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Bernoulli problem for rough domains

Introduction

The free Boundary Bernoulli problem is a model problem with many applications in engineering sciences such as fluid mechanics (see [START_REF] Friedman | Free boundary problem in fluid dynamics[END_REF]) or electromagnetics (see [START_REF] Crouzeix | Variational approach of a magnetic shaping problem[END_REF], [START_REF] Descloux | Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension[END_REF] and references therein). It consists in an overdetermined elliptic problem on a free domain whose solution is the domain itself as well as the potential (see [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] for a review). More precisely, let Ω be a bounded open set, we look for a domain A containing Ω and a function u defined on A \ Ω such that:

(1)

       ∆u = 0 in A \ Ω, u = 1 on ∂Ω, u = 0 on ∂A, |∇u| = λ on ∂A.
This problem is known as "exterior Bernoulli problem", since the boundary of the solution domain ∂A is exterior to the given domain Ω. The interior Bernoulli problem is similar, with A ⊂ Ω and then u defined (and harmonic) on Ω \ A. Theoretical questions have been addressed concerning existence or uniqueness of solution as well as geometric properties. In [START_REF] Beurling | On free boundary problems for the Laplace equation[END_REF], Beurling proposed a classification of solutions (elliptic, parabolic and hyperbolic) and introduced the method of sub-and super-solution to prove the existence and uniqueness of the elliptic solution in two-dimensions. This method was later adapted by Acker in [START_REF] Acker | On the convexity and on the successive approximation of solutions in a free boundary problem with two fluid phases[END_REF] to get the same result in higher dimension in the case of a convex given domain Ω. The same result was also proved by Alt and Caffarelli in [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF] using variational methods. Henrot and Shahgholian showed in [START_REF] Henrot | Convexity of free boundaries with Bernoulli type boundary condition[END_REF] that, if Ω is convex, then the solution domain A is convex. They also give a positive answer to this question for the p-Laplacian case in [START_REF] Henrot | Existence of a classical solution to a free boundary problem for the p-Laplace operator I: the exterior convex case[END_REF] and [START_REF] Henrot | Existence of a classical solution to a free boundary problem for the p-Laplace operator: (II) the interior convex case[END_REF]. Acker and Meyer considered the more general starlike case in [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF], and showed that the solution domain is starlike and elliptic. Using both geometric arguments and variational methods, they also proved that the solution domain depends continuously on the data (see also [START_REF] Hayouni | On the Bernoulli free boundary problem and related shape optimization problems[END_REF]). Another class of works consider the numerical solution of this free boundary problem, most of them consisting in iterative algorithms which build a sequence of domains converging to the solution domain. A fixed point type approach have been introduced by Flucher and Rumpf in [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF], and later combined with a levelset approach in [START_REF] Bouchon | A perturbation method for the numerical solution of the Bernoulli problem[END_REF]. Some numerical methods based on shape functional minimization have also been developped in [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF], [START_REF] Haslinger | Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type[END_REF] and [START_REF] Ito | Variational approach to shape derivative for a class of Bernoulli problem[END_REF], and for the three dimensional case in [START_REF] Halbrecht | A Newton method for Bernoulli's free boundary problem in three dimensions[END_REF].

In most situations of physical relevance, the given domain Ω is issued from industrial situations and its boundary is generally rough. Such geometry can not be described in detail: either the precise shape of the roughness is unknown, or its spatial variations are too small for computational grids. Therefore, one may only hope to account for the averaged effect of the irregularities.

Such an approach is usually used for Stokes flows: the irregular boundary is replaced by an artificial smoothed one, and an artificial boundary condition (a wall law) is prescribed there, that should reflect the mean impact of the roughness, see for instance [START_REF] Achdou | Effective boundary conditions for laminar flows over periodic rough boundaries[END_REF][START_REF] Amirat | Effect of rugosity on a flow governed by stationary Navier-Stokes equations[END_REF][START_REF] Chupin | Martin Rugosities and thin film flows[END_REF][START_REF] Jager | Couette flows over a rough boundary and drag reduction[END_REF][START_REF] Neuss | Effective laws for the Poisson equation on domains with curved oscillating boundaries Applicable Analysis[END_REF]. Roughly speaking, to obtain a "wall law" the method consists in correcting the flow without roughnesses using a contribution located in the neighborhood of the actual boundary. The mathematical proofs are then based on the justification of the "local" correction.

The goal of the present article is to obtain a kind of "wall law" for a Bernoulli problem when the given domain Ω is assumed to be rough. For the Bernoulli problem the main difficulty is that the unknown is not only a function but also the domain in which this function is defined. We then propose to study a simple case: we consider that the rough domain is a perturbation of a ball in R 2 , and that the perturbation is given as a periodic function of amplitude and period equal to ε. We discuss in the conclusion, see section 5 some possible extensions of these results.

