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Abstract In this paper, we leverage the previous work on the SHIWA
bundling format and expand on this specification in order to facilitate work-
flow execution within a multi-workflow environment. We introduce a scalable
and robust execution pool environment that supports workflows consisting
of sub-workflows built upon a multitude of different workflow engines and
environments, and also provide a common workflow representation for seam-
less connectivity through serialization to workflow bundles. We also present a
meta-workflow scenario based upon this system.

Workflow bundles employ the lightweight Open Archives Initiative Object
Reuse and Exchange (ORE) Web-based standard, to provide a common format
for representing and sharing workflows and the associated metadata required
for their execution. This generalized bundling approach is already available
within five workflow engines and has proven a useful environment for inter-
workflow experimentation.

The execution pool facilitates federated access to multiple distributed com-
puting infrastructures supported by the underlying workflow engines sub-
scribed to the pool. Workflow bundles are exposed using the eXtensible Mes-
saging and Presence Protocol (XMPP), which provides the necessary commu-
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nication backbone to enable multiple workflow engine agents to asynchronously
publish and subscribe to bundles in meta-workflow pipelines.

We present experiments showing the scalability and robustness of the pool
execution approach with results showing that overheads remain controlled for
up to 150 workflow agents, and that agent failures have very limited impact.
We then demonstrate the applicability of our architecture by describing how
a Java-based music analysis workflow can be distributed within such a multi-
workflow environment consisting of the Triana and MOTEUR workflow en-
gines.

1 Introduction

Workflows provide a structured means of describing complex functional ex-
ecution and data pipelines for a scientific experiment and hence expose the
underlying scientific processes for enabling the reproducibility of results. They
allow the specification of the scientific process as sub-elements of a task, each
of which can be independently developed, validated, refined and composed for
different configurations [1]. By allowing a user to formalize the data processing
for execution and collection/visualization of results in an automated fashion,
workflows provide the infrastructure for modeling the scientific process as a
whole.

There are a wide array of popular workflow systems available for researchers
to design, test and run large-scale scientific workflows [2,3,4,5,6,7,8,9,10].
These workflow systems are often tailored to a specific set of scientific do-
mains such as astrophysics or bioinformatics, or they may be bound to spe-
cific regional infrastructures, and so a workflow researcher may only ever be
exposed to a small range of workflow systems. In the case of large-scale or
multi-disciplinary research it may be desirable to exploit multiple workflow
environments. This will only be practical when the benefits of running tasks
on more specialized workflow systems outweigh the overhead of developing
specialized sub-workflows, and when data transfer between multiple workflow
environments can be minimized. It may also be the case that workflows de-
veloped in previous research may be able to form part of newly developed
workflow experiments. Reusability and modularity therefore become impor-
tant concepts when developing large-scale workflows.

This work is motivated by the coarse-grained requirements of the SHIWA
project which aims to leverage existing workflow solutions and enable cross-
workflow and inter-workflow federative exploitation of Distributed Computing
Infrastructure (DCI) resources by applying both a coarse- and fine-grained
strategy [11]. In our previous work within the SHIWA project, we described
the method of modeling a scientific workflow experiment by referencing its
constituent components using the Object Reuse and Exchange (ORE) stan-
dard [12], developed by the Open Archives Initiative (OAI), to expose them
using a single aggregated Web resource known as a SHIWA Bundle [13] –
which facilitates Course Grained Interoperability (CGI) between workflow en-



Bundle and Pool for Multi-Language Workflow Executions 3

gines by allowing workflows to be treated as black boxes. We proposed that a
formalization of encapsulating a workflow that also allows the capturing of the
scientific research techniques, tools documentation and methods, could help
the reproducibility and validation of research methods in the eScience commu-
nity. Such a model would not only increase efficiency in supporting larger scale
research via the development of meta-workflows, but also encourage reuse and
the sharing of tools, methods and processes thus lowering the learning bar-
rier for scientists who would like to take advantage of a DCI environment.
However, for such sharing to take place, users would benefit from using the
familiar Web environment for sharing and using concepts that they are ac-
quainted with, without having to understand the complexities of the multiple
different workflow systems currently in use on today’s DCIs.

The main contribution of this current paper is to present and demonstrate
the use of a CGI pool, which enables the automatic execution of the SHIWA
bundle technology so that pipelines of workflows connecting several different
workflow engines can be achieved within one environment. We describe the
updates we made to the SHIWA Bundle concept that were required in order
to facilitate workflow execution within the multi-workflow environment of the
pool and demonstrate this approach by running an experiment that connected
a Triana workflow engine running a workflow on TrianaCloud with multiple
MOTEUR sub-workflows running on the European Grid Infrastructure (EGI).

A multi-workflow environment is a collection of execution services that
provides support for workflows potentially implemented in a variety of differ-
ent languages that may need to run on multiple different engines or DCIs.
Through the use of SHIWA Bundles, engine interfaces can be made uniform,
providing a single input/output format for the execution system, but the en-
vironment still has to be able to select a proper engine to execute a workflow
expressed in a given language. Adding a new language implies reconfiguring
the environment, which may be time consuming. In addition, linking a list of
endpoints to a list of languages is failure-prone due to the dependence of the
service to end points located within different institutions, and with different
capabilities. Without any further precaution, the environment may well over-
whelm a particular engine due to excessive submission, or lose time in trying
to contact engines that no longer exist.

The CGI pool is a coarse-grained execution pool that is capable of asyn-
chronously communicating bundles using XMPP [14,15] between different
workflow execution engines. We report on the implementation and integration
in MOTEUR and Triana of CGI pool support. Through the pool workflow
engines can conveniently discover a workflow, execute it, and then publish it
back into the execution pool for execution by another workflow engine. In this
fashion, meta-workflow pipelines can be built across different workflow engines.
An advantage of this approach is that the workflow execution service is dis-
tributed to a number of agents that can be dynamically started and tuned to
the workload, making the service scalable and robust to agent failures. In addi-
tion, this meta-workflow approach provides a single workflow bundling format
for representing workflows and their components via a single SHIWA bun-
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dle. This effectively reduces the meta-workflow solution from a many-to-many
problem to a many-to-one and a one-to-many problem, where each workflow
engine is only required to understand bundles in order to interoperate in this
coarse-grained model and plug into the execution pool.

After showing the pool’s reliability and scalability, we demonstrate the
usefulness of the bundle and execution pool approach by distributing the exe-
cution of this application in multiple workflow environments: the Triana work-
flow engine running on TrianaCloud and MOTEUR running on the European
Grid Infrastructure (EGI). We use Triana as a master workflow engine which
is capable of publishing bundles to the CGI pool backbone. The Triana and
MOTEUR pool agents get the bundle from the execution pool to execute on
their native environments. The final objective is to reduce the total execution
time of the complete dataset.

The paper is organized as follows. The next section describes related work
on this topic. Section 3 introduces the first contribution to the workflow com-
munity, SHIWA Bundles; the overall design of the SHIWA bundle ORE schema
and the associated Resource Description Framework (RDF)1 vocabulary used
to describe workflow artefacts and their associated data and metadata. It also
discusses how the bundling mechanism fits into the overall vision for workflow
interoperability and reuse. In Section 4 we introduce the execution pool which
provides a flexible, robust and scalable means of distributing bundles for ex-
ecution. Section 5 presents our integration of SHIWA bundles and pools into
the MOTEUR and Triana workflow systems. Section 6 presents experiments
demonstrating the scalability and robustness of the pool. Finally we have Sec-
tion 7, providing a use-case experiment that describes and tests two means
of running bundles through the European Grid Infrastructure and through a
local cloud.

