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Abstract: This paper presents an original approach for automatic construction of a simulation
model for complex manufacturing systems. The model generation is based on spatiotemporal
product trajectories. The products therefore contribute directly to the control of the system.
The formal generated model, a queuing network, is a permanent image of the real state of the
system to be modelled; it can therefore be described as being auto-adaptive.
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1. INTRODUCTION AND GENERAL ISSUES

System modelling and identification is an important field
of research in automation. The objective is to obtain a
mathematical model of a system based on experimen-
tal data and available a priori knowledge. This model
is intended to provide a faithful approximation of the
behaviour of the physical system of interest, to estimate
the physical parameters or design simulation, forecasting,
monitoring or control algorithms.

The classical approach consists of formalizing a priori
available knowledge, collecting experimental data, then es-
timating the structure, the parameters and uncertainties of
a model, and finally validating (or invalidating) it (Garnier
et al., 2007).

According to the knowledge available or extracted from
the process to be identified, one speaks about parametric
identification (the structure of the model is known) or
about non-parametric identification (the structure of the
model is unknown). The research presented in this paper is
part of this complex dynamic systems modelling and iden-
tification problem; its behaviour cannot be represented
accurately by mathematical equations. This kind of mod-
elling is usually very time consuming and depends on the
experience and skill of the modeller (Revel et al., 2004). An
alternative to this approach is related to the use of machine
learning, such as the popular neural networks. In general,
these machines do not provide a structure of the model
representing the system of interest, and therefore limit
future use; see, for example, black-box models (Sjöberg
et al., 1995). However, unlike models built by experts, it
is possible to use these models online, in the sense that
they remain connected to the real system, its inputs and
outputs, and are constantly updated. The model can be
described as being self-adaptive (Cheng et al., 2009).

This paper therefore presents our proposal to develop
automatically a non-parametric model for complex sys-
tems (i.e. without the assistance of a human system). Our
proposal is based on two complementary approaches:

• A top-down minimalist approach: the minimal knowl-
edge is related to the nature of the system to be
modelled. This knowledge will be used as input to
build the model generator (e.g. the type of process
implemented in the system to be modelled).

• An important bottom-up approach: a continuous col-
lection of spatiotemporal data from the real system
is used to feed the generator, and therefore to build,
validate and maintain the model.

At first we present briefly the classical approaches for
modelling complex systems. A zoom is performed on data
collection and the design of the model structure. In a
second step, data and knowledge needed to build a flow
simulation model are presented. The next section is ded-
icated to our proposal of product-trajectories modelling
by a directed and localized graph. We then describe the
gradual construction of the model and its adaptation to
changes in the system to be modelled. Some illustrations
are presented in Section 4 to show the merits of our
approach and of the model-builder. Section 5 concludes
this work and presents some possible tracks of it.

2. CLASSICAL APPROACHES FOR MODELLING
COMPLEX SYSTEMS

It is fairly standard in the literature (and sometimes
in enterprises) to decompose system identification and
modelling into phases to facilitate project management
and to be able to validate progress step by step. Each
of these phases can be supported by methods and tools
intended to make more formal and effective progress. The



automation of all these tasks is now difficult to imagine.
However, some of them are or can be automated to varying
degrees. After finding the relevance of using a simulation
tool in relation to a given problem, and contextual or
a priori knowledge on the system to be modelled, the
development of a simulation model requires the following
steps:

(1) Data collection and pre-treatment
(2) Development of the model structure (based on a

choice of the type of model used)
(3) Instantiation of the model from collected and pro-

cessed data
(4) Verification and validation of the model.

Steps (1) and (2) are the subjects of the two following
subsections. We return to steps (3) and (4) during the
presentation of our proposal.

2.1 Data Collection

This important phase is generally time consuming for
complex systems modelling (Fowler and Rose, 2004), and
may represent up to 50% of the total time taken when
building models using conventional approaches (Robertson
and Perera, 2002). Depending on the nature of the system
under study, collection of data and/or information may be
technically achieved in different ways:

(1) By direct measurements performed by human opera-
tors or ad hoc instruments

(2) In an Enterprise Information System (EIS), where
these data and/or information are pre-treated and
recorded

(3) By estimations based on theory or similar phenomena
already studied.

