get
the desired contradiction. This achieves the proof of Theorem 7.8.
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8 Third application: a homogenization result for a

network

In this section, we present an application of the comparison principle of viscosity sub- and
super-solutions on networks.

8.1 A homogenization problem

We consider the simplest periodic network generated by εZd. Hence, the network is nat-
urally embedded in R

d. Let us be more precise now. At scale ε = 1, the edges are the
following subsets of Rd: for k, l ∈ Zd, |k − l| = 1,

ek,l = {θk + (1 − θ)l : θ ∈ [0, 1]}.
If (e1, . . . , ed) denotes the canonical basis of Rd, then for l = k + ei, ek,l is oriented in the
direction of ei. The network Nε at scale ε > 0 is the one corresponding to

{

Eε = {εek,l, k, l ∈ Zd, |k − l| = 1}
Vε = εZd

endowed with the metric induced by the Euclidian norm. We next consider the following
“oscillating” Hamilton-Jacobi equation on this network

(8.1)

{

uεt +H e
ε
(uεx) = 0, t > 0, x ∈ e∗, e ∈ Eε,

uεt + FA(x
ε
, uεx) = 0, t > 0, x ∈ Vε

(for some A ∈ R) submitted to the initial condition

(8.2) uε(0, x) = u0(x), x ∈ Nε.

For m ∈ Zd, it is convenient to define

εek,l + εm = εek+m,l+m.

Assumptions on H for the homogenization problem For each e ∈ N1, we associate
a Hamiltonian He and we assume

• (H’0) (Continuity) For all e ∈ E1, He ∈ C(R).

• (H’1) (Coercivity) e ∈ E1,
lim inf
|q|→+∞

He(q) = +∞.

• (H’2) (Level-set convexity) For all e ∈ E1, there exists a p0e ∈ R such that
{

He is nonincreasing on (−∞, p0e],

He is nondecreasing on [p0e,+∞).

• (H’3) (Periodicity) For all m ∈ Zd, He+m(p) = He(p).
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A homogenization result The goal of this section is to prove the following convergence
result for the oscillating Hamilton-Jacobi equation.

Theorem 8.1. Assume (H’0)-(H’3). Let u0 be Lipschitz continuous and uε be the solution
of (8.1)-(8.2). There exists a continuous function H̄ : Rd → R such that uε converges
locally uniformly towards the unique solution u0 of

u0t + H̄(∇xu
0) = 0, t > 0, x ∈ R

d(8.3)

ū0(0, x) = u0(x), x ∈ R
d.(8.4)

Remark 8.2. The meaning of the convergence uε towards u0 is

lim
(s,y)→(t,x)

y∈Nε

uε(s, y) = u0(t, x).

8.2 The cell problem

Keeping in mind the definitions of networks and derivatives of functions defined on net-
works, solving the cell problem consists in finding specific global solutions of (8.1) for ε = 1,
i.e.

(8.5)

{

wt +He(wy) = 0, t ∈ R, y ∈ e∗, e ∈ E1,
wt + FA(y, wy) = 0, t ∈ R, y ∈ V1.

Precisely, for some P ∈ Rd, we look for solutions w(t, y) = λt + P · y + v(y) with a
Z
d-periodic function v; in other words, we look for (λ, v) such that

(8.6)

{

λ+He((P · y + v)y) = 0, y ∈ e∗, e ∈ E1,
λ+ FA(y, (P · y + v)y) = 0, y ∈ V1.

Theorem 8.3. For all P ∈ Rd there exists λ ∈ R and a Zd-periodic solution v of (8.6).
Moreover, the function H̄ which maps P to −λ is continuous.

Proof. We consider the following Zd-periodic stationary problem

(8.7)

{

αvα +He((P · y + vα)y) = 0, y ∈ e∗, e ∈ E1,
αvα + FA(y, (P · y + vα)y) = 0, y ∈ V1.

We consider
C = max

e∈E1
|He((P · y)y)|.

Then the existence result and the comparison principle for the stationary equation (see
Appendix B) imply that there exists a (unique) Zd-periodic solution vα of (8.7) such that

|αvα| ≤ C.
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Since He is coercive, this implies that there exists a constant C̃ such that for all α > 0, vα
is Lipschitz-continuous and

|vαy | ≤ C̃;

in other words, the family (vα)α>0 is equi-Lipschitz continuous. We then consider

ṽα = vα − vα(0).