The rest of this paper is composed of three main parts. Section 2 is devoted to the presentation of the problem and its mathematical framework. We also give the main result. The proof of this result is detailed in Section 3 whereas some numerical simulations are given in Section 4. Finally, some technical results are postponed in Appendix.

Statement of the problem and main results

The Bernoulli problem that we consider reads: given a constant λ > 0 and a domain Ω ε ⊂ R 2 , find a domain A ε containing Ω ε and function u ε defined on A ε \ Ω ε such that:

(2)

       ∆u ε = 0 in A ε \ Ω ε , u ε = 1 on ∂Ω ε , u ε = 0 on ∂A ε , |∇u ε | = λ on ∂A ε .
The parameter ε > 0 models the size of the roughness of the domain Ω ε . More precisely we consider a domain Ω ε defined using polar coordinates:

(3) Ω ε = (r, θ) ∈ R + × T 1 ; r < 1 -εh θ ε ,
where T 1 = R/(2πZ) denotes the torus, and where h is a Lipschitz function on T 1 . Note that a function f defined on T 1 can be viewed as a 2π-periodic function f defined on R. Hence the parameter ε must be the inverse of an integer number: 1 ε ∈ N, and it must be small enough: 1 ε > max T 1 h. We define the measure dΘ as the measure quotient, that is such that

T 1 f (Θ) dΘ = 2π 0 f (t) dt 2π .
We note Ω 0 the domain without roughness, that is Ω 0 = B(0, 1). The function h is assumed to be a lipschitz and nonnegative function. That implies Ω ε ⊂ Ω 0 for all ε > 0. Note that using these polar coordinates (r, θ) the Laplacian operator reads

∆ = ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 .
For such a context, it is known that the Bernoulli problem (2) has a unique solution, see [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]. In fact this existence results from the fact that the domain Ω ε is starlike with respect to all points in a ball B(0, δ).

In order to approach this problem (2) for ε → 0 using a Bernoulli problem on the non-rough domain Ω 0 , the most natural idea is to introduce the following Bernoulli problem: find a domain A 0 containing Ω 0 and function u 0 defined on A 0 \ Ω 0 such that (4)

       ∆u 0 = 0 in A 0 \ Ω 0 , u 0 = 1 on ∂Ω 0 , u 0 = 0 on ∂A 0 , |∇u 0 | = λ on ∂A 0 .
This approach is mathematically justified by the continuity results of [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF] (see also [START_REF] Hayouni | On the Bernoulli free boundary problem and related shape optimization problems[END_REF]). More precisely we have Proposition 1. The solution (A 0 , u 0 ) of the Bernoulli problem (4) approaches the solution (A ε , u ε ) of the Bernoulli problem (2) at order one:

(5) D H (A 0 , A ε ) = O(ε).
The proof of this proposition directly follows from Theorem 3.9 in [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]. More precisely it expresses that d 2 (∂A 0 , ∂A ε ) ≤ d 2 (∂Ω 0 , ∂Ω ε ) where d 2 is the metric defined by:

d 2 (Γ 1 , Γ 2 ) = sup{| ln(γ)|, γ ∈ R + ; γΓ 1 ∩ Γ 2 = ∅}.
For 0 < δ < M , we introduce the set K = {∂Ω where Ω ⊂ B(0, M ) is a starlike domain with respect to all points in B(0, δ)}.

We observe that there exists a choice of δ, M and ε 0 such that ∂Ω ε ∈ K and ∂A ε ∈ K for all 0 ≤ ε < ε 0 (see [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]). Then, using the equivalence between this metric and the Hausdorff distance on the set K, see Appendix A, the following relation on the data D H (∂Ω 0 , ∂Ω ε ) = O(ε) now implies [START_REF] Amirat | Effect of rugosity on a flow governed by stationary Navier-Stokes equations[END_REF].

To obtain better estimate, we introduce the following problem: Given a constant B 0 , find a domain A 0 ε containing Ω 0 and function u 0 ε defined on

A 0 ε \ Ω 0 such that (6)        ∆u 0 ε = 0 in A 0 ε \ Ω 0 , u 0 ε = 1 on ∂Ω 0 , u 0 ε = -εB 0 on ∂A 0 ε , |∇u 0 ε | = λ on ∂A 0 ε .

