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Abstract. We consider the universal facility location problem in which
the goal is to assign clients to facilities in order to minimize the sum
of connection and facility costs. The connection cost is proportional to
the distance each client has to travel to its assigned facility, whereas the
cost of a facility is a non-decreasing function depending on the number
of clients assigned to the facility. This model generalizes several vari-
ants of facility location problems. We present a (5.83+ ǫ) approximation
algorithm for this problem based on local search technique.

1 Introduction

The class of facility location problems is fundamental in operations research and
is subject of extensive study. In the classical model, facilities are opened to satisfy
client demands and the opening cost of a facility is fixed. However, this model is
not fully appropriate in the contexts where the cost of a facility to serve clients
(the delay) crucially depends on its allocated capacity. This phenomenon widely
occurs in practical situations. The following model of Universal Facility Location
captures this phenomenon and is also a generalization of several variants of
facility location problems.

Universal Facility Location Let C be the set of (clients) and F be a set of
facilities where n = |C| and m = |F|. Each facility i is characterized by a non-
decreasing cost function fi : N → R

+ where fi(0) = 0. Consider the complete
bipartite graph G = (C ∪ F , E) where the distances d(i, j) associated to facility
i and client j follow the triangle inequality. We denote also by d(i, i′) the length
of a shortest path between two facilities i and i′ in the graph.

The goal is to assign clients to the facilities and install capacities at every
facility in order to serve clients. Given a solution S = (u, x), where x is the
assignment (xij = 1 if client j is served by facility i; and 0 otherwise) and u is
the allocation (ui ∈ N denotes the capacity allocated at facility i, which equals
the number of clients assigned to facility i), the connection cost is defined as
Cs(S) =

∑

i∈F,j∈C d(i, j)xij and the facility cost is Cf (S) =
∑

i∈F fi(ui). The
objective is to find a feasible solution minimizing the total cost C(S) defined as
Cs(S) + Cf (S).

⋆ This work has been supported by ANR project TODO (09-EMER-010) and GdR
RO.



Related works The model of Universal Facility Location captures several variants
of Facility Location. Many interesting algorithms with deep, powerful techniques
have been designed for the latter. Among others, the technique of local search
is extensively studied. Arya et al. [1] introduced the local search technique to
study Facility Location and k-median problem. From that, local search plays an
important role to study variants of Facility Location.

A particular interesting variant is the Capacitated Facility Location Problem,
where fi(·) is constant if the assigned amount to facility i is smaller than a given
capacity; and is infinity otherwise. The first constant approximation ratio for
this problem is 8.53 due to Pál and Tardos [7]. Then the approximation ratio
for Capacitated Facility Location Problem was improved to (5.83+ ǫ) by Zhang
et al. [9] and recently to (5 + ǫ) by Bansal et al. [2].

Mahdian and Pál [6] introduced the model of Universal Facility Location and
gave a (7.88+ǫ)-approximation algorithm. Garg et al. [3] proposed extended op-
erations and a schema of analysis to prove a (5.83 + ǫ)-approximation ratio.
However, one of their operations is unlikely to be polynomially computable (N.
Garg, personal communication, 2012). Subsequently, Vygen [8] improved the ap-
proximation ratio to (6.702 + ǫ). All those algorithms are based on local search
approach and the successive improvements are done by extending and general-
izing the previous operations together with more subtle analyses.

Besides, Hajiaghayi et al. [4] considered Universal Facility Location with
concave cost function and designed a 1.861-approximation algorithm. Recently,
Li and Khuller [5] have proved a (lnn + 1)-approximation for the Universal
Facility Location in non-metric space.

Contributions We present a (5.83+ǫ)-approximation algorithm also based on lo-
cal search. The contribution of the paper is a simple, polynomially computable
operation called Open-close. With this operation together with other opera-
tions, we manage to show the improved performance on the approximation of
the Universal Facility Location. Note that the analysis follows closely the ones
in [9, 3] with Open-close as the main operation.

2 Algorithm and Analysis

2.1 Operations

In this section we describe the set of operations that will be used in the algorithm.

– Add(s, δ): increase the capacity of facility s by δ, and find the minimum cost
assignment of demands to facilities, given their allocated capacities.

