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Local in time results for local and non-local capillary

Navier-Stokes systems with large data

Frédéric Charve∗

Abstract

In this article we study three capillary compressible models (the classical lo-
cal Navier-Stokes-Korteweg system and two non-local models) for large initial data,
bounded away from zero, and with a reference pressure state ρ̄ which is not necessarily
stable (P ′(ρ̄) can be non-positive). We prove that these systems have a unique local
in time solution and we study the convergence rate of the solutions of the non-local
models towards the local Korteweg model. The results are given for constant viscous
coefficients and we explain how to extend them for density dependant coefficients.

1 Introduction

1.1 Presentation of the systems

In this article we are interested in the dynamics of a liquid-vapor mixture in the setting
of the Diffuse Interface (DI) approach: between the two phases lies a thin region of
continuous transition and the phase changes are read through the variations of the density
(with for example a Van der Waals pressure). Unfortunately the basic models provide
an infinite number of solutions and in order to select the physically relevant solutions,
following Van der Waals and Korteweg, one penalizes the high variations of the density
thanks to capillary terms related to surface tension.

We first consider the classical compressible Navier-Stokes system (NSK) endowed
with an internal local capillarity (this is why we call (NSK) the local Korteweg system).
This system, first considered by Korteweg and renewed by Dunn and Serrin, reads:

{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u)−Au+∇(P (ρ)) = κρ∇D[ρ],

where ρ and u denote the density and the velocity (ρ is a non-negative function and u is
a vector-valued function defined on R+ × R

d). The general diffusion operator is defined
as follows:

Au = div (2µ(ρ)Du) +∇(λ(ρ)div u),

where 2Du =t ∇u+∇u. For simplicity we will present the results in the case of constant
viscosity coefficients (we refer to the end of the article for general coefficients) so that

Au = µ∆u+ (λ+ µ)∇div u, with µ > 0 and ν = λ+ 2µ > 0.
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In the classical Korteweg system (NSK), the capillary term is defined by divK, where
the general Korteweg tensor is given by:

K(ρ) =
κ(ρ)

2
(∆ρ2 − |∇ρ|2)Id − κ(ρ)∇ρ⊗∇ρ,

The coefficient κ may depend on ρ but in this article it is chosen constant and then the
capillary term turns into κρ∇D[ρ] with (see [19]):

D[ρ] = ∆ρ,

The solutions of this system are much more regular than those of the classical compress-
ible system (NSC) (that is for D[ρ] = 0). We refer to [29, 19, 16] for more informations
about this model.

Another way of selecting the physical solutions consists in defining a non-local capil-
lary term involving the density through a convolution and only one derivative (compared
to the numerical difficulties generated by the previous local capillary term with deriva-
tives of order 3). In the non-local Korteweg system (NSRW ), introducing φ, called
interaction potential, which satisfies the following conditions

(|.| + |.|2)φ(.) ∈ L1(Rd),

∫

Rd

φ(x)dx = 1, φ even, and φ ≥ 0, (1.1)

then D[ρ] is the non-local term given by:

D[ρ] = φ ∗ ρ− ρ.

Computing the Fourier transform of these capillary terms, (φ̂(ξ)− 1)ρ̂(ξ) in the non-
local model, and −|ξ|2ρ̂(ξ) in the local model, a natural question arises which is to study
the closedness of the solutions of these models when φ̂(ξ) is formally ”close” to 1− |ξ|2.
To answer this question, we chosed in [5] a particular interaction potential and considered
the following non-local system:

(NSRWε)

{
∂tρε + div (ρεuε) = 0,

∂t(ρεuε) + div (ρεu⊗ uε)−Auε +∇(P (ρε)) = κρε∇D[qε],

where 


φε =

1
εd
φ(xε ) with φ(x) = 1

(2π)d
e−

|x|2

4 ,

D[qε] =
1
ε2
(φε ∗ ρε − ρε).

When ξ is fixed, we have φ̂ε(ξ) = e−ε2|ξ|2 , and when ε is small,
φ̂ε(ξ)− 1

ε2
is close to −|ξ|2.

We refer to [34, 31, 11, 30, 23, 24, 5, 8] for more details. The solutions of the non-local
model have a regularity structure closer to what is obtained for system (NSC) but the
numerical difficulties seem comparable to (NSK) due to the convolution operator.

For this reason, C. Rohde introduced in [32] a new model, called the order-parameter
model, and inspired by the work of D. Brandon, T. Lin and R. C. Rogers in [3]. In this
new system the capillary term α2∇(c − ρ) involves a new variable c called the ”order
parameter”, which is coupled to the density via the following relation coming from the
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Euler-Lagrange equation from the variational approach (α controls the coupling between
ρ and c):

∆c+ α2(ρ− c) = 0,

so that the new system he considered is the following:

(NSOPα)





∂tρα + div (ραuα) = 0,

∂t(ραuα) + div (ραuα ⊗ uα)−Auα +∇(P (ρα)) = κα2ρα∇(cα − ρα),

∆cα + α2(ρα − cα) = 0.

As emphasized by C. Rohde, from a numerical point of view this system is much more
interesting (only one derivative in the capillary tensor which is local), and the additionnal
equation for the order parameter is a simple linear elliptic equation that can be easily
solved (and numerically fast). Another important feature of this model is that thanks to
the capillary term, the momentum equation can be rewritten with a modified pressure:
P̃ (ρ) = P (ρ) + κα2ρ2/2, so that if α is large enough the derivative will be positive.

Moreover as explained in [9] introducing the following interaction potential:

ψα = αdφ(α·) with ψ(x) =
Cd

|x|
d
2
−1
K d

2
−1(|x|),

where Kν denotes the modified Bessel function of the second kind and index ν, then the
system can be rewritten in the shape of the previous non-local capillary model:
(NSOPα){

∂tρα + div (ραuα) = 0,

∂t(ραuα) + div (ραu⊗ uα)−Auα +∇(P (ρα)) = ρακα
2∇(ψα ∗ ρα − ρα),

Remark 1 From the previous computations, we immediately get that

cα − ρα = (−∆+ α2Id)
−1∆ρα = ψα ∗ ρα − ρα,

that is cα = ψα ∗ ρα. This is why the only choice for the initial order parameter is
c0 = ψα ∗ ρ0.

We refer to [3, 32, 9] for more details.
We focus here on strong solutions with initial data in critical spaces. Let us recall

that a critical space is a space whose corresponding norm has the same scaling invariance
as the (NSC) system: if (ρ(t, x), u(t, x)) is a solution corresponding to the initial data
(ρ0(x), u0(x)), then for each λ > 0, (ρ(λ2t, λx), λu(λ2t, λx)) is also a solution, corre-
sponding to the dilated initial data (ρ0(λx), λu0(λx)), provided that the pressure P has

been changed into λ2P . For example the Sobolev space Ḣ
d
2 (Rd), or the Besov space Ḃ

d
p

p,1

are critical. We refer to [12, 1, 14, 13, 4] for more details.
A natural first step in the study of system (NSC) is to consider initial data in critical

spaces close to an equilibrium state (ρ, 0) with P ′(ρ) > 0. Assuming that the initial
density fluctuation q0, defined by ρ0 = ρ(1 + q0), is small, we perform the classical
change of function ρ = ρ(1 + q) and expect that q is also small. For simplicity we take
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ρ = 1, then q = ρ − 1 is expected to be small, and ρ will be bounded away from zero.
Simplifying by ρ, the previous systems become (we chosed to drop the subscripts):





∂tq + u · ∇q + (1 + q)div u = 0,

∂tu+ u · ∇u−
1

1 + q
Au+

P ′(1 + q)

1 + q
· ∇q − κ∇D[q] = 0,

where 



D[q] = 0 for (NSC),

D[q] = ∆q for (NSK),

D[qε] =
φε ∗ qε − qε

ε2
for (NSRWε),

D[qα] = α2(ψα ∗ qα − qα) for (NSOPα).

(1.2)

If we also assume that the equilibrium (1, 0) is stable (that is P ′(1) > 0) then it is useful
to rewrite the system into:

{
∂tq + u · ∇q + (1 + q)div u = 0,

∂tu+ u · ∇u−Au+ P ′(1)∇q − κ∇D[q] = K(q)∇q − I(q)Au,

where K and I are the following real-valued functions defined on R:

K(q) =

(
P ′(1)−

P ′(1 + q)

1 + q

)
and I(q) =

q

q + 1
.

If the density fluctuation q is small, then K(q) and I(q) are expected to be small so that
the contribution of the right-hand side term should also be small.

Indeed when q0 is small in Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2

2,1 and P ′(1) > 0, R. Danchin obtained in
[12, 14] global existence of a solution for the compressible Navier-Stokes system (NSC).
The local capillary model has been treated by R. Danchin and B. Desjardins in [16] and
we refer to [23, 5, 8, 9] for the same results in the non-local capillary case. In addition
we proved that the solutions of these non-local models converge towards the solution
of the local model with the same small initial data q0, and provided an explicit rate of
convergence. In [8, 9] we give refined estimates.

When the constant state (1, 0) is not assumed to be stable anymore, the best we can
obtain are local in time existence results. Such results were first obtained by R. Danchin

when q0 is small in Ḃ
d
2

2,1 (then again 1 + q0 is bounded away from zero: no vacuum).
We refer to [13, 1] for the (NSC) system and to [16] for the local capillary model. We
emphasize that no assumption on the pressure law or on the stability are needed, so that
the case of a Van Der Waals pressure law is covered. From [5, 9] these existence results
can be very easily adapted to the non-local capillary models as well as the convergence,
when ε is small or α is large for a finite lifespan T .

A much more difficult question is to study these systems whithout any stability as-
sumptions on the state (1, 0) and any smallness condition on the initial density fluctuation

q0 only assumed to belong to Ḃ
d
2

2,1, which is naturally the context when two phases co-
exist. For example if ρ0 = (1 − χ)ρ1 + χρ2 with ρ1,2 two constants, and χ is a smooth
cut-off function.
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The only assumption is that ρ0 = 1 + q0 is bounded away from zero. As explained
more in details later, in this unfavorable case we cannot rely on the a priori estimates
used in the previous works because of the terms qdiv u and I(q)Au. When q is small
these terms are harmless because their Besov-norms are easily absorbed by the left-hand
side. On the contrary, in the present case q has no reason to be small and none of the
previous terms, even in a small intervall of time, can be handled like previously and both
of them obtruct any use of the previous estimates. The idea introduced by R. Danchin
to deal with large density fluctuation is basically to decouple (q, u) and study a slightly
modified equation on the velocity, where thanks to a frequency truncation, a big part of
the previous problematic term can be included in the linear system and the rest can be
made small and absorbable by the left-hand side. Roughly speaking, instead of studying:

∂tu+ v · ∇u−Au = −
P ′(1 + q)

1 + q
∇q −

q

1 + q
Au,

R. Danchin, studied in [18]:

∂tu+ u · ∇u− Ṡm(
1

1 + q
)Au = −

P ′(1 + q)

1 + q
∇q +

(
(Id − Ṡm)

1

1 + q

)
Au.

Using refined estimates (see [18, 1]) on the density fluctuation equation, we can fix m
large enough (only depending on the initial data), so that (Id − Ṡm) 1

1+q is small and the
last term can be absorbed through estimates for the following equation:

∂tu+ v · ∇u− bAu = F, (1.3)

where b is a regular function, bounded away from zero, the first part of the right-hand
side being small in a small interval of time.

To the best of our knowledge there are very few similar results in the capillary case
or for density dependant coefficients (viscosity, capillarity). For special choices on the
viscosity and capillary coefficients, the previous method can be simplified as there is no
need for new a priori estimates. For instance we refer to [7] in the case of the shallow
water model, that is when µ(ρ) = ρ, λ(ρ) = 0, the system turns into:

{
∂tq + u · ∇q + (1 + q)divu = 0,

∂tu+ u · ∇u−Au− 2D(u).∇(ln(1 + q)) +∇(H(1 + q)) = 0.

And the problematic term can be decomposed into: ∇ ln(1 + q) ·D(u) = I + II, with

I = ∇
(
ln(1 + q)− ln(1 + Ṡmq)

)
·D(u), II = ∇ ln(1 + Ṡmq) ·D(u).

As before, the first one is small for large fixed m (we refer to [18, 1, 7]), and the second
one will be proved to be small thanks to the smoothness of Ṡmq: for 0 < α < 1,

‖II‖
Ḃ

d
2
−1

2,1

≤ ‖∇ ln(1 + Ṡmq)‖
Ḃ

d
2
+α−1

2,1

‖D(u)‖
Ḃ

d
2
−α

2,1

≤ C(‖q‖L∞)2mα‖q‖
Ḃ

d
2
2,1

‖u‖
Ḃ

d
2
+1−α

2,2

, (1.4)
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which is partly absorbed by the left-hand side when t ∈ [0, T ] with T small enough, the
other part being dealt thanks to the Gronwall lemma. We emphasize that this could
not have been performed with q instead of Ṡmq. Let us precise that in [7] there is an
improvement on the assumptions on the initial data velocity which is taken in a bigger

space: u0 ∈ Ḃ
d
2
−1

2,2 ∩ Ḃ−1
∞,1, div u0 ∈ Ḃ

d
2
−2

2,1 .
We also refer to [25, 26] where B. Haspot obtains local results for large data for the

local Korteweg model with special choices of the pressure and the viscosity and capillarity
coefficients: κ(ρ) = 1

ρ , µ(ρ) = ρ, λ(ρ) = ρ or 0 and P (ρ) = ρ. We emphasize that another
important feature of [25, 26] is that the initial data are taken in Besov spaces with third
index 2 or infinite. In these works it is more convenient to introduce q = log ρ and the
effective velocity v = u +∇ ln ρ which has important regularity properties. We refer to
[21, 6] for other use of the notion of effective velocity.

