
HAL Id: hal-00832268
https://hal.science/hal-00832268

Submitted on 10 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling framework based on SysML and AltaRica data
flow languages for developing models to support

complex maintenance program quantification
Thomas Ruin, Eric Levrat, Benoît Iung

To cite this version:
Thomas Ruin, Eric Levrat, Benoît Iung. Modeling framework based on SysML and AltaRica data
flow languages for developing models to support complex maintenance program quantification. 2nd
IFAC Workshop on Advanced Maintenance Engineering, Service and Technology, A-Mest’12, Nov
2012, Sevilla, Spain. pp.CDROM. �hal-00832268�

https://hal.science/hal-00832268
https://hal.archives-ouvertes.fr

Modeling Framework based on SysML and AltaRica Data Flow languages for
developing models to support complex maintenance program quantification

T. Ruin*, E. Levrat*, B. Iung*

* Lorraine University, CRAN (Nancy Research Center for Automatic Control), CNRS UMR 7039,Campus sciences, B.P.

70239 54506 Vandoeuvre lès Nancy, France (e-mail: {thomas.ruin; eric.levrat; benoit.iung}@univ-lorraine.fr).

Abstract: With the financial crisis attacking every industry and the new sustainability requirements such
as the extension of a system operation time subject to ageing life (i.e. nuclear power plant), the
importance of maintenance being effective and efficient is one of the top priorities for any industrial
company. This challenge cannot be achieved only through conventional maintenance optimization
models focusing mainly on few components but through maintenance programs based on “system
thinking” considerations. In that way, managers need to have at their disposal new decision-making tools
well adapted to support these considerations and allowing comparing off-line the impact of maintenance
programs on complex system performances like costs and availability (Complex Maintenance Program
Quantification – CMPQ). Thus, this paper proposes a model driven framework based both on the use of
SysML to model a system-of-interest subject to ageing and maintenance and on the use of formal
language AltaRica Data Flow to support model simulation.

Keywords: Maintenance engineering, Discrete-Event simulation, SysML, AltaRica Data Flow

1. INTRODUCTION

Production systems (or system-of-interest; SoI) are planned
and controlled with the objective to supply products with the
expected performances. In that way, the system features and
capabilities are designed a priori knowing that initially, the
production system performs as designed. As time passes, the
components age and un-planned failures occur, causing the
system performance to drift away from its initial state
(Wiendahl and al., 2007). Thus maintenance is needed to
restore or maintain the system in operational conditions. It
means, for keeping performance optimality, to offer
maintenance managers models allowing to take decisions
about the maintenance strategies and programs (selecting new
ones; re-designing existing ones) to be implemented (Takata
and al., 2005). So, the importance of maintenance being
effective and efficient is one of the top priorities for any
industrial company. In that way, models used to support
optimal maintenance strategies generally cover four main
aspects (Dekker, 1996):

- a description of the SoI being maintained;
- knowledge on the SoI deteriorates and deterioration

consequences;
- a description of the available information on the SoI

and the available response options
- an objective function according to which the optimal

maintenance strategy has to be derived.
Therefore there is a proliferation of “optimal maintenance
models” (Wang and Pham, 2006) not well adapted to the
industrial reality, in terms of mastering the SoI complexity,
the interactions between the SoI and its enabling systems
such as the support (maintenance and resources) one, the new
sustainability considerations, the reuse of model based on
COTS (Components Off The Shelf) principle (INCOSE,
2010).

For example, the extension of SoI operation time subject to
ageing life (i.e. in the case of French nuclear power plants)
implies to model new constraints. Indeed at their initial
planned End-Of-Life, these systems must continue to operate
during an additional period rather than to be dismantled or
destroyed (i.e. economical reasons). These new constraints
are the management of the additional inspections, the
ignorance of some degradation processes (e.g. emergence of
new degradation laws) related to duration extension and its
evolving under fluctuating environmental and operational
conditions. To face most of the lacks on current optimization
models previously mentioned, the contribution developed in
this paper consists in proposing a generic modeling
framework for Complex Maintenance Program
Quantification (CMPQ) built in two parts:
- A “static and interactional” part based on SysML semi

formal language to model all the knowledge related to
the SoI, its missions, the support system (i.e.
maintenance strategies and resources) and their common
interactions. This set of knowledge is structured with
generic concepts (i.e. components, functions,
maintenance etc.) in consistence with standards such as
MIMOSA (www.mimosa.org) and (EN13306, 2001) in
order to obtain a reference (ideal) model for CMPQ.
Reference means “able to address all the CMPQ
considerations whatever SoI application domains are”.