– Open(s, δ): increase the capacity of s by sending δ units of flow from one or
several facilities i1, i2, . . . to s via the shortest paths between i1, i2, . . . and s
(and decrease the capacity of i1, i2, . . .).

– Close(s, δ): Inversely, decrease the capacity of s by sending δ units of flow
from s to one or several facilities i1, i2, . . . via shortest path between s and
i1, i2, . . . (and increase the capacity of i1, i2, . . .).



– Open-close(s, t, δs, δt): increase the capacity of s by δs and decrease the
capacity of t by δt. This operation consists in orienting some amount from t
to s and then routing some amounts from one or several facilities i1, i2, . . .
to s and from t to one or several facilities i′1, i

′
2, . . .. The transfers are carried

out via shortest paths between facilities.

In the following for each operation, given its input, we show how to compute
the minimum cost (of the operation on the input) in polynomial time. The min-
cost of operation Add(s, δ) has been shown to be efficiently computable [6, 8].
Note that the operations Open(s, δ) and Close(s, δ) are particular cases of the
operation Open-close(s, t, δs, δt), hence it is sufficient to prove that the min-cost
of the latter could be computed in polynomial time.

Lemma 1. Let S = (u, x) be a solution and s, t be two facilities and 0 ≤ δs, δt ≤
n. Then, the minimum cost of the operation Open-close(s, t, δs, δt) can be com-
puted in polynomial time with respect to n,m.

Proof. Observe that if in operation Open-close(s, t, δs, δt), some amount is sent
from t to some facility i and later is reoriented to s then we can modify the
transfer in such a way that the amount is routed directly from t to s. Since the
distance d follows the triangle inequality, the modification results in a solution
at least as good as the previous one. Hence, in the sequel we assume that for
any facility, either it receives some flow or it sends out some flow.

We compute the minimum cost of Open-close(s, t, δs, δt). Name 1, . . . ,m−2
the facilities of F \{s, t}. Let 0 ≤ δ ≤ min{δs, δt} be the amount of flow directly
sent from t to s. We need to route δs − δ flow units to s and δt − δ units out of
t. Let g(i, a, b) be the minimum cost of having already sent a flow units to s and
having already sent b flow units out of t after considering the facilities 1, 2, . . . , i.
We have:

Open-close(s, t, δs, δt) = min
0≤δ≤min{δs,δt}

g(m− 2, δs − δ, δt − δ) + δ · d(s, t)+
(

fs(us + δs)− fs(us) + ft(ut − δt)− ft(ut)

)

Now we compute g(i, a, b) for 1 ≤ i ≤ m− 2, 0 ≤ a ≤ δs − δ, 0 ≤ b ≤ δt − δ
by dynamic programming. At facility i, either i will transfer some amount to
facility s or i will receive some amount from t. So we derive the recursive formula

g(i, a, b) = min

{

min
0≤w≤a

g(i− 1, a− w, b) +

[

w · d(i, s) + fi(ui − w)− fi(ui)

]

,

min
0≤w≤b

g(i− 1, a, b− w) +

[

w · d(i, t) + fi(ui + w)− fi(ui)

]}

for 2 ≤ i ≤ n− 2, 0 ≤ a ≤ δs − δ, 0 ≤ b ≤ δt − δ and

g(1, a, b) =











a · d(1, s) + f1(u1 − a)− f1(u1) if b = 0

b · d(1, t) + f1(u1 + b)− f1(u1) if a = 0

∞ if a 6= 0, b 6= 0.



where the last case indicates that a facility can either receive or send out
some amount but not both. As δs and δt are bounded by n, we can compute
Open-close(s, t, δs, δt) in O(mn4). ⊓⊔

2.2 The Local Search Algorithm

Fix ǫ > 0 be a small constant. Let S be an arbitrary feasible solution. As long as
there still exits some operation Add(s, δ) for 0 ≤ δ ≤ n or Open-close(s, t, δs, δt)
for 0 ≤ δs, δt ≤ n (using Lemma 1) such that after the operation the cost is
reduced by at least ǫC(S), improve S by the operation. Otherwise, return S.

By the results of the previous section, at each step we can verify in polynomial
time whether there is some improvement due to the operations. Moreover, the

algorithm halts after at most 1
ǫ log

C(S)
C(S∗) iterations where S

∗ is a global optimum.