2 Background and Related Work

Recently, workflow interoperability has gained popularity within the distributed
computing community, and so the SHIWA project was undertaken with the
aim of achieving interoperability between workflow systems at various levels.
SHIWA acknowledges that different levels of interoperability suit different sys-
tems, and that imposing one set of standards and structures is not the most
appropriate approach of leveraging a system’s capabilities. SHIWA defines
two modes of interoperability: coarse-grained (CGI) and fine-grained (FGI).
Coarse-grained interoperability makes use of third-party workflow engines as
“black boxes” by embedding specific functionality supplied by a workflow into
another [16]. The fine-grained approach allows the same workflow to be moved
between different distributed computing infrastructures by translating work-
flow languages from one workflow engine to another through the use of the
common Intermediate Workflow Representation Language (IWIR) language

1 http://www.w3.org/RDF/

http://www.w3.org/RDF/
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which is implemented by ASKALON [3], MOTEUR, P-Grade [5], Pegasus [6]
and Triana, as part of the SHIWA project [17].

The Workflow Management Coalition (WfMC) [18] was the first to com-
prehensively address workflow interoperability within the business community,
defining various standards including the Workflow Standard-Interoperability
Abstract Specification. In this specification, different strategies can be used
to achieve workflow interoperability: (1) Direct Interaction, through the use
of a common API; (2) Message Passing, by exchanging information and send-
ing packets of data messages through a communication network; (3) Bridging
Strategy, by applying a bridging mechanism using a gateway technique to
move data and tasks between systems via protocol converters; and (4) Shared
Data Store, by transferring data and tasks between workflow Systems using a
shared database.

A related approach, which was a precursor to our ORE work, was devel-
oped within the OMII-UK WHIP project [19]. The WHIP project focused on
creating a desktop launcher application for different workflow engines by us-
ing an OS mapping of the WHIP file extension and MIME type for launching
within a Portal, which is in contrast to the SHIWA Desktop plug-in model
that provides a uniform interface to the Portal. However, the means by which
data was shared between the desktop application and the Web server was
through a WHIP bundle. WHIP bundles, like SHIWA bundles, were modeled
in conformance with the ORE, but they differed in approach by binding to
the Atom feed format for dissemination of such aggregations.

Another currently running project WF4Ever [20] is also focused at achiev-
ing interoperability. The authors in [21] also favour the ORE approach, arguing
that publishing linked data does not meet the requirements of reuse because
validation and reproducibility of scientific results requires multiple sources of
information, such as provenance, quality, credit, attribution and methods. Al-
though the authors call such ORE aggregations “Research Objects” for shar-
ing and publishing workflows, the structure is compatible in essence with our
bundle concept and on-going discussions are taking place in order to align
this effort made through the myExperiment project and our work. myEx-
periment [22] is a Web 2.0-oriented interface for sharing scientific workflows,
inspired by social networking sites. Users can upload arbitrary files or logically
group resources into “packs”. It has also been used to expose WHIP bundles.
The myExperiment team is currently working on an ORE implementation for
sharing of research objects.

Pegasus [6] supports large-scale workflows on Grid resources and is usually
integrated into a portal environment using Web forms, e.g. in the Telescience
project [23]. Pegasus has used WHIP bundles for bundling workflow descrip-
tions, inputs, outputs and DCI characteristics to implement a pipeline-centric
provenance model applied to use cases from the astronomy community [24].
This supports the use of an ORE-bundling approach.

P-GRADE [25] is designed to work using Webstart and has a custom
integration within its portal, which can enable the creation, execution and
monitoring of workflows. However, it provides no means to expose and



6 David Rogers et al.

share workflows with users of other workflow engines. Service-based work-
flows, such as Triana, Kepler and Taverna, have sophisticated front end
user interfaces for interaction with users for the design and/or execution of
workflows. To date, Taverna and Triana have supported the use of ORE
through WHIP bundles. For Kepler, the Hydrant project2 provides a web-
based portal for uploading and sharing workflows, but this is specific to Ke-
pler.

Other related work in this context includes the VLE-WFBus project [26],
where a number of different workflow systems are made interoperable through
a run-time infrastructure. Each of the workflow systems connected by a work-
flow bus is wrapped and treated as a sub-workflow. The role of the work-
flow bus is to propagate information about the data objects to the correct
sub-workflows, schedule the sub-workflows, and interface to the execution en-
vironment. VLE therefore adopts a message passing or bridging strategy in
order to achieve workflow interoperability. Another related effort with respect
to message passing is the SWIF system [27], which employs the use of WS-
Notification to provide asynchronous communication channels between dis-
tributed workflow systems.

3 Workflow Bundles: Design and Architecture

Since the coarse-grained approach is concerned with atomic execution of work-
flows running in their own individual environments, the fundamental research
issue is how to address the communication and sharing of data between differ-
ent workflow engines. To this end, the concept of a SHIWA bundle emerged,
which forms the basis of the work reported here. The SHIWA workflow bundle
is defined as a compound object that contains all information pertaining to
a scientist’s experiment — the engine-specific workflow definition, at a mini-
mum, along with potentially the input data, output data from previous runs,
executable dependencies of the workflow, provenance data, documentation,
research output and references to other web artifacts, such as related work.

To address language independence, aggregation and standardization cri-
teria, it is modeled using the Object Reuse and Exchange (ORE) Internet
standard ORE has an RDF vocabulary for describing aggregations of Web
resources. ORE uses a Resource Map resource to model collections of related
resources; this collection is known as an Aggregation within ORE. In terms of
SHIWA bundles, these aggregations are the maps of resources that define the
compound objects that represent a workflow experiment (see Section 3.2).

The choice of a bundle format using ORE for modeling compound objects
is not arbitrary. A number of design considerations and requirements are met
through the use of ORE:

– Integration with the Web Architecture. Using ORE makes all referenced
resources available at URL endpoints, thus creating a transparent resource

2 http://code.google.com/p/hydrant-kepler/
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map. This means aggregations can be accessed via a wide variety of agents.
Typically HTTP URLs are used for resources, meaning that resources can
be accessed from any device that supports HTTP. This makes it very easy
for users to retrieve, view, share and edit their aggregations using web-
based tools that they are used to using. Large files or data files may be
available at GSI FTP endpoints which has less ubiquitous support. How-
ever, these are not typically user-facing resources; rather, these would be
execution files needed by eScience middleware.

– Aggregating resources in a single file is useful for publishing, archiving and
handling situations where URLs cannot be assumed to be persistent. A self-
contained bundle provides local locations for resources that do not have a
public URL, that is, the URL is local to the bundle itself. Once a SHIWA
bundle is published to a server environment, it is typically ‘unpacked’, mak-
ing resources available that were previously not addressable by generating
public URLs for those resources in the bundle that were referenced rela-
tive to the bundle itself. The bundle concept also allows resources to be
‘repacked’ for archiving, or deployment into a firewall-restricted execution
environment.

– While SHIWA currently uses the XML serialization of RDF, various se-
rializations exist including N3, Turtle and RDFa. Furthermore, ORE has
a binding to the Atom Syndication Format3. This flexibility of exchange
format means compound objects can be integrated with a wide variety of
systems, for example as web pages through the combination of HTML 5
and RDFa.

– ORE supports evolution of existing aggregations by simply adding a new
URL to a resource map. This provides a very simple way for users to work
with their existing aggregations and develop them over time.