The main result presented in this paper is the following:

Theorem 1. There exists B 0 ∈ R such that the solution (A 0 ε , u 0 ε ) of the Bernoulli problem (6) approaches the solution (A ε , u ε ) of the Bernoulli problem (2) at order two:

(7) D H (A 0 ε , A ε ) = O(ε 2
). For explicit calculations, the constant B 0 can be determined as follows. We introduce the cell domain

(8) ω = (R, Θ) ∈ R × T 1 ; R > -h(Θ) .
We solve the Laplace problem: Find a function u 1 defined on ω, periodic with respect to Θ, with ∇ u 1 ∈ L 2 (ω) and such that

(9) ∆ u 1 = 0 in ω, u 1 (-h(Θ), Θ) = -h(Θ) on ∂ω.
For such a function defined on the domain ω the Laplacian operator reads:

∆ = ∂ 2 ∂R 2 + ∂ 2 ∂Θ 2 .
The constant B 0 is then given by ( 10)

B 0 = λ ρ 0 T 1 u 1 (0, Θ) dΘ,
the constant ρ 0 corresponds to the radius of the domain A 0 solution of the simple Bernoulli problem (4).

Remark 1. One of the key point of the proof is an estimate of kind:

(11) u ε -(u 0 ε + ε u 1 ε ) L ∞ (Aε\Ωε) = O(ε 2 ),
for an "oscillating" function u 1 ε which exponentially decreases to the constant B 0 far from the boundary ∂Ω ε .

Proofs

3.1.

Well posedness. First we prove that all the problems introduced in section 2 have a unique solution.

3.1.1. Bernoulli problems. The problems ( 4) and ( 6) are Bernoulli problems where the given domain is the unit ball Ω 0 = B(0, 1). Consequently, their solution can be explicitly given (see for instance [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF]):

• The solution (A 0 , u 0 ) of the problem ( 4) is invariant under rotation. It writes A 0 = B(0, ρ 0 ) where ρ 0 > 1 satisfies: [START_REF] Flucher | Bernoulli's free-boundary problem, qualitative theory and numerical approximation[END_REF] λ ρ 0 ln ρ 0 = 1, and the function u 0 is defined using polar coordinates by:

(13) u 0 (r, θ) = ln(ρ 0 ) -ln(r) ln(ρ 0 ) .
• In the same way, we have

A 0 ε = B(0, ρ 0 ε ) where the constant ρ 0 ε satisfies (14) λ ρ 0 ε ln ρ 0 ε = 1 + B 0 ε.

The explicit expression for u 0

ε is then given by:

(15) u 0 ε (r, θ) = (1 + B 0 ε) ln(ρ 0 ε ) -ln(r) ln(ρ 0 ε ) -B 0 ε.
• The domain Ω ε is defined using a graph of a lipschitz function (more precisely the function θ → 1εh(θ/ε)). Consequently this domain is starlike with respect to all points in an open ball centered at the origin. We have the following existence result, proved in [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]:

Proposition 2.
The Bernoulli problem (2) has a unique solution. Moreover, the given domain Ω ε being starlike with respect to all points in an open ball, the domain solution A ε is also starlike with respect to all points the same open ball.

As a consequence of this result, the boundary of the domain A ε can be writen as the graph of a lipschitz function:

(16) ∂A ε = {(r, θ) ∈ R + × T 1 ; r = ρ ε (θ)}.
3.1.2. Cell problem. For the cell problem ( 9), an existence result of u 1 is given for instance in [START_REF] Neuss | Effective laws for the Poisson equation on domains with curved oscillating boundaries Applicable Analysis[END_REF]. Moreover we have the following result:

Proposition 3. For all (R, Θ) ∈ R + × T 1 we have (17) u 1 (R, Θ) = T 1 u 1 (0, Θ) dΘ + k∈Z\{0} α k e -|k|R e ikΘ ,
where each α k is a constant.

Proof -We use the Fourier decomposition of the solution u 1 with respect to the periodic variable Θ. The Laplace equation results in an ordinary differential equation on each Fourier coefficient. The proposition is then a consequence of the condition ∇ u 1 ∈ L 2 (ω).

Corollary 1. For all µ < 1 there exists C(µ) ≥ 0 such that for all (R, Θ) ∈ R + × T 1 we have:

(18) u 1 (R, Θ) - T 1 u 1 (0, Θ) dΘ ≤ C(µ) e -µR , ∇ u 1 (R, Θ) ≤ C(µ) e -µR .
3.2. Laplace system with oblique boundary conditions for the error. Now we prove the estimate announced in Remark 1. 3.2.1. Building of the function u 1 ε . • Besides the introduction of the function u 1 , we introduce by induction the following functions as solution of Laplace problems on the cell domain ω: The functions u j , j ≥ 2, periodic with respect to Θ, with ∇ u j ∈ L 2 (ω) and such that:

(19)        ∆ u j = j-1 k=1 (-1) j-k R j-k-1 ∂ u k ∂R -(j -k + 1)R ∂ 2 u k ∂Θ 2 in ω, u j (-h(Θ), Θ) = 0 on ∂ω.
Note that the behavior of these functions u j , j ≥ 2, for large values of R is similar to those of the function u 1 (see Proposition 3 and Corollary 1). By induction on j we prove that the right hand side members of the Laplace equation ( 19) are free average with respect to the periodic variable Θ and, like in the proof of the proposition 3, see also the same kind of proof in [START_REF] Chupin | Martin Rugosities and thin film flows[END_REF], the following results:

Proposition 4. For each j ≥ 2 there exists a solution u j of the Laplace problem [START_REF] Henrot | Existence of a classical solution to a free boundary problem for the p-Laplace operator: (II) the interior convex case[END_REF].

Moreover for (R, Θ) ∈ R + × T 1 we have (20) u j (R, Θ) = T 1 u j (0, Θ) dΘ + k∈Z\{0} α k,j (R) e -|k|R e ikΘ ,
where each α k,j is a polynomial function. In particular for all µ < 1 there exists C(µ) ≥ 0 such that for (R, Θ) ∈ R + × T 1 we have

(21) u j (R, Θ) - T 1 u j (0, Θ) dΘ ≤ C(µ) e -µR , ∇ u j (R, Θ) ≤ C(µ) e -µR .
• We introduce

(22) u 1 ε (r, θ) = λ ρ 0 J j=1 ε j-1 u j r -1 ε , θ ε ,
the value of the integer J will be later selected. Due to the change of variable

R = r -1 ε , Θ = θ ε we have for each j ≥ 1: ∆ u j r -1 ε , θ ε = 1 ε 2 ∂ 2 u j ∂R 2 (R, Θ) + 1 ε(1 + εR) ∂ u j ∂R (R, Θ) + 1 ε 2 (1 + εR) 2 ∂ 2 u j ∂Θ 2 (R, Θ).
We deduce the following asymptotic development with respect to ε:

∆ u j r -1 ε , θ ε = 1 ε 2 ∆ u j (R, Θ) + ∞ k=0 ε k-1 (-1) k R k ∂ u j ∂R (R, Θ) -(k + 2)R ∂ 2 u j ∂Θ 2 (R, Θ) .
• By construction of u 1 ε , see its expression [START_REF] Neuss | Effective laws for the Poisson equation on domains with curved oscillating boundaries Applicable Analysis[END_REF], we deduce that ∆ u 1 ε = ε J-2 F ε , where F ε (r, θ) = O(1) with respect to ε. Note that in the sequel we will choose J = 3 so that (23) ∆ u 1 ε = O(ε). • Note also that the value of the function u 1 ε on the boundary ∂Ω ε is given by

(24) u 1 ε | ∂Ωε = -λ ρ 0 h • ε .
• On the boundary ∂A ε parametrised by the function ρ ε we have, for all θ ∈ T 1

u 1 ε (ρ ε (θ), θ) -λ ρ 0 T 1 u 1 (0, Θ) dΘ =λ ρ 0 u 1 ρ ε (θ) -1 ε , θ ε - T 1 u 1 (0, Θ) dΘ + ελ ρ 0 J j=2 ε j-2 u j ρ ε (θ) -1 ε , θ ε .
Using Corollary 1, Proposition 4 and the fact that for all θ ∈ T 1 we have

ρ ε (θ) -1 = O(1) (since lim ε→0 ρ ε (θ) = ρ 0 for all θ ∈ T 1 , see [3]) we deduce (25) u 1 ε | ∂Aε -λ ρ 0 T 1 u 1 (0, Θ) dΘ = O(ε).
• In the same way, using the estimate for the gradients in Corollary 1 and Proposition 4, we have for instance

(26) ∇ u 1 ε | ∂Aε = o(ε k ) for all k ∈ N.

3.2.2.

System satisfied by the error. We introduce the difference v = u ε -(u 0 ε + ε u 1 ε ). We will prove that v satisfies a Laplace problem on the domain A ε \ Ω ε with oblique boundary conditions on the exterior boundary ∂A ε .

• We are first interested in the value of ∆v on A ε \ Ω ε . By definition of u ε (which satisfies the Bernoulli problem (2)), we have ∆u ε = 0 on A ε \ Ω ε . The function u 0 ε , solution of the Bernoulli problem [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF], is a priori only defined on A 0 ε \ Ω 0 . But its explicit expression given by ( 15) can be extended on A ε \ Ω ε , by preserving the relation ∆u 0 ε = 0. Finally, the approximation (23) on the oscillating contribution ∆ u 1 ε implies that (27) ∆v = O(ε 2 ).