Data processing is of course dependent on the nature of the
data, and also on the mode of collection. Information from
an EIS is already formatted (average processing times, for
example), while data from the shop floor must be filtered
and processed to be used in a simulation model. Finally,
this raises issues of the reliability, of the representativeness
of the data and/or information used as model parameters,
and therefore their maintenance. The most reliable and
most representative data are undoubtedly those from the
real system in real time obtained by ad hoc instrumenta-
tion, but they have the disadvantages already presented.

2.2 Design of the Model Structure

Different approaches for partial automation of the devel-
opment phase of the model structure can be found in the
literature. They can be grouped into two families.

The approach using templates (Guru and Savory, 2004)
for a progressive construction of the model, on the basis
of a generic set of bricks to be parameterized, is probably
the one most used in manufacturing systems. One speaks
about “generic template-based simulation” or GTS. An
important advantage of the GTS approach is linked to the
concept of model re-use (Brown and Powers, 2000). Some
authors also talk about composable simulations (Page and
Opper, 1999; Kasputis and Ng, 2000), where the modelling
task can be reduced to a composition of simulation blocks.

Conceptual modelling (Zhou et al., 2006), including model-
driven engineering, is an alternative to the template ap-
proach, but requires significant mental effort (no integral
automation but there is methodological support).

3. PROPOSAL

Approaches that generate the model structure by a di-
rect feed from an enterprise resource planning system are
rarer (e.g. in the case presented by Koh et al. (2006)).
One speaks about “Data-Driven Simulation” (DDS), (Cao
et al., 2004). In this approach the model and its struc-
ture are automatically generated by a data flow from the
system instrumentation or from information systems. The
maturity of the concept is due to Darema (2004), who
introduced Dynamic Data-Driven Application Systems
(DDDAS). Simulation applications must be able to accept
new data at runtime and change the measurement process
dynamically. For example, Yang (2008) uses the DDS to
construct an inventory model. The principles of DDS seem
very interesting because they allow the derivation of on-
line simulation models, and these models have adaptive
structures and adaptive parameters. This approach can
also reduce the validation phase of the model, because it
is a priori an image of the actual behaviour of the system of
interest. The nature of the models depends on the nature
of the system of interest (natural or artificial systems,
for example). Data-driven modelling and simulation can
be compared with the non-parametric identification ap-
proaches in automation.

Our goal is to obtain a simulation model flow quickly
and easily, representative of the system and its operation
at any time, while retaining the possibility of changing
the structure and/or parameters for later use. Product
localization in time (spatio-temporal data) will constitute
for us the minimalist type of input data for the system
modelling and identification. More formally, we consider
that the generator data inputs consist of a set of location
points and each single point is specified by (id, r, t), where:

• id is the object (or product) identifier
• r is the position, generally in the plane
• t is the time.

Our proposal aims to provide a product trajectory-driven
model builder for manufacturing systems.

3.1 Data and Knowledge to Build the Model

The construction of a model of a system of interest is
performed by a model builder, mainly driven by spatio-
temporal trajectories of all products circulating in the
system to be modelled. The knowledge necessary for the
generation of the model is represented in Fig. 1 through
the various links between the model builder, the system to
be modelled and the generated model.

The minimalist nature of the information used is linked to
a priori knowledge about the system of interest (e.g. it is a
manufacturing system). This knowledge will be enriched
over time by gradually constructed knowledge that is
either operational and behavioural knowledge or singular
knowledge (Bourne, 1997). For our target application,
these types of knowledge are:
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Fig. 1. Data and knowledge flow from/to the model builder

• Contextual or a priori knowledge: this type of knowl-
edge is related to the nature of the complex system
studied. In the particular case of the application
described in this paper, this kind of knowledge has
led us to choose a queuing network model. This type
of model is considered representative of phenomena
that can occur in the system to be modelled. The
basic structural elements of the generated model will
therefore be servers and the links between them.

• Operational and behavioural knowledge: unlike con-
textual knowledge, this knowledge is constructed by
a generator based on the spatio-temporal data col-
lected. It represents the structural modelling of the
network graph (its typology, the number of servers
and links, and the servers’ positions). In our partic-
ular application, the manufacturing process and bill
of materials of the products can also be built using
collected data. The model parameterization, via the
extraction of information such as the number of nodes
(in t) and their relative positions, the time of service
(by product and server) and waiting time (by product
and server), complement this structural knowledge.