3.1 SHIWA Properties

The use-cases addressed by the SHIWA bundle include human publication,
search and sharing of workflow artifacts, as well as execution of workflows in
a variety of environments. While the aim is to introduce as few as possible
new RDF terms, some of the requirements of the use-cases are not covered by
existing vocabularies. Bundles employ widely used RDF vocabularies, such as
the Dublin Core (DC)4 metadata elements that broadly describe resources and
Friend Of A Friend (FOAF)5 elements that describe human entities. Beyond
this, we employ the Simple Knowledge Organization System (SKOS)6, which
provides a means of creating thesaurus-like collections of SKOS Concepts with-
out resorting to defining new, and hence less interoperable, vocabularies. SKOS

3 http://www.toolsietf.org/html/rfc4287
4 http://www.dublincore.org/
5 http://www.foaf-project.org/
6 http://www.w3.org/TR/skos-reference/

http://www.toolsietf.org/html/rfc4287
http://www.dublincore.org/
http://www.foaf-project.org/
http://www.w3.org/TR/skos-reference/
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Fig. 1: Anatomy of an Aggregation in a SHIWA Bundle

is used to model those elements that are specific to workflows and the require-
ments of the bundles’ metadata. Some of the SHIWA properties are addressed
within this paper; the remaining SHIWA properties were defined in SHIWA
Deliverable D5.2.7

3.2 SHIWA Aggregations

The SHIWA bundle has a directory based structure, which is managed by
one or more Resource Maps. While the structure of a SHIWA bundle is only
constrained by the presence of a resourceMap.rdf file in the root directory of
the bundle, the SHIWA software implementation makes use of certain conven-
tions in organising the files within a bundle. These help in the interpretation
of the structure of the artefact contained in the bundle. The aggregation’s
RDF description is defined in a metatdata.rdf file at the root of the bundle.
Aggregations of resources, each described by its own Resource Map, are organ-
ised within their own directories. There will always be one root Resource Map
within the bundle that acts as the entry point of the bundle. The Resource
Map metadata file and supporting file structure will be found in the root direc-
tory of the bundle. All files of sub-resource maps are stored in sub-directories,
with the UUID value of the sub-aggregation as the directory title.

Figure 1 illustrates the physical composition of an aggregation, along with
the relationships between the files which is maintained by the resource map.
Each file referenced by an Aggregation’s Resource Map is described using an
ORE Aggregated Resource, which allows the purpose and status of each file to

7 http://www.shiwa-workflow.eu/documents/10753/626f809c-7853-40ce-a3b2-eb41a29a9ecd

http://www.shiwa-workflow.eu/documents/10753/626f809c-7853-40ce-a3b2-eb41a29a9ecd
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be described in further detail by the metadata in the resource map metadata.
The aggregated resources in the resource map are broken into three sub-types:

– The Primary Resource is the metadata file that describes the main proper-
ties of the aggregation. The resource map uses the RDF tag ore:describes
to identify this resource.

– Secondary Resources are the primary resources of child aggregations, which
therefore are described by their own resource map. These are identifi-
able as they declare they are described by a different resource map using
ore:describedBy.

– The Tertiary files present within an aggregation contain the concrete data
related to the aggregation. Within the resource map, the tertiary resources
will declare the type of file they are using rdf:type:
shiwa:definition The definition file is the main implementation file of a

concrete task.
shiwa:datafile Data files are the input and output data associated with

mapping concepts. These files are referenced within the primary re-
source of a data, environment or execution mapping.

shiwa:bundlefile Any other tertiary files are defaulted to the bundlefile tag.
These files may be supporting documents relating to a task or mapping
such as readme files, related publications or screen shots.

In terms of the physical structure within an aggregation, the primary re-
source file and the tertiary file structure that belong to a specific aggregation
will be located in the same directory as the resource map whilst any secondary
resources (and their subsequent file structure) are located in individual subdi-
rectories.

3.3 Aggregation Types

There are five types of aggregation used to represent common metadata struc-
tures required to model workflows and their composite tasks. These can be
organized in a multitude of ways that represent workflows and workflow com-
ponents in different states within the life-cycle of workflow development and
execution. Each one of these elements is represented within a bundle via its
own resource map and supporting file structure as described above. In a bun-
dle, each aggregation will have a UUID associated with it to allow cross ref-
erencing between aggregations within the metadata. Figure 2 illustrates the
relationships between aggregations, with I representing input ports, O output
ports and D dependencies. We describe each of these aggregation types in the
following paragraphs.

Concrete Tasks represent computational tasks. These can be individual
tasks within a workflow, or a workflow in its entirety. They will contain all
the executable data required to run the task, as well as highlighting any de-
pendencies on external systems and environments the task has. The input
and output of the task will be described using a task signature (Section 3.4).
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Fig. 2: Bundle Metadata Structures and their interactions

There is a CGI specific extension of the Concrete Task aggregation found
inside the bundling API (Section 5.1), the Workflow Implementation, which
allows the Concrete Task to be enhanced with more CGI specific properties.
The Workflow Implementation is used for bundles found within the CGI pool
(see Section 3.5).

Abstract Tasks are used to aggregate together tasks of the same function
and signature in order to facilitate interoperability. An abstract task is en-
vironment independent, allowing developers to design workflows that are not
constrained to a specific operating system or workflow environment.

Data Mappings are sets of data that can be applied to a particular task.
Data is mapped to the input ports and output ports identified in the work-
flow’s signature using the shiwa:reference concept. This data can make the
task immediately executable, or may only fill in some of the data required to
execute the task. Data mappings support validation of workflow bundles via
test input data and expected results data. They also support workflow reuse
– for example, through defining workflow parameters suitable for particular
types of experiments.

Environment Mappings describe things such as virtual organizations or
middleware required by the workflow to execute properly. This is important,
not just for programmatic selection of workflows, but also for users to un-
derstand whether they will be able to execute the workflow themselves, given
their own profile and VO memberships. These are mapped to the dependencies
exposed by a Concrete Task.

Execution Mappings hold the output data produced by a concrete task
after it has been run. These map only to the output ports of a task’s signature
(unlike a Data Mapping).
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3.4 Task Signature

A task signature is generated from the metadata and provides an interface
that distinguishes a concrete task instance in terms of its task type, the data
it receives, and the data it outputs. These are derived from the tasktype concept
as well as the definition of the inport and outport elements of the task. The
aim of the signature is to enable programmatic grouping and discrimination
between tasks to allow runtime selection and embedding of task and workflow
bundles into other workflows.

Along with the name of the task artifact, the elements that make up the
task signature can be directly mapped to the IWIR atomic task definition
enabling a smooth adoption and integration between FGI and CGI tasks rep-
resented in both bundles and IWIR graphs.

A signature does not model any internal ‘wiring’ of the task or workflow —
it merely describes the task/workflow as a black box. While this gives a high-
level view of the task, it may not be enough for either a human or software
agent to make decisions about its applicability to a particular function or
environment.

3.5 Bundle Configurations used in the execution pool

SHIWA Bundles may be organized in a variety of ways as a means of achieving
different tasks. Two types of bundle configuration are involved in workflow
execution with the pool: Workflow Execution Bundles and Workflow Result
Bundles, which are illustrated by Figure 3 and Figure 4 and described below.

Workflow Execution Bundle. These bundles are used to initialize workflow ex-
ecutions through the pool and consist of a Workflow Implementation and
both a Data and an Environment Mapping. This should provide all the in-
formation required to start a new workflow execution, with the onus being
on the Workflow Engine to marshal the data provided in order to execute.

Workflow Result Bundle. Once a Workflow has completed running, the results
set will be placed in a new bundle via an Execution Mapping and sent back
to the pool for the original submitter to retrieve. The original Workflow
Implementation aggregation will also be placed in the bundle, so that the
result data can be associated with an initial submission.