2 Statement of the results

The present work is devoted to the study of the capillary models with large data in the
case of constant viscosity and capillarity coefficients without any stability assumption
on the state (1, 0). Due to the capillary term that either involves too much derivatives
in (NSK) or large coefficients in terms of ε or α in (NSRWε) or (NSOPα), we cannot
afford to treat separatedly q and u: for example in the non-local case, the capillary term
is multiplied by a large coefficient ε−2 that would lead to a lifespan of size O(ε2) which
is obviously useless for the study of the convergence towards the solution of (NSK). As
explained before, as q is not assumed anymore to be small, using the previous a priori
estimates on the couple (q, u) leads to an obstruction.

The main ingredient in this paper is a new priori estimate in the spirit of [18] where
we recouple q and u. Obviously as we need to adapt the idea developped in [18] where
the key is to study equation (1.3) we cannot hope to use refined estimates obtained from
Fourier analysis of the linear system as in [4, 8, 9]. As we recouple q and u, in addition
to the term (1+ q)−1Au we will have to deal with qdiv u in the first equation. When q is
small this term is harmless and easily absorbed by the left-hand side. On the contrary,
in our general case this term prevents any convenient estimates that would be useful for
the proof of uniqueness or convergence. It has then to be also included into the linear
system we will study. This leads us to the following linear system:

{
∂tq + v · ∇q + c · div u = 0,

∂tu+ v · ∇u− b · Au− κ∇D[q] = 0,

where b, c are positive real valued functions, bounded away from zero.

2.1 Existence

We refer to the appendix for definitions and properties of the classical and hybrid Besov
spaces.

Definition 1 The space Es(t) is the set of functions (q, u) in

(
Cb([0, t], Ḃ

s
2,1) ∩ L

1
t Ḃ

s+2
2,1

)
×
(
Cb([0, t], Ḃ

s−1
2,1 ) ∩ L1

t Ḃ
s+1
2,1

)d
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endowed with the norm

‖(q, u)‖Es(t)
def
= ‖u‖L̃∞

t Ḃs−1

2,1
+ ‖q‖L̃∞

t Ḃs
2,1

+ ‖u‖L1
t Ḃ

s+1

2,1
+ ‖q‖L1

t Ḃ
s+2

2,1
. (2.5)

Definition 2 The space Es
β(t) (for β > 0 expected to be large) is the set of functions

(q, u) in (
Cb([0, t], Ḃ

s
2,1) ∩ L

1
t Ḃ

s+2,s
β

)
×
(
Cb([0, t], Ḃ

s−1
2,1 ) ∩ L1

t Ḃ
s+1
2,1

)d

endowed with the norm

‖(q, u)‖Es
β (t)

def
= ‖u‖L̃∞

t Ḃs−1

2,1
+ ‖q‖L̃∞

t Ḃs
2,1

+ ‖u‖L1
t Ḃ

s+1

2,1
+ ‖q‖L1

t Ḃ
s+2,s
β

. (2.6)

Remark 2 We observe that the parabolic regularization on q occurs for all frequencies
in Es(t) and only for low frequencies in Es

β(t). Moreover the threshold between the
regularized low frequencies and the damped high frequencies goes to infinity as β goes to
infinity. We refer to [5, 8, 9] for more details about this threshold and the close relation
with the capillary term.

Theorem 1 Let ε > 0, q0 ∈ Ḃ
d
2

2,1, u0 ∈ Ḃ
d
2
−1

2,1 and assume that 0 < c ≤ 1 + q0 ≤ c and
min(µ, 2µ+ λ) > 0. There exist a positive constant C and a time T > 0, only depending
on the physical parameters d, µ, λ, κ and the initial data (q0, u0), such that system

(NSK) has a unique solution (ρ, u) with (q, u) ∈ E
d
2 (T ), and system (NSRWε) has a

unique solution (ρε, uε) with (qε, uε) ∈ E
d
2

1/ε(T ). Moreover

‖(q, u)‖
E

d
2 (T )

+ ‖(qε, uε)‖
E

d
2
1/ε

(T )
≤ C(‖q0‖

Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2
−1

2,1

).

2.2 Convergence

As in [5], we prove that the solution of (RWε) goes to the solution of (K) when ε goes
to zero.

Theorem 2 Assume that min(µ, 2µ + λ) > 0, q0 ∈ Ḃ
d
2

2,1, u0 ∈ Ḃ
d
2
−1

2,1 . Then for T given
by the previous result,

‖(qε − q, uε − u)‖
E

d
2
1/ε

(T )
−→
ε→0

0.

Moreover there exists a constant C = C(η, κ, q0, u0, T ) > 0 such that for all h ∈]0, 1[ (if
d = 2) or h ∈]0, 1] (if d ≥ 3),

‖(qε − q, uε − u)‖
E

d
2
−h

1/ε
(T )

≤ Cεh,
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2.3 Order parameter model

The very same results are true for the order parameter model:

Definition 3 The space F s
β(t) (for β > 0) is the set of functions (q, c, u) in

(
Cb([0, t], Ḃ

s
2,1) ∩ L

1
t Ḃ

s+2,s
β

)2
×
(
Cb([0, t], Ḃ

s−1
2,1 ) ∩ L1

t Ḃ
s+1
2,1

)d

endowed with the norm

‖(q, c, u)‖F s
β (t)

def
= ‖u‖

L̃∞
t Ḃs−1

2,1
+ ‖q‖

L̃∞
t Ḃs

2,1
+ ‖c‖

L̃∞
t Ḃs

2,1

+ ‖u‖L1
t Ḃ

s+1

2,1
+ ‖q‖L1

t Ḃ
s+2,s
β

+ ‖c‖L1
t Ḃ

s+2,s
β

. (2.7)

Theorem 3 Let α > 0, q0 ∈ Ḃ
d
2

2,1, u0 ∈ Ḃ
d
2
−1

2,1 and assume 0 < c ≤ 1 + q0 ≤ c and

min(µ, 2µ+λ) > 0. Let c0 be defined by −∆c0+α
2c0 = α2ρ0, that is c0 = ψα ∗ρ0. There

exist a positive constant C and a time T > 0 only depending on the physical parameters

and (q0, u0) such that system (NSK) has a unique solution (ρ, u) with (q, u) ∈ E
d
2 (T ),

and system (NSOPα) has a unique solution (ρα, cα, uα) with (qα, cα, uα) ∈ F
d
2
α (T ) and

cα = ψα ∗ qα. Moreover:

‖(q, u)‖
E

d
2 (T )

+ ‖(qα, cα, uα)‖
F

d
2
α (T )

≤ C(‖q0‖
Ḃ

d
2
2,1

+ ‖u0‖
Ḃ

d
2
−1

2,1

),

and
‖cα − ρα‖

L̃∞
T Ḃ

d
2
2,1

−→
α→∞

0, and ‖cα − ρα‖
L1
T Ḃ

d
2
2,1

≤ Cα−2.

Theorem 4 Assume that min(µ, 2µ + λ) > 0, q0 ∈ Ḃ
d
2

2,1, u0 ∈ Ḃ
d
2
−1

2,1 . Then for T given
by the previous result,

‖(qα − q, cα − ρ, uα − u)‖
F

d
2
α (T )

−→
α→∞

0.

Moreover there exists a constant C = C(η, κ, q0, T ) > 0 such that for all h ∈]0, 1[ (if
d = 2) or h ∈]0, 1] (if d ≥ 3), and for all t ∈ [0, T ],

‖(qα − q, cα − ρ, uα − u)‖
F

d
2
−h

α (T )
≤ Cα−h,

We refer to the end of the article for the variable coefficients case, and the case of
Besov spaces Ḃs

p,1 with p 6= 2.

3 Proof of Theorem 1

We will prove theorems 1 and 2. As we only use energy methods, the proofs are strictly the
same for the order parameter model, because in the L2-setting, the interaction potentials
ψα and φε play exactly the same role. Let us emphasize that this was not the case in
[8, 9] as it involved Fourier computations and finite differences representations of Besov
norms.
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3.1 Linear estimates with variable coefficients

As announced, these results rely on a priori estimates for solutions of the following system:

{
∂tq + v · ∇q + c · div u = F,

∂tu+ v · ∇u− b · Au− κ∇D[q] = G.
(3.8)

With
Au = µ∆u+ (λ+ µ)∇div u,

and we recall that D[q] is given in (1.2).

Theorem 5 Let s ∈] − d
2 ,

d
2 + 1], ν = 2µ + λ and assume that ν0 = min(µ, ν) > 0,

q0 ∈ Ḃs
2,1, u0 ∈ Ḃs−1

2,1 . Let T > 0, and assume that (q, u) solves system (3.8) on [0, T ],

with v ∈ L∞
T Ḃ

d
2
−1

2,1 ∩ L1
T Ḃ

d
2
+1

2,1 and b, c : [0, T ] ×R
d → R+ such that:

• b− 1, c− 1 ∈ C([0, T ], Ḃ
d
2

2,1),

• ∂tb, ∂tc ∈ L2
T Ḃ

d
2
−1

2,1 ,

• for all t ≤ T, x ∈ R
d, we have 0 < c∗ ≤ c(t, x) ≤ c∗ and 0 < b∗ ≤ b(t, x) ≤ b∗.

Then (q, u) ∈ Es(T ) (respectively (qε, uε) ∈ Es
1/ε(T ), (qα, uα) ∈ Es

α(T )). Moreover if we
define

gs(q, u)(t) =
∑

j∈Z

2j(s−1) sup
t′∈[0,t]

(
‖uj(t

′)‖L2 + hj(t
′)
)
,

with

hj(t
′)2 = (uj(t

′)|cmuj(t
′))L2 + κ(qj(t

′)|D[qj(t
′)])L2

+ η

(
2(uj(t

′)|∇qj(t
′))L2 + ν(∇qj(t

′)|
bm
cm

∇qj(t
′))L2

)
, (3.9)

where uj = ∆̇ju (the same for q) and bm, cm are smooth functions defined by:

bm = 1 + Ṡm(b− 1) and cm = 1 + Ṡm(c− 1). (3.10)

Then there exist m0 ∈ Z, two constants γ∗ > 0 and F
∗ ≥ 1 such that if η > 0 is fixed

small enough (all of them only depending on the bounds b∗, c∗, b
∗, c∗ and the viscous and

capillary coefficients) then for all t ≤ T and m ≥ m0,

F
∗−1gs(t) ≤ ‖u‖

L̃∞
t Ḃs−1

2,1
+ ‖q‖

L̃∞
t Ḃs

2,1
≤ F

∗gs(t), (3.11)
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and

gs(q, u)(t)+
ν0b∗
4

‖u‖L1
t Ḃ

s+1

2,1
+γ∗‖D[q]‖L1

t Ḃ
s
2,1

≤ gs(q0, u0)(0)+F
∗

∫ t

0

(
‖F‖Ḃs

2,1
+ ‖G‖Ḃs−1

2,1

)
dτ

+ F
∗

∫ t

0
gs(q, u)(τ)

[
2m
(
‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2
(
‖∇v‖

Ḃ
d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

+ 22m + ‖v‖2

Ḃ
d
2
2,1

)]
dτ

+ F
∗

∫ t

0

(
‖(Id − Ṡm)(b− 1)‖

Ḃ
d
2
2,1

+ ‖(Id − Ṡm)(c− 1)‖
Ḃ

d
2
2,1

)
‖u‖Ḃs+1

2,1
dτ. (3.12)

Remark 3 The condition s ∈] − d
2 ,

d
2 + 1] is required by paraproduct and remainder

laws, we refer to (3.45) for details.

Remark 4 Let us emphasize that we have:

‖D[q]‖L1
T Ḃs

2,1
∼





‖q‖L1
T Ḃs+2

2,1
in the local case (NSK),

‖q‖
L1
T Ḃs+2,s

1/ε
in the non-local case (NSRWε),

‖q‖L1
T Ḃs+2,s

α
in the non-local case (NSOPα).

3.2 Proof of Theorem 5

We will prove the result in the first non-local case, that is for D[q] =
φε ∗ q − q

ε2
. As said

before, for the order parameter model everything works the same, and for the local case
the same argument is valid but many steps are much easier thanks to the fact that q
is more regular. We will highlight in the following proof what can be simplified for the
local case (NSK).

From the definition of bm we have bm − 1 = Ṡm(c− 1), so that bm − 1 is smooth and

its Ḃ
d
2

2,1-norm is bounded by the one of b − 1. Moreover b− bm = (Id − Ṡm)(b − 1), and
we can fix m0 large enough so that for all m ≥ m0:

‖b− bm‖
Ḃ

d
2
2,1

≤
b∗
2

and ‖c− cm‖
Ḃ

d
2
2,1

≤
c∗
2
.

In this case, thanks to the injection Ḃ
d
2

2,1 →֒ L∞, we immediately have for all t ≤ T, x ∈

R
d, that

0 <
c∗
2

≤ cm(t, x) ≤ c∗ +
c∗
2

and 0 <
b∗
2

≤ bm(t, x) ≤ b∗ +
b∗
2
. (3.13)

Next, in the spirit of [18], let us first rewrite system (3.8) as follows:



∂tq + v · ∇q + cmdiv u = F + Fm,

∂tu+ v · ∇u− bmAu− κ
φε ∗ ∇q −∇q

ε2
= G+Gm,
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where 


Fm = (cm − c) · div u = −

(
Id − Ṡm

)
(c− 1) · div u,

Gm = (b− bm) · Au =
(
Id − Ṡm

)
(b− 1) · Au.