• The second step consists in obtaining the value of v on ∂Ω ε .

From the Bernoulli problem (2), we know that

u ε | ∂Ωε = 1.
The Taylor development of the function u 0 ε (or more precisely its extension) implies that for all θ ∈ T 1 we have

u 0 ε (1 -εh θ ε , θ) = u 0 ε (1, θ) -εh θ ε ∂ r u 0 ε (1, θ) + O(ε 2 ).
From the analytic expression of u 0 ε , see [START_REF] Haslinger | Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type[END_REF], we deduce that for all θ ∈ T 1 we have

u 0 ε (1 -εh θ ε , θ) = 1 + ελρ 0 h θ ε + O(ε 2 ).
Note that we have used the relation ρ 0 ε = ρ 0 +O(ε) which directly follows from the expressions of ρ 0 ε and ρ 0 given by ( 15) and ( 13) respectively. Using the estimate (24) of u 1 ε on the boundary ∂Ω ε we deduce that (28) v| ∂Ωε = O(ε 2 ).

• We now compute the value of v on the boundary ∂A ε . By definition of the solution u ε of the problem (2), we have u ε | ∂Aε = 0. Recall that the boundary ∂A ε is parametrised using the function ρ ε whereas the boundary ∂A 0 ε is the ball B(0, ρ 0 ε ). We deduce that for all θ ∈ T 1 we have

u 0 ε (ρ ε (θ), θ) = u 0 ε (ρ 0 ε , θ) + (ρ ε (θ) -ρ 0 ε )∂ r u 0 ε (ρ 0 ε , θ) + O((ρ ε (θ) -ρ 0 ε ) 2
). Since the function u 0 ε solves the Bernoulli problem (6), using the fact that ∂ r exactly corresponds to the normal derivative on the circle ∂A 0 ε , and using that for all θ ∈ T 1 we have 

ρ ε (θ) -ρ 0 ε = O(ε), we obtain u 0 ε (ρ ε (θ), θ) = -ε B 0 -(ρ ε (θ) -ρ 0 ε )λ + O(ε 2 ). Choosing B 0 = λρ 0 T 1 u 1 (0, Θ) dΘ ,
v| ∂Aε = (ρ ε -ρ 0 ε )λ + O(ε 2
). • In the same way, we obtain the value of some derivative of v on ∂A ε : By definition of u ε , and denoting by n ε the outward unitary normal to the boundary ∂A ε , we have (30)

∇u ε | ∂Aε = -λn ε .
Using the Taylor formulae, we obtain

(31) ∇u 0 ε | ∂Aε = ∇u 0 ε | ∂A 0 ε + (ρ ε -ρ 0 ε )(∂ r ∇u 0 ε )| ∂A 0 ε + O((ρ ε -ρ 0 ε ) 2 ). Due to the Bernoulli problem (6) satisfied by u 0 ε , we have ∇u 0 ε | ∂A 0 ε = -λn 0 ε
, where n 0 ε denotes the outward unitary normal to the boundary ∂A 0 ε . Moreover the expression of the laplacian operator in polar coordinates on the boundary ∂A 0 ε reads:

∆u 0 ε = 1 (ρ 0 ε ) 2 ∂ 2 θ u 0 ε + 1 ρ 0 ε ∂ n 0 ε u 0 ε + ∂ 2 n 0 ε u 0 ε .
Since u 0 ε solves the Bernoulli problem (6), we deduce that (∂

r ∇u 0 ε )| ∂A 0 ε = λ ρ 0 ε n 0 ε . The equality (31) now reads (32) ∇u 0 ε | ∂Aε = -λn 0 ε + ρ ε -ρ 0 ε ρ 0 ε λn 0 ε + O(ε 2 ).
Substracting (32) from (30), and noting that the oscillating contribution is not dominating (see the equation ( 26)) we get

∇v| ∂Aε = -λ(n ε -n 0 ε ) - ρ ε -ρ 0 ε ρ 0 ε λn 0 ε + O(ε 2 ).
Taking the scalar product with n = n ε + n 0 ε / n ε + n 0 ε gives:

(33) ∂ n v| ∂Aε = - ρ ε -ρ 0 ε ρ 0 ε λ n 0 ε • n + O(ε 2 ).
• We finally deduce the system satisfy by v:

(34)

   ∆v = f in A ε \ Ω ε , v = g on ∂Ω ε , ∂ n v + 1 ρ 0 ε n 0 ε • n v = h on ∂A ε , with f = O(ε 2 ), g = O(ε 2 ) and h = O(ε 2 )
. The last condition is an oblique boundary condition obtained combining (29) and (33).