By Arzelà-Ascoli theorem, there exists αn → 0 such that ṽn := ṽαn
converges uniformly

towards v. Moreover, we can also assume that

αnvαn
(0) → λ.

Passing to the limit into the equation yields that (λ, v) solves the cell problem (8.6).
The continuity of λ is completely classical too. Consider Pn → P∞ as n → ∞ and

consider (λn, vn) solving (8.6). We proved above that

|λn| ≤ C.

Hence, arguing as above, we can extract a subsequence from (λn, vn) converging towards
(λ∞, v∞). Passing to the limit into the equation implies that (λ∞, v∞) solves the cell
problem (8.6). The uniqueness of λ yields the continuity of H̄ . The proof is now complete.

8.3 Proof of convergence

Before proving the convergence, we state without proof the following elementary lemma.

Lemma 8.4 (Barriers). There exists C > 0 such that for all ε > 0,

|uε(t, x) − u0(x)| ≤ Ct.

We can now turn to the proof of convergence.

Proof of Theorem 8.1. We classically consider the relaxed semi-limits







u(t, x) = lim supε→0,(s,y)→(t,x)

y∈Nε

uε(s, y),

u(t, x) = lim infε→0,(s,y)→(t,x)

y∈Nε

uε(s, y).

In order to prove convergence of uε towards u0, it is enough to prove that u is a sub-solution
of (8.3) and u is a super-solution of (8.3). We only prove that u is a sub-solution since the
proof for u is very similar.

We consider a test function ϕ touching (strictly) u from above at (t0, x0): there exists
r0 > 0 such that for all (t, x) ∈ Br0(t0, x0), (t, x) 6= (t0, x0),

ϕ(t, x) > u(t, x)
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and ϕ(t0, x0) = u(t0, x0). We argue by contradiction by assuming that there exists θ > 0
such that

(8.8) ∂tϕ(t0, x0) − λ = ∂tϕ(t0, x0) + H̄(∇xϕ(t0, x0)) = θ > 0.

We then consider the following “perturbed test” function ϕε : R+ ×Nε → R [12],

ϕε(t, x) = ϕ(t, x) + εv(ε−1x)

where (λ, v) solves the cell problem (8.6) for P = ∇xϕ(t0, x0).

Lemma 8.5. For r ≤ r0 small enough, the function ϕε is a super-solution of (8.1) in
B((t0, x0), r) ⊂ Nε and ϕε ≥ uε + ηr in ∂B(t0, x0), r) for some ηr > 0.

Proof. Consider a test function ψ touching ϕε from below at (t, x) ∈]0,+∞[×Nε. Then
the function

ψε(s, y) = ε−1(ψ(s, εy) − ϕ(s, εy))

touches v from below at y = x
ε
∈ e. In particular,

∂tψ(t, x) = ∂tϕ(t, x),(8.9)

λ+ HN1(y, ϕx(t0, x0) + ψx(t, x) − ϕx(t, x)) ≥ 0.(8.10)

Combine now (8.8), (8.9) and (8.10) and get

∂tψ(t, x) +HN1(y, ψx(t, x)) ≥ θ + E

where

E = (ϕt(t, x) − ϕt(t0, x0)) + (HN1(y, ψx(t, x)) −HN1(y, ψx(t, x) + ϕx(t0, x0) − ϕx(t, x))).

The fact that ϕ is C1 implies that we can choose r > 0 small enough so that for all
(t, x) ∈ B((t0, x0), r),

E ≥ −θ.
Moreover, since ϕ is strictly above u, we conclude that ϕε ≥ uε + ηr on ∂B((t0, x0), r) for
some ηr > 0. This achieves the proof of the lemma.

From the lemma, we deduce thanks to the (localized) comparison principle that

ϕε(t, x) ≥ uε(t, x) + ηr.

In particular, this implies

u(t0, x0) = ϕ(t0, x0) ≥ u(t0, x0) + ηr > u(t0, x0)

which is the desired contradiction.
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8.4 Qualitative properties of the effective Hamiltonian

Proposition 8.6. If for all e ∈ E1, p 7→ He(p) is convex, then so is H̄ : Rd → R.