Then applying operator ∆̇j to the system, and using the notation fj = ∆̇jf , we obtain
(following the lines of [18]):




∂tqj + v · ∇qj + div (cmuj) = fj ,

∂tuj + v · ∇uj − µdiv (bm.∇uj)− (λ+ µ)∇(bmdiv uj)− κ
φε ∗ ∇qj −∇qj

ε2
= gj ,

(3.14)
where




fj = Fj + Fm,j +Rj + R̃j and gj = Gj +Gm,j + Sj + S̃j,

Rj = v · qj − ∆̇j(v · q) and Sj = v · uj − ∆̇j(v · u),

R̃j = div (cmuj)− ∆̇j(cmdiv u) = div
(
(cm − 1)uj

)
− ∆̇j

(
(cm − 1)div u

)
.

S̃j = µ
(
∆̇j(bm∆u)− div (bm∇∆̇ju)

)
+ (λ+ µ)

(
∆̇j(bm∇div u)−∇(bmdiv ∆̇ju)

)
.

= µ
(
∆̇j((bm − 1)∆u)− div ((bm − 1)∇∆̇ju)

)

+(λ+ µ)
(
∆̇j((bm − 1)∇div u)−∇((bm − 1)div ∆̇ju)

)
.

(3.15)
Let us begin by stating estimates on these external terms (we refer to lemma 3 in the
appendix and [18, 1] for details and proofs):

Proposition 1 Under the previous assumptions, there exist a positive constant C and
a nonnegative summable sequence (cj)j∈Z =

(
cj(t)

)
j∈Z

whose summation is 1 such that

if we denote by ν = µ+ |λ+ µ|, then for all j ∈ Z we have:





‖Rj‖L2 ≤ Ccj2
−js‖∇v‖

Ḃ
d
2
2,1

‖q‖Ḃs
2,1
,

‖Sj‖L2 ≤ Ccj2
−j(s−1)‖∇v‖

Ḃ
d
2
2,1

‖u‖Ḃs−1

2,1
,

‖R̃j‖L2 ≤ Ccj2
−js2m‖c− 1‖

Ḃ
d
2
2,1

‖u‖Ḃs
2,1
,

‖S̃j‖L2 ≤ Cνcj2
−j(s−1)2m‖b− 1‖

Ḃ
d
2
2,1

‖u‖Ḃs
2,1
,

‖Fm‖Ḃs
2,1

≤ C‖
(
Id − Ṡm

)
(c− 1)‖

Ḃ
d
2
2,1

‖u‖Ḃs+1

2,1
,

‖Gm‖Ḃs−1

2,1
≤ C‖

(
Id − Ṡm

)
(b− 1)‖

Ḃ
d
2
2,1

‖u‖Ḃs+1

2,1
.

(3.16)

In this proof of theorem 5, the ideas are classical (we refer to [12, 18, 13, 1, 23, 24, 5])
and consist of combining innerproducts in L2 of the equations in order to cancel terms
that we are not able to estimate (too much derivatives or large coefficients).

Remark 5 Due to the initial regularity, the most natural way is to study the evolution
of ‖uj‖

2
L2 and ‖∇qj‖

2
L2 , for this we consider the inner product of the gradient of the

first equation by ∇qj, and the second by uj . This computation involves the following
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problematic term κε−2(φε ∗∇qj−∇qj|uj)L2 that unfortunately, at this level of the study,
we are not able to estimate uniformly with respect to ε. We need a way to cancel it
and the easiest way to do this is, as in [5], to consider the innerproduct of the density
equation by ε−2(qj − φε ∗ qj) and the velocity equation by cmuj . Then the problematic
term will be neutralized if we sum the results.

Keeping in mind the fact that d
dt(uj |cmuj)L2 = 2(∂tuj |cmuj)L2+(∂tcm.uj |uj)L2 , we begin

by taking the inner product of the velocity equation with cmuj :

(∂tuj |cmuj)L2+(v·∇uj |cmuj)L2+µ(bm.∇uj |∇(cmuj))L2+(λ+µ)(bmdiv uj|div (cmuj))L2

− κ(
φε ∗ ∇qj −∇qj

ε2
|cmuj)L2 = (gj |cmuj)L2 . (3.17)

We have:




(bm.∇uj|∇(cmuj))L2 =

∫

Rd

bmcm.|∇uj |
2dx+ (bm.∇uj|uj .∇cm)L2 ,

(bmdiv uj|div (cmuj))L2 =

∫

Rd

bmcm.|div uj |
2dx+ (bmdiv uj |uj.∇cm)L2 ,

with
∣∣∣µ(bm.∇uj|uj .∇cm)L2 + (λ+ µ)(bmdiv uj |uj.∇cm)L2

∣∣∣ ≤ ν‖bm‖L∞‖∇cm‖L∞2j‖uj‖
2
L2 .

We estimate the following term like in [12, 5] using integrations by parts:

∣∣∣(v · ∇uj|cmuj)L2

∣∣∣ ≤ 1

2
‖div (cmv)‖L∞‖uj‖

2
L2

≤
(
‖cm‖L∞ .‖∇v‖L∞ + ‖v‖L∞ .‖∇cm‖L∞

)
‖uj‖

2
L2 . (3.18)

Thanks to the frequency truncation in the definition of cm and the fact that

∂tcm = ∂t(cm − 1) = ∂t

(
Ṡm(c− 1)

)
= Ṡm (∂t(c− 1)) = Ṡm (∂tc) ,

the additional term is estimated by:

(∂tcm.uj |uj)L2 ≤ ‖∂tcm‖L∞‖uj‖
2
L2 ≤ ‖∂tcm‖

Ḃ
d
2
2,1

‖uj‖
2
L2 ≤ 2m‖∂tc‖

Ḃ
d
2
−1

2,1

‖uj‖
2
L2 .

Gathering these estimates we obtain:

1

2

d

dt
(uj|cmuj)L2 + µ

∫

Rd

bmcm.|∇uj |
2dx+ (λ+ µ)

∫

Rd

bmcm.|div uj|
2dx

− κ(
φε ∗ ∇qj −∇qj

ε2
|cmuj)L2 ≤ ‖gj‖L2‖cm‖L∞‖uj‖L2 + 2m‖∂tc‖

Ḃ
d
2
−1

2,1

‖uj‖
2
L2

+ ν‖bm‖L∞‖∇cm‖L∞2j‖uj‖
2
L2 +

(
‖cm‖L∞ .‖∇v‖L∞ + ‖v‖L∞ .‖∇cm‖L∞

)
‖uj‖

2
L2 . (3.19)

Thanks to the bounds on bm and cm (see (3.13)), we prove similarly to [12, 5] that (wether
λ+ µ is negative or not) that:

µ

∫

Rd

bmcm.|∇uj |
2dx+ (λ+ µ)

∫

Rd

bmcm.|div uj |
2dx ≥ ν0

b∗c∗
4

22j‖uj‖
2
L2 ,
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where we recall that {
ν0 = min(µ, 2ν + λ),

ν = µ+ |µ+ λ|.

Moreover,

ν‖bm‖L∞‖∇cm‖L∞2j‖uj‖
2
L2 ≤ ν0

b∗c∗
8

22j‖uj‖
2
L2 +

2ν2

ν0b∗c∗
‖bm‖2L∞‖∇cm‖2L∞‖uj‖

2
L2 .

Using the bound from (3.13), and the fact that

‖∇cm‖L∞ ≤ ‖∇(cm − 1)‖
Ḃ

d
2
2,1

≤ ‖∇Ṡm(c− 1)‖
Ḃ

d
2
2,1

≤ 2m‖c− 1‖
Ḃ

d
2
2,1

,

we end up with:

1

2

d

dt
(uj|cmuj)L2 + ν0

b∗c∗
8

22j‖uj‖
2
L2 − κ(

φε ∗ ∇qj −∇qj
ε2

|cmuj)L2

≤ C
∗‖gj‖L2‖uj‖L2 + C‖uj‖

2
L2

[
2m‖∂tc‖

Ḃ
d
2
−1

2,1

+ C
∗
(
‖∇v‖L∞ + 2m‖c− 1‖

Ḃ
d
2
2,1

‖v‖L∞

)

+ C
∗ ν

2

ν0
22m‖c− 1‖2

Ḃ
d
2
2,1

]
. (3.20)

where C
∗ ≥ 1 denotes a constant only depending on the bounds of b and c

Remark 6 In the following we adopt the convention that even if varying from line to line
we will always denote by C

∗ such a constant, and by D
∗,F∗ a constant that in addition

depends on the physical parameters (λ, µ, κ).

Let us now turn to the density fluctuation: as explained, in order to neutralize the capil-
lary term, instead of studying ‖∇qj‖

2, we study the quantity (qj|
qj−φε∗qj

ε2
)L2 . computing

the inner product of the density equation by
qj−φε∗qj

ε2
, we obtain that:

1

2

d

dt
(qj|

qj − φε ∗ qj
ε2

)L2 + (v · ∇qj|
qj − φε ∗ qj

ε2
)L2 + (div (cmuj)|

qj − φε ∗ qj
ε2

)L2

= (fj|
qj − φε ∗ qj

ε2
)L2 . (3.21)

We refer to [8, 9] and the appendix for the fact that:



(qj|

qj − φε ∗ qj
ε2

)L2 ∼ min(
1

ε2
, 22j)‖qj‖

2
L2 ,

‖
qj − φε ∗ qj

ε2
‖L2 ∼ min(

1

ε2
, 22j)‖qj‖L2 .

So that, exactly like in [5], we estimate:

∣∣∣(fj |
qj − φε ∗ qj

ε2
)L2

∣∣∣ ≤ ‖fj‖L2‖
qj − φε ∗ qj

ε2
‖L2 ≤ ‖fj‖L2 min(

1

ε2
, 22j)‖qj‖L2

≤ 2j‖fj‖L2

√
min(

1

ε2
, 22j)‖qj‖2L2 ≤ C2j‖fj‖L2

√
(qj|

qj − φε ∗ qj
ε2

)L2 , (3.22)
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and similarly,

∣∣∣(v · ∇qj|
qj − φε ∗ qj

ε2
)L2

∣∣∣ ≤ C‖v‖L∞‖∇qj‖L22j
√

(qj|
qj − φε ∗ qj

ε2
)L2 .

Collecting these estimates implies that:

1

2

d

dt
(qj|

qj − φε ∗ qj
ε2

)L2 − (cmuj|
∇qj − φε ∗ ∇qj

ε2
)L2

≤ C2j‖fj‖L2

√
(qj |

qj − φε ∗ qj
ε2

)L2 + ‖v‖L∞‖∇qj‖L22j
√

(qj|
qj − φε ∗ qj

ε2
)L2 . (3.23)

so that, when we compute (3.20)+κ(3.23), there is a cancellation of the problematic
terms ε−2(div (cmuj)|qj − φε ∗ qj)L2 and we finally obtain:

1

2

d

dt

(
(uj |cmuj)L2 + κ(qj |

qj − φε ∗ qj
ε2

)L2

)
+ ν0

b∗c∗
8

22j‖uj‖
2
L2 ≤ C

∗‖gj‖L2‖uj‖L2

+ Cκ2j‖fj‖L2

√
(qj|

qj − φε ∗ qj
ε2

)L2 + Cκ‖v‖L∞‖∇qj‖L22j
√

(qj |
qj − φε ∗ qj

ε2
)L2

+C‖uj‖
2
L2

[
2m‖∂tc‖

Ḃ
d
2
−1

2,1

+C
∗
(
‖∇v‖L∞+2m‖c−1‖

Ḃ
d
2
2,1

‖v‖L∞

)
+C

∗ ν
2

ν0
22m‖c−1‖2

Ḃ
d
2
2,1

]
.

(3.24)

As in [5], the only way to obtain a regularization for the density fluctuation is to consider
the inner product of the velocity equation by ∇qj which provides the nonnegative term
κε−2(∇qj|∇qj −φε ∗∇qj)L2 , that is we will study the variation in time of (uj |∇qj)L2 . As

d

dt
(uj |∇qj)L2 = (∂tuj|∇qj)L2 + (uj |∂t∇qj)L2 ,

like in [5] we are lead to sum the following estimates:

(∂tuj |∇qj)L2 + (v · ∇uj|∇qj)L2 −µ(div (bm.∇uj)|∇qj)L2 − (λ+µ)(∇(bmdiv uj)|∇qj)L2

− κ(∇qj |
φε ∗ ∇qj −∇qj

ε2
)L2 = (gj |∇qj)L2 ≤ ‖gj‖L2‖∇qj‖L2 , (3.25)

and (taking the innerproduct of the equation on ∇qj with uj)

(∂t∇qj|uj)L2 +(∇(v ·∇qj)|uj)L2 − (div (cmuj)|div uj)L2 = (∇fj|uj)L2 = −(fj|div uj)L2

≤ ‖fj‖L22j‖uj‖L2 . (3.26)

A simple computation shows that (we refer to [12, 1, 5] for details):

∣∣∣(v · ∇uj|∇qj)L2 + (∇(v · ∇qj)|uj)L2

∣∣∣ ≤ C‖∇v‖L∞‖∇qj‖L2‖uj‖L2 .