• Singular knowledge (derived from the feedback gained
during trials): this knowledge allows a “fit” of the
generated model based on specific spatio-temporal
characteristics of the system. In our application case,
this knowledge type may change the model parame-
ters (spatial dimensions of queues at servers), and also
the model structure (order of magnitude of the time
constants of the system for a dynamic evolution of
the graph; appearance and disappearance of servers).

3.2 Product Trajectory Modelling by a Directed and
Localized Graph

During their passage through the manufacturing system,
objects follow trajectories in the plane (x, y). The trajec-

tory of the product can be represented by a directed graph
where:

• The operations (composition, decomposition, trans-
formation) are represented by nodes

• The transports (or transitions between operations)
are represented by directed arcs, where the orienta-
tion reflects the precedence relations between opera-
tions. Root nodes of the graph represent the entry of
raw materials to the system, and the terminal node
of the graph represents the final product obtained at
the output of the system.

The observation of trajectories over time allows us to
determine the speed ṙi(t) of the object. At each point
were ṙi(t) = 0, it is possible to locate specific points to
build the model, e.g. the buffer operations (or servers)
that are associated with the nodes of the graph during
the product development. (for more details see Véjar and
Charpentier, 2012). These buffer operations (and their
locations) will be taken into account if the products stop in
the same geographical area with a certain recurrence. The
recurrence and the geographical area of the product stops
are typically two generator parameters related to singular
knowledge of the system (see the previous paragraph).

Each type of product is associated with a directed graph
of this type; the entire system can then be defined as
the union of all graphs of products. The structure of the
complete graph allows us to highlight links between space
and time; a position can be specified for each node of
the graph (the servers). This graph structure is alive: it
will evolve over time to be an image of the system of
interest. Figure 2 illustrate this concept with an example of
a graph. We intentionally omitted the elements concerning
the determination of the different times (transfer, waiting,
and service time) for each type of product but they can be
consulted at (Véjar and Charpentier, 2012; Véjar, 2011).

3.3 Progressive Construction of the Model and Adaptation

The construction by the generator of the complete graph
representing the model of the system as a whole requires
several phases. In a simplified manner:

• the progressive construction phase of the model and
the updating of data are based on the contextual
knowledge and the spatio-temporal data flows;

• the model adaptation is performed thanks to the
spatiotemporal data flows, but also with the singular
knowledge coming from the feedback from experience.

Algorithm 1: Progressive construction of the model

Data: a location data stream
(id0, r0, t0)(id1, r1, t1)(id2, r2, t2) · · ·

Result: a global servers list and a global products list

Set the global servers list S to an empty list
Set the global products list P to an empty list

foreach location point (id, r, t) from the data stream do

UpdateGlobals (id, r, t)
end
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The generated model aggregates the operational and be-
havioural knowledge (and parameters) built by the gen-
erator. Algorithm 1 and Function UpdateGlobals presents
the progressive construction of the model. It is based on
the analysis of spatio-temporal product trajectories where
the states of motion or stop are differentiated at two time-
instants: current time (t) and previous time (t− dt).

Updating model data occurs after the copy of the product
is definitely out of the system. Two situations can occur:
the copy of the product belongs to a product type already
referenced; or the product type is new. The discrimination
between these two cases is made on the basis of a similar-
ity measure of the spatio-temporal distance between the
trajectories of the types of products already known and
the output copy of the product. If the product is a new
one (high distance), a new type is created, and its char-
acteristics recorded. Otherwise, the data collected during
its passage through the module “progressively building a
model” are merged with the information already present.
They therefore contribute to the evolution of the model
parameters. This product data update participates in the
adaptation of the model. This adaptation is complemented
by a simple mechanism to observe the transient or sustain-
able aspect of the model elements (products, and therefore
servers and related information). It deals with the adap-
tation of the model to changes over the long term of the
information collected.

