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Abstract 

Periodic multilayers give rise to enhanced X-ray fluorescence when a regime of standing 

waves occurs within the structure. This regime may concern the primary radiation used to 

induce the fluorescence, the secondary radiation of fluorescence or both of them. Until now, 

existing models only dealt with standing wave regime of primary radiation. We present a 

theoretical approach based on the oscillating dipole model and the coupled-wave theory that 

can treat efficiently any standing wave regime. We compare our simulations to experimental 

data available in the literature. 
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1. Introduction  

 

X-ray Bragg diffraction by a periodic multilayer structure gives rise to a system of X-

ray standing waves (XSW) that can be profitably used to determine the microstructural 

properties of the stack [1–6]; by adjusting the grazing angle 0 in the Bragg domain, it is 

possible to localize the peaks of electric field intensity within the structure in the regions of 

interest for the analysis. The primary incident field can generate photoelectrons, fluorescence 

emission and be elastically (Rayleigh) or inelastically (Raman-Compton) scattered. The 

production of secondary X-rays makes it possible to probe the structure by different ways: as 

mentioned in reference [5], XSW enhanced fluorescence is rather interesting to analyse high-

Z layers since photoelectric cross sections scales as Z
4
 while the elastic or inelastic scattering 

profiles are more sensitive to the cross sections of low Z materials. Modelling these emissions 

generally consists in: 

 calculating at a given depth z the intensity Iexc(z,,E0) of the local exciting electric 

field resulting from the interferences between the incident and reflected waves,  

 then considering an exponentially attenuation of the secondary emitted X-rays (Beer-

Lambert law) 

  and finally performing an integration along the depth of the structure; the result is 

weighted by the cross section (E0) of the phenomenon which strongly depends on the 

photon energy. 

This can be summarized by the formula: 

 

           (1) 

In Eq. (1), E0 is the energy of the primary photon,  the grazing angle, E is the energy of the 

secondary photon,  the take-off angle,  the linear absorption coefficient for the secondary 

radiation and L the thickness of the multilayer structure. Iexc(z,,E0) is computed according to 

standard techniques but the generalized recursive Parratt method [7,8] is often implemented. 

This model can be refined to take into account some particular effects such as the 

inhomogeneity of the wave in absorbing media, secondary fluorescence, roughness [1,4]. This 

kind of theoretical approach seems to be valid as long as the secondary emitted wave does not 

encounter Bragg diffraction. 



When the secondary emitted X-rays are Bragg diffracted, this approach is no longer 

relevant; such an experiment in fluorescence mode has been carried with the Fe K 

fluorescence line emitted from Fe/C multilayers excited by the Cu K line [2,3]. This 

configuration is similar to the one reported in experiments by Kossel et al. [9] then by 

Jonnard et al. with multilayers excited by an electron beam [10,11]. Kossel-like experiments 

can be interpreted by means of Lorentz reciprocity theorem [2,3] as initially proposed by 

Laue [12]. 

We propose here a more direct approach that can be applied for fluorescence, elastic 

and inelastic scattering, both for primary and secondary radiations undergoing Bragg 

diffraction. The idea is: 

 to consider the sources of secondary radiation as oscillating dipoles radiating at the 

frequency of the secondary radiation, excited by the local electric field resulting from 

the primary radiation,  

 then to calculate the propagation of the total field satisfying a second-order differential 

equation with the appropriate boundary conditions and finally to determine the 

intensity in far-field of the secondary radiation. 

The total field is the sum of the homogeneous field satisfying the propagation equation 

without second member plus a source field, which is a particular solution of the propagation 

equation with a second source term given by the current density induced by the dipole. The 

propagation problem can be solved by means of the dyadic Green function formalism [13,14], 

but since this approach requires a rather high level in mathematics, we prefer using a more 

direct manner of solving the differential inhomogeneous equation implementing partial 

Fourier transform. 

Section 2 is devoted to the theoretical development: Section 2.1 treats the radiation of 

an oscillating dipole from a periodic multilayer structure; Section 2.2 presents a calculation of 

the local exciting electric field resulting from the primary radiation by the coupled-wave 

theory; Section 2.3 deals with the calculation of the induced dipole and its distribution within 

the stack; Section 2.4 explains how to calculate the far-field intensity of the secondary 

radiation. In Section 3, we illustrate this theoretical approach by several examples dealing 

with fluorescence recorded in different experimental conditions and with different models for 

the dipole distribution. 