This proposition is a simple consequence of (8.11) which is a classical characterization
of λ if (λ, v) solves the cell problem.

Proposition 8.7. Let (λ, v) be a solution of the cell problem (8.6). Then

λ = inf{λ : ∃ a Z
d-periodic super-solution v of (8.6) with λ = λ},

λ = sup{λ : ∃ a Z
d-periodic sub-solution v of (8.6) with λ = λ}.(8.11)

9 Remarks for schemes on the real line (two branches)

9.1 Recalling the framework

We consider two C1 Hamiltonians H1, H2 satisfying the level-set convexity condition (1.5),
and consider a solution u(t, x) of

(9.1)







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0),
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞),
ut + F̌ (ux(t, 0−), ux(t, 0+)) = 0 for (t, x) ∈ (0,+∞) × {0}

with
(9.2)






























F̌ : R2 → R is Lipschitz continuous on bounded sets,

F̌ (p1, p2) is nonincreasing in p2 and nondecreasing in p1,

there exists a constant K ∈ R, and reals pK1 , p
K
2 such that F̌ (p1, p2) ≤ K =⇒

{

p2 ≥ pK2 ,
p1 ≤ pK1

We also assume that

(9.3) u(0, x) = u0(x) for x ∈ R

with u0 globally Lipschitz continuous such that there exists two constants La ≤ Lb with

(9.4) Lah ≤ u0(x + h) − u0(x) ≤ Lbh, for all h ≥ 0, x ∈ R

Considering

ũ(t, x) =

{

u(t,−x) if x ∈ J1,
u(t, x) if x ∈ J2,
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we will say that u is a relaxed viscosity solution of (9.1), (9.3), if ũ is a relaxed viscosity
solution of the associated PDE that it satisfies. We recall that each Hamiltonian Hα is
minimal in p0α and recall that we set

A0 := max
α=1,2

Hα(p0α)

Following Proposition 2.5, if F̌ (p01, p
0
2) < A0, then we set

A = A0

and if F̌ (p01, p
0
2) ≥ A0, we define A ≥ A0 as the unique real such that there exists p2 ≥ p02

and p1 ≤ p01 such that
A = H1(p1) = H2(p2) = F̌ (p1, p2).

Then rephrasing Proposition 2.5, we know that u is a viscosity solution with the same
initial data (9.3) and solves

(9.5)







ut +H1(ux) = 0 for (t, x) ∈ (0,+∞) × (−∞, 0),
ut +H2(ux) = 0 for (t, x) ∈ (0,+∞) × (0,+∞),
ut + F̌A(ux(t, 0−), ux(t, 0+)) = 0 for (t, x) ∈ (0,+∞) × {0}

where we recall that
F̌A(q1, q2) = max(A,H+

1 (q1), H
−
2 (q2))

where we recall that

H−
α (q) =

{

Hα(q) if q < p0α,
Hα(p0α) if q ≤ p0α

and H+
α (q) =

{

Hα(p0α) if q ≤ p0α,
Hα(q) if q > p0α.

9.2 The scheme

We now consider an approximation Un
i of u(n∆t, i∆x) for some time step and space step

∆t,∆x > 0, which has the following initial data

(9.6) U0
i = u0(i∆x) for i ∈ Z

We set

pni,+ =
Un
i+1 − Un

i

∆x
, pni,− =

Un
i − Un

i−1

∆x

and assume that (Un
i )n,i solves the following scheme for n ≥ 0:

(9.7)
Un+1
i − Un

i

∆t
=























−max
(

H−
2 (pni,+), H+

2 (pni,−)
)

, for i ≥ 1,

−max
(

H−
1 (pni,+), H+

1 (pni,−)
)

, for i ≤ −1,

−F̌ (pni,−, p
n
i,+) for i = 0,
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We now define

m0
0 = min

(

inf
α=1,2; p∈[La,Lb]

−Hα(p), min
(p1,p2)∈[La,Lb]

2
−F̌ (p1, p2)

)

and for α = 1, 2
{

p0,+α = (H+
α )−1(−m0

0),
p0,−α = (H−

α )−1(−m0
0)

