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We study a mesoscopic model for the flow of amorphous solids. The model
is based on the key features identified at the microscopic level, namely peri-
ods of elastic deformation interspersed with localised rearrangements of parti-
cles that induce long-range elastic deformation. These long-range deformations
are derived following a continuum mechanics approach, in the presence of solid
boundaries, and are included in full in the model. Indeed, they mediate spatial
cooperativity in the flow, whereby a localised rearrangement may lead a distant
region to yield. In particular, we simulate a channel flow and find manifestations
of spatial cooperativity that are consistent with published experimental obser-
vations for concentrated emulsions in microchannels. Two categories of effects
are distinguished. On the one hand, the coupling of regions subject to different
shear rates, for instance,leads to finite shear rate fluctuations in the seemingly un-
sheared “plug” in the centre of the channel. On the other hand, there is convinc-
ing experimental evidence of a specific rheology near rough walls. We discuss
diverse possible physical origins for this effect, and we suggest that it may be
associated with the bumps of particles into surface asperities as they slide along
the wall.
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1 Introduction

The flow of simple fluids can be described microscopically as a succession of
local, independent processes: collisions in the kinetic theory picture or hopping
events in the classical Eyring description. As the temperature is lowered, or as
the density increases, these processes tend to become more collective, with a dy-
namical length scale that increases as the glass transition is approached1,2. Even-
tually, the liquid falls out of equilibrium and acquires a nonzero shear modulus
on any finite time scale, as well as a yield stress that must be overcome in order
to initiate the flow. Similar changes take place in athermal materials when the
jamming point is crossed following an increase of density. It is now quite well
established3 that the flow mechanisms of such amorphous solids are different in
essence from those of liquids, as they involve elastic interactions (shear waves)
that are transmitted through solids, but not through fluids. This results in nonlo-
cal effects in the flow of soft jammed/glassy materials, contrasting the case of a
simple fluid.

In fact, the flow of these materials bears notable similarities with the dy-
namics of earthquakes4, in that it features a solid-like behavior at rest and local
yielding above a given applied stress. Yielding is characterized by the emergence
of local ’shear transformations’ involving a few particles5, associated with a lo-
cal fluidisation of the material. These structural rearrangements, hereafter named
plastic events, and also often referred to as shear transformations, or shear trans-
formation zones, in the literature, induce long-range deformations. The micro-
scopic details vary to some extent with the particular nature of the material. In the
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case of foams, they are identified as T1 events in which the local change of first
neighbors is mediated by an unstable stage with four bubbles sharing one vertex.
In colloidal pastes and in atomic systems, they involve relative displacements of
limited magnitude within a small group of atoms, which lead to a new equilib-
rium configuration that is related to the original one by a shear deformation. In
all cases the stress that was originally supported by the particles partaking in the
plastic event is transmitted to the surrounding medium, which behaves as an elas-
tic continuum. The robustness of the above scenario for an extremely wide range
of materials is striking. Ample evidence of the local plastic events and their long-
range effects is indeed provided both by experiments using diverse materials and
by simulations6–8.

In the last two decades the modeling of flow in amorphous systems has
evolved along two distinct, but related, lines. First, several models have been
proposed that incorporate the flow scenario in an average description. These
models, among which the shear transformation zone9 and the soft glassy rhe-
ology (SGR)10,11 models are the most sophisticated examplesOther simplified
models falling into the same category are the fluidity model12 or the very simple
λ model13 describe the average evolution of a population of flow defects under
an imposed strain rate in a mean-field-like manner. The effect of elastic interac-
tions between these defects is not directly accounted for, but enters the models
indirectly via he introduction of parameters such as an effective temperature as-
sociated with the mechanical noise. These approaches have been remarkably
successful in describing at least some aspects of steady state flow curves, e.g.,
the existence of a yield stress and the low shear rate behaviour, as well as tran-
sient or oscillatory response in various systems, from metallic glasses to foams
or colloidal pastes. However, due to their intrinsic mean field nature, fluctuations
and spatial correlations in the flow are discarded. Also, in their most simpli-
fied version they are unable to account for heterogeneities and strain localisation.
To capture the latter phenomenon, extensions of the models have introduced a
coupling between the mean-field description and a diffusive behaviour of the
effective temperature, which again can be understood as a consequence of the
nonlocal interaction between elementary flow events14–16.

An alternative line of modeling consists in implementing numerically the sce-
nario of plastic events interacting through an elastic continuum in the form of
a discrete lattice model. Such an approach was pioneered by Chen, Bak and
Obukhov, in a model initially proposed for the description of earthquakes17, and
by Argon and Bulatov18–20. A number of similar mesoscopic models based on
the same physical scenario, but with different implementations, have been pro-
posed and studied in the literature21–23. The models are able to produce flow
curves sharing similarities with those observed experimentally, although signif-
icant differences are revealed by closer inspection; they can account for strain
localisation and its dependence on the local dynamical rules23,24, and allow one
to explore the influence of parameters such as ageing or temperature. They also
reproduce the dynamical heterogeneities observed in the flow, and their variation
with strain rate25. However, these comparisons have generally remained qual-
itative, since the models are in general rather schematic, ignoring in particular
tensorial aspects or convection.

In this contribution, we present a detailed study of a mesoscopic model that
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incorporates these elements in a manner that allows a comparison with experi-
mental data obtained in simple geometries. In particular, we will focus on the
channel flow geometry and show that the model captures experimental observa-
tions, including the fluctuations in the local shear rates arising even in seemingly
quiescent regions. Such fluctuations are the hallmark of non-locality and spatial
cooperativity in the flow, which can give rise to spectacular long-range fluidisa-
tion phenomena.

Section 2 introduces the continuum mechanics-based description of a plastic
event and presents our mesoscopic model. Details of its numerical implemen-
tation are also provided. In Section 3, we fit the parameters of the model to
experimental data for concentrated emulsions taken from the literature , and we
present the general features observed in our numerical simulations of a channel
flow. The last two sections focus on the manifestations of spatial cooperativity
in this particular geometry: Section 4 tackles cooperativity in the bulk, whereas
some aspects of the specific rheology near a wall are addressed in Section 5. A
shorter account of some of these results has been described in Ref.26.

2 Continuum-mechanics based description of plastic events
and presentation of the mesoscopic model

Under homogeneous driving conditions, simple fluids flow homogeneously. Amor-
phous solids, on the other hand, exhibit localised plastic events when they are
forced to flow5,6,27–29, associated with local shear transformations. In this sec-
tion, we use an approach rooted in continuum mechanics to describe the effect
of a plastic event on the surrounding (elastic) medium, along with its time evolu-
tion.. Then, we show how these results are integrated into a mesoscopic model.
The presentation of the model is brought to completion by the choice of relevant
probabilities for the onset and end of a plastic event. This section extends and
details previous presentations in references22,26

2.1 Description of a plastic event

Consider a rectangular system described by Cartesian coordinates (x,y), where
x ∈ [0,Lx] and y ∈ [0,Ly] are the streamwise and crosswise coordinates, respec-
tively. Should the system be unbounded, the following results will be applicable,
provided that one takes their Lx → ∞ and Ly → ∞ limits. Otherwise, periodic
boundary conditions are assumed, for the time being.

On account of the solidity of the material (which is preserved if shear is slow
enough), the response of the system to a perturbation can be modelled by Hooke’s
law, whereby the local elastic stress σel is related to the local (deviatoric) strain ε

via σel =Cε, where C is the stiffness matrix. Before a perturbation, here a plastic
event, sets in, mechanical equilibrium requires that:

∇ ·
(

Cε
(0)
)
−∇p(0) = 0, (1)

where p is the pressure, and the (0) superscripts denote the initial state. In the
following, the material will be assumed to be incompressible, which implies that
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the displacement field u obeys div(u) = 0, and isotropic, so that the elastic stress
can be written, in condensed notations, as

σ
el = µ

 εxx− εyy
εyy− εxx

2εxy

= 2µ

 εxx
−εxx
εxy

≡ 2µε, (2)

where µ is the shear modulus.
Clearly, Hooke’s law will only hold within a certain limit. Indeed, when the

configuration is too strained locally, say, in a region S (0), particles rearrange so
that the system evolves into a new local minimum: this is a plastic event. While
this rearrangement occurs, the memory of the reference elastic configuration is
lost, and, consequently, the local elastic stress vanishes. The region undergoing
the rearrangement is therefore liquid-like and its stress will be mainly of dissi-
pative origin. Following this line of thinking and neglecting inertia, the force
equilibrium during the plastic rearrangement reads{

∇ ·σdiss−∇p = 0 in region S ,
2µ∇ · ε−∇p = 0 outside region S .