Moreover, a rough estimate on the term

(div (cmuj)|div uj)L2 = (cmdiv uj + uj · ∇cm|div uj)L2 ,
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gives, for the same reasons as previously

∣∣∣(div (cmuj)|div uj)L2

∣∣∣ ≤ ‖cm‖L∞‖∇uj‖
2
L2 + ‖∇cm‖L∞2j‖uj‖

2
L2

≤ ‖cm‖L∞22j‖uj‖
2
L2 + 2m‖c− 1‖

Ḃ
d
2
2,1

2j‖uj‖
2
L2

≤ C
∗22j‖uj‖

2
L2 + 22m‖c− 1‖2

Ḃ
d
2
2,1

‖uj‖
2
L2 , (3.27)

Where, as usual, C∗ is a constant only depending on the bounds of b and c. Finally:

d

dt
(uj |∇qj)L2 − µ(div (bm.∇uj)|∇qj)L2 − (λ+ µ)(∇(bmdiv uj)|∇qj)L2

+ κ(∇qj |
∇qj − φε ∗ ∇qj

ε2
)L2 ≤ ‖gj‖L2‖∇qj‖L2 + 2j‖fj‖L2‖uj‖L2

+ C‖∇v‖L∞‖∇qj‖L2‖uj‖L2 + C
∗22j‖uj‖

2
L2 + 22m‖c− 1‖2

Ḃ
d
2
2,1

‖uj‖
2
L2 . (3.28)

This estimate provides regularization for (qj |
qj−φε∗qj

ε2
)L2 (this is the best we can hope

for), but involves terms that cannot be absorbed or neutralized through the Gronwall
lemma because they introduce too many derivatives, namely:

−µ(div (bm.∇uj)|∇qj)L2 − (λ+ µ)(∇(bmdiv uj)|∇qj)L2 . (3.29)

As in [5] we need to compensate them thanks to the density equation: more precisely
in [5] (constant coefficients, no bm) we could entirely neutralize −µ(∆uj)|∇qj)L2 − (λ+
µ)(∇div uj|∇qj)L2 with (∇div uj|∇qj)L2 from the estimate on ‖∇qj‖

2
L2 thanks to inte-

grations by parts. In our case, due to the variable coefficients bm and cm, it will not
be possible to entirely cancel those terms, but we will be able to substract to (3.29) its
most dangerous parts, that is where all the derivatives pound on uj or qj, the rest be-
ing absorbable because at least one derivative pounds on bm or cm (and then producing
a harmless 2m thanks to the Bernstein lemma). For this, we study the variations of
(∇qj|

bm
cm

∇qj)L2 . As we have

d

dt
(∇qj|

bm
cm

∇qj)L2 = 2(∂t∇qj|
bm
cm

∇qj)L2 + (∇qj|∂t(
bm
cm

)∇qj)L2 , (3.30)

we begin by estimating the derivative of ∂t(
bm
cm

): there exists a constant only depending
on the bounds of b and c once again denoted by C

∗ so that:

‖∂t(
bm
cm

)‖L∞ = ‖
∂tbm
cm

−
bm
c2m
∂tcm‖L∞ ≤

‖∂tbm‖
Ḃ

d
2
2,1

c∗
2

+
‖bm‖L∞

( c∗2 )
2

‖∂tcm‖
Ḃ

d
2
2,1

≤ C
∗(‖∂tbm‖

Ḃ
d
2
2,1

+ ‖∂tcm‖
Ḃ

d
2
2,1

) ≤ 2mC
∗(‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

). (3.31)

Next, taking the inner product of the equation on ∇qj by bm
cm

∇qj,

(∂t∇qj|
bm
cm

∇qj)L2 + (∇(v · ∇qj)|
bm
cm

∇qj)L2 + (∇div (cmuj)|
bm
cm

∇qj)L2 = (∇fj|
bm
cm

∇qj)L2 .
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The last term of the left-hand side will help us to balance the problematic terms from
before, and we begin by estimating the other terms. Without any surprise, as in [12, 1, 5],
thanks to integrations by parts, we have:

(∇(v · ∇qj)|
bm
cm

∇qj)L2 =

∫

Rd

d∑

k,l=1

(
∂kv

l.∂lqj.
bm
cm
∂kqj + vl

bm
cm

1

2
∂l(∂kqj)

2

)
dx

=

∫

Rd




d∑

k,l=1

∂kv
l.∂lqj.

bm
cm
∂kqj −

1

2
div (

bm
cm
v)|∇qj |

2


 dx, (3.32)

so that

∣∣∣(∇(v · ∇qj)|
bm
cm

∇qj)L2

∣∣∣ ≤ C

(
‖∇v‖L∞‖

bm
cm

‖L∞ + ‖div (
bm
cm
v)‖L∞

)
‖∇qj‖

2
L2

≤ C

(
2‖∇v‖L∞‖

bm
cm

‖L∞ + ‖v‖L∞‖∇(
bm
cm

)‖L∞

)
‖∇qj‖

2
L2

(3.33)

Similarly to (3.31), there exists a constant C∗ only depending on the bounds of b and c
so that:

‖∇(
bm
cm

)‖L∞ = ‖
∇bm
cm

−
bm
c2m

∇cm‖L∞ ≤

‖∇bm‖
Ḃ

d
2
2,1

c∗
2

+
‖bm‖L∞

( c∗2 )
2

‖∇cm‖
Ḃ

d
2
2,1

≤ C
∗(‖∇bm‖

Ḃ
d
2
2,1

+ ‖∇cm‖
Ḃ

d
2
2,1

) = C
∗(‖∇(bm − 1)‖

Ḃ
d
2
2,1

+ ‖∇(cm − 1)‖
Ḃ

d
2
2,1

)

≤ 2mC
∗(‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

). (3.34)

Therefore, there exists a constant only depending on the bounds of b and c once again
denoted by C

∗ so that:

∣∣∣(∇(v·∇qj)|
bm
cm

∇qj)L2

∣∣∣ ≤ C
∗

(
‖∇v‖L∞ + 2m

(
‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)
‖v‖L∞

)
‖∇qj‖

2
L2 .

(3.35)
In all the cited works, the right-hand side (∇fj|∇qj)L2 is completely harmless if the
coefficients are constant and is estimated the following way (thanks to the fact that qj is
localized in frequency):

|(∇fj|∇qj)L2 | = |(fj |∆qj)L2 | ≤ C2j‖fj‖L2‖∇qj‖L2 .

In our case the study of (∇fj|
bm
cm

∇qj)L2 will be more delicate. Indeed fj = Fj + Fm,j +

Rj + R̃j and as the last two terms are not localized in frequency, as well as bm
cm

∇qj, we
will have to be much more careful. We remark that in the variable coefficients cases from
[1, 18, 25, 26], as the studies of the density and velocity are decoupled, such a term does
not occur.
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As Fj and Fm,j are localized in frequency we immediately have:

∣∣∣(∇Fj +∇Fm,j|
bm
cm

∇qj)L2

∣∣∣ ≤ 2j(‖Fj‖L2 + ‖Fm,j‖L2)‖
bm
cm

‖L∞‖∇qj‖L2

≤ C
∗2j(‖Fj‖L2 + ‖Fm,j‖L2)‖∇qj‖L2 . (3.36)

The last term R̃j is not localized in frequency but is rather easy to estimate: thanks to
its definition (we refer to (3.15)) we have:

R̃l
j = ∂lR̃j =

d∑

k=1

∂k

(
(cm − 1).∂lu

k
j

)
− ∆̇j

(
(cm − 1).∂k∂lu

k
)

+

d∑

k=1

∂k

(
∂l(cm − 1).ukj

)
− ∆̇j

(
∂l(cm − 1).∂ku

k
)
. (3.37)

Using lemma 2 from the appendix of [18] (see lemma 3 in the appendix of the present
paper), there exists a constant C > 0 and two nonnegative summable sequences c′j(t)
and c′′j (t) whose summation is 1 such that:

‖∇R̃j‖L2 ≤ Cc′j2
−js1‖cm − 1‖

Ḃ
d
2
+h1

2,1

‖∇u‖
Ḃ

s1+1−h1
2,1

+ Cc′′j2
−js2‖∇(cm − 1)‖

Ḃ
d
2
+h2

2,1

‖u‖
Ḃ

s2+1−h2
2,1

, (3.38)

and thanks to the frequency localization of cm,

‖∇R̃j‖L2 ≤ Cc′j2
−js12mh1‖c− 1‖

Ḃ
d
2
2,1

‖∇u‖
Ḃ

s1+1−h1
2,1

+ Cc′′j2
−js22m(1+h2)‖c− 1‖

Ḃ
d
2
2,1

‖u‖
Ḃ

s2+1−h2
2,1

. (3.39)

With s1 = s2 = s − 1 and h1 = h2 = 1, there exists a nonnegative summable sequence
cj(t) whose summation is 1 such that:

‖∇R̃j‖L2 ≤ Ccj2
−j(s−1)‖c− 1‖

Ḃ
d
2
2,1

(
2m‖∇u‖Ḃs−1

2,1
+ 22m‖u‖Ḃs−1

2,1

)
.

and then:

∣∣∣(∇R̃j |
bm
cm

∇qj)L2

∣∣∣ ≤ ‖∇R̃j‖L2‖
bm
cm

‖L∞‖∇qj‖L2

≤ C
∗cj2

−j(s−1)‖c− 1‖
Ḃ

d
2
2,1

(
2m‖u‖Ḃs

2,1
+ 22m‖u‖Ḃs−1

2,1

)
‖∇qj‖L2 . (3.40)

Finally, thanks to interpolation estimates we obtain

∣∣∣(∇R̃j |
bm
cm

∇qj)L2

∣∣∣ ≤ cj2
−j(s−1)‖∇qj‖L2

(
1

2
‖u‖Ḃs+1

2,1
+ C

∗22m(1 + ‖c− 1‖
Ḃ

d
2
2,1

)2‖u‖Ḃs−1

2,1

)
.

(3.41)
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The real problem comes from

∇Rj =
(
v · ∇2qj − ∆̇j(v · ∇

2q)
)
+
(
∇v · ∇qj − ∆̇j(∇v · ∇q)

)
.

Indeed, we could use the same estimate as in [12, 5] (see lemma 3) for the first two terms,
but not for the last two as there are too many derivatives pounding on v. We are then
forced to make the derivative pound on the second term of the inner product:

(∇Rj |
bm
cm

∇qj)L2 = −(Rj |div (
bm
cm

∇qj))L2 = −(Rj|
bm
cm

∆qj))L2 − (Rj |∇qj · ∇(
bm
cm

))L2 ,

and then, thanks to (3.34)

∣∣∣(∇Rj |
bm
cm

∇qj)L2

∣∣∣ ≤ C
∗

(
2j + 2m(‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)

)
‖Rj‖L2‖∇qj‖L2 . (3.42)

When m ≤ j (m will be more precisely fixed later),

∣∣∣(∇Rj|
bm
cm

∇qj)L2

∣∣∣ ≤ C
∗

(
1 + (‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)

)
2j‖Rj‖L2‖∇qj‖L2 . (3.43)

which gives a good estimate thanks to (3.16). Unfortunately, due to the fact that we
only have q0 ∈ Ḃs

2,1 and do not assume q0 ∈ Ḃs−1
2,1 , this will not work in the case j ≤ m.

In this case we rewrite the equation on ∇qj the following way:

∂t∇qj +∇div (cmuj) = ∇Fj +∇Fm,j +∇R̃j −∇∆̇j(v · ∇q),

and take its innerproduct with bm
cm

∇qj.

(∂t∇qj|
bm
cm

∇qj)L2+(∇div (cmuj)|
bm
cm

∇qj)L2 =

(
∇Fj +∇Fm,j +∇R̃j −∇∆̇j(v · ∇q)

∣∣∣bm
cm

∇qj

)

L2

≤ C
∗2j(‖Fj‖L2 + ‖Fm,j‖L2)‖∇qj‖L2 +

(
∇∆̇j(v · ∇q)

∣∣∣bm
cm

∇qj

)

L2

+ cj2
−j(s−1)‖∇qj‖L2

(
1

2
‖u‖Ḃs+1

2,1
+ C

∗22m(1 + ‖c− 1‖
Ḃ

d
2
2,1

)2‖u‖Ḃs−1

2,1

)
. (3.44)

Thanks to the Bony decomposition, v · ∇q = Tv∇q + T∇qv +R(v,∇q) and we can easily
show, thanks to the paraproduct and remainder laws for Besov spaces that:

‖∆̇j

(
T∇qv +R(v,∇q)

)
‖L2 ≤ Ccj2

−js‖v‖
Ḃ

d
2
+1

2,1

‖q‖Ḃs
2,1
. (3.45)

Remark 7 This is here that, due to the paraproduct and remainder conditions on in-
dices, we get the condition s ∈]− d

2 ,
d
2 + 1] in theorem 5.

But, Tv∇q cannot be estimated this way, indeed, the best be can have is:

‖Tv∇q‖Ḃs
2,1

≤ ‖v‖L∞‖q‖Ḃs+1

2,1
.
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This estimate is useful in the case of (NSK) because the density fluctuation is more
regular but not in the non-local case. As we are in the case j ≤ m, we will be able to
estimate:

Tv∇q =
∑

l∈Z

Ṡl−1v.∆̇l∇q.