4 Execution Pool

Workflow execution services usually consist of a collection of engine endpoints
that a meta-engine may use to submit and monitor workflow executions. When
multiple workflow languages are considered, the meta-engine has to be ex-
tended to associate endpoints with workflow languages. Engine interfaces can
be made uniform, for instance using the bundle format described in Section 3.
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Fig. 3: Workflow Configuration Bundle

Fig. 4: Worklfow Result Bundle

The meta-engine, however, still has to select an appropriate engine to execute
a workflow expressed in a given language, and adding a new language implies
reconfiguring the meta-engine. In addition, linking a list of endpoints to a list
of languages is failure-prone due to the dependence of the meta-engine upon
services hosted in different institutions, and with different capabilities. With-
out any further precaution, the meta-engine may well overwhelm a particular
workflow engine due to excessive submission, or lose time in trying to con-
tact engines that are out of service. To tackle these issues, we present here a
pool architecture to execute workflow bundles. The pool is implemented using
SHIWA bundles, and it is interfaced with MOTEUR and Triana.

4.1 Architecture Description

The pool architecture is shown on Figure 5, with the numbered arrows corre-
sponding to the life-cycle of a successful workflow execution (along with their
message types and properties), and circle-terminated arrows denoting broad-
casts. The system has a central pool, to which clients can submit workflow
execution bundles, monitor them and get results as workflow result bundles.
Agents, also called workflow executors, are distributed and they can connect to
the pool, get execution bundles, spawn workflow engines through engine plu-
gins, send status updates to the pool and clients, and transfer result bundles
back to the pool.
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Fig. 5: Interactions between client, pool, agent, and engine.

When an agent starts, its embedded engine plugins declare their supported
workflow language so that agents know which bundles they are able to execute.
Engines are (lightly) instrumented to report bundle statuses to their agent.
Workflow bundle statuses are kept both by the pool and by the agent, as shown
in Figure 6. When a bundle is submitted, the pool puts it in status PENDING.
The pool periodically broadcasts a status message for pending bundles so that
new agents are informed. To improve scalability, a single message containing
the statuses of all pending bundles is sent. A timeout (Tpending) can be set
on PENDING bundles. It expires when no agent is able to take the bundle – for
example, because the workflow language or any other bundle dependency is
not supported, or because all agents are busy. The bundle is then put in status
KILLED. If bundle requests are made by agents, then the pool selects an agent,
sends the bundle to it, and puts the bundle in status SENDING. The bundle is
then transferred to the select agent, and put in status SENT, or FAILED if the
transfer fails. A timeout (Tsent) is started to detect bundles blocked at this
stage. If it expires before the agent sends a RUNNING status message, then the
bundle is put in status KILLED. Once the bundle is running, the pool waits for
status updates from the agent until the bundle is FINISHED or FAILED. The
connection with the agent is also periodically checked. In case it is lost, then
the bundle is put in status KILLED after a timeout. When the agent receives
a PENDING status message, it checks the workflow language of the bundles
concerned, and also the number of locally active bundles.

If conditions are met for execution, the agent selects a random bundle,
sets the status of the bundle to WAITING, requests the bundle from the pool,
and starts a timeout (Twaiting) count. If the timeout expires (e.g. the pool
has selected another agent to run the bundle or the pool did not receive the
request message) then the bundle is deleted. Otherwise, the bundle is put in
status SENDING until the pool sends a FAILED status message, or the agent
receives the bundle. In the latter case, the bundle is put in status LAUNCHING
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and a workflow engine is spawned. A timeout Tlaunching is spawned to kill the
bundle in case the engine fails to start. The bundle status is then updated by
the engine until completion or failure. The agent also kills running bundles
when their engine crashed after timeout Tengine crashed.

4.2 Pool Properties

This architecture is scalable because several agents supporting the same work-
flow engine can coexist without any special configuration of the pool. The
centralized pool handles concurrency to ensure that at most one agent will ex-
ecute any given bundle. Timeout Twaiting on Figure 6b guarantees that agents
will not wait forever in case of concurrent execution requests. In addition,
the maximal number of active bundles in an agent is configured in the agent
(see first transition in Figure 6b), so that some agents may accept a few ex-
ecutions only while others, e.g. agents deployed on a cluster frontend, could
support more. Therefore the architecture can be customized to heterogeneous
execution infrastructures without reconfiguring the pool. This architecture is
robust to agent crashes because (i) a crash will impact only the workflows
being run by the agent and the time of the crash, and (ii) failover agents can
be dynamically started without reconfiguring the pool.

The pool model is also robust to agent overload. In the case where an agent
reaches its maximal capacity, it will stop requesting bundles from the pool to
avoid being overwhelmed. And in the case of agent downtime, no additional
latency is introduced because of submission failures. Workflow bundles are
handled independently from their language. Language-specificity required for
the execution lies in the agent plugins which perform the required conversions
between the bundle and the native workflow format. Similarly, clients are
responsible for language-specific bundling of the input data before executions
are submitted to the pool. Supported workflow languages are declared by
engine plugins to their agent at start up, so that new workflow languages can
be dynamically supported without any modification in the pool, client, and
agent. Note that meta-workflows are intrinsically supported because engines
can submit workflows of different languages to the pool.

5 Bundling and Pool Integration into MOTEUR and Triana

In this section, we explain how bundling support has been integrated into
Triana and MOTEUR, which makes them capable of operating within the
execution pool environment. MOTEUR and Triana are the first two workflow
engines to be integrated with the CGI pool as they have been developed and
maintained by CNRS and Cardiff University respectively. There are a number
of tools provided within the bundling toolkit that facilitate this process, which
are discussed first.
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Fig. 6: State machines of workflow bundles. Initial and terminal states are
figured with circles. T indicates timeouts.

5.1 SHIWA Desktop

The SHIWA Desktop software has been developed in order to create an in-
terface that can be integrated into workflow systems desktop applications in
order to provide a single common process for creating and manipulating and
publishing bundles to the Web. The underlying element of this software is a
Bundling API called SHIWA Desktop Data, which enables fine-grained cre-
ation of SHIWA Bundles programmatically. This is complemented by a Work-
flowEngineHandler interface which individual workflow systems need to im-
plement to support bundling. Above the SHIWA Desktop Data API are two
user interfaces which are intended to be the common means of bundle creation:
a GUI which can integrate with GUI-based Workflow engines and a Command
Line Interface for workflow engines without a GUI.

There are five major parts of the Desktop Data API which are used in CGI
and the pool:

RDF Element Objects. A collection of objects representing the elements found
in the RDF files; these provide a data structure to the rest of the API and
allow the metadata information to be serialized to and serialized from their
RDF representation.

SHIWABundle Object. Reads in SHIWA bundles, converting the metadata
into the data structure mentioned above.
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WorkflowController Class. Provides methods for retrieving aggregations from
a SHIWABundle object; exposing the main aggregations concerned with
CGI for simpler retrieval.

DataUtils. Provides functionality for downloading bundles from, and upload-
ing bundles to, remote locations, allowing users to store workflows on ex-
ternal repositories or deploy them to external execution pools.

WorkflowEngineHandler Interface. The primary mechanism for integrating
with a workflow engine, allowing ease of publishing and deployment of
workflows.

A full overview of the SHIWA Desktop Data API can be found in SHIWA
Deliverable D5.3.8

A workflow engine handler is an engine-specific component that under-
stands the internal operations of an engine and its object models. The in-
terface is designed to be simple to implement, and it provides a means of
pre-populating technical metadata, that should not be specified by a user, di-
rectly from the engine environment. Apart from providing SHIWA Desktop
with simple information such as the workflow engine name and version, and
the workflow language of the workflow, the handler must also be able to create
a TransferSignature object and return an InputStream to a serialization of the
workflow definition.