Function UpdateGlobals(id, r, t)

Data: a location datum (id, r, t), global servers and
products lists (S, P )

Result: updated globals lists (S, P )

Check if exists product p in P associated to identifier id

if does not exists p associated to id then
Create server s at (position, time) = (r, t)
Create product p associated with id and server s
Add p to the global products list P

else
Select product p in P associated with id
Select server s associated with p

if product p was stopped at time (t− dt) then
if server s position is r then

Add (+dt) to stopped time of s
Set time of server s to t

else p is in movement, update last server
Select s′ from list S with the same position of s
if p was waiting for service at s′ then

Set service time of s as the time passed
from time last output of s′ to (t− dt)

else server s′ was free when p arrived
Set service time of s to stopped time

end
Set time last output of s′ to (t− dt)
Add s to servers list of p
Create server s at (position, time) = (r, t)
Associate server s with p

end

else product p was in movement
if server s position is r then

Set product p as stopped
if does not exists s′ from S at position r then

Add s to the global list of servers S
end

else product p is in movement
Set position of server s to r

end
Set time of server s to t

end

end

Each type of product is associated with a “validity func-
tion”. This function reflects quantitatively the recurrence
of the appearance of this product type over time. When
this validity function reaches zero, it means that the prod-
uct type has not appeared in the system for a long time
(the time window is again a parameter of the generator):
the product must disappear from the model as well as the
servers related only to it. This function is incremented if,
during the execution of this module, a copy of this type of
product was present on the system, else it is decremented.
The execution frequency of this module is lower than the
frequency of event occurrences in the flow, so as not to
unnecessarily slow the execution of the whole.

4. ILLUSTRATIONS

To illustrate the operation of the generator and validate
the approach, we propose now two types of results. The
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Fig. 3. Spatio-temporal view of a manufacturing system
with 40 machines.

first is an illustration of the spatio-temporal analysis.
Fig. 3 shows a representation in which x and y represent
the two-dimensional space of a system of interest, and the
z-axis represents time. The space areas where the products
pass the most time are represented by the peaks along
the z-axis. These high-density areas correspond naturally
to the identified positions of the servers. This image is
a snapshot reflecting the structure of the model at a
particular moment.

To illustrate the structural adjustment of the model, in
Fig. 4 we present three different states of the same system
for three different periods. In the scenario, a new product
type different from those existing previously appears.
Those figures shows the system status before, during,
and after the introduction of this new product. Time is
represented by the colours on this figure. One can see the
gradual emergence of a new server (top of Fig. 4, Phase
2), not initially present in the system. A video of this
adaptation would be more representative. Other situations
(such as machine disappearance, changes of locations,
and new products) could be represented. The phenomena
observed and measured all confirm the adaptability of the
model to changes in the real system.

5. CONCLUSIONS

Our proposal constitutes an original alternative for the
modelling of complex and evolving systems. We here
focus on manufacturing systems because we have some
expertise in these systems and they are certainly easier

to instrument than other types. The proposed approach
mainly uses spatio-temporal product trajectories (bottom-
up approach) and some a priori or singular knowledge.
The construction of the model is formal and is based
on directed and localized graphs. It presupposes that
objects’ movements are observed and generate (directly
from their own instrumentation, or indirectly through
instrumentation of the environment) information on their
trajectories. As such, they contribute to the control of
their environment: the system is partially controlled by the
products through the model the products help to generate.
This model is of the “grey box” type. Unlike models based
on neural networks or other technologies, it is, for example,
possible to access the graphs and to change or reconfigure
them for tests such as “what-if”. This model also has
the great advantage of being synchronized with reality:
it continually reflects this reality and follows the evolution
of the real system. We have validated our approach with
several test cases and presented the results visually.

At this stage of development, different complementary
approaches to continuing this work can be considered. The
first is to check the feasibility of identifying system prod-
ucts, either through an identifier associated with them,
or through their spatio-temporal trajectories. This could
be some signature for each type of product. The second
approach, based on the spatio-temporal information of
each product item, could involve the determination of the
priority rules implemented on the system of interest. We
could then construct additional knowledge that could be
included in the model. Finally, the application to non-
manufacturing cases (including complex systems such as
human actions) would probably be a very interesting chal-
lenge.
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gional (Région Lorraine), national (DRRT and FNADT)
and European (FEDER) funds.

The study is cofounded by the European Union from
resources of the European Social Fund. Project PO KL
“Information Technologies: Research and their interdis-



ciplinary applications”, Agreement UDA-POKL.04.01.01-
00-051/10-00.

REFERENCES
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