Hence, the running time of the algorithm is polynomial in the size of the input.

2.3 The Analysis

Note that the solution returned by the algorithm is not a local optimum (ac-
cording to the operation given in previous section), but is an approximate one.
However, the cost of the latter is only (1 + 3ǫ) factor worse than the bound of
a local optimum. Hence, by standard argument in local search, it is sufficient to
prove the bound r of a local optimum (with respect to the operations described
in the previous section) to a global optimum. Consequently, the approximation
ratio is r(1 + ǫ′) where ǫ′ = 3ǫ.

Let S = (u, x) and S∗ = (u∗, x∗) be a local optimum solution and a global
optimum, respectively. With respect to the Add operation, the connection cost
has been bounded by the following lemma.

Lemma 2 ([6, 8]). Cs(S) ≤ Cs(S
∗) + Cf (S

∗).

The remaining of the paper is devoted to bound Cf (S) in function of Cs(S
∗)

and Cf (S
∗) by the following strategy.

Strategy Define F+ := {i ∈ F : ui > u∗
i } and F− := {i ∈ F : ui < u∗

i }. The
idea of the proof is to transfer some capacity amounts from facilities in F+ to
facilities in F− based on the operations defined in the previous section while
maintaining the following properties.

– For each facility i ∈ F+, move once the exact amount of (ui−u∗
i ) units from

i to some facilities in F−. We say that facility i is closed.
– For each facility i ∈ F−, the amount that i receives each time is at most

u∗
i − ui. Each time i receives some capacity amount, we say that facility i is

opened.
– The transportation cost of the transfer — the cost to route capacity amounts

between facilities where each unit travelling from facility i to i′ along a path
incurs a cost as the total length of that path — is small.



Note that a transfer is not a sequence of successive operations but is a “union” of
different operations. Ideally, in the second property each facility in F− is opened
once. However, the operations fulfilling this purpose may not be computed in
polynomial time. Let r be the maximum number of times a facility in F− is
open in such a transfer. Suppose that there exists a transfer with the desired
properties. We show how the strategy leads to useful bounds of the facility cost.
Let Ct be the transportation cost of the transfer. As S is local optimum, any
operation with respect to the solution S must have non-negative cost. Denote
δi,r′ be the amount transferred to facility i ∈ F− at its r′-th opening. Combining
all inequalities corresponding to operations in the transfer, we have

∑

i∈F+

(fi(u
∗
i )− fi(ui)) +

r
∑

r′=1

∑

i∈F−

(fi(ui + δi,r′)− fi(ui)) + Ct ≥ 0. (1)

Therefore,

∑

i∈F+

(fi(u
∗
i )− fi(ui)) + r ·

∑

i∈F−

(fi(u
∗
i )− fi(ui)) + Ct ≥ 0. (2)

since for i ∈ F−, fi(u
∗
i ) ≥ fi(ui + δi,r′), which is due to δi,r′ ≤ u∗

i − ui by the
second property, thus the lefthand side of (1) is upper-bounded by that of (2).
Summing both sides of (2) by

∑

i:i/∈F−∪F+ fi(ui) and rearranging the terms, we
get Cf (S) ≤ rCf (S

∗)+Ct. Whenever Ct is small, we can derive a bound on the
facility cost Cf (S). We say that a transfer is feasible if it satisfies the first two
properties. We will look for feasible transfers with small transportation cost and
r as small as possible.

Consider a transportation problem: finding a min cost flow such that each
facility i ∈ F+ sends out ui − u∗

i units of flow and each facility i ∈ F− receives
u∗
i − ui units. The cost of shipping one flow unit between i and i′ equals d(i, i′).

Mahdian and Pál [6] proved that the minimum cost flow was at most Cs(S) +
Cs(S

∗). Moreover, the support graph of the min cost transportation forms a
forest with edges going between F+ and F−. The transfers that we will define
later are carried out based on this forest.