A TransferSignature is a simple container object that has a name, and a
list of inputs and outputs. It is also possible to associate data (either inline or
by reference, e.g. URL) with the inputs. Each input and output has a unique
name, a data type, and optional input data associated with it, as well as an
optional human-readable description.

All these are provided through the interface and can be adjusted using the
SHIWA Desktop GUI at a later stage. This means generic descriptions could
be given by the handler, to be improved upon by the user if required.

The GUI can be run either within a Workflow Engine’s own GUI or as
a stand-alone application, and is intended as the main interface of SHIWA
Desktop. The GUI has been integrated into both Triana and MOTEUR, pro-
viding users with identical interfaces for generating bundles from workflows
and publishing and retrieving bundles to and from remote locations.

5.2 Pool Implementation

Prototype pool, agent, and client implementations were created in Java. The
Extensible Messaging and Presence Protocol (XMPP9) was chosen for the
communication layer due to its ability to enable communication among dis-
tributed peers with no inbound connectivity. Only the XMPP server has to
have a port open. The smack Java API10 v3.2.2 was used to handle XMPP

8 http://www.shiwa-workflow.eu/documents/10753/8bc729cf-34ac-4bfe-bb96-9ce8ebf9f8ca
9 http://xmpp.org

10 http://www.igniterealtime.org/projects/smack

http://www.shiwa-workflow.eu/documents/10753/8bc729cf-34ac-4bfe-bb96-9ce8ebf9f8ca
http://xmpp.org
http://www.igniterealtime.org/projects/smack
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Fig. 7: SHIWA Desktop GUI

operations. XMPP messages exchanged during the life-cycle of a workflow are
the ones shown in Figure 5. The pool has 3 threads used to receive/process
messages, transfer files, and monitor timeouts (Tpending, Tsent, and Tagent lost

on Figure 6a). A local database is used to store workflow bundle statuses and
bundle file paths (input and output) so that restarting the pool does not im-
pact active bundles. The agent also has 3 threads to receive/process messages,
transfer files, and monitor timeouts (Twaiting, Tlaunching, and Tengine crashed).
Again, a local database is used to store bundle statuses and engine UNIX
process identifiers so that restarting the agent does not impact active bundles.

A Java interface based on the Java Simple Plugin Framework (JSPF11) is
provided to write engine plugins. It has two methods: bundle execution launch
and result bundle creation.

5.3 Triana Integration

Once a workflow has been designed in Triana it can be wrapped in a bun-
dle by sending the workflow to SHIWA Desktop using the TrianaEngineHan-
dler, which implements the WorkflowEngineHandler interface described in the
SHIWA Desktop package. The workflow file, the workflow’s name, a screenshot
produced by Triana, and a description of the inputs to, and outputs from, the
workflow are sent via the handler. These descriptions include the port number

11 http://code.google.com/p/jspf

http://code.google.com/p/jspf
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and the type of data expected, and this is used to automatically fill in data
within the SHIWA Desktop panel.

The handler is instantiated with a Triana Task, which is the TaskGraph
object retrieved from the Triana ApplicationFrame. This Task object contains
accessors to all the inports, outports, parameters and connectivity options
for the workflow, and, if run from the Triana GUI, will have all the recent
information created by the user.

A SHIWA Desktop task signature is produced by creating a new SHI-
WADesktopPanel object with the TrianaEngineHandler as its argument. The
SHIWADesktopPanel returns a JPanel, which Triana places in a customized
JDialog, and displays within the SHIWA desktop environment (Figure 7).
While Triana has the ability to display numerous TaskGraphs at the same
time, it is the currently selected object which is used. If for any reason a
taskgraph is not available, an appropriate error is shown.

A pool agent plugin was also developed to execute Triana workflows sub-
mitted to the pool. The TrianaCloud Broker (Section 5.4.1) is registered to the
pool via a small intermediary application; the Triana Filter, which implements
the engine plugin interface and passes bundles directly to the filter.

5.4 Executing Triana in a cloud environment

The Triana workflow engine was designed to load extensions during its initial-
ization. A new extension has been added that unpacks a bundle and sets up
the runtime environment prior to Triana being invoked. It attempts to retrieve
all files required for the workflow; either via a download from a remote URI,
or via a reference to files within the bundle. These are copied into a runtime
folder before Triana itself is invoked, ensuring runtime efficiency. An attempt
to run the workflow will be made regardless of whether or not the dependen-
cies are met. In future this state will be caught, and will fail early, to allow
runs to attempt runs in other environments, potentially running in parallel to
this execution.

This early invocation of bundles means Triana can now unbundle, execute,
and consequently bundle an entire workflow using command line parameters.
This addition was important to ensure the remote execution of the workflow
engine within a cloud environment. The broker, defined and explained below,
is deliberately ignorant of how Triana executes a workflow, so a worker run-
ning on a cloud node runs the command line invocation relevant for bundle
execution. These workers, on registration with the broker, have specified the
type of data they are able to accept, so any information packet forwarded via
the broker to the worker can be executed using the same launcher.
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5.4.1 The Broker

The broker is in charge of distributing the task to the environment it is working
with, and is built upon the RabbitMQ12 message broker platform, which is
used for passing tasks around the system. RabbitMQ is an open source message
brokering system based upon the AMQP13 messaging protocol. It provides a
mechanism for systems to pass messages with a high degree of reliability and
scalability. As RabbitMQ does not place any limitations on the content of
these messages, it is ideal for the Broker to pass any form of data between
listening clients - in this case bundles between workflow systems.

Due to the design of the broker it can run tasks on any number of different
systems, and can do so simultaneously. The broker is ignorant to the nature
of the task, acting as an intermediary between whatever system has submit-
ted the task and the underlying workers. This allows the broker and workers
to be used to distribute any task, not just Triana based ones (assuming an
appropriate executor is written). To facilitate the distribution of these tasks,
they are accompanied by some metadata. The metadata contains a routing
key in the format a.b.c... to ensure that the correct Executor is started by
the Worker, and only if the Worker has that executor enabled. An example
would be addition.triana: this could signify that this task can be run by a
Triana executor, which is capable of running the addition task. If the Triana
executor was able to run all Triana based tasks, it would listen for *.triana
and would pick up the addition task. Currently, the task data (a bundle in the
case of Triana and this experiment) is passed around as a byte array within
the task object. When being sent over RabbitMQ, it is converted into BSON
(Binary JSON). Future versions of the broker will operate differently; with the
data being put into a shared storage area and a URI referring to the data put
into the task. This will help reduce bandwidth requirements somewhat. The
shared storage will be independent of the broker, allowing it to be tailored to
the deployment being used.

The broker also contains a receiver. This keeps track of all the tasks that
are sent out, along with their ID. All returned (completed) tasks go to the
receiver, which then looks up their ID to find the original task so that it can
update it to reflect it is complete.

5.4.2 The Worker

Like the broker, the worker does not understand tasks at all. When run, it looks
for all the executor plugins in a plugin folder, and queries them for appropriate
routing keys. Once a list of these keys is built up, it listens to RabbitMQ using
these keys. When a task arrives, it passes it on to the Executor responsible for
that routing key for the task. When the Executor finishes, the worker sends
the task and results back to the broker.