 

2. Oscillating dipole theory 



2.1 Radiation of an oscillating dipole within a periodic multilayer structure 

 

 The geometry of the problem is given in Fig. 1. The strategy of the calculation is to 

find the lateral components of the electric and magnetic fields generated by an oscillating 

electric dipole that are continuous at the interfaces according to the standard boundary 

conditions of optics and to propagate these components through the structure.  Our approach 

is based on the direct matrix analysis of the radiation emitted by an oscillating dipole 

embedded in a periodic stratified structure [11]. The total electromagnetic field E, H 

associated with a radiating dipole consists in a homogeneous field E0, H0 obtained as the 

solution of the homogenous differential propagation equation deduced from Maxwell’s 

equations plus an inhomogeneous field Ei, Hi obtained as a particular solution of the 

inhomogeneous differential equation with a source (dipole) term, that is: 

     E = E0 + Ei     (2) 

and 

     H = H0 + Hi     (3) 
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Fig. 1: Geometry of a periodic multilayer made up of two alternating layers of dielectric 

constant and thickness 1, d1 and 2, d2 respectively. The number of layers is 2N. The dipole p 

is located at the depth zs in the js
th

 layer. 

 

We consider an electric dipole, the moment of which is denoted by p, embedded at 

the location rs = (s, zs) (s lateral components and zs depth component) within the layer js of a 



multilayer structure of dielectric constant  and oscillating at a frequency 0. The charge 

density associated to this dipole is given in the k- reciprocal space
1
 by: 

 

           (4) 

while the current density deduced from the charge density by the continuity equation is: 

 

           (5) 

Maxwell’s equations in the k- reciprocal space and the above equations for the charge and 

current densities lead to the following equations
2
 for the electric inhomogeneous field Ei[k,] 

and the magnetic inhomogeneous field Hi[k,]: 

 

           (6) 

 

           (7) 

To apply the continuity boundary conditions, we introduce the partial Fourier transform 

defined by the following expression: 

 

           (8) 

Taking into account Eqs. [6-8], it comes: 

 

           (9) 

and 

 

           (10) 

where 

                                                        
1 The k- domain is the reciprocal space of the r-t (direct 3D space-time) domain; both domains are 
mathematically related by the Fourier and inverse Fourier transforms. 
2 All calculations are performed in the Gauss unit system. 



 

           (11) 

and 

 

           (12) 

The above integrals over kz can be calculated by means of Cauchy theorem. 

To treat the propagation of the fields it is convenient to introduce a canonical reference 

system (X, Y, Z). In this system, which depends on the tangential component of the wave-

vector, the tangential component of the field has only one component (say Y, the X 

component being null). The canonical system can be built as follows: the unit vector Z is 

along the direction normal to the stratification planes, the unit vector of the Y axis is collinear 

with the tangential component k and the unit vector 

along X is obtained from the cross product. 

Indeed the continuous quantities at the boundaries are the tangential components of the 

total electric E and magnetic field H; introducing the quadri-vector Q[k, , z, zs] built from 

the tangential components of E and H in the canonical system as: 

 

           (13) 

Then boundary conditions applied at the interface between the layer j-1 and the layer j, 

located at zj-1 lead to the set of recurrent equation: 

 

           (14) 

At this stage two cases have to be considered: 

- the layer j does not contain the dipole; in this case one has: 

 

           (15) 

where Q0j is the quadri-vector equivalent to Qj but constructed from the tangential 

components of the homogeneous fields, that is: 



       (16) 

- the layer j does contain the dipole; in this case one has: 

 

           (17) 

since the total field must include the source term S; by performing the integration of Eqs. (11) 

and (12), one finds: 

 

           (18) 

 The homogeneous quadri-vector Q0j-1 at the interface j-1 can be deduced from the quadri-

vector at the interface j-2 by means of the formalism given by Abelès [15,16], that is: 

 

           (19) 

where A is the 4 x 4 transfer Abelès matrix; in the canonical system, this matrix takes the 

diagonal form in the layer j of thickness dj and of dielectric constant j: 

 

           (20) 

A
TM

 and A
TE

 are the 2 x 2 Abelès matrices for the Transverse Magnetic (TM) and Transverse 

Electric (TE) polarizations respectively, whose expressions are given in [17]. Note that the 

matrix A does not depend on the layer number but only on its nature (layer of kind 1 or 2). 