Root each tree in the forest at some fixed facility in F−. For each vertex
v, denote K(v) the set of its children. For each vertex t ∈ F−, let Tt be the
subtree of depth exactly 2 rooted at t containing all its children and grand
children. (We can add some dummy vertices where the in-flow and out-flow
are 0 such that every tree Tt has depth 2.) Let y be the optimal flow of the
transportation problem where y(s, t) the flow between s ∈ F+ and t ∈ F−. We
denote y(s, V −) =

∑

t∈V − y(s, t) and y(V +, t) =
∑

s∈V + y(s, t) for V − ⊂ F−

and V + ⊂ F+, respectively. For special cases where V − = F− and V + = F+, we
simply denote y(·, t) as y(F+, t) and y(s, ·) as y(s,F−) the total flows received
at t and the total flow sent from s, respectively. Hence, for s ∈ F+ and t ∈ F−

y(·, t) = u∗
t − ut and y(s, ·) = us − u∗

s.
In the remaining, we will give a feasible transfer which closes each facility in

F+ once, opens each facility in F+ at most three times and the transportation



cost of the transfer is also bounded by twice that of the optimal flow y. The
transfer scheme follows the same scheme in [3] with Open-close as the main
operation. For completeness, we present the schema in the following.

Consider a facility t of F− and the subtree Tt. Note that K(t) = Tt∩F+. We
will classify the facilities into groups indicating where the main part of the sent
(received) flow amount goes to (comes from). We say that a facility t ∈ F− is
strong if y(·, t) ≥ 2y(K(t), t); and weak otherwise. Intuitively, t is strong means
that the main part of flow that t receives comes from its parent. Similarly, a
facility s ∈ F+ is dominant if y(s, t) ≥ y(s,K(s)); and non-dominant otherwise.
Again, intuitively a dominant facility routes out the main part of its out-flow
to its parent. In the tree Tt, let Dom(t) and NDom(t) be the sets of dominant and
non-dominant facilities of K(t), respectively. For each facility s ∈ K(t), let S(s)
and W (s) be the set of strong and weak facilities in K(s), respectively.

sℓ

t

sℓ s̄

t

s1 si si+1

Fig. 1. In the figures, the squares and diamonds represent non-dominant and domi-
nant facilities in F+ ∩ Tt, respectively. Besides, the circles and black circles represent
weak and strong facilities in F− ∩ Tt, respectively. The figure in the left illustrates
operation Close(si, y(si, ·)) in Step 1. The figure in the right illustrates operation
Open-close(t, sℓ, y(sℓ, t) +

∑
s∈Dom2

y(s, ·), y(sℓ, ·)) in Step 2c where black diamonds
stands for facilities in Dom2.

Consider the transfer by performing the following operations. (An illustration
is shown in Figure 1.)

1. For each facility s ∈ NDom(t), define Rem(s) := max{y(s, t) − y(s,W (s)), 0}.
Order facilities in NDom(t) as {s1, . . . , sℓ} such that Rem(s1) ≤ . . . ≤ Rem(sℓ).
For i ∈ {1, . . . , ℓ − 1}, consider Close(si, y(si, ·)): decrease the capacity at
si by moving out 2y(si, t

′) units to every facility t′ ∈ W (si), y(si, t
′) units

to every facility t′ ∈ S(si) and Rem(si) units to facilities in S(si+1). The
latter must be distributed in such a way that each facility in t′ ∈ S(si+1)
receives at most y(si+1, t

′) units. That can always be done since Rem(si) ≤
Rem(si+1) ≤ y(si+1,K(si+1)) − y(si+1,W (si+1)) = y(si+1, S(si+1)) where
the second inequality is because si+1 is non-dominant.

2. We adopt different procedures depending on different cases.
a. If t is strong.

Consider Open-close(t, sℓ, y(sℓ, t)+
∑

s∈Dom(t) y(s, ·), y(sℓ, ·)): facility t re-

ceives y(s, ·) units from each facility s ∈ Dom(t) in addition with y(sℓ, t)
units from sℓ; send out y(sℓ, t

′) units from sℓ to every facility t′ ∈ K(sℓ)∪t.



b. If t is weak and there is a facility h ∈ Dom(t) such that y(h, t) ≥
y(·, t)/2.
– Consider Close(h, y(h, ·)): decrease the capacity at h by sending out

y(h, t′) units to every facility t′ ∈ K(h) ∪ t.
– Consider Open-close(t, sℓ, y(sℓ, t) +