12 http://www.rabbitmq.com/
13 http://www.amqp.org/
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5.4.3 The Executor

Executors are plugins for the Worker. In the Java implementation, they only
need to implement 3 methods: getRoutingKey, setData, and executeTask. The
first, getRoutingKey, simply returns the routing key so that the worker can
receive tasks from RabbitMQ. The second allows the Worker to put the task
data into the Executor so the executor can access it. The last, executeTask,
does the execution, and returns the results. The implementation of execute-
Task depends completely on what it needs to do. It may simply take an MD5
sum of the task data, perform some complex analysis, or start another process
to, for example, run a non-Java application with the data as an input file of
some sort. The Triana Executor just passes the data into Triana (the data in
this case is a bundle file), Triana runs the workflow in the bundle, then returns
a bundle to the executor.

5.5 MOTEUR Integration

The binding to the MOTEUR workflow engine follows a similar pattern to
the Triana implementation. MOTEUR has a very simple API for handling
workflow descriptions. A Workflow object can be read from and written to
files or streams with ease. Therefore the MoteurWorkflowEngineHandler has
constructors that take either an in-memory representation of a Workflow ob-
ject, or a file object from which a workflow can be read. The Workflow object
also has methods to retrieve Input and Output objects. These represent the
top level data interfaces to the workflow that we are interested in.

The MoteurWorkflowEngineHandler also supports methods for pre-
mapping data to certain inputs. If any data has been pre-staged through
the handler’s API, then this data is added to the workflow’s signature and
converted to a configuration by the Desktop component when parsing the Sig-
nature returned to it. Additionally, all information available in the workflow
is captured into the MoteurWorkflowEngineHandler object. Examples of such
information include workflow title, description and version, workflow authors
information and workflow image.

The two most pertinent methods are the getSignature and getWorkflowDef-
inition methods. These use the MOTEUR workflow API to extract the rel-
evant information for creating a coarse-grained description of the workflow,
and allow the SCUFL or Gwendia XML definition to be read into a bundle
file accordingly.

Similarly to Triana, MOTEUR GUI also supports menus for retrieving
and publishing workflow bundles. When a workflow is designed or loaded in
the MOTEUR GUI, the publish menu is enabled to allow user to create the
bundle or upload it to remote repository. All information available in the
MoteurWorkflowEngineHandler object is then automatically filled into the
SHIWA Desktop GUI. If there exists an input file, a data configuration is
created. All data items for each input port of the workflow are mapped to
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each input port in the data mapping of the bundle. When a bundle is retrieved,
MOTEUR uses the SHIWA Desktop API to interpret the bundle and extract
the workflow definition and the data mapping and load them to the MOTEUR
GUI.

To submit and monitor workflows using the execution pool, MOTEUR
provides SHIWAPoolInvoker interface that is responsible for invoking the ex-
ecution of a bundle. A thread is spawned to wait for arriving workflow bundle
and submit to the execution pool, using the API provided by Pool Client
described in section 4. A second thread is used for monitoring the execution
of submitted workflow bundles. It periodically contacts the execution pool to
get the status of submitted bundles. When a bundle finishes its execution,
the thread retrieves the output bundle, interprets it and extracts the relevant
information, using the SHIWA Desktop API.

An engine plugin was also written to execute MOTEUR workflows submit-
ted to the pool. This plugin spawns the engine in a new JVM forked through a
system call (step 7 in Figure 5). A listener plugin in MOTEUR was developed
to send bundle statuses to the agent (steps 8 and 9 in Figure 5).

6 Experiments and Results on Pool scalability and Robustness

Two experiments were conducted to demonstrate the scalability and robust-
ness of the pool architecture. Version 0.7 of the pool, agent and client was used
to conduct these experiments. Sources are publicly available online14.

6.1 Deployed Infrastructure

For both experiments, the pool and client were deployed on different ma-
chines, on the same network as the XMPP server. Agents and engines were
deployed on the academic cloud infrastructure offered by StratusLab15. We
used a FedoraCore 16 x86 64 virtual machine (VM) image with Java, MySQL,
and our agent installed. XMPP accounts were manually created for agents,
and login/passwords were configured in the deployed VM instances before
the experiments started. VMs were deployed on the StratusLab site at Lab-
oratoire de l’Accélérateur Linéaire prior to the experiments. Timeout val-
ues were as follows: Tsent=30s, Tagent lost=10s, Tengine crashed = 3s, and
Twaiting = Tlaunching = 5s. The maximal number of active workflows per
agent was 3. The pool broadcasted status messages for pending bundles at a
frequency increasing linearly with the number n of pending bundles, with a
maximal value of 5 min.

14 http://vip.creatis.insa-lyon.fr:9002/projects/cgi-executor
15 http://stratuslab.org

http://vip.creatis.insa-lyon.fr:9002/projects/cgi-executor
http://stratuslab.org
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bundles

6.2 Scalability

Scalability was tested both in the number of concurrent workflow bundles
(Exp1-a), and in the number of available agents (Exp1-b). In both cases, a
simple MOTEUR workflow consisting of a single activity sleeping for 1 minute
was used. Bundles were submitted sequentially to the pool. Three repetitions
were done for each number of bundles. For each repetition we measured the
total submission time and makespan (duration between the beginning of the
submission of the first bundle and the completion of the last one).

For Exp1-a, the number of deployed agents was 10, and therefore the max-
imal achievable throughput was 30 bundle/min (10 agents are deployed and
each one can have 3 active workflows). The number of concurrent workflow
bundles varied from 10 to 150 by steps of 10.

Figure 8 shows the evolution of the makespan and submission time with
respect to the number of concurrent active bundles. Least-square regression
lines are also plotted. Both submission time and makespan are close to their
regression line, demonstrating the good scalability of the system. Variability
among repetitions is low. The submission time is mostly bound by the transfer
time of bundles (3.6KB), which is hampered by XMPP’s base64 encoding of
the transferred files. The makespan linear regression has an inverse slope of
27.5 bundle/min, which is close to the maximum achievable throughput on
the deployed infrastructure. The median makespan for 10 bundles is 1min 18s,
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Fig. 9: Evaluation of the pool scalability, w.r.t the number of available agents

indicating that the average latency is 18s. Among these, 11s are due to submis-
sion time. The remaining 7s are due to data transfers, expiration of Twaiting

(5s) and the broadcast frequency of pending bundles by the pool (between 5s
and 6s in this case).

For Exp1-b, the number of bundles was 150, and the number of agents
varied from 1 to 10 by steps of 1. Figure 9 shows the evolution of the submission
time and speed-up w.r.t to the number of deployed agents. The speed-up is
computed as the ratio between the cumulative workflow execution time (150
minutes) and the makespan. As expected, submission time is quite stable,
with a subtle decrease for 8, 9 and 10 agents. Measured speed-up values are
well approximated by their regression line, which indicates that overheads
remain controlled, leading to scalable performance of the system. The slope of
the regression line is 2.21, and the median speed-up for 1 agent is 2.6: these
remain under their optimal values (3) due to the overheads mentioned before.

6.3 Reliability

Reliability of the system against agent faults was studied in two configurations:
flapping and crash. In both cases, two agents were deployed. In configuration
flapping, robustness against temporary connection losses of the agent was
tested. One of the agents behaved normally, while the other disconnected from
the pool for 5s every 10s. These values were chosen coherently with the value of
Tagent lost. In configuration crash, both agents behaved correctly during the
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Test Flapping Crash
#Killed MkSpn #Killed MkSpn #Killed MkSpn

#1 0 321 #1 0 319 #1 3 454
#2 0 318 #2 0 326 #2 3 385
#3 0 317 #3 0 319 #3 3 454

Table 1: Robustness of the execution pool to flapping and crashed agents.

first 90s, and then one agent was shutdown until the end of the experiment.
The makespan (MkSpn) and number of killed bundles was measured in both
cases, and in a test configuration where both agents behaved correctly.