Each field can be split into a transmitted T and reflected R component so that finally the 

electromagnetic field is given in the so-called T-R representation by a quadri-vector TR: 

 

           (21) 



In the canonical system, the quadri-vector TR transforms into the homogeneous quadri-vector 

Q0 by means of the 4 x 4 matrix M: 

 

           (22) 

with 

 

           (23) 

Now we have implemented all the tools required to calculate the field amplitudes in the 

far-field region. Hereafter we present the algorithm to perform it. Let us assume that the 

dipole is located in the layer 2m-1; see Figure 1 for the geometry. The calculation is driven in 

five main steps: 

1. one starts from the amplitude RTM and RTE of the fields at the interface z0 between the 

external medium j=0 and the first layer of the stack j=1; since one assumes that there 

is no incoming wave from the external medium j=0, then T
TM

=0 and T
TE

=0 and 

 

           (24) 

2. one propagates the field up to the interface z2m-2 by means of the 4 x 4 Abelès matrices, 

that is: 

 

           (25) 

3. one propagates the field through the bilayer containing the dipole to get the field 

 ; the procedure is summarized in the Appendix. 

4. one continues the propagation up to the external layer j=2 N+1: 

 

           (26) 

5. finally from the field  one deduces the amplitude 

 and  at the interface z2N+1, taking into account 

that there is no incoming wave in the external medium j=2N+1: 



 

           (27) 

Combining the equations (24-27) leads to a system of four equations whose unknowns are: 

, ,  and . 

Solving this system provides the amplitudes of the field radiated in the external media. In 

practice the radiation is detected in the far-field region at a distance larger than the 

wavelength. The way to calculate the intensity of secondary X-rays in far-field is detailed in 

Section 2.3. 

 

2.2 Calculation of the in-depth distribution of the local electric field  

 

As mentioned previously, the amplitude of the electric field that excites the dipole is 

generally computed via “rigorous” methods such as Parratt recursive method or transfer 

matrix technique. Nevertheless the coupled-wave theory (CWT) appears in terms of 

computing time to be very efficient to deal with this problem since the field can be expressed 

by a simple formula as shown hereafter; it is the reason why one chooses to use this approach. 

In the TE polarization case, the electric field has only one component E(z) which is 

perpendicular to the incident plane and obeys the wave equation: 

 

           (28) 

In the CWT, E(z) is regarded as a superposition of two waves propagating in opposite 

directions along the z-axis with amplitude F (Forward) and B (Backward) varying with z ; one 

writes: 

 

           (29) 

To ensure a unique determination of the amplitude, one requires the following condition to be 

satisfied: 

 

           (30) 

the prime symbol indicating a derivative with respect to z. Combining these two equations 

leads to the following system of differential equations: 



 

 

           (31) 

together with the boundary conditions F(z=0)=1 and B(z=z2N+1=L)=0. 

The quantity  can be written by means of the piecewise function h(z): 

 

           (32) 

where  is the average value of ; h(z) can be expanded in Fourier series: 

 

           (33) 

Combining the previous equations and assuming that the multilayer diffracts the incident 

radiation at the p
th

 order, that is the Bragg condition is nearly satisfied, then a 

system of coupled differential equations with constant coefficients can be obtained for the 

quantities: 

 

           (34) 

and 

 

           (35) 

The system reads: 

 

 

           (36) 

where 

 

           (37) 

 

           (38) 



 

           (39) 

with the boundary conditions f(z=0)=1 and b(z=z2N+1=L)=0. Solving the system of Eqs. (35-

39) gives: 

 

           (40) 

and 

 

           (41) 

with 

 

           (42) 

The above calculation given for the TE polarization case can be transposed to the TM 

case by considering the wave equation governing the magnetic field instead of the electric 

one. Indeed in the TM polarization case, the magnetic field has only one component H(z) 

which is perpendicular the incident plane: 

 

           (43) 

To simplify this equation one can introduce the field H*(z): 

 

           (44) 

where 

 

           (45) 

so that H*(z) satisfies the wave equation: 

 

           (46) 



The calculation to get H*(z) is formally the same than the one given above to determine the 

electric field E(z) in the TE polarization case. 

 

 

2.3 Calculation of the induced dipole 

 

We assume that the media are linear and isotropic, so that the polarization is aligned 

with and proportional to the local electric field E at position of the dipole rs: 

 

           (47) 

where  is the electric susceptibility of the medium. If the medium is not very 

dispersive the dependence of the susceptibility on the frequency 0 can be discarded; 

otherwise, for instance in the vicinity of an absorption edge, it can be necessary to take into 

account the dispersion. This is not a simple talk. In first attempt, one can call upon the 

Clausius-Mossotti formula [18]. 

To perform simulation, it is necessary to model the in-depth distribution of the dipoles. 

In the following part of this paper, we consider two models: 

- the first one where the scatterers are uniformly distributed along each layer; a fraction 

f is in the layer, say 1, while the remaining 1-f is in the other layer, say 2. 