∑

s∈Dom(t),s 6=h y(s, ·), y(sℓ, ·)): fa-
cility t receives y(s, ·) units from each facility s ∈ Dom(t) \ {h} in
addition with y(sℓ, t) units from sℓ; send out y(sℓ, t

′) units from sℓ to
every facility t′ ∈ K(sℓ) ∪ t.

c. If t is weak and there is no facility h ∈ Dom(t) such that y(h, t) ≥
y(·, t)/2.
In this case, Zhang et al. [9] has proved that there exist a facility s̄ ∈ Dom(t)
such that the set Dom(t) \ {s̄} can be partitioned into Dom1 and Dom2
satisfying y(s̄, t) +

∑

s∈Dom1
y(s, ·) ≤ y(·, t) and y(sℓ, t) +

∑

s∈Dom2
y(s, ·) ≤

y(·, t).
– Consider Open-close(t, s̄, y(s̄, t) +

∑

s∈Dom1
y(s, ·), y(s̄, ·)): facility t

receives y(s, ·) units from each facility s ∈ Dom1 in addition with
y(s̄, t) units from s̄; send out y(s̄, t′) units from s̄ to every facility
t′ ∈ K(s̄) ∪ t.

– Similarly, consider Open-close(t, sℓ, y(sℓ, t)+
∑

s∈Dom2
y(s, ·), y(sℓ, ·)):

facility t receives y(s, ·) units from each facility s ∈ Dom2 in addition
with y(sℓ, t) units from sℓ; send out y(sℓ, t

′) units from sℓ to every
facility t′ ∈ K(sℓ) ∪ t.

Lemma 3. The transfer is feasible.

Proof. Fix a tree Tt. By the transfer procedure, each facility s ∈ Tt ∩ F+ sends
out exactly y(s, ·) units. It remains to prove that every facility t′ ∈ Tt ∩ F−

receives each time at most y(·, t′).
Consider t′ ∈ Tt∩F− \{t} and suppose that t′ ∈ K(s) for some s ∈ Tt∩F+.

By the transfer on tree Tt, at any operation, if t′ is weak then it receives at most
2y(s, t′), which is bounded by y(·, t′); otherwise (if t′ is strong) the received
amount is at most y(s, t′). In any case, t′ receives at most y(·, t′).

Consider the root t of tree Tt. Note that facility t only receives flow in Step
2 of the procedure. If t is strong, the total amount sent to t is

y(sℓ, t) +
∑

s∈Dom(t)

y(s, ·) ≤ y(sℓ, t) +
∑

s∈Dom(t)

2y(s, t) ≤ 2y(K(t), t) ≤ y(·, t)

where the first and the last inequalities follow by the definition of dominant
facilities and the fact that t is strong, respectively.

If t is weak and there is facility h ∈ Dom(t) such that y(h, t) ≥ y(·, t)/2.
Facility t receives y(h, t) units in the operation that closes facility h. In the
operation that opens facility t and closes facility sℓ, the amount sent to t is

y(sℓ, t)+
∑

s∈Dom(t),s 6=h

y(s, ·) ≤ y(sℓ, t) +
∑

s∈Dom(t),s 6=h

2y(s, t)

≤ 2y(K(t) \ {h}, t) ≤ 2(y(·, t)− y(h, t)) ≤ y(·, t).



If t is weak and there is no facility h ∈ Dom(t) such that y(h, t) ≥ y(·, t)/2. The
amounts that i receives are y(s̄, t) +

∑

s∈Dom1
y(s, ·) and y(sℓ, t) +

∑

s∈Dom2
y(s, ·)

by the first and second operations of this case, respectively. As mentioned in the
transfer procedure, those amounts are both bounded by y(·, t). Hence, in any
case, t receives at most y(·, t) units at each operation. ⊓⊔

Lemma 4. In the transfer, each facility in F+ is closed exactly once, each facil-
ity in F− is opened at most three times and the flow across every edge e = (s, t)
in the forest (the support graph of the optimal solution in the transportation
problem) is at most 2y(s, t).