Results are reported in Table 1. As expected, the pool architecture is to-
tally robust to flapping agents. In this configuration, no execution was killed,
and the makespan compares to the one obtained in the test configuration.
Agent crash only has limited impact on the system. It only impacts the execu-
tions that were running when the crash occurred (3 in our case), without any
consequence on the subsequent executions. The makespan increases compared
to the test configuration due to the availability of only 1 agent after the crash.

7 Experiments and Results on Meta-Workflow Execution

7.1 Experiment Use Case

In this section, we describe the meta-workflow scenario, which uses distributed
DART [28] Music Information Retrieval (MIR) workflows to perform a param-
eter sweep experiment in order to discover the optimal parameter settings for
the sub-harmonic summation pitch detection algorithm. The meta-workflow is
a Triana workfllow, which generates Triana and MOTEUR bundles containing
DART workflows that are then put in the pool. As depicted in Figure 10, this
application has three parameters:

– freqpoints max - Number Of Top Frequency Points (NTFP) : Vary 1 to
501 in 10 point intervals (51 in total)

– harmonics max - Number of Harmonics: Vary 1-32 (5 Octaves)
– audio file - Audio Input Files: 6 audio files

This parameter sweep experiment creates 9,792 concurrent jobs in total,
with 1,632 jobs per audio input file. Each run results in an output file which
will be downloaded to a local folder. When all runs finished their execution,
the results folder is zipped.

This application was originally executed on a Cloud installation at Cardiff
University using the BOINC16 software to distribute it. The execution time of
the total data set is just over 3 days (run on 120 machines with 1 core 1GB of
memory). In this experiment, we demonstrate the usefulness of the bundle and
execution pool approach by distributing the execution of this application to

16 http://boinc.berkely.edu

http://boinc.berkely.edu
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Fig. 10: DART Music Information Retrieval (MIR) workflow

two workflow environments: Triana workflow engine running on TrianaCloud
and MOTEUR running on the European Grid Infrastructure (EGI). We use
Triana to run the meta-workflow which is set up to publish the MOTEUR
bundles to the CGI pool backbone and send the Triana bundles (as the end
location was known) directly to TrianaCloud. MOTEUR pool agents retrieved
the bundles from the execution pool to execute on the EGI. The final ob-
jective is to reduce the total execution time of the complete dataset. Each
environment will therefore run over only 3 of the audio files. We have kept the
value of freqpoints max constant at 501, resulting in 51 intervals. this means
we have 153 jobs to run per harmonics max value and so we vary the value of
harmonics max from 1 to 10 in order to test the performance of the execution
environment with increasing loads. When the harmonics max value increases,
the number of concurrent jobs submitted to each computing infrastructure
increases accordingly as presented in Table 2.

harmonics max 2 5 10
Number of concurrent jobs 153 306 765 1530

Table 2: Number of concurrent jobs submitted to the infrastructure in function
of the value of the harmonics max parameter

In the following sections, we analyze the application performance on both
infrastructures. We are interested in the total execution time and we give a
discussion to compare these two infrastructures.
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Type Succeeded Failed Incomplete Total Retries Total Run

Tasks 862 0 0 862 0 862
Jobs 765 0 0 765 0 765
Sub- 32 0 0 32 0 32

Workflows

Table 3: Output from statistics script, based on Triana (Stampede) logging
data

7.2 Distribution using MOTEUR

MOTEUR is an intrinsically data-parallel workflow engine. It enables simulta-
neous, asynchronous execution of multiple data fragments. It adopts a nested
data array-centric model, where arrays of data fragments are pushed through
the workflow inputs, flow through the workflow data links, and cause the work-
flow activities to be executed in parallel, potentially as many times as data
fragments received. To determine the number of parallel iterations applying
to each activity, the GWENDIA language defined the notion of activity input
port depth. At depth 0 (default) each data fragment causes an iteration of
the target activity to process it. A higher port depth means that a complete
array needs to be received before the activity can be executed. As many array
nesting levels as the port depth are then collected. This implements a data syn-
chronization barrier at the level of activity invocation. Similarly, an executed
activity can either return a single data fragment, or a structured collection of
such fragments in the form of a nested array, for further parallel processing
by subsequent activities. Figure 10 shows a MOTEUR workflow exemplify-
ing both behaviours. The “params generation” is an array-producing activity,
which outputs deliver complete arrays of data fragments to be processed in-
dependently by subsequent “dart app” and “result downloading” activities.
Conversely, the “result compressing” activity synchronizes a complete array of
data fragment results before invocation. It therefore processes all downloaded
results simultaneously. The jobs generated by the activities invoked are dis-
tributed on the target Distributed Computing Infrastructure for concurrent
execution by the core MOTEUR engine using its asynchronous invocation ca-
pability.

7.3 Performance timings for Triana and MOTEUR

7.3.1 Triana with TrianaCloud

The Triana environment attached to the cloud is fronted by the Triana broker.
When the broker receives a bundle a new Triana instance is spun up on the
cloud and the bundle is passed to it and run. Each node generated will require
startup and wind down time, but these startups are performed in parallel, and
so waiting time will be near constant regardless of the number of jobs required.
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Workflow Wall Time 22 mins, 55 secs 1375 seconds
Cumulative Job Wall Time (CJWT) 1 day, 2 hrs 96944 seconds

CJWT as Seen From Submit Side 21 hrs, 16 mins 76616 seconds

Table 4: Triana (Stampede) cumulative wall time report

It would only be through splitting the workload up into more bundles and
subsequent workers, that waiting time would differ.

Execution logging in TrianaCloud is performed by the Stampede logging
system [29,30], providing Triana with detailed logging information as seen
in Table 3, where information on the final state of jobs within the workflow
is given. Stampede also provides us with cumulative wall times to give an
indication of the effectiveness of distributing the workload across multiple
nodes as shown in Table 4.

The jobs were split between 32 sub-workflows when submitting the work-
flow to the cloud, each of these sub-workflows require three additional jobs to
be created for retrieving the execution data, starting up the DART workflow
and re-bundling and submitting the results. The submission workflow is also
modeled as a job within the Stampede logs, and so along with the extra worker
jobs account for the extra jobs found in Table 3.

Table 5 shows the execution times and cumulative runtimes of several work-
flow runs. A single DART job takes roughly a minute to run, and so it is not
surprising to see that the final runtime of the workflows increase in line with
the number of jobs in a bundle, as the bundles are executed simultaneously. It
must be noted that the jobs are not evenly distributed between the bundles,
jobs are assigned to a bundle until the bundle is “full” potentially leading to
a single bundle containing a smaller number of jobs to execute, accounting for
the drop in execution time of the third and fourth runs.

harmonics # Concurrent Execution Waiting Runtime Cumulative
max jobs [per time (min) time (min) (min) Runtime

bundle] (min)

1 153 [5] 5.92 0.55 6.47 311.72
2 30 [10] 10.02 0.55 10.57 586.17
5 765 [24] 22.36 0.56 22.92 1615.73
10 1530 [49] 41.43 0.55 41.98 3542.30

Table 5: The execution times of the application on TrianaCloud in function of
harmonics max

7.3.2 MOTEUR with EGI

In the MOTEUR environment, all workflow jobs are submitted to the Euro-
pean Grid Infrastructure (EGI) through the DIRAC pilot system [31] thanks
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to the submission back–end GASW [32]. The execution time of the application
is presented in table 6. We see that when the number of jobs submitted to the
infrastructure increases, the execution time also increases.