- A “concept behaviour” part resulting from the
transformation of the previous concepts formalized with
SysML into dynamic behaviour based on AltaRica Data
Flow (ADF) formal language.

The main result of the generic framework is a library of
generic “concept behaviour” modeled with ADF. Then this
library can be used, for a specific SoI, to develop the specific
executable model needed to support, by simulation, the

CMPQ. This particular model results (a) from the
instantiation of the generic “concept behaviour” with regards
to the specific application knowledge (i.e. degradation laws
specification for the “component” concept, the maintenance
period specification for the “maintenance” concept) and (b)
from the assembling of these instantiated behaviours.
In relation to this framework considerations, section 2
highlights more precisely the problem statement on CMPQ,
and then section 3 justifies the different items of the proposed
framework. Section 4 and 5 detail the framework steps, and
an application on a case study is made on section 6. Finally
conclusions and perspectives are given in section 7.

2. PROBLEM STATEMENT ON CMPQ

Monnin and al. (2011) underline the comparison between the
different main scientific approaches related to maintenance
decision, and describes CMPQ as a medium time decision
applying to a wide number of components. In comparison,
contributions related to maintenance optimization are more
linked to a long term decision (Wang and Pham, 2006;
Barros and al., 2009) and focused on one or few components.
In that way, CMPQ can be considered as a dependability
study with a wider modeling scope because it has to take into
account not only the maintenance strategies but also the
whole support system. It leads that CMPQ relies on the
framework proposed by the System Engineering (INCOSE,
2010) to assess Key Performance Indicators (KPI) (Crespo-
Marquez, 2008), and described by the following steps:

- Choice of the indicators to be assessed (KPIs),
- Model building according to expected KPIs,
- Model execution to assess KPIs.

The translation of these steps for CMPQ context implies:
- To define required KPIs both related at least to

maintenance costs and dependability,
- To create reference model of the concepts (SoI and

Maintenance considerations) in order to reduce the
modeling effort for each study,

- To build any SoI according this reference model in
order to assess required KPIs.

In relation to CMPQ modeling phase, different modeling
techniques can be used as shown in Table 1 mainly in relation
to the applications domains of the SoI. Nevertheless, only
few of them (Medina Oliva and al., 2011; Monnin and al.,
2011) focused on support system aspects in order to assess
costs related to maintenance.

Table 1. Classification of some CMPQ models
 Model building Model execution
(Betous Almeida
and al, 2004)

Stochastic Petri
Nets

Stochastic Petri Nets

(Medina and al.,
2011)

Bayesian
Networks

Bayesian Networks

(Clavereau and
Labeau, 2009)

Stochastic Petri
Nets

Stochastic Petri Nets

(Monnin and al.,
2011)

UML Stochastic Activity
Network

(Boiteau and al.,
2006)

ADF ADF

(Zille and al.,
2009)

Un-formal Stochastic Petri Nets

Table 1 puts in evidence two kinds of approaches:
(a) Approaches driven by the simulation tool (Stochastic Petri
Nets, Bayesian Networks). Although these tools present the
advantage to support both modeling and simulation aspects
(and to allow a gain of time), they cannot model some
complex processes and interactions. It induces crucial
problems for the model reusability.
(b) Model-driven approaches where the simulation tool
modeling is preceded by a high level (or natural) language
modeling step. They present the advantage to model
knowledge from a generic informal or semi formal (and so
capitalizable) model, but imply a transformation language
step between the model building language and the model
execution language. Semi formal languages (UML2 (2010),
SysML (2008)...) provide, by means of different views
(static, interaction and behavioural), a semantic frame needed
to create a static (reference) model but also helping the
transformation language step to create simulation model.
Thus in relation to CMPQ considerations, the main challenge
for such approaches consists in selecting a formal language
(supporting model execution) well adapted to represent the
“concept behaviour” knowing that the concepts have been
previously formalized. Most of the time, a state-transition
formal tool/ language is chosen and has to perform the
following constraints:

- to be able to model accurately CMPQ related
knowledge in formal concepts,

- to manage SoI complexity (i.e. concepts reusability).
A lot of specific tools exist to be in phase with previous
considerations. (Trivedi and al., 1993) studied classical ones
(Petri Nets, Markov Chains...) and highlighted lacks notably
in model reusability. New high level formal languages for
FIGARO (Bouissou and al., 2002), SDM (Ramesh and al.
dependability analysis (AltaRicaDF (Rauzy, 2002),, 1999)...)
appeared some years ago. They own interesting genericity
abilities and allow representing easily a complex system
according to COTS libraries and remain able to model
complex interactions and phenomenon (Boiteau and al.,
2006).

On the basis of the semi-formal and formal languages
previously identified for approaches (b), it is necessary now
to select the more suitable ones in relation to CMPQ
framework for supporting both the “static-interactional” part
and the “concept behaviour” one.

3. LANGUAGES PROPOSED FOR THE FRAMEWORK

3.1 The use of a SysML-based framework for « static and
interactional » modeling.

Although some works deals with the transformation from
UML language to simulation tools (SAN (Monnin and al.,
2011), Stochastic Petri Nets (Bernardi and al., 2008)), this
language remains more suitable for information system
modeling. SysML language, which is an extension of UML,
appears more adapted not only for industrial system modeling
but also for the model reusability during the design phase.
Indeed, Hoffman (2008) proposes the use of different SysML

diagrams (providing static, interactional and behavioural
views) during the whole life cycle of a system. However,
some lacks remain for the quantification of the support
system impact on the SoI leading to mistakes in design. The
use of SysML for CMPQ allows to fulfill this lack, and to
allow quantifying the Support System organization on the SoI
design. However, although blocks, sequences, and parametric
diagrams are particularly suitable to model interactions
between different concepts needed for CMPQ, the SysML
“concept behavior” view (State Machine diagrams) does not
provide a well defined semantic frame (Borger and al., 2000)
inducing difficulties for simulation. It leads to keep the
principle of selecting another language to support simulation
(with a step of language transformation): ADF language.

3.2. The use of AltaRicaDF language for « concept
behaviour » modeling.

Among formal languages identified previously in section 2,
ADF presents a system engineering construction philosophy,
in order to be compatible with other languages like Lustre or
Modelica dedicated to other modeling views. The ADF
language presents a well defined semantics relying on the
mode automaton formalism. A mode automaton, formally
defined in Rauzy (2002), is an input/output automaton. It has
a finite number of states that are called modes. At each
instant, it is in one (and only one) mode. It may change of
mode when an event occurs. In each mode, a transfer
function determines the values of output flows from the
values of input flows. In addition, this formalism allows both
to model and store reusable objects as libraries elements and
to minimize the SoI modeling effort. Some simulation
environments (Safety Designer (www.3ds.com),
SIMFIA(www.apsys.eads.net)) allowing to manage these
libraries without generate complementary ADF code.
(David and al., 2010) already deal with the creation of a ADF
code from a SysML model. Moreover, this language is more
and more used in industry and some dependability dedicated
software tools are able to execute it. They allow both to store
the “concept behaviour” models within libraries and to
perform stochastic simulation by assembling and instantiation
of the suitable “concept behaviour”. Although this language
is used in the proposed framework, it can be noted that it
presents some restrictions like the impossibility to model
looped systems (i.e. the state of a node is function of the state
of another and vice versa). However, recent works on ADF
new versions tend to address this issue (Rauzy, 2008).

Concepts
behavior

Genericity Global facility
(generic level)Language

Static and interactional
Model (§.4)

Case study
modeling and
KPIs assessement

Case study
COTS behavioral
view

Instanciation guideline knowledge

Building rules
Assembly and
instanciationConcepts

behaviorConcepts
behavior

SysML

ADF

Fig. 1. Modeling framework

In summary, Fig. 1 illustrates the proposed framework,
through its different steps: from the initial SysML based
reference model until ADF-based simulation. From now on,
SysML related items (extracted from SysML (2008)), will be
marked in italic characters and ADF elements in thick ones.