We set (with the notation of (9.2))



















p01 = max(p
−m0

0
1 , p0,+1 )

p02 = p0,+2

p0
1

= p0,−1

p0
1

= min(p
−m0

0
2 , p0,−2 )

Because F̌ is Lipschitz continuous on bounded sets, and because of the monotonicity of F̌ ,
we deduce that there exists L+, L− ≥ 0 such that
(9.8)

F̌ (q1, q2)−F̌ (p1, p2) ≥ L+ min(0, p2−q2)−L− max(0, p1−q1), for all (p1, p2), (q1, q2) ∈
[

p0
1
, p01

]

×
[

p0
2
, p02

We consider the following CFL condition

(9.9)
∆x

∆t
≥ max(L+ + L−, max

α=1,2
max

pα∈[p0
α
,p0α]

|H ′
α(pα)|)

Theorem 9.1 (Convergence of the scheme). Under the previous assumptions, let

ε = (∆t,∆x)

and let us define

(9.10) uε(n∆t, i∆x) = Un
i

Then uε does converge locally uniformly to the unique solution u of (9.5) with initial data
(9.3).

Proof.
Step 1: infj∈ZW

n
j is nondecreasing in n

The only change with respect to the proof in [11] is to take into account the general junction
condition F̌ for i = 0. Setting

W n
i =

Un+1
i − Un

i

∆t
,
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we get for i = 0

W n+1
i −W n

i

∆t
=

1

∆t

(

F̌ (pni,−, p
n
i,+) − F̌ (pn+1

i,− , pn+1
i,+ )

)

≥ 1

∆t

(

L+ min(0, pn+1
i,+ − pni,+) − L− max(0, pn+1

i,− − pni,−)
)

=
1

∆x

(

L+ min(0,W n
i+1 −W n

i ) − L− max(0,W n
i −W n

i−1)
)

i.e. for i = 0

W n+1
i ≥ W n

i +
∆t

∆x

(

L+ min(0,W n
i+1 −W n

i ) − L− max(0,W n
i −W n

i−1)
)

≥ inf
j∈Z

W n
j

if
∆t

∆x
(L+ + L−) ≤ 1

Step 2: Bound on the gradients
If we know that for n ≥ 0:

(9.11) W n
i ≥ m0

0

For i 6= 0, we deduce that

p0,−α ≤ pni,+ with

{

α = 2 if i ≥ 1,
α = 1 if i ≤ −1

and

pni,− ≤ p0,+α with

{

α = 2 if i ≥ 1,
α = 1 if i ≤ −1

This gives in particular:
p0,−1 ≤ pn−1,+, pn0,+ ≤ p0,+2

To get the missing bounds on pn−1,+ and pn0,+, we simply notice that for i = 0, we deduce
from (9.11) that

−F̌ (pn−1,+, p
n
0,+) ≥ m0

0

From the third line of (9.2), we deduce that

pn−1,+ ≤ p
−m0

0
1 , pn0,+ ≥ p

−m0
0

2

This implies in particular that

(9.12)















pni,+ ∈
[

p0
2
, p02

]

for i ≥ 0,

pni,+ ∈
[

p0
1
, p01

]

for i ≤ −1
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Step 3: convergence. Proceeding as in [11], we can show that we have both the bound
from below on the discrete time derivative (9.11) and the gradient bounds (9.12). From
the scheme, we deduce that the discrete time derivative is bounded, uniformly with respect
to ε = (∆t,∆x) → (0, 0). We also easily deduce that any Lipschitz continuous limit u of
uε (defined in (9.10)) as ε → (0, 0) is a relaxed viscosity solution of (9.1) with initial data
(9.3). Because we also know that u is a F̌A-solution (i.e. solution of (9.5)), we deduce from
the uniqueness that u is unique. We also deduce that this u would have been obtained
more easily with a similar scheme with F̌ replaced by F̌A.