(3)

Notice that the boundaries of the plastic region shall be deformed during the event
and S refers to the deformed region. In Eqs.3, the dissipative stress σdiss was
supposed to be mainly concentrated in the rearranging region. For simplicity, we
further assume that dissipation is linear with respect to the strain rate, viz. σdiss =
2ηe f f ε̇. This linearity is naturally to be understood as a simplification, and not as
a claim of the existence of some universality regarding the dissipative mechanism
(see Ref.30 for a non-linear law in the case of a foam). In addition to Eqs.3, force
equilibrium requires the continuity of the stress all along the boundary of region
S . If S is small enough so that the (plastic) deformation rate in this region can be

considered homogeneous, viz., ε̇(r) ≡ ε̇
pl for r ∈

◦
S , the continuity of the stress

all along the boundary ∂S of S leads to:

ε̇
pl =

1
τ

ε∂S , (4)

where ε∂S refers to the (elastic) strain on the boundary ∂S surrounding the plastic
inclusion. The time scale τ≡ ηe f f

µ for the viscous dissipation of the elastic energy
has been made apparent.

The leading-order response of the system to the plastic event immediately
follows from Eq. 4: it simply comes down to a (plastic) strain rate ε̇

pl (t) = 1
τ
ε
(0)
∂S

only affecting region S . In an unconstrained environment, the inclusion would
therefore undergo a deformation ε̇

pldt in a time interval dt. However, since it is
embedded in a solid, the latter reacts to this (plastic) strain: supplementary elastic
stress and pressure fields, σ̇

(1)dt = 2µε̇
(1)dt and ṗ(1)dt respectively, are thereby

induced in the medium ∗.
The derivation of the fields σ̇

(1) and ṗ(1) is presented in the next subsection.
For the time being, let us remark, thanks to the linearity of the equations, one can

∗This deformation will, in turn, affect the plastic deformation rate ε̇S , but these higher order effects
are neglected here.
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express the induced stress on the boundary ∂S as

σ̇
(1)
∂S = 2µG0ε̇

pl, (5)

where G0 is a yet unknown tensor. Now, since the response of the solid is a
reaction to an imposed shear strain ε̇

pldt, it will oppose it, at least in the direct
vicinity of the inclusion. Therefore, one expects the diagonal components of
G0to be negative. Inserting Eqs. 2 and 4 into Eq. 5 yields, after simplification:

ε̇
(1)
∂S (t) = G0

1
τ

ε∂S (t) (6)

Equation 6 expresses the fact that, up to a (potentially time-dependent) shape
prefactor G0, the force driving the rearrangement is the elastic stress imposed on
S by the rest of the system, and that, in opposing this force, dissipation sets a
finite timescale τ to this plastic transformation†. Cloitre and co-workers32 sug-
gested that the duration of a rearrangement in soft colloidal pastes coincides with
the shortest structural relaxation time τβ, which also results from a “competition
between elastic restoring forces and interparticle friction” , and experimentally
confirmed the proposed scaling ηe f f

µ for the latter time (where ηe f f is determined
by the dissipation within lubrication films ). This scaling was also used to
collapse flow curves onto a single master curve, which bolsters its
relevance for the rheology of these materials.

2.2 Calculation of the elastic deformation induced by a single plastic event
(2D, tensorial)

Reference33 proposed a method to derive the fields ε̇
(1)dt and ṗ(1)dt

induced by the plastic strain ε̇
pldt, but in a simplified context. First,

one considers the limit of an infinitely small plastic inclusion S ,
εpl (r)→ εpla2δ(r− r0), where r0 is the centre of region S and a
the typical size of S . (The dots indicating derivation w.r.t. time
are omitted in this section). Secondly, by virtue of linearity, the
inclusion applies a stress σinc = 2µαεpl on its surrounding, where
α is a scalar (instead of a tensor) because of symmetry concerns.
Up to a renormalisation of τ in the definition of ε̇

pl , Eq. 4, one can
assume that α = 1. Mechanical equilibrium in the solid then reads:

2µ∇ ·
[
ε
(1)
]
−∇p(1) = 2µ∇ ·

[
ε

pla2
δ(r− r0)

]
(7)

To pursue, Eq. 7 is solved with the help of the Oseen-Burgers tensor
O, expressed in Fourier coordinates q ≡ (pm,qn), where pm ≡ 2πm

L

† The finite duration of a plastic rearrangement, which is neglected in the Soft Glassy Rheology
model 10, the Kinetic Elastoplastic model 16, as well as in the mesoscopic models of Refs. 21,23, might
play a crucial role in the compressed exponential relaxation of different soft materials. For details,
see Ref. 31.
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and qn ≡ 2πn
L , with m,n ∈ Z:

Ô(q) =
1

µq2

(
1− 1

q2 q⊗q

)
. (8)

The Oseen-Burgers tensor is the elementary solution in terms of dis-
placement u of the equations {2µ∇ · ε−∇p = δ(r) , div(u) = 0},
where the linearised deformation tensor obeys ε = ∇u+(∇u)T

2 , with
the boundary conditions specified above. Therefore,

u(1)
(
q
)
= 2µÔ(q) ·

(
−iq · ε̂pl

)
. (9)

Recalling Hooke’s law, σ̂
(1) (q) = 2µ

[
i

q⊗u(1)+(q⊗u(1))
T

2 − ε̂
pl (q)],

one finally arrives at:(
ε̂
(1)
xx

ε̂
(1)
xy

)(
q
)
= Ĝ∞ (

q
)
·
(

ε̂
pl)
xx

ε̂
pl
xy

)(
q
)

(10)

where the elastic propagator Ĝ∞
obeys:

Ĝ∞ (
q
)
≡ 1

q4

[
−(p2

m−q2
n)

2 −2pmqn(p2
m−q2

n)
−2pmqn(p2

m−q2
n) −4p2

mq2
n

]
. (11)

Equations 10 and 11 express the elastic deformation field induced
by a pointlike plastic event in a system with periodic boundary con-
ditions. The corresponding stress field is straightforwardly obtained
by multiplication with the shear modulus 2µ.

In real space, the propagator expressed in Eq.11 has a four-fold
angular symmetry and decays as r−d , where d = 2 is the spatial
dimension. These properties are consistent with observations from
atomistic simulations6,28,34 as well as experiments35.

Note that the present treatment does not describe the dilational
effects36 possibly taking place during plastic events. These ef-
fects may naturally add quantitative corrections to the picture drawn
here, but, along with the associated flow concentration coupling37

and free volume diffusion mechanisms (see Ref.14 and references
therein), they are probably not of paramount importance in the high
density-low temperature situations considered here38, where such
effects are not always present39,40.
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Fig. 1 Deformation field ε(1) induced by a single plastic event ε
pl
xy . Top: ε

(1)
xy component

; bottom: ε
(1)
xx component. The values are normalised by the absolute value of the locally

induced deformation ε
(1)
xy . Because of the comparatively large (in magnitude) peak value

at the origin, the central block has been artificially coloured.

2.3 Implementation of parallel confining walls

In order to study a genuine channel geometry, the boundary condi-
tions need to be adapted to take into account two infinite parallel
walls, directed along ex, bounding the flow, but keep the periodicity
in direction ex. The effect of the walls is modeled by imposing a
no-slip boundary conditions at their locations, in line with what is
commonly done in fluid mechanics.

To implement the no-slip boundary conditions, we extend the
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Fig. 2 Sketch of the duplicated system.

treatment of Ref.33: the system is duplicated in the direction per-
pendicular to the walls, so that the region y ∈ [0,Ly] describes the
real system, while the region y ∈ [−Ly,0] is fictitious. For each
plastic event (in the real system), a symmetric ’image plastic event’
is created in the fictitious half. The y-component of the velocity
field is thereby cancelled at the walls. To remove the x-component
of the velocity, adequate forces directed along ex are added along
the walls. These (fictitious) forces add a corrective term ε̂corr to the
deformation field ε̂∞ obtained for periodic boundary:

ε̂
(
q
)
= ε̂

∞
(
q
)
+ ε̂

corr (q) .
The calculation of ε̂corr (q) presented in Appendix A yields the

following result:

(
ε̂corr

xx (pm,qn)
ε̂corr

xy (pm,qn)

)
=


−2pmq2

n
q4

[
i∑

y
ζδ (X) Fxε

pl
xy(pm,y)+2∑

y
ξδ(X)Fxε

pl
xx(pm,y)

]
qn(p2

m−q2
n)

q4

[
i∑

y
ζδ (X) Fxε

pl
xy(pm,y)+2∑

y
ξδ(X)Fxε

pl
xx(pm,y)

]
 ,

(12)
where ∑y denotes an integral over all streamlines y = cst and Fx
indicates a Fourier transformation along direction x. X is used as
a shorthand for

(
πyev
H , pmH

π

)
and the analytical expressions of the

functions ζδ (X) and ξδ (X) can be found in Appendix A.
Note that the corrective term couples the different Fourier modes

so that the translation invariance of the propagator G is broken (in
the y-direction). In particular, for a given plastic strain, the local
strain response now depends upon the distance to the wall. The
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dependence on the distance for a plastic event
{

ε
pl
xx = 0,εpl

xy 6= 0
}

is
presented in Fig.3 for a system that is coarse-grained into blocks of
unit size (see next section). In particular, one can see that the local
stress relaxation induced by a given plastic strain is around 35%
higher in the direct vicinity of a wall than in the bulk case, owing to
the vicinity of a solid boundary.