3.3.

Estimate of the error.

3.3.1.

Bounds on a Laplace type problem. In this section, we show that the regular function v satisfying (34) on the regular domain

A ε \ Ω ε satisfies v = O(ε 2 ). Let γ = n 0 ε • n ρ 0 ε . It is clear that γ > √ 2/(2ρ 0 ε ) > √ 2/(2ρ 0 )
> 0, thus one can choose a positive number R which does not depend on ε such that the function ϕ(x, y) = R 2 -1 4 (x 2 + y 2 ) satisfies:

(35)    -∆ϕ = 1 in A ε \ Ω ε , ϕ ≥ 1 on ∂Ω ε , α∂ nε ϕ + β∂ τε ϕ + γϕ ≥ 1 on ∂A ε ,
where the coefficients α = ñ • n ε and β = ñαn ε ∈ R are chosen so that the boundary condition on ∂A ε corresponds to the boundary condition of system (34),

∂ τε ϕ ∈ R denoting the tangential derivative on ∂A ε . Note that √ 2/2 < α ≤ 1. Consequently the function V = max{|f | ∞ , |g| ∞ , |h| ∞ }ϕ-v is a regular function which satisfies (36)    -∆V ≥ 0 in A ε \ Ω ε , V ≥ 0 on ∂Ω ε , α∂ nε V + β • ∂ τε V + γV ≥ 0 on ∂A ε .
Moreover, the domain A ε \ Ω ε is regular since, by hypothesis, Ω ε is regular and since the domain A ε is regular too (see [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]). This allows us to deduce the following result:

Lemma 1. The function V is nonnegative on A ε \ Ω ε . Proof of Lemma 1 -Since ∆V ≤ 0 the minimum of V in A ε \ Ω ε is achieved on its bound- ary ∂(A ε \ Ω ε ) = ∂A ε ∪ ∂Ω ε . If it is achieved on ∂Ω ε , then the proof is completed. If it is achieved on y ∈ ∂A ε , then, since V is regular, we have ∂ nε V (y) ≤ 0 and ∂ τε V (y) = 0. Since α ≥ 0 we deduce that V (y) = γ -1 (h(y) -α(y)∂ nε V (y) -β(y) • ∂ τε V (y)) ≥ 0. Lemma 1 implies that v ≤ max{|f | ∞ , |g| ∞ , |h| ∞ }|ϕ| ∞ . In the same way, using Ṽ = -max{|f | ∞ , |g| ∞ , |h| ∞ }ϕ -v instead of V we show that Ṽ ≤ 0. We conclude that (37) |v| ∞ ≤ max{|f | ∞ , |g| ∞ , |h| ∞ }|ϕ| ∞ = O(ε 2 ).
Due to the equation (29) we deduce that

ρ ε -ρ 0 ε = O(ε 2 ), which is equivalent to D H (A 0 ε , A ε ) = O(ε 2 ). Theorem 1 is proved.

Numerical results

This section is devoted to numerical results to check the conclusion of Theorem 1, first by comparing the solution of ( 2) and ( 6) and then by observing that the roughness on the free boundary are much smaller than those of the fixed boundary.

Two kinds of perturbations have been considered, which are the 2π-periodic functions denoted by h 1 and h 2 defined on (0, 2π) by:

• h 1 (α) = 1 -cos(α), • h 2 (α) = π -|α -π|.
4.1. Numerical approximation for the oscillating problem [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF]. In this section, we effectively compute the value of the constant B 0 which appears in the Bernoulli problem [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF]. In practice, we need to solve the problem [START_REF] Chupin | Martin Rugosities and thin film flows[END_REF] which is defined in an infinite domain ω, and then evaluate the integral T 1 u 1 (0, Θ) dΘ to deduce the value of the constant B 0 via the formulae [START_REF] Crouzeix | Variational approach of a magnetic shaping problem[END_REF]. For a numerical approach we introduce the "truncated" cell domain

(38) ω M = (R, Θ) ∈ R + × T 1 ; M > R > -h(Θ) ,
where M has been chosen large, and solve the Laplace problem: Find a function u M 1 defined on ω M , periodic with respect to Θ and such that (39)

   ∆ u M 1 = 0 in ω M , u M 1 (-h(Θ), Θ) = -h(Θ) for Θ ∈ T 1 , ∂ R u M 1 (M, Θ) = 0 for Θ ∈ T 1 .
The solution of this problem being exponentially close to the solution of ( 9) for large M , we have:

(40)

T 1 u 1 (0, Θ) dΘ ≈ T 1 u M 1 (0, Θ) dΘ.
The computations of these integrals were performed with the FreeFem++ program (This software, see http://www.freefem.org/ff++ is based on weak formulation of the problem and finite elements method). We choose M = 6 and the mesh is composed of about 2•10 6 triangles. These computations give:

• T 1
u 1 (0, Θ) dΘ ≈ -0.58738 for the shape h 1 (α) = 1cos(α),

• T 1 u 1 (0, Θ) dΘ ≈ -0.87754 for the shape h 2 (α) = π -|α -π|.