As Ṡl−1v.∆̇l∇q is localized in frequency in an annulus 2lC′, using that q ∈ Ḃs
2,1 there

exists a summable nonnegative sequence whose summation is 1, (cl(t))l∈Z, such that:

2j‖∆̇j(Tv∇q)‖L2 ≤ 2j
∑

|l−j|≤N1

‖Ṡl−1v‖L∞2l‖∆̇lq‖L2 ≤ C2j
∑

|l−j|≤N1

‖v‖L∞2l2−lscl(t)‖q‖Ḃs
2,1

≤ C2−j(s−1)
∑

|l−j|≤N1

‖v‖L∞2l2(j−l)scl(t)‖q‖Ḃs
2,1

≤ C2m+N12−j(s−1)


 ∑

|l−j|≤N1

2(j−l)scl(t)


 ‖v‖L∞‖q‖Ḃs

2,1

≤ C ′2m2−j(s−1)dj(t)‖v‖L∞‖q‖Ḃs
2,1
, (3.46)

because l ≤ j + N1 ≤ m + N1 and, thanks to convolution estimates, (dj(t))j∈Z is non-
negative, summable with ‖d‖l1 ≤ Cs‖c‖l1 ≤ Cs. Finally we are able to write the desired
estimates: collecting (3.30), (3.31) and (3.35), (3.36), (3.41), (3.43) (in the case j ≥ m)
and (3.36), (3.44), (3.45), (3.46) (in the case j ≤ m) we end up with, for all j ∈ Z:

1

2

d

dt
(∇qj|

bm
cm

∇qj)L2+(∇div (cmuj)|
bm
cm

∇qj)L2 ≤ C
∗‖∇qj‖

2
L2

[
2m(‖∂tb‖

Ḃ
d
2
−1

2,1

+‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

)

]

+ ‖∇qj‖L2

[
cj2

−j(s−1)‖u‖Ḃs+1

2,1
+ C

∗2j(‖Fj‖L2 + ‖Fm,j‖L2)

+ cj2
−j(s−1)

C
∗22m(1 + ‖c− 1‖

Ḃ
d
2
2,1

)2‖u‖Ḃs−1

2,1

+ cj2
−j(s−1)

C
∗(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

)‖q‖Ḃs
2,1

]
. (3.47)

Let us recall that the interest of computing (3.28)+ν(3.47) is that, as in [5], it allows
to neutralize (3.29), that is the terms consuming too many derivatives (estimated by
C
∗22j‖uj‖L2‖∇qj‖L2), and in the remaining terms at least one derivative will pound on

bm − 1 or cm − 1 making these terms harmless because there is 2m2j or 22m instead of
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22j . Let us explain this in details: as ν = λ+ 2µ, we have (from (3.28)+ν(3.47))

B
def
= −µ(div (bm.∇uj)|∇qj)L2−(λ+µ)(∇(bmdiv uj)|∇qj)L2+ν(∇div (cmuj)|

bm
cm

∇qj)L2

= µ

[
(∇div (cmuj)|

bm
cm

∇qj)L2 − (div (bm.∇uj)|∇qj)L2

]

+ (λ+ µ)

[
(∇div (cmuj)|

bm
cm

∇qj)L2 − (∇(bmdiv uj)|∇qj)L2

]
= µB1 + (λ+ µ)B2.

(3.48)

Let us now estimate separatedly B1 and B2:

B2 =

(
bm
cm

(∇cmdiv uj + cm∇div uj +∇uj.∇cm + uj .∇
2cm)

∣∣∣∇qj
)

L2

− (bm∇div uj +∇bm.div uj |∇qj)L2

=

(
bm
cm

∇cmdiv uj +
bm
cm

∇cm.∇uj +
bm
cm
.∇2cm.uj −∇bm.div uj

∣∣∣∇qj
)

L2

.

(3.49)

We emphasize that (bm∇div uj)|∇qj)L2 , which was mentionned before as an obstruction
term, has disappeared, and all that remain are harmless terms where at most two deriva-
tives are applied to uj or qj. Thanks to (3.34), and the fact that ∇2cm = ∇2(cm − 1) =
∇2Ṡm(c− 1) we obtain

|B2| ≤ C
∗(‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)
(
2m2j‖uj‖L2 + 22m‖uj‖L2

)
‖∇qj‖L2 .

The other term requires a little more attention:

B1 = −

(
div (cmuj)

∣∣∣div (bm
cm

∇qj)

)

L2

− (bm∆uj +∇uj.∇bm)|∇qj)L2

= −

(
cmdiv uj + uj .∇cm

∣∣∣bm
cm

∆qj +∇qj.∇(
bm
cm

)

)

L2

− (bm∆uj +∇uj .∇bm)|∇qj)L2

= B11 +B12, (3.50)

with
B11 = −(bmdiv uj |∆qj)L2 − (bm∆uj|∇qj)L2 ,

and

B12 = −

(
uj.∇cm

∣∣∣bm
cm

∆qj +∇qj.∇(
bm
cm

)

)

L2

−

(
cmdiv uj

∣∣∣∇qj.∇(
bm
cm

)

)

L2

− (∇uj.∇bm)|∇qj)L2 . (3.51)

In each term of B12 at most two derivatives act on uj and qj so that we can estimate
B12 with the same arguments used for B2, and for the other term we have:

B11 = −
(
∆(bmdiv uj)

∣∣∣qj
)
L2

− (bm∆uj |∇qj)L2

= −(∆bm.div uj + 2∇bm.∇div uj + bm.∆div uj|qj)L2 + (bm.div∆uj +∆uj .∇bm|qj)L2

= −(∆bm.div uj + 2∇bm.∇div uj +∆uj .∇bm|qj)L2 . (3.52)
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As expected, the dangerous terms are neutralized and then, as before, we can easily
estimate B1 and we can finally write:

|B| ≤ C
∗ν(‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)

×

(
2m2j‖uj‖L2‖∇qj‖L2 + 22m

(
1 + ‖c− 1‖

Ḃ
d
2
2,1

)
‖uj‖L2‖∇qj‖L2

)
, (3.53)

and then, using the fact that 2ab ≤ a2 + b2, we finally end up with:

|B| ≤ C
∗22j‖uj‖

2
L2+C

∗ν222m(1+‖b−1‖
Ḃ

d
2
2,1

+‖c−1‖
Ḃ

d
2
2,1

)2
(
‖uj‖L2‖∇qj‖L2 + ‖∇qj‖

2
L2

)
.

(3.54)

Thanks to (3.54), computing (3.28)+ν(3.47) allows us to obtain (using once more (3.16),
and estimating 2j‖R̃j‖L2 and ‖S̃j‖L2 like in (3.41)), denoting by D

∗ a constant only
depending on the bounds of b, c and on the physical parameters µ, λ, κ:

d

dt

(
(uj |∇qj)L2 +

ν

2
(∇qj|

bm
cm

∇qj)L2

)
+ κ(∇qj |

∇qj − φε ∗ ∇qj
ε2

)L2 ≤ D
∗22j‖uj‖

2
L2

+ D
∗(‖uj‖

2
L2 + ‖∇qj‖

2
L2)

[
2m(‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

+ 22m)

]

+D
∗(‖uj‖L2+‖∇qj‖L2)

[
cj2

−j(s−1)‖u‖Ḃs+1

2,1
+(‖Gj‖L2+‖Gm,j‖L2+2j‖Fj‖L2+2j‖Fm,j‖L2)

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 22m)‖u‖Ḃs−1

2,1

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

)‖q‖Ḃs
2,1

]
. (3.55)

Let us introduce, as stated in theorem 5, the following quantity

hj(t)
2 = (uj |cmuj)L2 + κ(qj |

qj − φε ∗ qj
ε2

)L2 + η

(
2(uj |∇qj)L2 + ν(∇qj|

bm
cm

∇qj)L2

)
,

(3.56)
for some η < 1 that we will precise in the following. First we will write conditions on η
so that h2j ∼ ‖uj‖

2
L2 + ‖∇qj‖

2
L2 . Thanks to (3.13),

ν
b∗

2c∗ + c∗
‖∇qj‖

2
L2 ≤ ν(∇qj|

bm
cm

∇qj)L2 ≤ ν
2b∗ + b∗
c∗

‖∇qj‖
2
L2 .

Using the fact that 2ab ≤ a2 + b2, we get

2|(uj |∇qj)L2 | ≤ ν
b∗

2(2c∗ + c∗)
‖∇qj‖

2
L2 +

2(2c∗ + c∗)

νb∗
‖uj‖

2
L2
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so that if η satisfies

η ≤ min(1,
νb∗c∗

8(2c∗ + c∗)
), (3.57)

there exists a constant D∗ such that we have:

c∗
4
‖uj‖

2
L2 + κ(qj |

qj − φε ∗ qj
ε2

)L2 +
νηb∗

2(2c∗ + c∗)
‖∇qj‖

2
L2 ≤ hj(t)

2

≤ D
∗(‖uj‖

2
L2 + ‖∇qj‖

2
L2) + κ(qj |

qj − φε ∗ qj
ε2

)L2 . (3.58)

then, writing (3.24)+2η(3.55), and using the fact that (in (3.24)):

Cκ‖v‖L∞‖∇qj‖L22j
√

(qj|
qj − φε ∗ qj

ε2
)L2

≤
κη

2
(∇qj|

∇qj − φε ∗ ∇qj
ε2

)L2 +
C2κ

2η
‖v‖2L∞‖∇qj‖

2
L2 , (3.59)

if η satisfies

η ≤
ν0b∗c∗
16D∗

, (3.60)

then for all t ∈ [0, T ]:

1

2

d

dt
hj(t)

2 + ν0
b∗c∗
16

22j‖uj‖
2
L2 +

κη

2
(∇qj |

∇qj − φε ∗ ∇qj
ε2

)L2

≤ D
∗hj(t)

2

[
2m(‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

+ 22m + ‖v‖2

Ḃ
d
2
2,1

)

]

+ D
∗hj(t)

[
cj2

−j(s−1)η‖u‖Ḃs+1

2,1
+ (‖Gj‖L2 + ‖Gm,j‖L2 + 2j‖Fj‖L2 + 2j‖Fm,j‖L2)

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 22m)‖u‖Ḃs−1

2,1

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

)‖q‖Ḃs
2,1

]
. (3.61)

If we introduce

γ∗ = min(
κη

4D∗
,
ν0b∗c∗
16D∗

,
η

4
),

then for all j ∈ Z,

ν0
b∗c∗
16

22j‖uj‖
2
L2 +

κη

2
(∇qj|

∇qj − φε ∗ ∇qj
ε2

)L2 ≥ γ∗ min(
1

ε2
, 22j)hj(t)

2,
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and we obtain, integrating from 0 to t:

hj(t) + γ∗min(
1

ε2
, 22j)

∫ t

0
hj(τ)dτ ≤ hj(0)

+ D
∗

∫ t

0
hj(τ)

[
2m(‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

+ 22m + ‖v‖2

Ḃ
d
2
2,1

)

]
dτ

+ D
∗

∫ t

0

[
cj2

−j(s−1)η‖u‖Ḃs+1

2,1
+ (‖Gj‖L2 + ‖Gm,j‖L2 + 2j‖Fj‖L2 + 2j‖Fm,j‖L2)

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 22m)‖u‖Ḃs−1

2,1

+ cj2
−j(s−1)(1 + ‖b− 1‖

Ḃ
d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

)‖q‖Ḃs
2,1

]
dτ. (3.62)

In particular, we obtained a bound for the integral (see remark 5) :

min(
1

ε2
, 22j)

∫ t

0
‖∇qj(τ)‖L2dτ,

that is, we can now obtain the parabolic regularization on the velocity exactly as in
[12, 5] by taking the innerproduct of the velocity equation from system (3.14) by uj ,
finally if we set, as stated in theorem 5, gj(t) = ‖uj(t)‖L2 + hj(t), then we have (3.11),
and multiplying by 2j(s−1) and summing over j ∈ Z, we obtain:

gs(q, u)(t) + ν0
b∗
2
22j
∫ t

0
‖u‖Ḃs+1

2,1
dτ + γ∗

∫ t

0
‖
φε ∗ q − q

ε2
‖Ḃs

2,1
dτ

≤ gs(q0, u0)(0) + D
∗

∫ t

0
gs(q, u)(τ)

[
2m(‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2(‖∇v‖
Ḃ

d
2
2,1

+ 2m‖v‖
Ḃ

d
2
2,1

+ 22m + ‖v‖2

Ḃ
d
2
2,1

)

]
dτ

+ D
∗

∫ t

0

[
η‖u‖Ḃs+1

2,1
+ (‖G‖Ḃs−1

2,1
+ ‖Gm‖Ḃs−1

2,1
+ ‖F‖Ḃs

2,1
+ ‖Fm‖Ḃs

2,1
)

]
dτ. (3.63)

Using (3.16) and finally fixing η such that

η ≤
ν0b∗
4D∗

, (3.64)

we end up with (3.12).

Remark 8 Recollecting the various conditions on η, (3.57), (3.60) and (3.64), we need
that:

0 < η ≤ min(1,
νb∗c∗

8(2c∗ + c∗)
,
ν0b∗c∗
16D∗

,
ν0b∗
4D∗

),
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and then we defined

γ∗ = min(
κη

4D∗
,
ν0b∗c∗
16D∗

,
η

4
) > 0,

where D
∗ only depends on the bounds of b and c, the physical parameters (viscosities,

capillarity, dimension) and s.

Remark 9 As explained, many points of the previous proof are much easier for the
Korteweg model.

3.3 Existence

This part is classical so we will leave some details to the reader (the proofs are very
similar to those in [13, 14, 18, 1, 5, 25, 26]). As in [18], we will first prove the existence
for more regular initial data (we refer to [13, 14]), then use it for regularized initial data,
and finally prove the convergence to a solution of our problem.