0 2 4 6 8 10
y

0.8

0.9

1.0

1.1

1.2

1.3

δǫ
x
y
(y

)

Fig. 3 Decrease
∣∣∣ε(1)xy

∣∣∣ of the local elastic deformation induced by a given plastic strain

ε
pl
xy as a function of the distance y to the wall (expressed in block units, which is the only

relevant length scale). Values have been normalised to the ’bulk’ value, that is, the
quantity measured infinitely far from the wall.
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x

y

Fig. 4 (Colour online) Displacement field induced by a single plastic event (located in
the white square). The white arrows show the direction of the field, while the colour code
represents the displacement amplitude (brighter colours indicate higher amplitude).
Walls, drawn as red lines, are present at the top and at the bottom of the system.

2.4 Dynamics of the model and space discretisation

At every point in space, the dynamics is governed by the following
equation, including both the macroscopic driving Σ̇ext and the (local
and nonlocal) stress redistribution due to plastic events:

∂tσ(r) = Σ̇
ext (r)+

ˆ
G
(
r,r′
)
·2µε̇

pl (r′)d2r′, (13)

where ε̇pl (r) = σ(r)
2µτ

if r is in a plastic region, ε̇pl (r) = 0 otherwise,
and the propagator G takes into account both the bulk (periodic)
contribution and the corrections due to the presence of walls. The
plastic activity is determined by checking at every time step, and
at every point in space, the elements that undergo a plastic events.
The criterion for triggering plastic events will be discussed in the
next section. The time derivative in Eq. 13 is handled numerically
with a Eulerian procedure, with time step dt 6 0.01τ.

The convolution part of equation 13 is most easily solved in
Fourier space, where the convolution turns into a product involving
the propagator derived previously (see Eqs. 11 and 13, for the two
contributions to G). To prepare the use a Fast Fourier Transform
routine,the system is spatially coarse-grained into a rectangular lat-
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tice of square-shaped blocks of unit size. Physically, the size of the
blocks should correspond to the spatial extension of a plastic event.

Technically, the slow decay of σ̂xx (q) with q generates some ir-
regularities in the computation of the associated back-Fourier trans-
form. Accordingly, for the sake of precision, we use a finer mesh
for the computation of the Fourier transformations, i.e., we divide
each block into four subblocks, so that each plastic event now spans
four subblocks. Thanks to this technical trick, a smooth stress field
is recovered, as shown in Fig.1.

Besides, mechanical equilibrium requires that the average of the
shear stress over any streamline (or any line with a given direction)
be homogeneous. However, the assumption of pointwise plastic
events combined with the discretisation of space is not entirely con-
sistent, insofar as it results in moderate violations of the aforemen-
tioned homogeneity, when plastic events are far off the direction of
macroscopic shear. In order to restore homogeneity, ad-hoc shear
stress are added on every streamline. We have checked that this
procedure has very little effect on the results presented below.

2.5 Coarse-grained convection

Although the presence of a lattice precludes a rigorous implemen-
tation of convection, a coarse-grained version can be introduced as
follows: The average velocity of each streamline in the flow direc-
tion is rigorously calculated at each time step., viz.

〈ux〉x (y0) ≡
1
L

ˆ L/2

−L/2

ux (x,y)dx

= ∑
yev

a
2µ

[
Sign(y0− yev) ·

(
1− |y0− yev|

H

)
+1− yev

H
− y0

H

]
Fxσ

pl
xy(m = 0,yev).

Details of the algebra are provided in Appendix B. The line dis-
placement can thus be updated at each time step. Whenever the dis-
placement on a line grows larger than a multiple of the unit block
size, this line is incrementally shifted of the adequate number of
units, as a whole. In so doing, the regularity of the lattice is pre-
served.

A technical detail might be worth mentioning: A nave imple-
mentation of the above method results in a violation of Galilean
invariance, insofar as lines with lower velocity will be shifted less

12 | 1–43



often than others (artificial pinning) and therefore will tend to con-
serve their neighbours (in the velocity gradient direction) for a longer
time - whereas the motion with respect to neighbouring lines should
be exclusively controlled by the local shear rate. It turns out that, in
a simple shear situation, the system is quite sensitive to such a bias,
which may lead ’pinned’ lines to concentrate more plastic activity.
The practical solution to this issue consists in adding a random off-
set displacement to all streamlines, so that no artificial pinning can
occur.

2.6 Probabilities for the onset and end of a plastic event

So far, we have quantitatively described the effect of a plastic and
detailed its derivation from rather well established principles. In
order to complete the model, criteria must now be fixed with regard
to the onset and termination of a plastic event. Since the mesoscopic
model is oblivious to the microscopic arrangement of the particles
and their stability, the criteria will obviously be somewhat arbitrary.
In the present model, they will involve two rates,l (σ) and e(σ),
which govern, respectively, the transition from elastic to plastic and
the recovery of elastic behavior after initiation of the plastic event,
,

elastic regime
l(σ)


e(σ)

plastic event.

The use of rates introduces a simple element of stochasticity within
the model, and indirectly accounts for the variability of local envi-
ronements.

Let us consider a mesoscopic region susceptible of undergoing a
plastic rearrangement. In the elastic regime, its configuration min-
imises the potential energy, under the stress/strain constraints im-
posed at the boundaries by the rest of the material. The minimum is
stable as long as E−Econstraint 6Ea, where we assume the existence
of an average energy barrier Ea. In an Eyring-like type of approach,
the constraint is expressed as: Econstraint ∝ σ, where σ is the local
stress applied by the outer region, and we take an activation volume
equal to unity. Consequently, the rate of plastic activation depends
exponentially on the local stress. In the following, we will use the
expression

l (σ) = Θ
(
σ−σµy

)
exp
(

σ−σy

xloc

)
τ
−1
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Three parameters have been introduced in this expression: σy is
the yield stress associated to the average energy barrier; xloc is a
material-dependent activation temperature.Unlike the effective tem-
peratures used in the Soft Glassy Rheology model11 or the stress
fluctuation approach à la Eyring41, xloc only accounts for local mi-
croscopic effects and does not include the local stress fluctuations
due to stress redistribution, i.e., mechanical noise: the latter should
emerge naturally as a consequence of long range interactions be-
tween events, within the framework described above. Note that the
limit xloc → 0 of the activation rate coincides with the usual von
Mises yielding criterion, which states that the material yields if and
only if σ> σy. However, under shear stress, the effective lowering
of energy barriers results in the necessity to preserve the possibility
of activated events, even in materials usually referred to as athermal
at rest. For instance, the occurrence of rearrangements in granular
matter long after shear cessation42 supports this claim, although the
physical reason for such rearrangements is far from clear. Another
possible justification for introducing xloc may be that it effectively
accounts for some dynamical disorder in the local yield stress. Fi-
nally, we found that introducing this fluctuating, apparently acti-
vated character in the yield criterion is the only way to obtain flow
curves in reasonable agreement with experimental data, as shown
below..

The parameter σµy in the Heaviside function Θ is a critical stress,
intended to be small σµy� σy and below which no rearrangement
can occur. Clearly, this is an ad hoc approach to conserve a fi-
nite macroscopic yield stress in the limit of vanishing shear rate
γ̇app→ 0, when no ageing process is explicitly taken into account.
Note that Amon et al.43, in a paper investigating the behaviour of
granular matter on a tilted plane, recently called for a model dis-
playing two critical stresses, with a microfailure stress in addition
to the macroscopic one, although with a distinct definition.