4. “STATIC AND INTERACTIONAL” MODELING

This part modeled with SysML diagrams has been supported
by Rational Rhapsody tool (www.ibm.com).

4.1 The static model: the use of SysML block diagrams

On the static model, a first scientific investigation has been
published in (Ruin and al., 2012). This model is constructed
in terms of block diagrams formalizing in concepts the
CMPQ related knowledge. Thus the blocks attributes are
extracted from maintenance related standards and works with
regards to the required KPIs. Diagrams are structured with
three main items:
- the SoI composed of its components/asset including

related concepts (e.g. failure modes, degradation
mechanisms, symptoms…) and their links (e.g. parallel),

- the SoI missions (e.g. environmental and operational
conditions…),

- the support system composed with the maintenance
system (e.g. maintenance strategies…) and the resources
(operators, spare parts…).

These block diagrams do not contain whole CMPQ
information. Indeed, interactions between objects are just
specified by relations between blocks. Thus static additional
knowledge regarding relations between attributes (modeled
by means of SysML internal block diagrams) is required.
Moreover, knowledge on dynamic aspects (modeled by
means of SysML sequence diagrams) is needed to go towards
the simulation.

4.2 The interaction model: the use of SysML-additional
diagrams

Sequence diagrams allow to model CMPQ system scenarios.
For example, making part in CMPQ, interactions between
different lifelines equivalent to different blocks defined
previously are modeled. In that way, the model shown in
Fig.2, formalizes the interactions between concepts
describing corrective strategy. This kind of strategy is divided
in three states modeled by condition marks (plan: modeling
the strategy waiting state; “in_prep”: modeling the strategy
requested state; “in_progress”: modeling the maintenance
action application). Each condition mark occurrence is
preceded by looped back messages modeling the corrective
maintenance internal event. These messages can be (a)
temporized (e.g. the message “end_mc” is related to
maintenance duration parameters), or (b) immediate and
triggered by the occurrence of a receipted message (e.g. the
message “prep_mc” is triggered by the message “fail”).

sd [Package] Maintenance System [CorrectiveStrategy]

:Asset :Personn
al

begin_mc(delay)

:Correctiv
eStrategy

Plan

In_Progress

Plan

In_Prep

begin_mc(delay)

end_mc(lawendmc, paramendmc)

fail()

prep_mc()

rep_cor_perf()

op_available()

return_op()

req_op()

end_mc(lawendmc, paramendmc)

fail()

prep_mc()

rep_cor_perf()

op_available()

return_op()

req_op()

Fig 2. Sequence diagram for corrective maintenance scenario

By keeping the same modeling way for all possible scenarios
related to each lifeline (corrective maintenance is only one
possible scenario), the generic activity diagram related to
each lifeline and gathering semantic of all SysML sequence
diagrams can be automatically generated. This kind of
diagram provides some dynamic information on interactions
between blocks identified on the static model suitable for a
future transformation into a discrete event formalism.
However, some quantitative modeling is needed to assess
KPIs. SysML parametric diagrams are particularly suitable
for supporting this issue because their goal is to model the
block plus attributes and their relationships. For example,
constraintparameters are blocks attributes impacting or
impacted by others, as shown in Fig. 3. Their relations are
modeled by an equation represented in the constraint. It
should be emphasized that, to be suitable with ADF
formalism, this step must avoid:

- to model looped systems,
- to express the constraintparameter equations in

another form than the logic one.
par [Package] Maintenance System [transfer_function]

Asset2
«block,Asset»

State

SerialLink_2Asset
«block,FunctionnalLink»

outflow

Asset1
«block,Asset»

State

transferfunction
«ConstraintBlock»

Constraints

o=f(S1,S2)

o

S1 S2

Fig. 3. Parametric Diagram for a two serial components

The constraint expressed in Fig. 3, models the impact of two
serialized components on the system availability
(constraintparameter “outflow”). This generic equation will
be instanciated according knowledge feedback for any case
study. Parametric diagrams can be used also to model the
impact of an operator skill on maintenance action efficiency.

In summary, these two additional diagrams provide a global
view of a set of blocks in interactions. At this step, SysML
state machine diagrams can be generated according previous
sequence diagrams in order to perform model checking on the
model. However, this paper focus on stochastic simulation,
and next session addresses the creation of a “concept
behaviour” library by transforming the concepts into ADF
formalism.