The special feature of the present models is that, due to the capillary term, we cannot
afford to study separatedly the density fluctuation and the velocity, we need to recouple
them via the previous a priori estimate. Again we present the proof in the non-local case
(it is easier for the Korteweg system).

Let us first assume that the initial data satisfy q0 ∈ Ḃ
d
2

2,1∩Ḃ
d
2
+1

2,1 and u0 ∈ Ḃ
d
2
−1

2,1 ∩Ḃ
d
2

2,1.
We emphasize that this will not be necessary for system (NSK). We introduce (qL, uL)
the unique global solution of system:





∂tqL + div uL = 0,

∂tuL −AuL − κ
φε ∗ ∇qL −∇qL

ε2
= 0,

(qL, uL)|t=0 = (q0, u0).

(3.65)

We can easily adapt the linear estimates from [8] in the case where we do not assume
P ′(1) > 0 (that is taking p = 0 in system (LRε) from [5] or [8]), we obtain the following
global in time estimates (let us recall that we use the estimates from [16] for (NSK), or
adapt those from [9] for the order parameter model): there exists a constant C > 0 such
that for all t, and for s ∈ {d

2 ,
d
2 + 1},

ν‖qL‖L̃∞
t Ḃs

2,1
+ ν2‖qL‖L1

t Ḃ
s+2,s
1/ε

+ ‖uL‖L̃∞
t Ḃs−1

2,1
+ ν0‖uL‖L1

t Ḃ
s+1

2,1

≤ C(ν‖q0‖Ḃs
2,1

+ ‖u0‖Ḃs−1

2,1
). (3.66)

As this system is linear, for all m ∈ Z, thanks to this estimates we also have for all t,

ν‖(Id − Ṡm)qL‖L̃∞
t Ḃs

2,1
+ ν2‖(Id − Ṡm)qL‖L1

t Ḃ
s+2,s
1/ε

+ ‖(Id − Ṡm)uL‖L̃∞
t Ḃs−1

2,1

+ ν0‖(Id − Ṡm)uL‖L1
t Ḃ

s+1

2,1
≤ C(ν‖(Id − Ṡm)q0‖Ḃs

2,1
+ ‖(Id − Ṡm)u0‖Ḃs−1

2,1
). (3.67)

Remark 10 Of course, we could also use our a priori estimates in the case v = 0,
b = c = 1 on the time interval [0, T ] provided by theorem 1, the interest of the previous
estimates being the precision of the coefficients.
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As in [18] we define the following iterative scheme: for n ≥ 0, (qn+1, un+1) is the unique
global solution of the following linear system:





∂tqn+1 + un · ∇qn+1 + (1 + qn)div un+1 = 0,

∂tun+1 + un · ∇un+1 −
1

1 + qn
Aun+1 − κ

φε ∗ ∇qn+1 −∇qn+1

ε2
= −∇(H(1 + qn)−H(1)),

(qn+1, un+1)|t=0 = (q0, u0),

(3.68)
where H is the real-valued function defined on R by H ′(x) = P ′(x)/x. We also define
the difference (qn+1, un+1) = (qn+1 − qL, un+1 − uL) satisfies the following system:





∂tqn+1 + un · ∇qn+1 + (1 + qn)div un+1 = −un · ∇qL − qndiv uL = Fn,

∂tun+1 + un · ∇un+1 −
1

1 + qn
Aun+1 − κ

φε ∗ ∇qn+1 −∇qn+1

ε2

= −∇(H(1 + qn)−H(1)) − un · ∇uL −
qn

1 + qn
AuL = Gn,

(qn+1, un+1)|t=0 = (0, 0),
(3.69)

Let us denote by J the real function J(x) = 1/(1 + x) and assume that c ≤ 1 + q0 ≤ c
(then 1

c ≤ J(q0) ≤
1
c ). Let us define F

∗, γ∗ and η as provided by theorem 5 applied for
functions b, c having the following bounds:

c∗ =
c

2
≤ c ≤ c∗ = c+

c

2
, and b∗ =

1

c∗
≤ b ≤ b∗ =

1

c∗
.

For n ∈ N
∗, t > 0, m ∈ Z, 0 < 2β ≤ min(b∗, c∗) and two positive constants C,C0, we

define the following proposition:

P(n) =





(1) gs(qn, un)(T ) +
ν0b∗
4 ‖un‖L1

T Ḃs+1

2,1
+ γ∗‖qn‖L1

T Ḃs+2,s
1/ε

≤ 2C0, for s ∈ {d
2 ,

d
2 + 1},

(2) g
d
2 (qn, un)(T ) +

ν0b∗
4 ‖un‖

L1
T Ḃ

d
2
+1

2,1

+ γ∗‖qn‖
L1
T Ḃ

d
2
+2, d

2
1/ε

≤ β,

(3) ν0b∗
4 ‖un‖

L1
T Ḃ

d
2
+1

2,1

+ γ∗‖qn‖
L1
T Ḃ

d
2
+2, d

2
1/ε

≤ 2β,

(4) ‖∂tqn‖
L2
T Ḃ

d
2
−1

2,1

≤ 2CF
∗(1 + 2C0)

2,

(5) ‖∂tJ(qn)‖
L2
T Ḃ

d
2
−1

2,1

≤ 2CF
∗(1 + 2C0)

4,

(6) ‖(Id − Ṡm)qn‖
L̃∞
T Ḃ

d
2
2,1

≤ 2β,

(7) ‖qn − q0‖
L̃∞
T Ḃ

d
2
2,1

≤ 2β and c∗ ≤ 1 + qn ≤ c∗, b∗ ≤ J(qn) ≤ b∗,

(8) ‖J(qn)− 1‖
L̃∞
T Ḃ

d
2
2,1

≤ 2CF
∗C0,

(9) ‖J(qn)− J(q0)‖
L̃∞
T Ḃ

d
2
2,1

≤ 2β,

(10) ‖(Id − Ṡm) (J(qn)− 1) ‖
L̃∞
T Ḃ

d
2
2,1

≤ 2β

(3.70)
Let us state the main ingredient for the proof of the existence theorem:
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Lemma 1 Let C0 = max(g
d
2 (q0, u0)(0), g

d
2
+1(q0, u0)(0), ‖J(q0)− 1‖

Ḃ
d
2
2,1

). Let F∗, γ∗, b∗,

b∗, c∗, c
∗ as before, 0 < β < min(b∗, c∗,

ν0b∗
32F∗ ) small, and assume that m ∈ Z is large

enough so that:

‖(Id − Ṡm)q0‖
L̃∞
t Ḃ

d
2
2,1

+ ‖(Id − Ṡm) (J(q0)− 1) ‖
L̃∞
t Ḃ

d
2
2,1

≤ β. (3.71)

If β then T are small enough so that:



e2CF∗(1+2(C+1)C0)

4(1+2C0)4β ≤ 5
4 ,

5
4(1 + F

∗T )e
2CF∗(1+2(C+1)C0)

4
(
22m+1T+2mT

1
2

)

≤ 2,
(3.72)

and

C0F
∗

(
‖qL‖

L2
T Ḃ

d
2
+1

2,1

+ ‖uL‖
L1
T Ḃ

d
2
+1

2,1

+ ‖uL‖
L2
T Ḃ

d
2
2,1

)
≤ β, (3.73)

then P(n) is true for all n ≥ 1.

Remark 11 We emphasize that as for all n, 1 + qn and J(qn) have the same bounds,
the constants F∗ and γ∗ provided by theorem 5 are the same for all n.

Remark 12 Note that more precisely, in (1), in the case s = d
2 , the constant C0 only

depends on norms with regularity index d
2 .

Proof: We will prove this result by induction. Assuming that the proposition is true
for n ∈ N

∗, we first apply theorem 5 to system (3.68). We have F = 0 and thanks to
composition estimates in Besov spaces (see the appendix), for s ∈ {d

2 ,
d
2 + 1}

‖G‖Ḃs−1

2,1
≤ C(‖qn‖L∞)‖qn‖Ḃs

2,1
≤ C(C.‖q0‖L∞)F∗2C0,

so that for all t ∈ [0, T ] (thanks to (1, 4, 5, 6, 10)),

gs(qn+1, un+1)(t) +
ν0b∗
4

‖un+1‖L1
t Ḃ

s+1

2,1
+ γ∗‖qn+1‖L1

t Ḃ
s+2,s
1
ε

≤ gs(q0, u0)(0)

+ F
∗C0t+ 3βF∗‖un+1‖L1

t Ḃ
s+1

2,1
+ F

∗

∫ t

0
gs(qn+1, un+1)(τ)

(
4C(1 + 2C0)

42m

+ (1 + 2(C + 1)C0)
2
[
2m‖un‖

Ḃ
d
2
2,1

+ ‖un‖
2

Ḃ
d
2
2,1

+ ‖un‖
Ḃ

d
2
+1

2,1

+ 22m
])
dτ,

(3.74)

then using that 3βF∗ ≤ ν0b∗
8 and the Gronwall lemma, we obtain:

gs(qn+1, un+1)(t) +
ν0b∗
4

‖un+1‖L1
t Ḃ

s+1

2,1
+ γ∗‖qn+1‖L1

t Ḃ
s+2,s
1
ε

≤ (gs(q0, u0)(0) + F
∗C0t)

× e

F∗2C(1+2(C+1)C0)4
∫ t
0

[
2m+1+22m+2m‖un‖

Ḃ
d
2
2,1

+‖un‖2

Ḃ
d
2
2,1

+‖un‖
Ḃ

d
2
+1

2,1

]
dτ

. (3.75)
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Using (1) for s = d
2 and (3) from P(n), we obtain (denoting again by F

∗ the constants):

gs(qn+1, un+1)(t) +
ν0b∗
4

‖un+1‖L1
t Ḃ

s+1

2,1
+ γ∗‖qn+1‖L1

t Ḃ
s+2,s
1
ε

≤ C0(1 + F
∗t)e

F∗2C(1+2(C+1)C0)4
[
22m+1t+2mt

1
2 β

1
2+β(1+2C0)

]
dτ
. (3.76)

When β > 0 and T > 0 are small enough to fulfill condition (3.72) (m being fixed more
precisely later) we obtain point (1) of P(n + 1). Applying theorem 5 to system (3.69)
and doing the same leads to (thanks to (3.72)):

g
d
2 (qn+1, un+1)(t) +

ν0b∗
4

‖un+1‖
L1
t Ḃ

d
2
+1

2,1

+ γ∗‖qn+1‖
L1
t Ḃ

d
2
+2, d

2
1
ε

≤ e
F∗2C(1+2(C+1)C0)4

[
22m+1t+2mt

1
2 β

1
2+β(1+2C0)

]
dτ
F
∗

∫ t

0

(
‖Fn‖

Ḃ
d
2
2,1

+ ‖Gn‖
Ḃ

d
2
−1

2,1

)
dτ

≤ 2F∗

∫ t

0

(
‖F n‖

Ḃ
d
2
2,1

+ ‖Gn‖
Ḃ

d
2
−1

2,1

)
dτ.

(3.77)

Estimating the forcing terms:

∫ t

0

(
‖Fn‖

Ḃ
d
2
2,1

+ ‖Gn‖
Ḃ

d
2
−1

2,1

)
dτ ≤ ‖un‖

L2
t Ḃ

d
2
2,1

‖qL‖
L2
t Ḃ

d
2
+1

2,1

+ ‖qn‖
L∞
t Ḃ

d
2
2,1

‖uL‖
L1
t Ḃ

d
2
+1

2,1

+ tC(‖q0‖L∞)‖qn‖
L∞
t Ḃ

d
2
2,1

+ C‖un‖
L2
t Ḃ

d
2
2,1

‖uL‖
L2
t Ḃ

d
2
2,1

+ C(‖q0‖L∞)‖qn‖
L∞
t Ḃ

d
2
2,1

‖uL‖
L1
t Ḃ

d
2
+1

2,1

≤ C0F
∗

(
‖qL‖

L2
t Ḃ

d
2
+1

2,1

+ ‖uL‖
L1
t Ḃ

d
2
+1

2,1

+ ‖uL‖
L2
t Ḃ

d
2
2,1

)
. (3.78)

Thanks to condition (3.73), we obtain the second point.

Remark 13 This is here (precisely for un ·∇qL) that we needed the additional regularity
on the initial data.

The proof of (3) immediately follows for T small enough so that:

ν0b∗
4

‖uL‖L1
T Ḃs+1

2,1
+ γ∗‖qL‖L1

T Ḃs+2,s
1
ε

≤ β.

For the estimates on the time derivative of qn+1 (point (4)) we simply use the first
equation of the iterative scheme and the estimates from P(n). This implies the result for
J(qn) thanks to composition estimates (see for example [1] or [12] lemma 1.6) as:

∂tJ(qn) = −
∂tqn

(1 + qn)2
.
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For point (6), we simply write:

‖(Id − Ṡm)qn+1‖
L̃∞
T Ḃ

d
2
2,1

≤ ‖qn+1‖
L̃∞
T Ḃ

d
2
2,1

+ ‖(Id − Ṡm)qL‖
L̃∞
T Ḃ

d
2
2,1

.