A plastic event lasts until the local configuration gets trapped
in a new potential well. This trapping is expected to occur when
the local energy reaches low enough values, or, equivalently (recall
that σ̇ ∝ σ, see Eq. 4), when dissipation becomes small enough, i.e.,
typically smaller than the elastic energy. Consequently, we define
an associated threshold for the recovery of elastic stability, whose
value is set to σµy in order to limit the number of parameters. Intro-
ducing a new intensive parameter xres, this allows us to write the rate
at which elastic behavior is recovered as: e(σ) = exp

(
σµy−σ

xres

)
τ−1.
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The definition of the rates e and l completes the description of
the model. At each time step, the probability of failure of an elas-
tic element is l(σ)dt, while the probability that a plastic element
becomes elastic again is e(σ)dt.

3 Fitting of model parameters & General observations in a
channel flow

In order to test the validity of the mesoscopic model presented in
the previous section, we start by fitting the model parameters by
comparing the flow curve obtained in simulations of a simple shear
setup to experimental results for a concentrated emulsion.

3.1 Fitting of model parameters

We use units of time and stress such that τ = 1 and σy = 1, and
we set µ/σy = 1 (note that the value of µ/σy = 1 only contributes to
rescaling the shear rate if convection is omitted). The model then
involves three parameters, σµy, xloc and xres.

In the following, our numerical simulations are compared to ex-
perimental data for concentrated oil-in-water emulsions collected
by two different groups, Goyon et al.44 and Jop et al.45. The ex-
perimental systems are concentrated emulsions of 6−7µm droplets
of silicon oil in a water-glycerol mixture at an oil volume fraction
φ ∼ 0.75 significantly larger than the jamming volume fraction.
Both groups report a Herschel-Bulkley dependence of the shear
stress on the shear rate, that is, σ = σd

[
1+(τHBγ̇)n

app

]
, with an

exponent n' 0.5 in both cases.
This Herschel-Bulkley law allows us to fit the remaining model

parameters. To do so, we simulate a simple shear flow by setting
the driving force to Σ̇app = µγ̇app in Eq.13, with a stressless state
as initial condition. By varying the parameters, we find that the
combination

{
σµy = 0.17, xl = 0.249, xe = 1.66

}
provides a quite

satisfactory fitting of the flow curve, as shown in Fig.5. Note that
model units of time and stress have been appropriately rescaled in
the figure, to allow for comparison with the experimental values.
Of course, one may argue that the fitting to the flow curve only
loosely constrains the parameters, implying that other combinations
of parameters could yield the same result. Nevertheless, we would
like to mention that, when starting with a moderately different set
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of parameters and fine-tuning it to better match the data, we have
recovered parameters similar to those selected.
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Fig. 5 (Crosses) Experimental and (dots) simulated flow curve. The experimental were
obtained by Goyon et al. for an emulsion of ∼ 6.5µm silicon oil droplets in a
water-glycerin mixture at volume fraction φ = 75%. The solid line is a guide to the eye.

3.2 Channel flow: general observations

Having set the model, we now turn to the specific case of channel
flow. Indeed, many intriguing experimental results have been re-
ported concerning the flow of soft jammed/glassy materials in that
geometry39,44–48, which is also relevant for practical applications,
in particular in the area of microfluidics.

First of all, it is important to realise that, unlike the simple shear
case, the flow is pressure driven in a channel flow, instead of being
strain driven. Recalling that the driving Σext in Eq.13 corresponds
to the response of a purely elastic solid, it immediately follows
that: Σ̇ext = 0, σxy (x,y, t = 0) = ∇p (y− Ly/2). Note the streamline-
averaged stress conserves a linear profile throughout the simulation,
because plastic events induce a homogeneous streamlined-average
stress, owing to mechanical equilibrium.

We first discuss some general features of the flow of soft jammed
solids in that geometry. Conspicuous is, in the first place, the pres-
ence of a ”plug” in the centre of the channel, i.e., a solid-like region
in which the material is convected, but not sheared. The plug can
clearly be seen in Fig.6, which demonstrates a nice agreement be-
tween the numerical and the experimental (time averaged) velocity
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profiles across the channel. Note that showing the velocity differ-
ences with respect to the maximal velocity across the channel obvi-
ates the experimental issue of the determination of wall slip.

However, averaging over time masks the temporal fluctuations
of the flow. If one heeds the variations of the maximal streamline
velocity of the simulated flow with respect to time, flow intermit-
tency becomes evident ‡. This phenomenon is more acute for nar-
row channels (see Fig.8), in agreement with results from numeri-
cal simulations regarding the effect of confinement (see Ref.40 and
references therein). Note that flow intermittency, or “stick-slip” be-
haviour, has often been reported experimentally, but it has been in-
terpreted in various ways depending on the particular system under
study: the creation and failure of force chains is put forward in the
case of granular matter49,50, while variations in the local concentra-
tions of colloids and erosion by the solvent have been reported for
concentrated colloidal suspensions48.

The spatial distribution of plastic events is also of interest. In-
deed, although the plug remains virtually still on average, sparse
plastic events are clearly seen to occur in that region, especially for
narrow channels,, and, consequently, below the bulk yield stress.
Therefore, these plastic events essentially originate in cooperative
effects, via the redistribution of stress generated by distant plastic
events. Being of cooperative nature, the principal direction of their
stresses at the yielding point (the “angle of yield” of the plastic
event) is broadly dispersed, since it is not strongly biased by a fixed
applied shear (see Fig.7).

‡ However, these fluctuations would presumably vanish in our model if the channel were of infinite
length.
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Fig. 6 (Crosses) Experimental and (dots) simulated velocity profiles, for stresses at the
wall σw =141Pa, 188Pa, 235Pa, 282Pa, corresponding to σw = 0.36, 0.48, 0.60, 0.72 in
model units, from top to bottom. The experimental data are a courtesy of Jop et al.45.
The model time and stress units have been rescaled to match the experimental data.

Fig. 7 Principal direction of plastic event as a function of the position in the channel.
Channel width: 12. σw = 0.6 in model units. The vertical dashed lines delimit the “plug”,
i.e., the region where

〈
σxy
〉
6 σd . The bars give the standard deviation, ±

〈〈
θ2〉−〈θ〉2〉
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Fig. 8 Time variations of the maximal velocity in the channel, rescaled by its average
value over time, for two channel widths: (solid red line) 24 blocks, (dotted blue line) 6
blocks.

4 Cooperativity in the bulk flow: a manifestation of the cou-
pling between heterogeneous regions

4.1 Origin and description of the nonlocality in the flow

Spatial cooperativity is a hallmark of the flow of amorphous solids:
Because of the solidity of these materials, shear waves can propa-
gate in the bulk. Accordingly, a plastic event induces a long-range
deformation of the material and can thus set off other plastic events,
possibly triggering an avalanche. However, the channel geometry is
particular in that the driving is intrinsically inhomogeneous; there-
fore, cooperativity couples regions (streamlines) subject to different
stresses.

When considering a given region, one may then expect its be-
haviour to differ from that it would have if the flow were homo-
geneous. This is a serious issue, since it undermines the paradigm
that there exists a constitutive equation relating the local shear rate
to the local shear stress, as explained by Goyon and colleagues39,44.
(Note, however, that doubts regarding the existence of a single flow
curve for concentrated emulsions had also been voiced earlier, fol-
lowing experiments in a different geometry51).

To rationalise the deviations that they observed experimentally,
Goyon et al.39 made use of a diffusion equation operating on the
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local fluidity, that is to say, the inverse viscosity f (r)≡ γ̇(r)/σxy(r):

ξ
2
∆ f − ( f − fbulk [σ(y)]) = 0, (14)

where fbulk (σ) denotes the fluidity measured in a homogeneous
flow at applied stress σ. The length scale ξ is a cooperative length,
that scales with the particle diameter39,52This diffusion equation is
based on the idea that plastically active regions will fluidise their
neighbours, and inversely. In16, Bocquet and co-workers showed
that this equation can formally be derived from a Hebraud-Lequeux
fluidity model12, provided heterogeneities are taken into account.
However, the limitations imposed by analytical treatment required
to cut off the propagator beyond the first neighbours, and to con-
sider the limit of vanishing shear rate.

Nevertheless, Eq. 14 was found to provide a very satisfactory de-
scription of experimental and numerical data in several cases39,40,44–46,52,
provided that the parameters, that is, the cooperativity length ξ and
the value fwall of the fluidity at the wall, are carefully fitted.

Assuming this equation offers a valid first-order approximation
of the flow, we use it to assess the amplitude of the expected devia-
tions from bulk behaviour.