5. “CONCEPT BEHAVIOUR” MODELING

Now as the previous diagrams, it is necessary to translate
previously built SysML diagrams into the ADF language,
more suitable for execution and simulation requirements.
ADF is based on the mode automaton formalism are not
suitable

5.1 The ADF language

An ADF code is structured in 7 main items: The part node
where the object is defined; the part state where the set
reachable in a node is defined; the part flow where the
different flows able to transit in a node, their direction and
their type (real, bool…) are defined; the part event, where the
different events related to a node are defined; the part trans
where the impact of different events on states of a node are
modeled; the part assert where the transfer function of a node
is model, according to the node states, flows, and transition;
and finally the part init where initial state is given.
As it is a high level language, mode automaton allows the
systems description like hierarchies of reusable components
to master system complexity. It is done by means of three
operations: the parallel compositions, the connections and
the synchronizations.

5.2. From SysML language to ADF language

SysML diagrams were constructed with a semantic frame
making the transformation language step to ADF easier. ADF
“concept behaviour” can be created exhaustively by means of
algorithms from both parametric diagrams and sequence
diagrams elements, to ADF parts (7 items).
For example, Fig. 4 describes the algorithm allowing the part
creation of every ADF (node, state, event, init, and trans,
only if messages parameters are not constraintsparameters)
code formalizing “concept behaviour” from a sequence
diagram according to the following notations presented on
table 2

Table 2. SysML elements notations

�={E i} Set of lifelines
�� Number of lifelines

�
i={Si

j} Set of condition marks on the i th

lifeline
�� Number of condition marks on the

i th lifeline
�i

j,j+1={T i
 j,j+1,k} Set of looped back messages

between condition marks j and j+1
� Number of looped back messages

between condition marks j and j+1

Sequence diagrams have been designed by making sure that
each looped back message is triggered by a new condition
mark, or by a message receiving (from another lifeline). Thus
only one or zero receipted message can occur between two
looped back messages, and let’s consider T’ iq the receipted
message before looped back message q.

For i from 1 to n
Create node Ei

Create init= state Si
1

For j from 2 to p
Create state Si

j

For k from 1 to j
Create eventTi

k

Create transition Si
j-1 |- Ti

k -> Si
j

if T’iq�{Ø}
Create sync <T’iq, Ti

k >
k=k+1

End for
j=j+1
End for

i=i+1
End for
End

Fig. 4. Algorithm to go from SysML sequence diagrams to
ADF

Fig. 5a is showing the ADF code obtained by applying these
rules to the sequence diagram and its lifeline
“CorrectiveStrategy” given Fig. 2. Fig. 5b is illustrating the
synchronizations also created. Synchronisations differ for
each system. Indeed, synchronization is exhaustive only
when all interacting nodes are defined. By proceeding in the
same way for parametric diagrams, exhaustive ADF code
related to generic “concept behaviour” has been built.

�����������	A�B��C��DE

F�C��

�C�������C����������������D��FF���

�A���

��D	��������������������

	�	�

�C������� !�

��C�F

"�"�C�����������##�$% ��D	���� %&��C�����������D��FF�

""�C������ !##�$% ������� %&��C������������ �

""�C����������D��FF##�$% ������ %&��C������� !��

����

sync
<fail, prep_mc>
<op_available, begin_mc>

(a) (b)

Fig. 5. (a) ADF code created from sequence diagram defined
from Fig. 2 and (b) its ADF synchronisations

In summary, the results of the entire language transformation
step can be materialised by a library of generic “concept
behaviour” (COTS) modelled with ADF. These COTS can be
then instantiated and assembled (to form an executable
model) with regards to a specific application (specific SoI &
Support System). The system hierarchy, links between
objects, and the completion of synchronisation are defined at
this step, according a guideline proposed in future works
aiming to help the user of the tool to manage the library of
COTS.