Using the estimates on qL and on qn+1(given by (2)n+1, we obtain (6). The following
point is simply given by estimating the equation:

∂t(qL − q0) = −div uL,

which implies for T small enough

‖qL − q0‖
L̃∞
t Ḃ

d
2
+1

2,1

≤ ‖uL‖
L1
t Ḃ

d
2
+1

2,1

≤ β,

so that, writing qn+1 − q0 = qn+1 + (qL − q0) we obtain (7). For the last estimates on
J(qn+1): the first one is obtained thanks to composition estimates in Besov spaces on:

J(qn+1)− 1 = −
qn+1

1 + qn+1
.

Next we estimate the equation on J(qn+1) − J(q0) (we refer to [18] proposition 8 for
transport estimates):

∂t (J(qn+1)− J(q0)) + un · ∇ (J(qn+1)− J(q0))

=

(
1 + qn

(1 + qn+1)2
− 1 + 1

)
div un+1 − un · ∇(J(q0)− 1), (3.79)

Thanks to the classical transport estimates, P(n) and the Gronwall lemma, we obtain
that:

‖J(qn+1)− J(q0)‖
L̃∞
t Ḃ

d
2
2,1

≤ 2C0t
1

2 e2CC0t
1
2

[
2C0(1 + 2CC0)

2 + ‖J(q0)− 1‖
Ḃ

d
2
+1

2,1

]
.

Then for T small enough as stated in the lemma we get the result. The last point is
obtained writing that:

(Id − Ṡm) (J(qn+1)− 1) = (Id − Ṡm) (J(qn+1)− J(q0)) + (Id − Ṡm) (J(q0)− 1) ,

and using (3.71) and (8)n. �
The next step in the proof of the existence theorem is then to prove that (qn, un) is

a Cauchy sequence in E
d
2

1/ε
(T ) for T small enough as below. For that we define:

(δqn, δun) = (qn+1 − qn, un+1 − un) = (qn+1 − qn, un+1 − un).

It solves the following system:




∂tδqn + un · ∇δqn + (1 + qn)div δun = δF,

∂tδun + un · ∇δun −
1

1 + qn
Aδun − κ

φε ∗ ∇δqn −∇δqn
ε2

= δG,

(δqn, δun)|t=0 = (0, 0),
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with

{
δF = −δun−1.∇qn − δqn−1div un,

δG = −∇(H(1 + qn)−H(1 + qn−1))− δun−1 · un +
(

1
1+qn

− 1
1+qn−1

)
Aun.

Then using theorem 5 we prove that for sufficiently small β > 0 and T > 0,

‖(δqn, δun)‖
E

d
2
1/ε

≤ β
1

3 < 1.

This part is classical (see for example [18, 25, 26]) so we shall not give details (we also
refer to the next part, the present computations are close to the ones to estimate the

convergence rate). This implies that (qn, un) is a Cauchy sequence in E
d
2

1/ε(T ) for T small

enough, and then this gives a solution for system (NSRε)in the case of smooth initial

data: q0 ∈ Ḃ
d
2

2,1 ∩ Ḃ
d
2
+1

2,1 and u0 ∈ Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2

2,1.

In the case q0 ∈ Ḃ
d
2

2,1 and u0 ∈ Ḃ
d
2
−1

2,1 we do as in [18]: we begin by regularizing the
initial data:

(qp0 , u
p
0) = (Ṡpq0, Ṡpu0),

and thanks to what precedes, we get a sequence of smooth solutions (qp, up)p∈N of (NSRε)
on a bounded intervall [0, T ] (uniformly in p). We then use classical arguments (estimates
on the time derivatives, compactness, Fatou lemma) to prove that the sequence converges,
up to an extraction, towards a solution of (NSRε) with initial data (q0, u0) and satisfying
the energy estimates. We refer to [18] for details: in our case the method is very close
except that we mainly use our a priori estimates from theorem 5.

Remark 14 We could simplify the proof of (1)n+1 by using also (1)n for s = d
2 +1, then

it would not have been necessary to ask for the condition on β in (3.72), but we choosed
to present it this way because for (NSK) this is the only way to do as we do not ask for
more regularity.

Remark 15 The proof for (NSK) follows the same lines but is easier: thanks to the
greater regularity of q, we can immediately prove that (qn, un) is a Cauchy sequence.
There is no need to regularize, and therefore P(n) is simpler: (1) is only proved for
s = d

2 .

Remark 16 A very quick method consists in using what is proved for (NSC) to our
system (NSRε). The problem is that the method from [18] only provides a lower bound
for the maximal lifespan T ∗

ε in O(ε2), but we can use our a priori estimates to bound T ∗
ε

from below by the same small T > 0 exhibed in what precedes. This method is valid for
the non-local systems but fails for (NSK).

3.4 Uniqueness

The method is similar to what is done in [18], except that we use our a priori estimates.
As ε is fixed we can also simply use the estimates from [18] to get the uniqueness.
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4 Proof of the convergence

Let us now turn to the convergence rate. Once we obtained (3.12) the end of the proof

is very close to the one from [5]. Let (q0, u0) ∈ Ḃ
d
2

2,1 × Ḃ
d
2
−1

2,1 and (qε, uε) and (q, u) the
corresponding solutions of systems (NSRε) and (NSK) both of them existing on [0, T ]
where T is provided by theorem 1:




∂tqε + uε · ∇qε + (1 + qε)div uε = 0,

∂tuε + uε · ∇uε −
1

1 + qε
Auε +∇(H(1 + qε)−H(1))− κ

φε ∗ ∇qε −∇qε
ε2

= 0,

and let us write (q, u) as a solution of system (NSRε) with an additionnal external force:




∂tq + u · ∇q + (1 + q)div u = 0,

∂tu+ u · ∇u−
1

1 + q
Au+∇(H(1 + q)−H(1)) − κ

φε ∗ ∇q −∇q

ε2
= Rε,

where the remainder is given by Rε
def
= − κ

ε2
∇(φε ∗ q− q− ε

2∆q). Let us define (δq, δu) =
(qε − q, uε − u), who solves:





∂tδq + uε · ∇δq + (1 + qε)div δu = δF1 + δF2,

∂tδu+ uε · ∇δu−
1

1 + qε
Aδu− κ

φε ∗ ∇δq −∇δq

ε2
= −Rε + δG1 + δG2 + δG3,

(δq, δu)|t=0 = (0, 0),

(4.80)
where

{
δF1 = −δu · ∇q,

δF2 = −δq.div u,
and





δG1 = −δu · ∇u,

δG2 =
(

1
1+qε

− 1
1+q

)
Au,

δG3 = −∇(H(1 + qε)−H(1 + q)).

Remark 17 We emphasize that in the external force terms from the first equation, there
is no such term as q · div δu, which was one of the aims of our methods.

Applying (3.12) to this system for s = d
2 − h for h ∈]0, 1]∩]0, d − 1[ (we refer to [5] for

explainations of such a choice, mainly due to paraproduct and remainder endpoints) and:

b =
1

1 + qε
= J(qε), c = 1 + qε, v = uε,
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we obtain

g
d
2
−h(δq, δu)(t) +

ν0b∗
4

‖δu‖
L1
t Ḃ

d
2
−1+1

2,1

+ γ∗‖δq‖
L1
t Ḃ

d
2
−h+2, d

2
−h

1
ε

≤ g
d
2
−h(0, 0)(0)

+ F
∗

∫ t

0

(
‖δF1 + δF2‖Ḃs

2,1
+ ‖Rε + δG1 + δG2 + δG3‖Ḃs−1

2,1

)
dτ

+ F
∗

∫ t

0
g

d
2
−h(δq, δu)(τ)

[
2m
(
‖∂tb‖

Ḃ
d
2
−1

2,1

+ ‖∂tc‖
Ḃ

d
2
−1

2,1

)

+ (1 + ‖b− 1‖
Ḃ

d
2
2,1

+ ‖c− 1‖
Ḃ

d
2
2,1

)2
(
‖∇uε‖

Ḃ
d
2
2,1

+ 2m‖uε‖
Ḃ

d
2
2,1

+ 22m + ‖uε‖
2

Ḃ
d
2
2,1

)]
dτ

+ F
∗

∫ t

0

(
‖(Id − Ṡm)(b− 1)‖

Ḃ
d
2
2,1

+ ‖(Id − Ṡm)(c− 1)‖
Ḃ

d
2
2,1

)
‖uε‖Ḃs+1

2,1
dτ. (4.81)

Thanks to Theorem 1 we have:

‖c− 1‖
L̃∞
t Ḃ

d
2
2,1

= ‖qε‖
L̃∞
t Ḃ

d
2
2,1

≤ C ′
0, (4.82)

if T is small enough. Thanks to composition estimates (see for example [1], [12] lemma
1.6 or [5] appendix), we get:

‖b− 1‖
L̃∞
t Ḃ

d
2
2,1

= ‖
qε

1 + qε
‖
L̃∞
t Ḃ

d
2
2,1

≤ C(‖qε‖L∞)‖qε‖
L̃∞
t Ḃ

d
2
2,1

≤ C ′
0. (4.83)

Moreover, thanks to the equation on qε,

‖∂tc‖
Ḃ

d
2
−1

2,1

= ‖∂tqε‖
Ḃ

d
2
−1

2,1

≤ (1 + ‖qε‖
Ḃ

d
2
2,1

)‖uε‖
Ḃ

d
2
2,1

,

and by interpolation we obtain for all t ≤ T :

‖∂tc‖
L2
t Ḃ

d
2
−1

2,1

≤ (1 + ‖qε‖
L∞
t Ḃ

d
2
2,1

)‖uε‖
1

2

L∞
t Ḃ

d
2
−1

2,1

‖uε‖
1

2

L1
t Ḃ

d
2
+1

2,1

≤ C ′
0Vε(t)

1

2 , (4.84)

with

Vε(t) =

∫ t

0
‖uε‖

Ḃ
d
2
+1

2,1

dτ.

Similarly, we obtain

‖∂tb‖
Ḃ

d
2
−1

2,1

= ‖

[
1 +

( 1

(1 + qε)2
− 1
)]
∂tqε‖

Ḃ
d
2
−1

2,1

≤ (1 + ‖
1

(1 + qε)2
− 1‖

Ḃ
d
2
2,1

)‖∂tqε‖
Ḃ

d
2
−1

2,1

≤ (1 + C(‖qε‖L∞)‖qε‖
L̃∞
t Ḃ

d
2
2,1

)‖∂tqε‖
Ḃ

d
2
−1

2,1

.

(4.85)
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Collecting these estimates and thanks to the estimates on (q, u) and (qε, uε) given by
theorem 1, we conclude that there exists a constant C ′

0 > 1 only depending on the initial
data such that: 




‖b− 1‖
L̃∞
t Ḃ

d
2
2,1

+ ‖c− 1‖
L̃∞
t Ḃ

d
2
2,1

≤ C ′
0,

‖∂tb‖
L2
t Ḃ

d
2
−1

2,1

+ ‖∂tc‖
L2
t Ḃ

d
2
−1

2,1

≤ C ′
0Vε(t)

1

2 .
(4.86)

As qε satisfies a transport equation, thanks to Proposition 9 from [18] we can write:

‖(Id − Ṡm)(c− 1)‖
L̃∞
t Ḃ

d
2
2,1

= ‖(Id − Ṡm)qε‖
L̃∞
t Ḃ

d
2
2,1

≤ ‖(Id − Ṡm)q0‖
Ḃ

d
2
2,1

+ (1 + ‖q0‖
Ḃ

d
2
2,1

)(eCVε(t) − 1). (4.87)

Similarly, as b = J(qε) satisfies:

∂tJ(qε) + uε · ∇J(q) = J(q)div uε,

we obtain:

‖(Id − Ṡm)(b− 1)‖
L̃∞
t Ḃ

d
2
2,1

= ‖(Id − Ṡm)(J(qε)− 1)‖
L̃∞
t Ḃ

d
2
2,1

≤ ‖(Id − Ṡm)(J(q0)− 1)‖
Ḃ

d
2
2,1

+ (1 + ‖J(q0)− 1‖
Ḃ

d
2
2,1

)(eCVε(t) − 1). (4.88)

If m is large enough, and T is small enough (both of them only depending on the initial
data and the physical parameters and not on ε), we have:

‖(Id − Ṡm)(b− 1)‖
L̃∞
t Ḃ

d
2
2,1

+ ‖(Id − Ṡm)(b− 1)‖
L̃∞
t Ḃ

d
2
2,1

≤
γ∗

16F∗
,

so that (4.81) reduces to (m is now fixed)

g
d
2
−h(δq, δu)(t) +

3ν0b∗
16

‖δu‖
L1
t Ḃ

d
2
−1+1

2,1

+ γ∗‖δq‖
L1
t Ḃ

d
2
−h+2, d

2
−h

1
ε

≤ F
∗

∫ t

0

(
‖δF1 + δF2‖Ḃs

2,1
+ ‖Rε + δG1 + δG2 + δG3‖Ḃs−1

2,1

)
dτ

+ F
∗

∫ t

0
g

d
2
−h(δq, δu)(τ)

(
‖∇uε‖

Ḃ
d
2
2,1

+ 2m‖uε‖
Ḃ

d
2
2,1

+ 22m + ‖uε‖
2

Ḃ
d
2
2,1

)]
dτ.