To do so, we quantifying the extent of the coupling by estimat-
ing the relative deviations δ f (y)≡ f (y)− fbulk of the fluidity. This
defines a dimensionless number, the Babel number Ba ≡ δ f

f . In
Appendix C, we show that, under the assumption of a Herschel-

Bulkley constitutive equation, Ba is of order
(

ξ
‖∇σ‖
σ−σd

)2
, that is,(

ξ
‖∇p‖
σ−σd

)2
for a channel flow.

Noteworthy is the linear dependence of the Babel number on
the stress gradient, i.e., the pressure gradient in a Poiseuille flow.
Indeed, it is generally several orders of magnitude larger in mi-
crochannels than in their larger counterparts, which explains why
striking manifestations of cooperativity have been observed only in
the former. The Babel number is also negligible in wide-gap Taylor-
Couette geometry. For instance, a rough estimate yields Ba∼ 10−9

at most in the wide-gap setup used by Ovarlez et al.53, where no
deviations from macroscopic rheology were reported.

The denominator of Ba, (σ−σd), also deserves a comment: at
high applied stresses, when the material is more fluid-like, relative
deviations become less significant. We should however say that,
to measure relative deviations, the absolute fluidity deviations are
divided by the fluidity, which gets large as σ gets large.
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4.2 Nonlocal effects in the velocity profiles

Following the above considerations, we expect deviations from macro-
scopic rheology to increase with confinement, at fixed wall stress.

Indeed, Goyon’s experiments on emulsions confined in channels
with smooth walls tend to indicate that the deviations of the veloc-
ity with respect to the bulk predictions follow such a trend. How-
ever, overall, these deviations were found to be rather small. The
mentioned effect of confinement is also confirmed by Chaudhuri et
al. with atomistic simulations of a Poiseuille flow with biperiodic
boundary conditions with atomistic simulations40.

Figure 9 shows a comparison between the actual velocity profile
obtained with simulations of the mesoscopic model and the predic-
tions from the (bulk) flow curve. As in experiments, small devia-
tions can be observed. For the extent of these deviations to roughly
match that in the experiments, the channel width must be of order
7-10 block units. From this we deduce a first estimate for the lin-
ear size N� of a mesoscopic block in terms of particle diameters:
N� ≈ 2, which is comparable to experimental values found in the
literature35.

Let us now investigate how compatible our simulation results are
with the fluidity diffusion equation, Eq.14. To solve Eq. 14, two
boundary conditions are required: for symmetry reasons, we im-
pose f (y = 0) = f (y = Ly), and we set the fluidity at a point close
to the wall to the value measured in simulations. In addition, the
shear-rate dependence of the cooperativity length ξ must be spec-
ified. Two possibilities are considered in Fig.10: either, following
Goyon et al.39, ξ is supposed independent of the shear rate, i.e.,
ξ = ξ0, or a power-law dependence is assumed, ξ(γ̇) = ξ0 (γ̇τ)−1/4,
where γ̇ is the product of the local shear stress and fluidity, as de-
rived in Ref.16 in the limit γ̇→ 0, and in reasonable agreement with
the data of Ref.45 . In both cases, ξ0 is adjusted by a least square
minimization. Both cases give a reasonable fit, but neither matches
our data accurately over the whole range of applied pressures. We
ascribe this defect, among other details, to the approximation of
long-range interactions by a diffusive term, and to the neglect of
fluidity fluctuations.

In Figure 11, we assess the predictive capability of the theoret-
ically derived Babel number for our channel flow simulations by
plotting the δ f

f obtained in our simulations as a function of Ba =
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(
ξ
‖∇σ‖
σ−σd

)2
. It shows a global trend towards larger relative devia-

tions from macroscopic rheology for larger Ba, but the correlations
are poor. Nevertheless, one may expect Ba to still be a valid predic-
tor in practice, when widely different situations are considered.
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Fig. 9 Velocity profiles across the channel, for σw = 45, 60, 75, 91Pa, i.e.,
σw = 0.75, 1.0, 1.25, 1.52 in model units, from top to bottom: (dashed line) simulation
results, (solid line) predictions based on the numerical bulk flow curve. The crosses are
experimental data obtained by Goyon et al.44. Note that the curves have been shifted
with respect to each other for clarity.

Fig. 10 Fluidity profiles for Ny = 12, for σw = 0.20, 0.28, 0.36, 0.48, 0.60, 0.72 in
model units. Filled circles: numerical results, dashed green line: solution of Eq.14 with
ξ(γ̇) = 0.03702, solid blue line: solution of Eq.14 with ξ(γ̇) = 0.01146 γ̇−0.25. The thin
dash-dotted lines represent the bulk fluidity fbulk. Note that the curves are shifted with
respect to each other for clarity.
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Fig. 11 Relative deviations δ f
f of the local fluidity f from the bulk fluidity fbulk (σ)

measured in simulations, where σ is the local shear stress, as a function of the estimated

Babel number Ba =
(

ξ0
∇σ

σ−σd

)2
. We have set ξ0 to 0.037 (see Fig.10). Data only include

regions where σ > σd , but cover various applied pressures and channel widths: (H) 6
blocks, (N) 10 blocks, (�) 16 blocks, (•) 24 blocks.

4.3 Shear rate fluctuations in the plug

Quite recently, Jop and co-workers45 showed experimentally that
the seemingly quiescent plug in the centre of the microchannel ac-
tually sustains finite shear rate fluctuations. This observation is ob-
viously consistent with the occurrence of sparse plastic events in
the plug, in our simulations.

To go further than this qualitative agreement, we directly com-

pare the local shear rate fluctuations δγ̇(x,y)=
√〈

γ̇(x,y)2
〉
−〈γ̇(x,y)〉2

to experimental data §, with the parameters used to fit the associated
velocity profiles (see Fig.??). Here, γ̇(x,y) is the local shear rate at
point (x,y); it is given by γ̇(x,y) = 2

(
ε̇

pl
xy (x,y)+ ε̇

(1)
xy (x,y)

)
in the

model and is therefore obtained directly, that is, without deriving
the velocity with respect to space. Figure 12 presents the experi-
mental shear rate fluctuation profiles and their numerical counter-
parts for Ny = 16 blocks crosswise. Semi-quantitative agreement is
observed in regions far from the walls - apart from the large dis-
crepancy at the highest applied pressure. The discrepancies in the

§ Note that we have discarded the two curves corresponding to the lowest applied pressures, which seem
to plateau in the centre, because we were not entirely sure of the accuracy of these measurements.
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highly-sheared regions near the walls will be considered below. It
is interesting to note that the fitted channel size provides another es-
timate for the size N� of an elastoplastic block, which agrees with
the first one, N� ≈ 2. Figure 13 shows the dependence of the shear
rate fluctuations on the channel size for a given stress at the wall.
As expected from the expression of the Babel number, fluctuations
in the plug decay when the channel width is increased.

Fig. 12 Shear rate fluctuations δγ̇(y) (averaged along the x-direction), for
σw = 141Pa, 188Pa, 235Pa, 282Pa (identical to Fig.6), from bottom to top. (×)
Experimental data collected by Jop et al.45, (solid lines) numerical results for Ny = 16.
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Fig. 13 Shear rate fluctuation profiles for a given stress at the wall, σw = 0.48 in model
units, for different channel widths: (fuchsia) 6, (red) 10, (green) 16, and (blue) 24 blocks,
in descending order of minimal values.

Let us note that the data collected by Jop and co-workers sug-
gested a proportionality between the shear rate fluctuations and the
local fluidity, implying that both are indicators of the intensity of
the plastic activity. Figure 14 shows that the line-averaged plas-
tic activity does indeed depend linearly on the local fluidity in our
channel flow simulations, despite some discrepancies at low values
of the fluidity, that is, probably in the plug. However, the relation
between the shear rate fluctuations and the mean fluidity is much
less clear (see Fig.15).
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Fig. 14 Time-averaged fraction of plastic blocks
〈
nplast

〉
on a given streamline as a

function of the mean fluidity 〈 f 〉 on that line, for diverse applied pressures and various
channel widths: (H) 6 blocks, (N) 10 blocks, (�) 16 blocks, (•) 24 blocks. Inset:〈
nplast

〉
vs. the mean shear rate 〈γ̇〉 on the line. (Same symbols).

Fig. 15 Shear rate fluctuations δγ̇ on a given streamline as a function of the mean
fluidity 〈 f 〉 on that line, for diverse applied pressures and various channel widths: (N) 8
blocks, (�) 16 blocks, (•) 24 blocks.