9.3 Application to schemes for conservation laws

We can consider the discrete space derivative of the scheme (9.7). Let us call

ρni = pni,+

Then (ρni )n,i solves the following scheme for n ≥ 0

(9.13)
ρn+1
i − ρni

∆t
=







































g2(ρ
n
i−1, ρ

n
i ) − g2(ρ

n
i , ρ

n
i+1), for i ≥ 1,

g1(ρ
n
i−1, ρ

n
i ) − g1(ρ

n
i , ρ

n
i+1), for i ≤ −2,

g1(ρ
n
i−1, ρ

n
i ) − F̌ (ρni , ρ

n
i+1), for i = −1,

F̌ (ρni−1, ρ
n
i ) − g2(ρ

n
i , ρ

n
i+1), for i = 0

with for α = 1, 2
gα(a, b) = max

(

H−
α (b), H+

α (a)
)

with initial data

(9.14) ρ0i =
u0((i+ 1)∆x) − u0(i∆x)

∆x

As a by-product of Theorem 9.1, we deduce that the numerical solution ρni converges
to the function ux in particular in the sense of distributions (where u is the limit solu-
tion associated to the Hamilton-Jacobi scheme (9.7), given in Theorem 9.1), for a general
junction condition F̌ satisfying (9.2) (which is not standard).

A Appendix: proofs of some technical results

A.1 Technical results on a junction

In order to prove Lemma 3.3, we need the following one.
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Lemma A.1 (A priori control at the same time). Let T > 0 and let u be a sub-solution
and w be a super-solution as in Theorem 1.1. Then there exists a constant CT > 0 such
that for all t ∈ [0, T ), x, y ∈ J , we have

(A.1) u(t, x) ≤ w(t, y) + CT (1 + d(x, y)).

We first derive Lemma 3.3 from Lemma A.1.

Proof of Lemma 3.3. Let us fix some ε > 0 and let us consider the sub-solution u−ε and
super-solutions u+ε defined in (2.18). Using (2.17), we see that we have for all (t, x), (s, y) ∈
[0, T ) × J

(A.2) u+ε (t, x) − u−ε (s, y) ≤ 2CεT + 2ε+ Lεd(x, y)

We first apply Lemma A.1 to control u(t, x) − u+ε (t, x), and then apply Lemma A.1 to
control u−ε (s, y) − w(s, y). Finally we get the control on u(t, x) − w(s, y), using (A.2).

We now turn to the proof of Lemma A.1.

Proof of Lemma A.1. Let us define

ϕ(x, y) =
√

1 + d2(x, y).

Then ϕ ∈ C1(J2) and satisfies

(A.3) |ϕx(x, y)|, |ϕy(x, y)| ≤ 1.

For constants C1, C2 > 0 to be chosen, let us consider

M = sup
t∈[0,T ), x,y∈J

(u(t, x) − w(t, y) − C2t− C1ϕ(x, y)) .

The result follows if we show that M is non-positive for C1 and C2 large enough. Assume
by contradiction that M > 0 for any C1 and C2. Then for η, α > 0 small enough, we have
Mα,η ≥M/2 > 0 with

(A.4) Mη,α = sup
t∈[0,T ), x,y∈J

(

u(t, x) − w(t, y) − C2t− C1ϕ(x, y) − η

T − t
− α

d2(x0, x)

2

)

.

From (1.12), we have

0 <
M

2
≤ CT (2 + d(0, x) + d(0, y)) − C2t− C1ϕ(x, y) − η

T − t
− α

d2(x0, x)

2

which shows that the supremum in (A.4) is reached at a point (t, x, y), assuming C1 > CT .
Moreover, we have (for 0 < α ≤ 1)

(A.5) αd(0, x) ≤ C = C(CT ).
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From the uniform continuity of the initial data u0, there exists a constant C0 > 0 such that

u0(x) − u0(y) ≤ C0ϕ(x, y)

and therefore t > 0, assuming C1 > C0. Then the classical time penalization (or doubling
variable technique) implies the existence of a, b ∈ R (that play the role of ut and vt) such
that we have the following viscosity inequalities

{

a+H (x, C1ϕx(x, y) + αd(x0, x)) ≤ 0,
b+H(y,−C1ϕy(x, y)) ≥ 0

(using the shorthand notation (3.1) and writing αd(x0, x) for α (d2(x0, x)/2)x for the pur-
poses of notation) with a− b = C2 + η(T − t)−2. Substracting these inequalities yields

(A.6) C2 +
η

(T − t)2
≤ H(y,−C1ϕy(x, y)) −H (x, C1ϕx(x, y) + αd(0, x)) .