- the second one describes the situation where the interfaces are not sharp and a 

transition layer is formed at each interface. To model this case, we call upon the error 

function (erf) as it is usually done to model rough interfaces [4,19]. Let us emphasize 

that the transition layer is not necessary the same for a material a on the top of a 

material b than for a material b on the top of a material a; see for instance [20–22]. In 

this case, we use the following distribution profile function p(z): 

 

 

           (48) 

 being the unit step Heaviside function and 

 

           (49) 



and 

 

           (50) 

This profile gives a distribution of the dipoles close to 1 in the centre of the layer 1, close to 0 

in the middle of the layer 2 with diffuse interfaces (1–2 between layer 1 and 2, and 2–1 

between layer 2 and 1). The parameters 1 and 2 can be regarded as the rms roughness of 

the interfaces 1-2 and 2-1 respectively. Discussion concerning the relationship between 

interface roughness, diffuse interface and transition layer can be found in [19,23]. 

Nevertheless as mentioned by Ghose and Dev [4], the values 1 and 2 may be inconsistent 

with the rms roughness values obtained from X-ray reflectometry fit. 

 

2.4 Radiated intensity in the far-field 

 

The problem is to calculate the intensity of radiation detected in a direction given by 

D=(D, zD) at a distance large from the multilayer structure. The first step consists in 

determining the field F[r=D,] in the r (direct 3D space) domain (F being the electric or 

magnetic field) from the field F[k,, z] as calculated in section 2.1; this operation requires 

an integration over the parallel component k of a kernel containing the field F[k,, z] 

 

  (51) 

The calculation can be done by using the stationary phase method (SPM) as done in 

[13,24] : roughly speaking, the integration by the SPM results in replacing kkD the 

lateral reciprocal lateral wave-vector associated with  D and to multiply by the result by 

cos() and by constant terms which are irrelevant when no absolute value is looking for. A 

detailed mathematical development is given in Ref. [25]. The second step corresponds to take 

the squared modulus of this result. 

 

3. Numerical applications 

 

In a first step, we compare our theory with data published in the literature in the case 

where only the incident radiation undergoes Bragg diffraction (de Boer Mode: dBM). In a 



second step we consider the case where both primary and secondary radiations are diffracted 

in the Bragg condition (Kossel-Chauvineau-Bridou Mode: KCBM). 

First we consider the case of the Pt/C multilayer reported by Ghose and Dev [4]. The 

structure consists in 20 bilayers; the thickness of the Pt layer is 1.7 nm and the one of the C 

layer is 2.6 nm. The L fluorescence line of Pt (9400 eV) is excited by the Mo K1 radiation 

(17487.36 eV); the average exit angle is 50°. Figure 2 shows the Pt L fluorescence yield 

recorded in the dBM, versus the glancing angle computed by means of our model in absence 

of any roughness. It appears that our calculation is in agreement with the data reported in [4]. 

 

Fig. 2: Pt L fluorescence yield of a Pt/C multilayer from Ref. [4] (red dots) compared to our 

calculation (blue line). 

 

As a second example in the dBM, we consider the Mo/Si multilayer system studied by 

Tiwari and Sawhney [5]. The structure has 20 bilayers; the thickness of the Mo layer is 

2.376 nm and the one of the Si layer is 4.224 nm. The L fluorescence line of Mo (2293 eV) 

is excited by the 15 keV monochromatic radiation delivered on the B16 beamline at the 

Diamond Light Source and recorded with an average exit angle of 90°. Our result presented in 

Figure 3 can be compared to the values given in figures 5 and 8 of the referenced paper. 

 

 



 
Fig. 3: Mo L fluorescence yield of a Mo/Si multilayer from Ref. [5] (red dots) compared to 

our calculation (blue line). Our calculation has been shifted by +0.0025°. 

 

Let us now consider the KCBM as reported in [2,3]. The sample is a Fe/C multilayer 

with 24 bilayers; the thickness of the Fe layer is 2.80 nm and the one of the C layer is 

2.56 nm. The K fluorescence line of Fe (6404 eV) is excited with the K line of Cu (8084 eV) 

Bragg diffracted by the periodic arrangement of the multilayer (glancing angle 0=0.88°). 