(4.89)

The last step is now to estimate the external forcing terms. This is similar to [5] so we
will skip details: using Besov product laws and interpolation we obtain:

‖δF1‖
Ḃ

d
2
−h

2,1

≤ C‖δu‖
Ḃ

d
2
−h

2,1

‖q‖
Ḃ

d
2
+1

2,1

≤
ν0b∗
16F∗

‖δu‖
Ḃ

d
2
−h+1

2,1

+ F
∗‖δu‖

Ḃ
d
2
−h−1

2,1

‖q‖
Ḃ

d
2
2,1

‖q‖
Ḃ

d
2
+2

2,1

, (4.90)
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and




‖δF2‖
Ḃ

d
2
−h

2,1

≤ C‖δq‖
Ḃ

d
2
−h

2,1

‖∇u‖
Ḃ

d
2
2,1

,

‖δG1‖
Ḃ

d
2
−h−1

2,1

≤ C‖δu‖
Ḃ

d
2
−h−1

2,1

‖∇u‖
Ḃ

d
2
2,1

,

‖δG2‖
Ḃ

d
2
−h−1

2,1

≤ C‖I(qε)− I(q)‖
Ḃ

d
2
−h

2,1

‖Au‖
Ḃ

d
2
2,1

≤ C ′
0‖δq‖

Ḃ
d
2
−h

2,1

‖Au‖
Ḃ

d
2
2,1

,

‖δG3‖
Ḃ

d
2
−h−1

2,1

≤ C(‖qε‖L∞ , ‖q‖L∞)‖δq‖
Ḃ

d
2
−h

2,1

.

Plugging this into (4.89) and using the Gronwall lemma allows us to write for all t ≤ T :

g
d
2
−h(δq, δu)(t) +

3ν0b∗
16

‖δu‖
L1
t Ḃ

d
2
−h+1

2,1

+ γ∗‖δq‖
L1
t Ḃ

d
2
−h+2, d

2
−h

1/ε

≤ F
∗‖Rε‖L1

t Ḃ
s−1

2,1
e

F∗
∫ t
0

(
‖∇uε‖

Ḃ
d
2
2,1

+2m‖uε‖
Ḃ

d
2
2,1

+1+22m+‖uε‖2

Ḃ
d
2
2,1

+‖∇u‖
Ḃ

d
2
2,1

+‖q‖
Ḃ

d
2
2,1

‖q‖
Ḃ

d
2
+2

2,1

)
dτ

(4.91)

We can estimate Rε thanks to Corollary 1 from [5] (section 4): there exists a constant
Ch > 0 such that:

‖Rε‖
L1
T Ḃ

d
2
−h−1

2,1

≤ Chκε
h‖q‖

L1
T Ḃ

d
2
+2

2,1

.

We conclude using the estimates on q given by theorem 1.

Remark 18 As in [5, 9], in the case h = 0, using the same estimates we have:

‖Rε‖
L1
t Ḃ

d
2
−1

2,1

≤ κ
∑

j∈Z

2j
d
2
e−ε2C222j − 1 + ε2C222j

ε2
‖∆̇jq‖L1

tL
2 ,

and thanks to the Lebesgue theorem it goes to zero as ε goes to zero.

5 Variable coefficients

In this section we explain how our results can be extended for density dependant viscosity
coefficients. Let us recal that in this case the diffusion operator writes:

Au = div (2µ(ρ)Du) +∇(λ(ρ)div u),

where 2Du =t ∇u+∇u. Then we obtain:

1

ρ
Au =

µ(ρ)

ρ
∆u+

µ(ρ) + λ(ρ)

ρ
∇div u+ 2Du ·

µ′(ρ)

ρ
∇ρ+ div u ·

λ′(ρ)

ρ
∇ρ.

The last two terms are of the form ∇u · ∇L(ρ) and can be dealt the same way as we did
in [7] writing:

∇u · ∇L(1 + q) = ∇u · ∇
(
L(1 + q)− L(1 + Ṡmq)

)
+∇u · ∇

(
L(1 + Ṡmq)− L(1)

)
.
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For the first two terms, we have the diffusion operator:

µ1(1 + q)∆u+
(
µ1(1 + q) + λ1(1 + q)

)
∇div u,

with µ1(x) = µ(x)/x, λ1(x) = λ(x)/x. Instead of dealing with the operator b(1+q)(µ∆u+
(λ+µ)∇divu) in the proof of theorem 5, we have to deal with b1(1+q)∆u+b2(1+q)∇div u
where we will require estimates on ∂tb1, ∂tb2, ∂tc, c− 1, b1 − b1(1) and b2 − b2(1).

The last point we need to carefully check is the transport estimates involving µ1(1+q)
or λ1(1 + q) like in (5) (8) (9) (10) from P(n) or (4.87). This relies on the composition
estimates for Besov norms (see lemma 1.6 from [12] or [1]) which require that

µ(x)/x, µ′(x), λ(x)/x, λ′(x) ∈W
[ d
2
]+2,∞

local .

We emphasize that for special cases µ(ρ) = µρ and λ(ρ) = λρ we only need the estimates
from [5].

6 Other Besov settings

Our method relies on innerproducts based on L2 and cannot be adapted in the setting
of Ḃs

p,r spaces with p 6= 2. In the case of particular coefficients (viscosity, capillarity) we
can use the decoupled methods (we refer to [18, 7, 25, 26]) and obtain results in this case.

For a summation index r 6= 1, the methods we present here can be adapted in the
same way as in [7, 25, 26].

7 Appendix

7.1 Besov spaces

7.1.1 Littlewood-Paley theory

The Fourier transform of u with respect to the space variable will be denoted by F(u) or
û. In this subsection we will briefly state (as in [4]) classical definitions and properties
concerning the homogeneous dyadic decomposition with respect to the Fourier variable.
We will recall some classical results and we refer to [1] (Chapter 2) for proofs and a
complete presentation of the theory.

To build the Littlewood-Paley decomposition, we need to fix a smooth radial function
χ supported in (for example) the ball B(0, 43), equal to 1 in a neighborhood of B(0, 34) and
such that r 7→ χ(r.er) is nonincreasing over R+. So that if we define ϕ(ξ) = χ(ξ/2)−χ(ξ),
then ϕ is compactly supported in the annulus {ξ ∈ R

d, c0 = 3
4 ≤ |ξ| ≤ C0 = 8

3} and we
have that,

∀ξ ∈ R
d \ {0},

∑

l∈Z

ϕ(2−lξ) = 1. (7.92)

Then we can define the dyadic blocks (∆̇l)l∈Z by ∆̇l := ϕ(2−lD) (that is ̂̇∆lu = ϕ(2−lξ)û(ξ))
so that, formally, we have

u =
∑

l

∆̇lu (7.93)

We can now define the homogeneous Besov spaces used in this article:
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Definition 4 For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃs
p,r

:=

(∑

l

2rls‖∆̇lu‖
r
Lp

) 1

r

if r <∞ and ‖u‖Ḃs
p,∞

:= sup
l

2ls‖∆̇lu‖Lp .

We then define the space Ḃs
p,r as the subset of distributions u ∈ S ′

h such that ‖u‖Ḃs
p,r

is

finite.

Once more, we refer to [1] (Chapter 2) for properties of the inhomogeneous and homo-
geneous Besov spaces.

In this paper, we mainly work with functions or distributions depending on both the
time variable t and the space variable x, and we introduce the spaces Lp([0, T ];X) (resp.
C([0, T ];X)).

The Littlewood-Paley decomposition enables us to work with spectrally localized
(hence smooth) functions rather than with rough objects. We naturally obtain bounds for
each dyadic block in spaces of type Lρ

TL
p. Going from those type of bounds to estimates

in Lρ
T Ḃ

s
p,r requires to perform a summation in ℓr(Z). When doing so however, we do

not bound the Lρ
T Ḃ

s
p,r norm for the time integration has been performed before the ℓr

summation. This leads to the following notation (after J.-Y. Chemin and N. Lerner in
[10]):

Definition 5 For T > 0, s ∈ R and 1 ≤ r, ρ ≤ ∞, we set

‖u‖
L̃ρ
T Ḃs

p,r
:=
∥∥2js‖∆̇qu‖Lρ

TLp

∥∥
ℓr(Z)

.

Let us now recall a few nonlinear estimates in Besov spaces. Formally, any product
of two distributions u and v may be decomposed into

uv = Tuv + Tvu+R(u, v), where (7.94)

Tuv :=
∑

l

Ṡl−1u∆̇lv, Tvu :=
∑

l

Ṡl−1v∆̇lu and R(u, v) :=
∑

l

∑

|l′−l|≤1

∆̇lu ∆̇l′v,

where for j ∈ Z, the operator Ṡj is defined by:

Ṡju =
∑

l≤j−1

∆̇lu = χ(2−jD)u.

The above operator T is called a “paraproduct” whereas R is called a ”remainder”.
The decomposition (7.94) has been introduced by J.-M. Bony in [2]. We refer to [1] for
properties, and also to [5] or [8] for paraproduct and remainder estimates for external
force terms.

In this article we will frequently use the following estimates (we refer to [1] Section 2.6,
[12], [22] for general statements, more properties of continuity for the paraproduct and
remainder operators, sometimes adapted to L̃ρ

T Ḃ
s
p,r spaces): under the same assumptions

there exists a constant C > 0 such that:

‖Ṫuv‖Ḃs
2,1

≤ C‖u‖L∞‖v‖Ḃs
2,1

≤ C‖u‖
Ḃ

d
2
2,1

‖v‖Ḃs
2,1
, (7.95)
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‖Ṫuv‖Ḃs+t
2,1

≤ C‖u‖Ḃt
∞,∞

‖v‖Ḃs
2,1

≤ C‖u‖
Ḃ

t+ d
2

2,1

‖v‖Ḃs
2,1

(t < 0),

‖Ṙ(u, v)‖
Ḃ

s1+s2
2,1

≤ C‖u‖Ḃs1
∞,∞

‖v‖Ḃs2
2,1

≤ C‖u‖
Ḃ

s1+
d
2

2,1

‖v‖Ḃs2
2,1

(s1 + s2 > 0),

‖Ṙ(u, v)‖
Ḃ

s1+s2−
d
2

2,1

≤ C‖Ṙ(u, v)‖
Ḃ

s1+s2
1,1

≤ C‖u‖Ḃs1
2,1
‖v‖Ḃs2

2,1
(s1 + s2 > 0).

Let us now turn to the composition estimates. We refer for example to [1] (Theorem
2.59, corollary 2.63)):

Proposition 2 1. Let s > 0, u ∈ Ḃs
2,1 ∩L

∞ and F ∈W
[s]+2,∞
loc (Rd) such that F (0) =

0. Then F (u) ∈ Ḃs
2,1 and there exists a function of one variable C0 only depending

on s, d and F such that

‖F (u)‖Ḃs
2,1

≤ C0(‖u‖L∞)‖u‖Ḃs
2,1
.

2. If u and v ∈ Ḃ
d
2

2,1 and if v − u ∈ Ḃs
2,1 for s ∈] − d

2 ,
d
2 ] and F ∈ W

[s]+3,∞
loc (Rd), then

F (v) − F (u) belongs to Ḃs
2,1 and there exists a function of two variables C only

depending on s, d and G such that

‖F (v) − F (u)‖Ḃs
2,1

≤ C(‖u‖L∞ , ‖v‖L∞)

(
|G′(0)| + ‖u‖

Ḃ
d
2
2,1

+ ‖v‖
Ḃ

d
2
2,1

)
‖v − u‖Ḃs

2,1
.

We end this subsection with two commutator estimates proven in [18] (we also refer
to [1]).

Lemma 2 let σ ∈]− d
2 ,

d
2 + 1]. There exists a sequence (cj)j∈Z ∈ l1(Z) with summation

1, and a constant C only depending on d and σ such that for all j ∈ Z,

‖[v · ∇, ∆̇j]a‖L2 ≤ Ccj2
−jσ‖∇v‖

Ḃ
d
2
2,1

‖a‖Ḃσ
2,1
.

Lemma 3 Let σ ∈] − d
2 ,

d
2 + 1] and h ∈]1 − d

2 , 1], k ∈ {1, ..., d} and Rj = ∆̇j(a∂kw) −

∂k(a∆̇jw). There exists a constant C only depending on σ, h, d such that:

∑

j∈Z

2jσ‖Rj‖L2 ≤ C‖a‖
Ḃ

d
2
+h

2,1

‖w‖Ḃσ+1−h
2,1

.

7.1.2 Complements for hybrid Besov spaces

As explained, in the study of the compressible Navier-Stokes system with data in critical
spaces, the density fluctuation has two distinct behaviours in low and high frequencies,
separated by a frequency threshold. This leads to the notion of hybrid Besov spaces and
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we refer to R. Danchin in [12] or [1] for general hybrid spaces . In this paper we only will
use the following hybrid norms:

‖f‖
Ḃs+2,s

β

def
=
∑

j∈Z

min(β2, 22j)2js‖∆̇jf‖L2

=
∑

j≤log2 β

2j(s+2)‖∆̇jf‖L2 +
∑

j>log2 β

β22js‖∆̇jf‖L2 . (7.96)

In this formulation, we obviously remark the threshold frequency log2 β which separates
low (parabolically regularized) and high (damped with coefficient β2) frequencies. But
as we prove in [8, 9], the frequency transition is in fact continuous and the following
equivalent formulations show that these norms are completely tailored to our capillary
term. We refer to [8] for the case of the first non-local model:

‖f‖
Ḃs+2,s

1/ε
∼
∑

j∈Z

1− e−cε222j

ε2
2js‖∆̇jf‖L2 ∼ ‖

φε ∗ f − f

ε2
‖Ḃs

2,1

and we refer to [9] for the order parameter model:

‖f‖
Ḃs+2,s

α
∼
∑

j∈Z

22j

1 + 22j

α2

2js‖∆̇jf‖L2 ∼ ‖α2(ψα ∗ f − f)‖Ḃs
2,1
.
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