Using bounds (A.3) and (A.5), this yields a contradiction in (A.6) for C2 large enough.

A.2 Technical results on a network

Proof of Lemma 7.2

Proof of Lemma 7.2. (H1) and (H2) imply the uniform boundedness of the p0e(t, x), i.e.
(7.8). We also notice that because of (7.8), there exists a constant C0 > 0 such that for all
t ∈ [0, T ], e ∈ E and n ∈ ∂e,

(A.7) |He(t, n, p
0
e(t, n))| ≤ C0

from which (7.9) is easily derived.
We now turn to the proof of (7.10). In view of the definition of FA and (A2), (H5), we

see that it is enough to prove that for all for n ∈ V, t, s ∈ [0, T ], p = (pe)e∈En ∈ RCard En ,
x ∈ V,

(A.8) A0
n(t, p) − A0

n(s, p) ≤ ω̃T

(

|t− s|(1 + max(0, A0
n(s, p)))

)

.

where
A0

n(t, p) = max
e∈E−

n

H−
e (t, n, pe) ≥ A0

n(t)

or
A0

n(t, p) = max
e∈E+

n

H+
e (t, n, pe) ≥ A0

n(t).

We only treat the first case, since the second case reduces to the first one by a simple
change of orientation of the network.

We have
A0

n(a, p) = H−
ea(a, x, pea) for a = t, s.
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Let us assume that we have (otherwise there is nothing to prove)

0 ≤ I(t, s) := A0
n(t, p) −A0

n(s, p).

We also have
H−

es(t, n, pes) ≤ A0
n(t, p) = H−

et(t, n, pet)

and
H−

et(s, n, pet) ≤ A0
n(s, p) = H−

es(s, n, pes).

We now distinguish three cases.

Case 1: H−
et(s, n, pet) < Het(s, n, pet). We first note that

(A.9) 0 ≤ I(t, s) ≤ A0
n(t, p) − A0

n(s).

Let us define

τ =

{

inf
{

σ ∈ [t, s], H−
et(σ, n, pet) < Het(σ, n, pet)

}

if t < s,
sup

{

σ ∈ [s, t], H−
et(σ, n, pet) < Het(σ, n, pet)

}

if t ≥ s.

Let us consider a optimizing sequence σk → τ such that

H−
et(σk, n, pet) < Het(σk, n, pet).

Then we have

H−
et(σk, n, pet) = Het(σk, n, p

0
et(σk, n)) ≤ A0

n(σk) ≤ A0
n(σk, p).

Then passing to the limit k → +∞, we get

(A.10) H−
et(τ, n, pet) = Het(τ, n, p

0
et(τ, n)) ≤ A0

n(τ) ≤ A0
n(τ, p).

If τ = t, then (A.10) implies that A0
n(t, p) = A0

n(t) (keeping in mind the definition of pet).

Subcase 1.1: τ 6= t. This shows that

Het(τ, n, pet) ≤ A0
n(τ) and Het(t, n, pet) ≥ A0

n(t).

We now choose some τ̄ in between t and τ such that

Het(τ̄ , n, pet) = A0
n(τ̄)

and estimate, using (A.9) and (A.7) and (H5)-(H6),

0 ≤ I(t, s) ≤ {A0
n(t, p) −Het(τ̄ , n, pet)} + {A0

n(τ̄ ) − A0
n(s)}

≤ {Het(t, n, pet) −Het(τ̄ , n, pet)} + {A0
n(τ̄) − A0

n(s)}
≤ ω̄T (|t− τ̄ |(1 + max(A0

n(τ̄), 0))) + ω̄T (|τ̄ − s|)
≤ ω̄T (|t− s|(1 + C0)) + ω̄T (|t− s|).

Subcase 1.2: τ = t. Then A0
n(t, p) = A0

n(t). Using (A.9), this gives directly

0 ≤ I(t, s) ≤ A0
n(t) − A0

n(s) ≤ ω̄T (|t− s|).
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Case 2: H−
et(s, n, pet) = Het(s, n, pet) and H−

et(t, n, pet) = Het(t, n, pet). We have

0 ≤ I(t, s) = H−
et(t, n, pet) − A0

n(s, p)
≤ H−

et(t, n, pet) −H−
et(s, n, pet)

= Het(t, n, pet) −Het(s, n, pet)
≤ ω̄T (|t− s|(1 + max(Het(s, n, pet), 0)))
≤ ω̄T (|t− s|(1 + max(H−

et(s, n, pet), 0)))
≤ ω̄T (|t− s|(1 + max(An

0 (s, p), 0))).