Figure 4 shows the fluorescence yield versus the take-off angle in the vicinity of the Bragg 

angle for the Fe K line (about 1.1°) as calculated by means of our model in comparison with 

the experimental data [2,3]. In our model, the diffraction within the multilayer stack is 

calculated by taking into account the interface roughness with the rms values given in [2,3] 

but no inter-diffusion is considered. The discrepancy between the two curves can be attributed 

to several factors: the interfaces are likely diffuse; broadening factors are not included in the 

calculation; complicated problems of radiation polarization are not taken into account and the 

geometry with problem of solid angle of detection and footprint of the beam. 



 
Fig. 4: Fe K fluorescence yield of a Fe/C multilayer from Ref. [2,3] (red dots) compared to 

our calculation (blue line). 

 

With our model, it is possible to simulate the effect of inter-diffusion. Let us deal with 

two cases: inter-diffusion with a uniform distribution along the layer and diffuse interfaces. 

We consider the Fe/C multilayer sample of the previous example. Figure 5 illustrates the 

effect of uniform mixing: the fraction f is 0.1 and 0.2 which means that 10 and 20% of Fe 

atoms are uniformly distributed in the C layer, respectively; the ideal case (no inter-diffusion) 

is shown for comparison. The yields have been normalized with respect to their maximum. As 

a function of increasing f, the first dip toward the low angles shifts by +0.005° and its 

intensity increases from 33 to 45% of the intensity of the main peak. Accurate measurements 

using synchrotron radiation should make possible to record the effects of mixing larger than 

10 % but this task seems more difficult to achieve with a laboratory experiment equipped with 

an X-ray tube. 



 
Figure 5: Effect of uniform mixing on the Fe K fluorescence yield of a Fe/C multilayer 

defined in Ref. [2,3]. Blue solid line: the fraction f is 0.1; green dotted line: f is 0.2; red 

dashed line: ideal case. 

 

Figure 6 shows the effect of diffuse interfaces; the profile is modelled by Eqs. (48-50). 

The parameters are 1=0.8 nm and 2=0.2 nm. We note that the changes are very small and 

may be difficult to observe even with synchrotron radiation. 

 
Fig. 6: Effect of diffuse interfaces on the Fe K fluorescence yield of a Fe/C multilayer defined 

in Ref. [2,3]. Blue solid line: diffuse interface with 1=0.8 nm and 2=0.2 nm; red dashed 

line: ideal case. 

 

It is not the purpose of the present paper to discuss the sensitivity of the fluorescence 

yield to the distribution of the scattering elements; this has been done in [4] where it was 

suggested that X-ray reflectometry should be combined with X-ray standing waves to access 



microstructural details of periodic multilayers. Let us mention that interesting results using 

simultaneous analysis of X-ray grazing incidence reflectivity and angular dependent 

fluorescence from ultrathin La films were recently obtained in layered La/B4C structure 

forming a waveguide [6]. Although this waveguide does not work as a Bragg reflector, it is 

important to outline that our dipole model can be implemented to analyse this waveguide 

structure. Finally let us outline that the model is in principle valid in the domain of total 

reflection; nevertheless we have observed some numerical instabilities in this region that we 

were not able to overcome in our code. This problem is under study. 

 

4. Conclusion 

 

 We have developed a model for the standing wave enhanced X-ray fluorescence that 

allows one to take into account the Bragg diffraction of both primary and secondary 

radiations. This model can be also useful to analyse other layered systems such as waveguide 

supporting several waveguide modes. Its in the soft X-ray domain, where absorption cannot 

be neglected, is another interest of this approach. We have also shown that the coupled-wave 

theory appears to be an efficient method in terms of computing time, to calculate the in-depth 

distribution of the exciting electric field. Finally let us mention that the model can be 

extended to deal with grazing exit fluorescence experiments [26–28] or elastic (Rayleigh) and 

inelastic (Compton, Raman). Physically, this model is valid provided that the emission 

process can be treated in the framework of the classical model of the oscillating dipole. 
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Appendix 

 

We give the algorithm to calculate the homogeneous field  in the j=2m+1 layer 

from the homogeneous field in the layer j=2m-2, assuming that the dipole is located at zs 

within the layer j=2m-1. By continuity and absence of dipole in the layer j=2m-2, Eqs. (14) 

and (15) give: 

 

            (A.1) 

Since the dipole is in the layer j=2m-1, from Eq. [17] it comes: 

 

            (A.2) 

Propagating the field in the layer j=2m-1, one gets: 

 

            (A.3) 

Applying Eq. (17) since the dipole is in the layer 2m-1, one has: 

 

            (A.4) 

Eqs. (14) and (15) give by virtue of the continuity of the field and absence of dipole in the 

layer j=2m: 

 

            (A.5) 

Propagating the field in the layer j=2m by means of Eq. (19) leads to: 

=  

            (A.6) 