4.2.

Comparison of problems (2) and [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF]. The aim of these first tests is to show that the solution of (6) approaches the solution of (2) at second order with respect to ε. Note that all these tests use the algorithm presented in [START_REF] Bouchon | A perturbation method for the numerical solution of the Bernoulli problem[END_REF] to solve the Bernoulli problem [START_REF] Acker | On the convexity and on the successive approximation of solutions in a free boundary problem with two fluid phases[END_REF].

Here, we take λ = 2e -1/2 so that the domain solution without roughness is a disc of radius ρ 0 = e 1/2 . Thus, we have λρ 0 = 2, and we then:

• B 0 = λρ 0 T 1
u 1 (0, Θ) dΘ ≈ -1.17476 for the shape h 1 (α) = 1cos(α),

• B 0 = λρ 0 T 1 u 1 (0, Θ) dΘ ≈ -1.75508 for the shape h 2 (α) = π -|α -π|.

We check that

D H (A ε , A 0 ε ) ε 2
is bounded with respect to ε according to Theorem 1: The computed values are reported in Table 1 and 2.

On coarse meshes (see the two first lines of tables 1 and 2), some grid effects deteriorate the quality of numerical results for small ε due to the small size of roughness.

The numerical simulation on the finer mesh (see last line of tables 1 and 2) seems accurate enough to confirm the conclusion of Theorem 1. for the perturbation h 2 .

ε = 0.1 ε = 0.05 ε = 0.025 δx = 6 × 10 -

4.3.

The oscillations of the free boundary. We now present some figures to show the oscillations observed on the computed solution. We plot on Figure 1 the given and solution domains corresponding to the first test case of the previous section. As indicated by table 1, we just observe that the solution domain is very close to a disc. In order to observe small oscillations on the solution domains, we changed the value of λ so that λ = 8e -1/8 , and then ρ 0 = e 1/8 which means that the solution domain comes closer to the given domain which is (intuitively) a better situation to observe oscillations. The function h corresponding to the given domain is the function h 1 of section 4.2, and we take δ x = 6×10 -3 . On Figure 2, for ε = 0.1, we can observe that the solution domain is not a circle and that some small oscillations seem to be induced by the oscillations of the given domain Ω ε . On Figure 3, for a smaller value of ε, we need to zoom on a part of the picture to observe the same behaviour of the solution domain.

On Figure 4, the value of ε is so small that the oscillation on the solution domain can no more be observed even on the zoomed figure. These tests also confirm the qualitative conclusion of Theorem 1.

Conclusion

In this work, we have given a result concerning the solution of the free boundary Bernoulli problem with a given rough domain. In the case where the given domain is a disc with roughness, we show that the solution is close to a disc whose radius can be computed explicitely and converges to this disc at second order in ε, ε being the size of the roughness as well as the inverse of their wave length. This work can be pursued in many directions: the technique used here could allow to get a better estimate of the solution (at third or further order in ε). Moreover, It might be interesting to consider the same kind of study for more complex domain (not only a perturbation of a disc), or in the case of higher dimensions. Another complexity can be introduced considering some nonlinear Bernoulli problem such that the classical p-Laplacian problem. . Given domain and its associated solution for the perturbation h 1 with λ = 8e -1/8 , ρ 0 = e 1/8 , ε = 0.025.

• Step 1 -We prove that for all (Γ 1 , Γ 2 ) ∈ K 2 we have d 1 (Γ 1 , Γ 2 ) ≤ M 2 δ d 2 (Γ 1 , Γ 2 ). Without loss of generality, we can assume that there exists θ 0 ∈ T 1 such that: f Γ2 (θ 0 ) = f Γ1 (θ 0 ) + d 1 (Γ 1 , Γ 2 ).