Indeed, EGI is a production infrastructure with many users running their
applications. Users jobs therefore are put into a batch system queue to wait
for a computing resource. As shown in Figure 11, a timeline diagram for the
execution of 153 jobs submitted to the infrastructure, each job is represented
by a line starting with red color for the waiting time. The time for input and
binary downloading is in yellow; the running time is represented in green, and
result uploading is in blue. The waiting time increases when the number of jobs
submitted to the infrastructure increases as presented in Table 6, where the
value represents the average waiting time for each job to obtain an available
computing resource. Such long waiting times seriously hamper short tasks
such as DART’s. Furthermore, DART is a Java-based application and the
Java runtime environment is not available on EGI. Users’ jobs therefore have
to install JRE on the fly to be able to execute. This leads to the fact that jobs
have to take time to download and install JRE.

harmonics max # Concurrent jobs Execution Waiting Runtime
time (min) time (min) (min)

1 153 32.72 10.78 43.5
2 306 83.17 24.99 108.16
5 765 185.27 57.52 242.79
10 1530 301.68 109.98 411.66

Table 6: The total execution time of the application on EGI in function of
harmonics max

Comparing to TrianaCloud, the total execution time of the application
on EGI might be longer. Indeed, on TrianaCloud, computing resources are
dedicated to the user. Users jobs are executed with very little waiting time.
Furthermore, users have overall control of their computing resources and can
install all necessary software before executing the application, which was not
the case on EGI. It can also be seen that the clustering of jobs in the Tri-
anaCloud execution greatly speeds up execution time (by a factor of ten),
as the data need only be downloaded once per bundle as opposed to being
downloaded once per job when the workflow is run on EGI.

8 Conclusions and Future Work

In this paper, we have updated and expanded on the SHIWA Bundle format,
providing a formalization of the SHIWA aggregation types and the bundle con-
figurations that can be used in the CGI pool. This format has been adopted by
the EU-funded SHIWA project as a means of providing a common input data
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Fig. 11: Jobs timeline of DART application on the EGI

format interface, both for sharing workflows and for enabling the automatic
execution of workflows native to that platform in a coarse-grained fashion. We
have explained that a SHIWA bundle comprises one or more aggregations of
resources, each aggregation having its own Resource Map. A SHIWA-specific
core schema is specified, to support the SHIWA concepts that need to be rep-
resented, but these have been released to the public and we are involved in
on-going discussions with the intention of stabilizing these definitions across
different projects. For example, we are discussing this format with the Pegasus,
myExperiment and Taverna teams, and plan to reach out to other communi-
ties also, over time. Bundles make it possible for workflows to be embedded
and for the creation of meta-workflow pipelines connecting one workflow sys-
tem to another. At the highest level, bundles therefore enable heterogeneous
workflow execution through the creation of meta-workflow pipelines.

We have described a language-independent pool model that exploits the
portable nature of bundles to provide a dynamic and flexible workflow ex-
ecution environment. Our execution pool enables decentralised, fully config-
urable workflow execution services and through a set of interfaces for creating
and manipulating bundles, we have integrated bundles with the Triana and
MOTEUR workflow engines in order to operate in the pool. The scalability
experiments described in this paper have shown that the execution pool was
scalable with respect to the number of workflow bundles and agents, and that
it was robust to flapping agents and agent crashes. We have used this pool as
part of a multi-DCI, multi-language, meta-workflow execution. We have also
begun to explore the benefits provided by the CGI pool’s approach to work-
flow execution both as an execution environment for workflow experiments.
As a means of comparing the performance of different workflow environments
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attached to the pool against one another in order to determine the optimal
execution environments for a specific workflow.

We have successfully presented a proof of concept system where each stage
of a meta-workflow’s execution can be orchestrated by the CGI pool, but some
stages of the experiment would benefit from refinement through future work.
The Triana meta-workflow was responsible for passing the meta-worklfow bun-
dles into the CGI pool. Moteur required a specific input file to be passed with
the Moteur bundle, which Triana was able to provide. The output files pro-
duced by Moteur were not connected to ports, instead a single output zip file
was added to the bundle, which Triana was able to retrieve and unzip, but
this meant that the full meta-workflow could not be completed as the retrieval
required extra inspection. For a full experiment, a more structured returned
bundle from Moteur would allow passing on of outputs directly within the
meta-workflow, instead of having to retrieve the output zip from the bun-
dle through deep bundle inspection. Additionally an interface within Moteur
which creates the input xml file itself would remove the need for Triana to
send Moteur specific inputs as well as the general workflow data. This would
allow metrics to be achieved describing the overhead associated with Triana
locating and retrieving output bundles from the pool.

Further experiments could attach other workflow engines to the pool, for
example ASKALON or WS-PGRADE, which also are able to read and under-
stand the bundle format. On top of this, future work should look at providing
researchers with metrics and tools that aid in the developments of large multi
workflow language workflows, highlighting the best environments registered to
the pool for executing particular subtasks of the multi workflow. For bundles,
we are investigating the possibility of making SHIWA bundles interoperable
with the myExperiment ORE format so that SHIWA bundles can be exported
to myExperiment for dissemination and searching within a social networked
environment. Furthermore, we would look to integrating the two ORE formats
to provide a true heterogeneous means of representing workflows and workflow
related research within the DCI community.
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25. Attila Kertész, Gergely Sipos, and Péter Kacsuk. Brokering Multi-grid Workflows in the
P-GRADE Portal. In Euro-Par 2006: Parallel Processing, volume 4375, pages 138–149.
Springer, Berlin, 2007.

26. Zhiming Zhao, Suresh Booms, Adam Belloum, Cees de Laat, and Bob Hertzberger.
Vle-wfbus: a scientific workflow bus for multi e-science domains. In Proceedings of the
2nd IEEE International conference on e-Science and Grid computing, pages 11–19,
Amsterdam, the Netherlands, December 4- December 6 2006. IEEE Computer Society
Press.

27. Alqaoud Ahmed, Taylor Ian, and Jones Andrew. Scientific workflow interoperability
framework. International Journal of Business Process Integration and Management,
Volume 5(Number 1):93 – 105, 2010.

28. Ian Taylor, Eddie Al-Shakarchi, and Stephen David Beck. Distributed Audio Retrieval
using Triana (DART). In International Computer Music Conference (ICMC) 2006,
November 6-11, at Tulane University, USA., pages 716–722, 2006.

29. Dan Gunter, Ewa Deelman, Taghrid Samak, Christopher X. Brooks, Monte Goode,
Gideon Juve, Gaurang Mehta, Priscilla Moraes, Fabio Silva, D. Martin Swany, and
Karan Vahi. Online workflow management and performance analysis with stampede.
In CNSM, pages 1–10. IEEE, 2011.

30. Taghrid Samak, Dan Gunter, Monte Goode, Ewa Deelman, Gideon Juve, Gaurang
Mehta, Fabio Silva, and Karan Vahi. Online fault and anomaly detection for large-
scale scientific workflows. In Parimala Thulasiraman, Laurence Tianruo Yang, Qiwen
Pan, Xingang Liu, Yaw-Chung Chen, Yo-Ping Huang, Lin huang Chang, Che-Lun Hung,
Che-Rung Lee, Justin Y. Shi, and Ying Zhang, editors, HPCC, pages 373–381. IEEE,
2011.

31. Adrian Casajus, Ricardo Graciani, Stuart Paterson, Andrei Tsaregorodtsev, and the
Lhcb Dirac Team. DIRAC Pilot Framework and the DIRAC Workload Management
System. J. Phys. Conf. Ser., 219(1–6), 2010.

32. Rafael Ferreira da Silva, Sorina Camarasu-Pop, Baptiste Grenier, Vanessa Hamar, David
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