5 A specific rheology near the walls?

In the previous section, we have dealt with the flow cooperativity
associated with the coupling of heterogeneous streamlines, leav-
ing aside another potentially significant difference with bulk ho-
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mogeneous flow: the presence of walls bounding the flow, which
is known to affect the flow of diverse complex fluids: wormlike
micellar solutions54,55, laponite56, dense colloidal suspensions47,
etc. Indeed, Goyon et al. provided experimental evidence of the
occurrence of ample changes when rough walls are substituted for
smooth walls39. Then, much larger deviations from bulk rheology
are observed, especially at high applied pressures, and these devia-
tions are maximal close to the walls, contrary to predictions based
on the Babel number.

5.1 Weak deviations due to no slip boundary condition

Remember that walls are accounted for in our model in the form of
no-slip boundary condition. This condition results in a significantly
larger dissipation during plastic events in their vicinity. Is this suffi-
cient to capture the very large deviations observed experimentally?

Figure 16 shows the local flow curve for the simulations. To
decouple to a certain extent the problem of wall rheology from the
inhomogeneous driving, the latter being associated with large val-
ues of Ba, a relatively large channel is considered here. For each
value of the wall stress, the points with the highest local shear rates
in Fig.16 are closest to the walls. We do observe some slight devi-
ations¶, but they are clearly much weaker than in Goyon’s observa-
tions (see Fig.6 of Ref.44 for instance). In this respect, they much
better describe the situation for smooth walls, which, at first, might
seem surprising given the no-slip boundary conditions. Yet, in re-
ality, the large slip observed at smooth walls is not expected to give
rise to significant changes: it only adds a simple global translation
the complex velocity field obtained with no-slip boundary condi-
tions.

¶ Nevertheless, replacing the no slip boundary condition with a periodic boundary condition will play
a role if the Babel number is large enough. See Ref. 40 for the effect of confinement on the observed
yield stress in a biperiodic Poiseuille flow.
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Fig. 16 Local shear stress as a function of the local shear rate, for various applied
pressures for a channel width of 24 blocks. The corresponding stresses at the walls are:
(purple rhombs) σw = 0.2, (cyan dots) σw = 0.2, (red squares) σw ' 0.4, (green upper
triangles) σw ' 0.5, (blue lower triangles) σw = 0.6.

5.2 Physical impact of rough walls

As the deviations observed for rough walls are not captured by a
simple no slip boundary condition, we discuss here some physical
mechanisms that may be responsible for this behaviour.

First, the static structure near walls is known to differ from that
in the bulk. For smooth, or not too rough, boundaries, stratification
in layers is often reported over a distance of a few particle diam-
eters57,58, though not systematically: Goyon et al.44 actually ob-
served no such layering in their experiments. Besides, the vicinity
of a solid boundary hinders the mobility of Brownian particles59.
But these structural changes for the material at rest imply a de-
crease of the fluidity at the wall, as opposed to the enhancement
that is experimentally observed at high enough stresses, i.e., where
the largest deviations occur. Alternatively, specific behaviour at the
wall is often rationalised by the existence of a depleted ’lubrica-
tion layer’ close to the wall, as is often found in sheared disper-
sions60–66. This phenomenon is more acute for deformable parti-
cles62undergoing high shear rates and/or high shear gradients; it
generates an apparent wall slip. However, at the very high con-
centrations investigated here, owing to the large osmotic pressure,
such a lubricating layer would have a thickness of order 100nm
or less44,65,66 (if the lubricating layer is composed of pure sol-
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vent). Effectively, Goyon directly measured the concentration pro-
file across the channel and was not able to detect any significant
variation. This finding is corroborated by the absence of radial
droplet migration for a similar material in a Taylor-Couette cell,
even at high shear rates, as reported by Ovarlez et al.53. Adding
that systems of soft particles have a much weaker viscosity depen-
dence on concentration than their hard particle counterparts, effects
of concentration variations could be ruled out as regards Goyon’s
experiments. Nevertheless, we attempted to simulate a less viscous
layer close to the wall by decreasing the yield stress of the associ-
ated mesoscopic blocks, but this only had little effect on the rest of
the system. Therefore, one is led to seek for another explanation.

An aspect that has been overlooked so far is the reported obser-
vation of wall slip in Goyon’s, Geraud’s and Jop and Mansard’s
works39,44,46,58, both with smooth and rough walls. In order to
extract information that is relevant for the bulk flow, the authors
measured the local velocities and shear rates in the channel by mi-
croscopic observation, so that the occurrence of slippage should
a priori not affect their results. Indeed, in presence of smooth
surfaces, where wall slip accounts for around 30% of the maxi-
mal velocity at the typical pressures applied by Goyon et al.39,
slip only results in a global translation of the system, that leaves
the local flow curve strictly unaltered. For rough surfaces, let us
first remark that the presence of wall slip is more surprising, since
roughened (sandblasted, sandpapered, coated with particles) sur-
faces are often used to strongly suppress, or eliminate, slip for the
very same type of materials, which is monitored by rheological
measurements, and then used as benchmarks for a system without
slip61,64,67–69. However, in several cases, measurements of local
velocities in the flow, either with microvelocimetry with fluores-
cent tracers44,46,70 or through direct visualisation with confocal mi-
croscopy45,58, demonstrate that concentrated emulsions may slip
along rough surfaces in microchannels. These researchers report
a seemingly quadratic46,70, or linear58, dependence of the slip ve-
locity on the shear stress at the wall. Note that slip along a rough
wall is not restricted to the microchannel geometry: for instance,
Divoux et al. showed with ultrasonic speckle velocimetry that an-
other yield stress fluid, namely, carbopol, experiences a phase of
total slip in a Taylor-Couette rheometer whose cylinders had been
coated with sand paper71.

Now, when particles slide along a rough wall, they are expected
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to bump into, and be deformed by, the surface asperities. In the case
of asperities that are large (∼ 60µm) as compared to the “particle”
size (a few micrometers to 20µm, this phenomenon is best exem-
plified by the spatiotemporal diagram acquired with ultrasonic ve-
locimetry for a carbopol microgel, Fig.6 of Ref.72, where one can
see a large deformation of the material that originates at the ro-
tor and propagates almost instantaneously into the bulk; this signal
was interpreted by the authors as the signature of a “bump” into
a surface protuberance. Albeit less visible, this effect should also
appear with walls characterised by a smaller roughness, whereby
rough walls in the presence of slip act as sources of mechanical
noise and cause deviations from bulk rheology in their vicinity. This
tentative scenario has the potential to explain why deviations may,
or may not, be observed in the vicinity of rough surfaces: for in-
stance, Goyon et al.44 and Ovarlez et al.53, as well as Seth and
co-workers73, have reported that the local flow curves obtained in
wide gap Taylor-Couette or plate-plate geometries with rough walls
could be mapped onto the macroscopic flow curves; yet, they also
indicated that, in those cases, no evidence of wall slip could be
found. Very recently, Mansard endeavoured to investigate the im-
pact of wall roughness by combining experiments and molecular
dynamics simulations58. Nonmonotonic variations of the wall flu-
idity as a function of the roughness were reported in the experi-
ments, but the data did not allow for the extraction of the parame-
ters responsible for the deviations from from macroscopic rheology.
Nevertheless, he noted that “ the particles must jump over the pat-
terns [on the walls]. This effect induces the rearrangements and
increases the wall fluidity”.

Naturally, this prompts the following question: what determines
the occurrence of slip along rough walls? This question lies far be-
yond the scope of the present study. Let us simply note that the fact
that in Refs.39,44–46 the size of surface asperities was a couple of
microns at most, that is, significantly less than the typical “particle”
size, which plausibly favours slip, as well as the high shear rates ex-
perienced at the microchannel walls. Nevertheless, recent theories
of slip along smooth walls involved, in addition, parameters such as
the deformability of the droplets,
citeMeeker2004,Meeker2004long and the particle-wall interactions74,
not to mention the presumably significant impact of Brownian mo-
tion in cases where it is relevant75,76. As far as we know, the some-
what daunting challenge to extend these theories for the case of
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rough walls still awaits a successful accomplisher.
In the above discussion, we have carefully eluded the question of

the surface chemistry and its interactions with the particles. How-
ever, Seth and co-workers showed that they can play a signifiant
role; in particular, for the yield stress fluid they studied, smooth at-
tractive surfaces were observed to induced deviations from macro-
scopic rheology relatively far into the bulk, whereas smooth repul-
sive induced none at all.

Finally, we would like to mention another possible impact of the
confinement of the material between walls. The channel may be
so narrow that the layers where the specific wall rheology domi-
nates start overlapping. This situation, which described as strong
confinment, is expected to occur when the channel width becomes
of the order of, or smaller than, the cooperativity length ξ. For the
data of Refs.39,44,45 discussed above, this mechanism is therefore
not relevant.