Case 3: H−
et(s, n, pet) = Het(s, n, pet) and H−

et(t, n, pet) < Het(t, n, pet). Then

p0et(t, n) < pet ≤ p0et(s, n).

Because of (A.7) and the uniform bound on the Hamiltonians for bounded gradients, (H2),
we deduce that

Het(s, n, pet) ≤ C1

for some constant C1 > 0 only depending on our assumptions. Therefore, we have

0 ≤ I(t, s) = H−
et(t, n, pet) − A0

n(s, p)
≤ H−

et(t, n, pet) −H−
et(s, n, pet)

< Het(t, n, pet) −Het(s, n, pet)
≤ ω̄T (|t− s|(1 + C1)).

The proof is now complete.

Semi-concavity of the distance

In order to prove Lemmas 7.10 and 7.11, we need the following one.

Lemma A.2 (Semi-concavity of ϕ and d2). Let N be a network defined in (7.2) with edges
E and vertices V. Let

ϕ(x, y) =
√

1 + d2(x, y)

where d is the distance function on the network N . Then ϕ(x, ·) and ϕ(·, y) are 1-Lipschitz
for all x, y ∈ N . Moreover ϕ and d2 are semi-concave on ea × eb for all ea, eb ∈ E .
Proof of Lemma A.2. The Lipschitz properties of ϕ are trivial. Since r 7→ r2 and r 7→√

1 + r2 are smooth increasing functions in R+, the result follows from the fact that the
distance function d itself is semi-concave; it is even the minimum of a finite number of
smooth functions.

If ea = eb, then d2(x, y) = (x− y)2 which implies that ϕ ∈ C1(ea × ea). Then we only
consider the cases where ea 6= eb.

Case 1: ea and eb isometric to [0,+∞). Then for (x, y) ∈ ea × eb, we have

d(x, y) = x + y + d(e0a, e
0
b)

which implies that ϕ ∈ C1(ea × eb).
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Case 2: ea isometric to [0,+∞) and eb isometric to [0, lb]. Reversing the orientation
of eb if necessary, we can assume that

d0 := d(e0a, e
0
b) ≤ d(e0a, e

1
b) =: d1

and then for (x, y) ∈ ea × eb, we have

d(x, y) = x + min(d0 + y, d1 + (lb − y)) = min(d0 + x+ y, d1 + x + (lb − y)).

Then ϕ is the minimum of two C1 functions, it is semi-concave.

Case 3: ea and eb isometric to [0, la] and [0, lb]. Changing the orientations of both ea
and eb if necessary, we can assume that

d(e0a, e
0
b) = min

i,j=0,1
dij with dij = d(eia, e

j
b).

Therefore

d(x, y) = min(d00 + x+ y, d01 + x+ (lb − y), d10 + (la − x) + y, d11 + (la − x) + (lb − y))

and again ϕ is the minimum of four C1 functions, it is therefore semi-concave.

Proof of Lemma 7.10

Proof of Lemma 7.10. We first prove (7.14) for t = s by adapting in a straightforward
way the proof of Lemma A.1. The only difference is that for any ea, eb ∈ E , the function

ϕ(x, y) =
√

1 + d2(x, y)

may not be C1(ea × eb). But Lemma A.2 and Remark 7.6 ensure that this is harmless.
The remaining of the proof of Lemma A.1 is unchanged. In particular the uniform bound
on the Hamiltonians for bounded gradients is used, see (H2).

Now (7.14) is obtained for t 6= s by following the proof of Lemma 3.3 and using the
barriers given in the proof of Theorem 7.7.