6. APPLICATION TO A CASE STUDY: A TWO
COMPONENTS SYSTEM SUBJECT TO DIFFRENT
MAINTENANCE ORGANIZATIONS

In order to show the interest and feasibility of the proposed
framework, instantiation of generic “concept behaviour” is

performed with regards to a simple case study in order to
develop simulations. Because ADF has been designed to
manage system complexity by linking assets functional
flows, this case study will focus on a basic system (2
components) considering supply systems objects. Indeed it
aims to assess maintenance organization impact on system
availability according a set of libraries available. A
production system compounded by two serialized identical
components is considered. It is modeled according the
previous sequence diagram with a component malfunctioning
characterized by two two-level degradation mechanisms
impacting one failure mode. An “As Good As New - AGAN”
corrective maintenance action is applied on the failed
component.
Let’s consider the three following maintenance organizations:
(A) 2 independent scheduled preventive strategies acting on
each component, with one maintenance operator for each
component.
(B) Case (A) with only one maintenance operator for the two
components.
(C) Case (A) with opportunistic rules on preventive strategies
(e.g. if failure occurs on component 1 then preventive
strategy on component 2 is triggered).
Preventive maintenance actions are supposed to be “As good
As New”, corrective maintenance duration law and
parameters are exp(0,05) while preventive maintenance
duration ones are exp(0,1).
Table 3 gives model parameters according to instantiated
parametric diagrams and knowledge feedback. For example,
the constraint “transferfunction”:

f=if {S1=failed or S2=failed then failed}
For each organization, an executable model is built from the
COTS available in libraries. The library is stored on SIMFIA
simulation environment supporting ADF language. Thus for
developing the model, COTS are just picked up in a library
and linked by the user through the SIMFIA GUI (Fig. 6)
according proposed guideline. These links may be done
trough flows (e.g. from “asset1” to SerialLink_2Asset”) or
through synchronizations (e.g. between operator1,
CorrectiveStrategy1 and Asset1). Then, transitions are
instantiated according to knowledge feedback and parametric
equations.

Table 3. Instantiation parameters for the two two-level
degradation mechanisms components

Degradation
mechanism 1

Degradation
mechanism 2

Failure mode
impact

level 0 level 0 exp (1e-4)
level 0 level 1 Exp(1e-3)
level 1 level 0 Exp(1e-3)
level 1 level 1 Exp(1e-2)

Simulations have been performed for 1000 stories and 10000
UT. Only few synchronization modifications are needed to
go from one model to another (i.e. Model A to Model B)
because the reusability is maximal.
The simulation results of the three cases are given table 3, for
the following KPIs: operator(s) and SoI availability.

Fig. 6. Case A defined on SIMFIA GUI

Table 3. Simulation results for the three cases

 Preventive
maintenance period

Operator(s)
availability

SoI
availabily

A 100 UT 0.931/0.882 0.882
B 100 UT 0.553 0.553
C 100 UT 0.956/0.968 0.956

The results are not industrially significant for such a SoI but
they prove that the framework can provide some good
indicators to compare different maintenance organizations.
These results have been checked analytically under
Markovian assumption for the simple case of one component
subject to only one degradation mechanism and one failure
mode.

7. CONCLUSIONS

This paper proposes a model driven framework based both on
the use of SysML semi formal language to model the “static
and interactional” part related to CMPQ and on the use of the
formal language ADF both to model the “concept behaviour”
part and to perform simulation. This high level language,
initially made to model a flow propagation through an set of
physical components, give satisfying results addressing
objects like maintenance strategies or missions. However,
some constraints related to simulation algorithm available in
SIMFIA (considering only Boolean flow, impossibility to
constraint transition parameter) induce to adapt initial model
(e.g. impossibility to consider functional degradation…) and
to restrict initial assumption (maintenance actions supposed
AGAN). In future works, in addition to the implementation
of an exhaustive COTS library, developments will be made
on these restrictions in order to apply this framework to a
wide scale industrial system.

REFERENCES

Barros A., Bérenguer C., Grall A. (2009). A maintenance policy for two-unit
parallel systems based on imperfect monitoring information. Reliability
Engineering and System Safety, 91, 131–136.

Bernardi, S., Merseguer, J., Petrinu, D.C. (2008). Adding dependability
analysis to MARTE profile. Proceeding: MoDELS’08 proceedings of
the 11th international conference of Model Driven Engineering
Language and Systems, 2008.

Betous-Almeida C, Kanoun K. Construction and stepwise refinement of
dependability models. Performance Evaluation, 56, 277–306.