5.3 Fictitious plastic events along the wall as mechanical noise sources

As we have already noted, nonlocal effects leading to deviations
from the macroscopic flow curve are often rationalised in terms of
the fluidity diffusion equation, Eq.14 (see, e.g., Ref.39,40,44–46,52,58,73).
In this approach, the fluidity at the wall is needed as an input param-
eter, whose precise value turns out to be determinant. Most likely,
the suggested mechanical noise at the walls would be hidden in that
value. (Note that, in Goyon70 the fluidity at rough walls, where
larger deviations are observed, is indeed larger than that for smooth
walls and larger than the bulk fluidity corresponding to the same
shear stress.)

Our mesoscopic model is also oblivious to the microscopic de-
tails of the flow near a boundary and therefore cannot describe the
effect of wall slip along a rough wall without further input. Nev-
ertheless, since bumps act as sources of mechanical noise in the
system, one can attempt to account for their occurrence by adding
fictitious plastic events along the walls. Note that this ad hoc treat-
ment is similar to imposing a wall fluidity larger than the bulk flu-
idity as a boundary condition when solving the fluidity diffusion
equation, Eq. 14.

More precisely, we modify the implementation of the model
slightly, so that a wall is now described as a line of plastically in-
ert blocks: the bottom wall will, for instance, occupy the portion
of space 0 6 y 6 1, and the no slip boundary condition is imposed
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at its centre, i.e., y = 0.5. On this line, a fraction of blocks is se-
lected‖ at random to act as sources of mechanical noise, that is, to
mimic, e.g., bumps of particles into surface asperities. To do so,
they shall release a constant plastic strain ε̇

pl
f ict per unit time, along

the direction of macroscopic shear (for simplicity). We emphasise
that mechanical equilibrium is not modified by the addition of these
fictitious plastic events.

Figure 17 shows the local flow curves obtained with this pro-
tocol. The observed deviations are qualitatively similar to those
reported by Goyon (see Fig.7 of Ref.44). However, we must note
that a ather intense mechanical noise is required to get such devia-
tions

(
ε̇

pl
f ict ≈ 5

)
. (As the value of ε̇

pl
f ict is arbitrary, we do not seek

quantitative agreement with the experimental data here).
In addition, these fictitious plastic events also alter the shear rate

fluctuation profile, as shown in Fig. 18. Besides a global increase
of the fluctuations, the profile no longer flattens in the vicinity of
the walls, which renders it more consistent with the experimental
results of Jop and co-workers (collected in a channel with rough
walls).

Fig. 17 Local shear rate σ(y) vs local shear rate γ̇(y) (averaged on streamlines y = cst)
in the microchannel, when fictitious mechanical noise sources of intensity ε̇

f ict pl
xy =±4.5

are added on a fraction (1/3) of blocks on the wall lines. σw=(�) 0.36, (•) 0.48, (�)0.8,
(N)1.0, (H)1.1 in model units. Solid line: macroscopic flow curve.

‖Note that shuffling these blocks, i.e., selecting new random blocks as noise sources, at low enough
frequency hardly affects the results presented below.
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Fig. 18 Shear rate fluctuation profiles in the presence of fictitious plastic events along
the walls. A third of the blocks on wall lines have been randomly selected to release a
constant plastic stress σ̇

pl f ict
xy = 4.5 per unit time.

6 Conclusions & Outlook

In conclusion, we have derived analytical formulae from contin-
uum mechanics for the effect and time evolution of a plastic event
occurring in a two dimensional medium bounded by walls. We
have integrated these formulae in a lattice model for the flow of
amorphous solids, in which elastoplastic blocks receive stress from
their surroundings and have a certain probability to become plastic;
the chosen form of probabilities for the onset and end of a plastic
event allowed us to match experimental flow curves for concen-
trated emulsions. Then we turned to the simulation of flow in mi-
crochannels, where the most prominent feature is the existence of a
seemingly unsheared “plug”. Remarkable manifestations of spatial
cooperativity in the flow had been unveiled experimentally, and we
proposed to distinguish those pertaining to cooperativity in the bulk
and those pointing to the specific rheology near a solid boundary.
For the former category, deviations of time averaged quantities are
generally weak, but could nevertheless be observed with our model.
More strikingly, shear rate fluctuations were observed in the plug,
consistently with experiments. As regards the specific wall rheol-
ogy, it turned out that imposing no-slip boundary conditions at the
walls in our model was not sufficient to capture the experimentally
observed phenomena. We discussed several possible physical ori-
gins for the departure from the macroscopic behaviour observed,
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above all, in the vicinity of rough surfaces; we insisted in particular
on a tentative scenario in which mechanical noise is created at the
wall by, e.g., bumps of particles into surface asperities as they slide
along the wall. Finally, an ad hoc implementation of this mechani-
cal noise was attempted.

Concerning our mesoscopic model, several improvements can
be considered. First and foremost, regions undergoing plastic events
are fluidised, and the presence of fluid-like regions is expected to
damp shear waves and reduce cooperativity. This point is not taken
into account in the model. Also, the distinction between an acti-
vation temperature, of noncooperative origin, and a more general
effective temperature will be worth further investigation, both for
thermal and ’athermal’ soft solids under shear. In an unrelated way,
it has been apparent that, in spite of the vast amount of literature on
the question of slip for soft solids and the recent progress made in
that respect, the issue of slip along a rough surfaces, and its conse-
quences on the local fluidity, remain quite challenging.
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10 P. Sollich, F. Lequeux, P. Hébraud and M. Cates, Physical Re-
view Letters, 1997, 78, 2020–2023.

11 P. Sollich, Physical Review E, 1998, 58, 738.
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Appendices
A Derivation of the correction terms to the propagator for a

system bounded by walls

The system covers the domain (x,y) ∈ [0,L]× [−H,H] and is peri-
odically replicated throughout space. The region y∈ [0,H], bounded
by walls at y = 0 and y = H represents the real system, whereas the
other half is a fictitious region introduced for the calculations.

For any plastic event εpl =
(

ε
pl
xx,ε

pl
xy

)T
occurring at position (x,y)

in the real half, a ’symmetric’ plastic event εpl ′ =
(

ε
pl
xx,−ε

pl
xy

)T
is

created at location (x,−y) in the fictitious region. For symmetry
reasons, the y-component of the velocity field is thereby cancelled
on lines y = 0 and y = H (bear in mind that the 2H-wide system is
periodically replicated).

Let us now introduce forces f (y=0)
x and f (y=H)

x along the x-direction
at the bottom (y = 0) and top (y = H) walls, respectively, to cancel
the x-components. The Fourier transform of the force field reads:

fx(m,n) = f (y=0)
x (m)+(−1)n f (y=H)

x (m)
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Note that we have simplified notations by using the shorthand g(m,n)
for ĝ(pm,qn), for any function g, where pm ≡ 2π

L and qn ≡ 2π

2H are
the Fourier wavenumbers.

With these forces, the Fourier-transformed displacement field
turns into:

u(1) (m,n) = G∞ (m,n) ·
(

ε̂
pl (m,n)+ ε̂

pl ′ (m,n)
)
+O (m,n) · fx (m,n)(15)

≡ u?∞ (m,n)+ucorr (m,n) , (16)

where ûcorr is the contribution from the wall forces and Ô is the
Oseen-Burgers tensor introduced in Eq. 8. The star in û?∞ only
indicates that this symbol represents the velocity field induced by
both the real plastic event and its ’symmetric’ counterpart.

Remarking that the condition of zero velocity at the bottom and
top walls reads, in terms of Fourier components, ∑n u(1)(m,n) =
0∀m and ∑n(−1)nu(1)(m,n) = 0∀m, respectively, we obtain two
equations on the fx after insertion from Eq.15. Adding and sub-
tracting these equations yields, for any m:

∑
n∈O

u?∞
x (m,n)+O(m,n) ·

((
f̂ (y=0)
x − f̂ (y=H)

x

)
(m)
)
= 0

∑
n∈E

u?∞
x (m,n)+O(m,n) ·

((
f̂ (y=0)
x + f̂ (y=H)

x

)
(m)
)
= 0

where O ≡ 2Z+1 is the set of odd integers, and E ≡ 2Z is the set
of even integers.