Proof of Lemma 7.11

Proof of Lemma 7.11. We do the proof for sub-solutions (the proof for super-solutions
being similar). We consider the following barrier (similar to the ones in the proof of
Theorem 7.7)

u+ε (t, x) = uε0(x) +Kεt+ ε

with
|uε0 − u0| ≤ ε and |(uε0)x| ≤ Lε

and Kε ≥ Cε with Cε given in (7.12). It is enough to prove that for all (t, x) ∈ [0, T )×N ,

u(t, x) ≤ u+ε (t, x)
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for a suitable choice of Kε ≥ Cε in order to conclude. Indeed, this implies

u(t, x) ≤ u0(x) + f(t)

with
f(t) = min

ε>0
(Kεt+ ε)

which is non-negative, non-decreasing, concave and f(0) = 0.
We consider for 0 < τ ≤ T ,

M = sup
(t,x)∈[0,τ)×N

(u− u+ε )(t, x)

and assume by contradiction that M > 0. We know by Lemma 7.10 that M is finite. Then
for any α, η > 0 small enough, we have Mα ≥M/2 > 0 with

Mα = sup
(t,x)∈[0,τ)×N

{

u(t, x) − u+ε (t, x) − η

τ − t
− αψ(x)

}

.

(we recall that ψ = d2(x0, ·)/2). By the sublinearity of u and u+ε , we know that this
supremum is reached at some point (t, x). Moreover t > 0 since u(0, x) ≤ u0(x) ≤ u+ε (0, x).

This implies in particular that

0 < M/2 ≤Mα = u(t, x) − u+ε (t, x) − η

τ − t
− α

d2(x0, x)

2

≤ CT (1 + d(x0, x)) − uε0(x0) + Lεd(x, x0) − α
d2(x0, x)

2

≤ CT (1 + d(x0, x)) + |u0(x0)| + ε+ Lεd(x, x0) − α
d2(x0, x)

2

≤ Rε(1 + d(x0, x)) − α
d2(x0, x)

2

with
Rε = CT + max(Lε, |u0(x0)| + ε).

Then z = αd(x0, x) satisfies

z2

2
≤ Rεα +Rεz ≤ Rεα +R2

ε +
z2

4

which implies that for α ≤ 1,

(A.11) αd(x0, x) ≤ 2
√

Rε + R2
ε.

Writing the sub-solution viscosity inequality, we get

Kε +HN (t, x, (uε0)x(x) + αψx(x)) ≤ 0
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We get a contradiction for the choice

Kε = 1+

max



 sup
t∈[0,T ]

sup
n∈V

|max(An(t), A0
n(t))|, sup

t∈[0,T ]

sup
e∈E

sup
x∈e

sup
|pe|≤Lε+2

√
Rε+R2

ε

|He(t, x, pe)|



 .

B Appendix: stationary results for networks

This short section is devoted to the statement of an existence and uniqueness result for
the following stationary HJ equation posed on a network N satisfying (7.1),

(B.1) u+HN (x, ux) = 0 for all x ∈ N .

For each e ∈ E , we consider a Hamiltonian He : e× R → R satisfying

• (H0-s) (Continuity) He ∈ C(e× R).

• (H1-s) (Uniform coercivity)

lim inf
|q|→+∞

He(x, q) = +∞

uniformly with respect to x ∈ e, e ∈ E .

• (H2-s) (Uniform bound on the Hamiltonians for bounded gradients) For all L > 0,
there exists CL > 0 such that

sup
p∈[−L,L],x∈N\V

|HN (x, p)| ≤ CL.

• (H3-s) (Uniform modulus of continuity for bounded gradients) For all L > 0, there
exists a modulus of continuity ωL such that for all |p|, |q| ≤ L and x ∈ e ∈ E ,

|He(x, p) −He(x, q)| ≤ ωL(|p− q|).

• (H4-s) (Level-set convexity) For all n ∈ V, there exists a p0e(n) such that

{

He(n, ·) is nonincreasing on (−∞, p0e(n)],

He(n, ·) is nondecreasing on [p0e(n),+∞).

As far as flux limiters are concerned, the following assumptions will be used.
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• (A1-s) (Uniform bound on A) There exists a constant C > 0 such that for all n ∈ V,

|An| ≤ C.

The following result is a straightforward adaptation of Corollary 7.9. Proofs are even
simpler since the time dependance was an issue when proving the comparison principle in
the general case.

Theorem B.1 (Existence and uniqueness – stationary case). Assume (H0-s)-(H4-s) and
(A1-s). Then there exists a unique sublinear viscosity solution u of (B.1) in N .
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