Proof. Clearly by the decomposition of the forest into subtrees, a facility in F+

belongs to exactly one subtree and a facility in F− belongs to at most two
subtrees Tt. Hence, by the previous lemma, every facility in F+ is closed exactly
once. Consider a facility t ∈ F−. Let t̃ be the grand parent of t. If t is strong
then it will be opened once by the transfer procedure on tree Tt and it is opened
at most twice during the procedure on tree Tt̃. If t is weak then it will be opened
at most twice by the procedure on tree Tt and once by the procedure on tree Tt̃.
In any case, t is opened at most three time in the transfer.

Observe that edges in the subtrees Tt for all t are disjoint, so the flow across
an edge e in the transfer is the one across the edge in the transfer restricted on
the subtree containing e. Consider an edge e in a subtree Tt and the following
cases.

Case 1: e = (s, t) where s ∈ Tt∩F+. If s is dominant, then the total flow routed
along (s, t) is at most y(s, ·), which is bounded by 2y(s, t). If s is non-dominant,
suppose that s = si for some 1 ≤ i ≤ ℓ where NDom(t) = {s1, . . . , sℓ} ordered
according to the Rem functions. The total flow across (si, t) is due to: (1) the
operation closing si−1; and (2) the one closing si (especially for sℓ, that is an
operation opening t and closing sℓ). The first operation sends through (si, t) a
flow Rem(si−1) ≤ Rem(si) ≤ y(si, t); the second operation routes along (si, t) a
flow at most y(si, t). Therefore, the total flow across e is at most 2y(e).

Case 2: e = (s, t′) where s ∈ Tt∩F+ and t′ ∈ Tt∩F−\{t}. If s ∈ Dom(t) then by
the transfer procedure the flow routed through (s, t′) is at most y(s, t′). If s = si
is non-dominant and t′ is weak then the flow across (s, t′) is either 2y(s, t′) in
case s 6= sℓ or y(s, t′) in case s = sℓ. If s = si is non-dominant and t′ is strong
then the flow sending from si−1 to t′ is at most y(si, t

′). So together with the
flow y(si, t

′) routing from si, the total flow across (si, t
′) is at most 2y(si, t

′).

In summary, the flow across every edge e in the forest is at most 2y(e). The
lemma follows. ⊓⊔

Theorem 1. It holds that Cf (S) ≤ 4Cs(S
∗) + 5Cf (S

∗) and Cs(S) ≤ Cs(S
∗) +

Cf (S
∗). Consequently, the local search algorithm is (3+2

√
2+ ǫ)-approximation

(≈ (5.83 + ǫ)-approx).



Proof. By the previous lemma, the transportation cost of the transfer is at most
2(Cs(S)+Cs(S

∗)) and a facility of F− is opened at most three times. Therefore,

Cf (S) ≤ 3Cf (S
∗) + 2(Cs(S) + Cs(S

∗)) ≤ 4Cs(S
∗) + 5Cf (S

∗)

since Cs(S) ≤ Cs(S
∗) + Cf (S

∗). Hence, the total cost of solution S is

Cs(S) + Cf (S) ≤ Cs(S
∗) + Cf (S

∗) + 4Cs(S
∗) + 5Cf (S

∗) = 5Cs(S
∗) + 6Cf (S

∗)

which yields an approximation ratio (6 + ǫ).
By a standard scaling technique, we multiply the cost function of every facil-

ity by a factor λ (to be defined later) then apply the algorithm to this instance.
Let C ′

f (·) and Cf (·) be the facility cost function of the modified and original
solution. Note that C ′

f (·) = λCf (·). Let S a local optimum (on the modified
instance) and S∗ be any feasible solution. The same analysis leads to the fol-
lowing inequalities: C ′

f (S) ≤ 4Cs(S
∗) + 5C ′

f (S
∗) and Cs(S) ≤ Cs(S

∗) +C ′
f (S

∗).
Therefore, the original total cost

Cf (S) + Cs(S) = C ′
f (S)/λ+ Cs(S) ≤

1

λ
(4Cs(S

∗) + 5C ′
f (S

∗)) + Cs(S
∗) + C ′

f (S
∗)

= (5 + λ)Cf (S
∗) + (

4

λ
+ 1)Cs(S

∗).

Choosing λ = 2
√
2− 2, we get C(S) ≤ (3 + 2

√
2)C(S∗). Therefore, the approxi-

mation ratio is (3 + 2
√
2 + ǫ) ≈ (5.83 + ǫ). ⊓⊔
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