The solution of this linear system of equations is:

f (m 6= 0,n ∈ δ) =
−µ

eδ(m) ∑
n′∈δ

u?∞
x (m,n′), (17)

where the symbol δ stands for either E (even n’s) or O (odd n’s).
The expressions for m = 0 are written separately:

f (0,n ∈ 2Z) = 0

f (0,n ∈ O) =
−4µ
H2 ∑

n′∈O
u?∞

x (m,n′).
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In Eq.17, we have introduced auxiliary functions eE (m) and
eO (m), which satisfy∗∗:

e(m)≡ ∑
n∈Z

q2
n

(p2
m +q2

n)
2 =

H2

2π

[ −π

sinh2 (2πHm/L)
+

L
2mH

1
tanh(2πHm/L)

]

eE(m)≡ ∑
n∈E

q2
n

(p2
m +q2

n)
2 = 1/4 e(m/2)

eO(m)≡ ∑
n∈O

q2
n

(p2
m +q2

n)
2 = e(m)− 1/4 e(m/2)

Now, the infinite summation in Eq. 17 needs to be calculated.
For a single plastic event located at (xev,yev), that is, ε̂pl (m,n) =

e−ipmxeve−ipmxev
(

ε
pl
xx,ε

pl
xy

)T
the use of the expression for ûx

?∞ leads
to:

∑
δ

ûx
?∞(m, ·)= 4e−ipmxev

[
ε

pl
xy

(
p2

m
H3

π3 jδ(X)− H
π

kδ(X)

)
−2iεpl

xx pm
H2

π2 sδ(X)

]
,

(18)
where the δ-subscript stands for either E or O, and X ≡ (x,α) ≡(

πyev
H , pmH

π

)
.

Inserting Eq. 18 into Eq. 17, summing the plastic activity of all
lines y, i.e.††, y = 0.5, . . . ,H−0.5 (H ∈ N?) in the discretised ver-
sion, and Fourier transforming the results along direction x via the
operator Fx, defined by Fxσ = 1/L

´
σ(x)eipmxdx, one finally arrives

at :

ûcorr(m,n∈ δ)=


≡ ζδ(X) ≡ ξδ(X)

−4q2
n

4µq4 ·
[
∑
y

︷ ︸︸ ︷(
p2

mH2

eδ(m)π3 jδ(X)− 1
π

kδ(X)

)
Fxσ

pl
xy(m,y) −2i∑

y

︷ ︸︸ ︷(
pmH

eδ(m)π2 sδ(X)

)
Fxσ

pl
xx(m,y)

]
4pmqn
4µq4

[
∑
y

(
p2

mH2

eδ(m)π3 jδ(X)− 1
π

kδ(X)
)

Fxσ
pl
xy(m,y) −2i∑

y

pmH
eδ(m)π2 sδ(X)Fxσ

pl
xx(m,y)

]

 ,

where new summations appear and can be expressed analytically
via a decomposition into simple elements and the use of known
summation formulae77:

∗∗The analytical calculations leading to the second part of the equality involve the decomposition into
simple elements and the use of well established summation results 77.

†† The +0.5 term comes from the fact that the y-coordinate of a block (of unit size) is evaluated at its
centre.
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j(x,α)≡
+∞

∑
k=−∞

k sin(kx)

(k2 +α2)
2 =

π

2α2
sinh(α(π− x))

sinh(απ)
− 1

2α2 H (x,α)

jE(x,α) =1/8 j (2x,α/2)

H (x 6= 0,α)≡
+∞

∑
k=−∞

k sin(kx)

(k− iα)2 =
h(x,α)+h(x,−α)

2

h(x 6= 0,α)≡− i
+∞

∑
k=−∞

k exp(ikx)

(k− iα)2 =
πexp(−xα)

1− cosh(2πα)

[
xα
(
e2πα−1

)
+2πα−

(
e2πα−1

)]
k(x,α)≡

+∞

∑
k=−∞

k3 sin(kx)

(k2 +α2)
2 =

π

2
sinh(α(π− x))

sinh(απ)
+

H (x,α)
2

kE(x,α) =1/2 k (2x,α/2)

s(x,α)≡
+∞

∑
k=−∞

k2 exp(ikx)

(k2 +α2)
2 =

π

2
cosh(α(π− x))

αsinh(απ)
+

π

4
u(x,α)

sE(x,α) =1/4s(2x,α/2)

u(x,α)≡2xcosh(α(x−2π))+(2π− x) ·2cosh(αx)
(1− cosh(2πα))

The function jO is obtained by writing j(x,α)= jO(x,α)+ jE(x,α);
the same applies for the other functions with subscripts O.

The coincidence of the infinite summations and their analytical
expressions has been verified numericalyl for particular values of
the parameters.

As a technical remark, we would like to mention that the preced-
ing formulae are difficult to evaluate numerically for |α| � 1, on
account of the large arguments of the hyperbolic functions. Nev-
ertheless, the following approximations provide very satisfactory
results in the limit of large α’s (α > 0) :

sinh [α(π− x)]
sinh(απ)

≈ exp(−xα)− exp(α(x−2π))

cosh [α(π− x)]
sinh(απ)

≈ exp(−xα)+ exp(α(x−2π))

h(x,α)≈−2π exp(−xα) [xα−1]

u(x,α)≈−2 [x exp [α(x−4π)]+ x exp(−αx)+(2π− x) · exp [α(x−2π)]]
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Our final result is:

(
σcorr

xx (m,n)
σcorr

xy (m,n)

)
=


−2pmq2

n
q4

[
i∑

y
ζδ(X)Fxσ

pl
xy(m,y)+2∑

y
ξδ(X)Fxσ

pl
xx(m,y)

]
qn(p2

m−q2
n)

q4

[
i∑

y
ζδ(X)Fxσ

pl
xy(m,y)+2∑

y
ξδ(X)Fxσ

pl
xx(m,y)

]
 ,

(19)
where we should note that ζ(0,n ∈ O) = −2

H2 .
As a computational detail, note that the y-coordinates are here

integers shifted by half unity, i.e., of the form p+1/2, p∈N, whereas
computational routines for Fast Fourier Transform take as input an
array with integer indices. It is therefore easier to suppose that the
walls are at positions y = −1/2 and y = H− 1/2. This translation is
readily achieved by simply multiplying the Fourier components of
the correction term, as given above, by prefactors exp

(
iqn
2

)
.

Assuming a complexity O (N lnN) for the Fast Fourier Trans-
form of an array of N cells, the number of operations performed at
each time step of our algorithm is of order O

(
LH2 lnL

)
for large

integers H and L, as is evident from Eq.19.

B Calculation of the line-averaged velocity

The mean velocity on a line y = y0 reads:

〈ux〉x (y0) ≡
1
L

ˆ L/2

−L/2

ux (x,y0)dx

=
+∞

∑
n=−∞

ûx(m = 0,n)eiqny0

=
+∞

∑
n=−∞

n 6=0

û?∞
x (0,n)eiqny0 + û?∞

x (0,0)− (1− 2|y0|/H)∑
I

û?∞
x (0, ·)+∑

P

0︷ ︸︸ ︷
ûcorr

x (0, ·)eiqny0

= ∑
yev

a
2µ

[
Sign(y0− yev) ·

(
1− |y0− yev|

H

)
+1− yev

H
− y0

H

]
Fxσ

pl
xy(m = 0,yev),

where the last summation is performed over all streamlines yev,
and û?∞

x is the bulk contribution in the duplicated system (CHECK).
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C Estimation of the deviations due to bulk cooperativity

Assume the fluidity diffusion equation is a valid approximation,

ξ
2
∆ f − ( f − fbulk) = 0

where f = γ̇

σ
is the fluidity, and ξ is a cooperativity length that may

vary with the shear rate.
Let δ f = f − fbulk be the deviation from the expected fluidity

profile owing to cooperative effects between regions subject to dif-
ferent driving forces.

One now assumes δ f � fbulk and ∆δ f � ∆ fbulk.
To leading order, the fluidity diffusion equation reads

ξ
2
∆ fbulk = δ f

The amplitude of the deviations due to cooperativity is given by the
Babel number Ba≡ δ f

f ≈ ξ2 ∆ fbulk
fbulk

If the flow curve follows a Herschel-Bulkley law: σ(γ̇) = σd +
Aγ̇n,

f ′′bulk =
σ′

2

A1/n

σn−1 (σ−σd)
1/n−1

n

[
(1/n−1)

σ−n

σ−σd

(
(1−n)+n

σd

σ

)2
−nσ

−n−1
(

1−n+(1+n)
σd

σ

)]
Here, the primes denote derivatives with respect to the space coor-

dinate. Then,

f ′′bulk
fbulk

=
σ′

2

n(σ−σd)

[
(1/n−1)
σ−σd

(
(1−n)+n

σd

σ

)2
− n

σ

(
1−n+(1+n)

σd

σ

)]
To leading order, one finally arrives at δ f

f ∼ ξ2 σ′
2

(σ−σd)
2 .
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