Boiteau, M., Dutuit Y., Rauzy A., Signoret J-P. (2006). The altarica dataflow
language in use: modeling of production availability of a multistate
system. Reliability Engineering & System Safety, 91(7).

Borger, E. Cavarra, A, Riccobene, E.. Modeling the Dynamics of UML State
Machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume
1912 of LNCS, pages 223–241. Springer-Verlag, 2000.

Bouissou, M., Humbert, S., Muffat, S., Villatte, N. (2002) KB3 tool:
feedback on knowledge bases ESREL 2002, Lyon, France.

Bouissou, M. (2007). Gestion de la complexité dans les études quantitatives
de sureté de fonctionnement de systèmes,Paris : Lavoisier.

Clavareau J., Labeau P-E. (2009). A Petri net-based modelling of
replacement strategies under technological obsolescence. Reliability
Engineering and System Safety. 94, 357-369.

Crespo-Márquez A. (2008). The maintenance management framework:
models and methods for complex systems maintenance. Springer
Series in Reliability Engineering ISBN-10:1846288207.

David, P. Idasiak, V., Kratz, F. (2010), Reliability study of complex physical
systems using SysML, Reliability Engineering and System Safety, 95,
431-450.

Dekker, R. (1996), Applications of maintenance optimization models: a
review and analysis. Reliability Engineering and System Safety, 51,
229-240.

Hoffman, H.P. (2008). “Harmony/SE - Model-Based Systems Engineering
Using SysML” Hans-Peter Hoffmann, Proceedings of the SDR ’08
Technical Conference and Product Exposition.

INCOSE (2010). Systems Engineering Handbook : a guide for system life
cycle processes and activities (ed.3.2). International Council on
Systems Engineering.

Medina-Oliva, G., Weber, P., Levrat, E., & Iung, B. (2010). Use of
Probabilistic Relational Model (PRM) for Dependability Analysis of
Complex Systems. 12th LSS IFAC symposium Large Scale Systems:
theory and applications, Villeneuve d'Ascq, France.

Monnin M., Iung B., Sénéchal O (2011): Dynamic behavioural model for
assessing impact of regeneration actions on system availability:
Application to weapon systems. Reliability Engineering and System
Safety, 96(3), 410-424.

NF EN 13306 (2001). Maintenance terminology.
Ramesh, A.V., Twigg, D.W., Sandadi, U.R., Sharma, T.C., Trivedi, K.S.,

Somani, A.K. (1999). An integrated reliability modeling environment.
Reliability Engineering and System Safety; 65:65-75.

Rauzy, A (2002). Mode automata and their compilation into fault trees
Reliability Engineering and System Safety 78 1–12

Rauzy A. (2008) Guarded transition systems: a new states/events formalism
for reliability studies. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability ; 505, 222:495.

Ruin, T., Levrat, E., Iung, B., Despujols, A.. Using SySML language for
maintenance decision-making model development to support complex
maintenance program quantification. Esrel 2012, Helsinki, Finland

SysML. (2008). Systems Modeling Language. Object Management Group,
Version 1.1.

Takata, S., Kimura F., van Houten F.J.A.M., Westkämper E., Shpitalni M.,
Ceglarek D. and Lee; J. (2005). Maintenance: changing role in life
cycle management. Annals of the CIRP, 53 (2), 643–655.

Trivedi K, Malhotra M. Reliability and performability techniques and tools:
a survey (invited paper). In: Proceedings of the 7th ITG/GI conference
on measurement, modelling and evaluation of computer and
communication systems. Aachen University of Technology, p. 27–48

UML (2010) 2.2 superstructure specification. Object Management Group,
Needham, MA.

Wang, H., Pham, H. Reliability and Optimal Maintenance (2006). Springer
Series in Reliability Engineering. Springer-Verlag, London.

Wiendahl, H.P., and al, (2007), Changeable Manufacturing – Classification,
Design and Operation, CIRP Annals – Manufacturing Technology,
56/2: 783–809.

Zille, V., Zio, E., Rossetti, G., Despujols, A. (2009). Monte Carlo simulation
for modelling degradation in maintenance programs assessment.
ESREL 2009, Praha, Czech Republic.