We have f Γ2 (θ 0 ) = λf Γ1 (θ 0 ) with λ = f Γ1 (θ 0 ) + d 1 (Γ 1 , Γ 2 ) f Γ1 (θ 0 ) , and then λΓ 1 ∩ Γ 2 = ∅ for this choice of λ. We then deduce:

ln f Γ1 (θ 0 ) + d 1 (Γ 1 , Γ 2 ) f Γ1 (θ 0 ) ≤ d 2 (Γ 1 , Γ 2 )
and then:

d 1 (Γ 1 , Γ 2 ) ≤ f Γ1 (θ 0 ) (exp(d 2 (Γ 1 , Γ 2 )) -1)
Using f Γ1 (θ 0 ) ≤ M and exp(d

2 (Γ 1 , Γ 2 ))-1 ≤ d 2 (Γ 1 , Γ 2 ) exp(d 2 (Γ 1 , Γ 2 )) ≤ d 2 (Γ 1 , Γ 2
)× (M/δ), we get the desired result. • Step 2 -We prove that for all (Γ 1 , Γ 2 ) ∈ K 2 we have d 2 (Γ 1 , Γ 2 ) ≤ M δ 2 D H (Γ 1 , Γ 2 ). Without loss of generality, we can assume that there exists θ 0 ∈ T 1 such that f Γ2 (θ 0 ) = exp(d 2 (Γ 1 , Γ 2 ))f Γ1 (θ 0 ). The bounded domain Ω 2 (such that Γ 2 = ∂Ω 2 ) being starlike with respect to all points in B(0, δ), it contains the domain T = ∪ m∈B(0,δ) [m, f Γ2 (θ 0 )], where [m, f Γ2 (θ 0 )] denotes the line delimited by these two points. Note that T is actually the union of a triangle and B(0, δ). Simple geometric arguments shows that d(f Γ1 (θ 0 ), ∂Γ 2 ) ≥ d(f Γ1 (θ 0 ), ∂T ) and

d(f Γ1 (θ 0 ), ∂T ) = δ f Γ2 (θ 0 ) -f Γ1 (θ 0 ) f Γ2 (θ 0 ) .
We then get (denoting d 2 = d 2 (Γ 1 , Γ 2 )):

d 2 ≤ exp(d 2 ) -1 ≤ exp(d 2 ) -1 exp(d 2 ) × exp(d 2 ) ≤ f Γ2 (θ 0 ) -f Γ1 (θ 0 ) f Γ2 (θ 0 ) × exp(d 2 ) ≤ f Γ2 (θ 0 ) -f Γ1 (θ 0 ) f Γ2 (θ 0 ) × M δ ≤ d(f Γ1 (θ 0 ), ∂Γ 2 ) δ × M δ ≤ M δ 2 D H (Γ 1 , Γ 2 )
which gives the desired result. • Step 3 -We prove that for all (Γ 1 , Γ 2 ) ∈ K 2 we have D H (Γ 1 , Γ 2 ) ≤ d 1 (Γ 1 , Γ 2 ).

Let x ∈ Γ 1 such that d(x, Γ 2 ) = D H (Γ 1 , Γ 2 ). Noting x = (f Γ1 (θ), θ), θ ∈ T 1 , it is clear that |f Γ2 (θ)f Γ1 (θ)| ≥ d(x, Γ 2 ) which proves the desired result.

  we can then use the result (25) on the oscillating term u 1
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 1 Figure1. Given domain and its associated solution for the perturbation h 1 (λ = 2e -1/2 , ρ 0 = e 1/2 , ε = 0.1).

Figure 2 .Figure 3 .

 23 Figure 2. Given domain and its associated solution for the perturbation h 1 with λ = 8 e -1/8 , ρ 0 = e 1/8 , ε = 0.1.

Figure 4

 4 Figure 4. Given domain and its associated solution for the perturbation h 1 with λ = 8e -1/8 , ρ 0 = e 1/8 , ε = 0.025.

Table 1 .

 1 Values of DH (A ε , A 0 ε ) ε 2for the perturbation h 1 .

	3 0.1524	0.0186	0.2832
	δx = 3 × 10 -3 0.1551 δx = 1.5 × 10 -3 0.1556	0.0238 0.0290	0.0451 0.0145

Appendix A. Metrics

We state here some equivalence results between distances used for interfaces. Let 0 < δ < M be given, we consider the set of curves of R 2 : K = Γ = ∂Ω where Ω ⊂ B(0, M ) is a starlike domain with respect to all points in B(0, δ) .

Note that, for all Γ ∈ K, there exists a unique parametrization f Γ : T 1 → R + of Γ in polar coordinates, which then satisfies:

We define a first distance on the set K based on this parametrization:

We recall the definition of the metric defined in [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF] (which is denoted by ∆ in [START_REF] Acker | A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions[END_REF]):

We also recall the definition of the classical Hausdorff distance (denoted here D H ):

where d is the classical (euclidian) distance. Proof: Let us first remark that, for all Γ 1 and Γ 2 in K, we have: